Skip to main content
Log in

T1 mapping using saturation recovery single-shot acquisition at 3-tesla magnetic resonance imaging in hypertrophic cardiomyopathy: comparison to late gadolinium enhancement

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the T1 values of segments and slices and the reproducibility in healthy controls, using saturation recovery single-shot acquisition (SASHA) at 3T magnetic resonance imaging. Moreover, we examined the difference in T1 values between hypertrophic cardiomyopathy (HCM) and healthy controls, and compared those with late gadolinium enhancement (LGE).

Materials and methods

Twenty-one HCM patients and 10 healthy controls underwent T1 mapping before and after contrast administration. T1 values were measured in 12 segments.

Results

Native T1 values were significantly longer in HCM than in healthy controls [1373 ms (1312–1452 ms) vs. 1279 ms (1229–1326 ms); p < 0.0001]. Even in HCM segments without LGE, native T1 values were significantly longer than in healthy control segments [1366 ms (1300–1439 ms) vs. 1279 ms (1229–1326 ms); p < 0.0001]. Using a cutoff value of 1327 ms for septal native T1 values, we differentiated between HCM and healthy controls with 95% sensitivity, 90% specificity, 94% accuracy, and an area under the curve of 0.95.

Conclusions

Native T1 values using a SASHA at 3T could differentiate HCM from healthy controls. Moreover, native T1 values have the potential to detect abnormal myocardium that cannot be identified adequately by LGE in HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bulluck H, Maestrini V, Rosmini S, Abdel-Gadir A, Treibel TA, Castelletti S, et al. Myocardial T1 mapping. Circ J. 2015;79:487–94.

    Article  PubMed  Google Scholar 

  2. Zhou H, Lin X, Fang L, Zhao X, Ding H, Chen W, et al. Characterization of compacted myocardial abnormalities by cardiac magnetic resonance with native t1 mapping in left ventricular non-compaction patients—a comparison with late gadolinium enhancement. Circ J. 2016;80:1210–6.

    Article  PubMed  Google Scholar 

  3. Ikeda U, Minamisawa M, Koyama J. Isolated left ventricular non-compaction cardiomyopathy in adults. J Cardiol. 2015;65:91–7.

    Article  PubMed  Google Scholar 

  4. Roujol S, Weingärtner S, Foppa M, Chow K, Kawaji K, Ngo LH, et al. Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology. 2014;272:683–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med. 2013;70:664–70.

    Article  CAS  PubMed  Google Scholar 

  6. Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med. 2014;71:1428–34.

    Article  PubMed  Google Scholar 

  7. Cooper MA, Nguyen TD, Spincemaille P, Prince MR, Weinsaft JW, Wang Y. Flip angle profile correction for T1 and T2 quantification with look-locker inversion recovery 2D steady-state free precession imaging. Magn Reson Med. 2012;68:1579–85.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Piechnik SK, Ferreira VM, Dall’Armellina E, Cochlin LE, Greiser A, Neubauer S, et al. Shortened modified look-locker inversion recovery (ShMOLLI) for clinical myocardial T1-mapping at 1.5 and 3T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson. 2010;12:69.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wang C, Zheng J, Sun J, Wang Y, Xia R, Yin Q, et al. Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients. J Cardiol. 2015;66:520–6.

    Article  PubMed  Google Scholar 

  10. Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2010;6:587–96.

    Article  Google Scholar 

  11. St John Sutton MG, Lie JT, Anderson KR, O’Brien PC, Frye RL. Histopathological specificity of hypertrophic obstructive cardiomyopathy. Myocardial fibre disarray and myocardial fibrosis. Br Heart J. 1980;44:433–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kido T, Kido T, Nakamura M, Kawaguchi N, Nishiyama Y, Ogimoto A, et al. Three-dimensional phase-sensitive inversion recovery sequencing in the evaluation of left ventricular myocardial scars in ischemic and non-ischemic cardiomyopathy: comparison to three-dimensional inversion recovery sequencing. Eur J Radiol. 2014;83:2159–66.

    Article  PubMed  Google Scholar 

  13. Małek ŁA, Werys K, Kłopotowski M, Śpiewak M, Miłosz-Wieczorek B, Mazurkiewicz Ł, et al. Native T1-mapping for non-contrast assessment of myocardial fibrosis in patients with hypertrophic cardiomyopathy—comparison with late enhancement quantification. Magn Reson Imaging. 2015;33:718–24.

    Article  PubMed  Google Scholar 

  14. Richardson P, McKenna W, Bristow M, Maisch B, Mautner B, O’Connell J, et al. Report of the 1995 World Health Organization/International Society and federation of cardiology task force on the definition and classification of cardiomyopathies. Circulation. 1996;93:841–2.

    Article  CAS  PubMed  Google Scholar 

  15. Rogers T, Dabir D, Mahmoud I, Voigt T, Schaeffter T, Nagel E, et al. Standardization of T1 measurements with MOLLI in differentiation between health and disease—the ConSept study. J Cardiovasc Magn Reson. 2013;15:78.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Katscher U, Börnert P. Parallel RF transmission in MRI. NMR Biomed. 2006;19:393–400.

    Article  PubMed  Google Scholar 

  17. Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, et al. Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study. Radiology. 2006;238:1004–12.

    Article  PubMed  Google Scholar 

  18. Dabir D, Child N, Kalra A, Rogers T, Gebker R, Jabbour A, et al. Reference values for healthy human myocardium using a T1 mapping methodology: results from the International T1 Multicenter cardiovascular magnetic resonance study. J Cardiovasc Magn Reson. 2014;16:69.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dass S, Suttie JJ, Piechnik SK, Ferreira VM, Holloway CJ, Banerjee R, et al. Myocardial tissue characterization using magnetic resonance noncontrast T1 mapping in hypertrophic and dilated cardiomyopathy. Circ Cardiovasc Imaging. 2012;5:726–33.

    Article  PubMed  Google Scholar 

  20. Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, et al. Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging. 2013;6:475–84.

    Article  PubMed  Google Scholar 

  21. Chow K, Yang Y, Shaw P, Kramer CM, Salerno M. Robust free-breathing SASHA T1 mapping with high-contrast image registration. J Cardiovasc Magn Reson. 2016;18:47.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T(1) mapping. Magn Reson Med. 2014;71:2082–95.

    Article  PubMed  Google Scholar 

  23. Shapiro MD, Magee T, Williams D, Ramnath R, Ross JS. The time for 3T clinical imaging is now. AJNR Am J Neuroradiol. 2004;25:1628–9.

    PubMed  Google Scholar 

  24. Rooney WD, Johnson G, Li X, Cohen ER, Kim SG, Ugurbil K, et al. Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magn Reson Med. 2007;57:308–18.

    Article  CAS  PubMed  Google Scholar 

  25. Germain P, El Ghannudi S, Jeung MY, Ohlmann P, Epailly E, Roy C, et al. Native T1 mapping of the heart—a pictorial review. Clin Med Insights Cardiol. 2014;8:1–11.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Knowles BR, Batchelor PG, Parish V, Ginks M, Plein S, Razavi R, et al. Pharmacokinetic modeling of delayed gadolinium enhancement in the myocardium. Magn Reson Med. 2008;60:1524–30.

    Article  CAS  PubMed  Google Scholar 

  27. Rehwald WG, Fieno DS, Chen EL, Kim RJ, Judd RM. Myocardial magnetic resonance imaging contrast agent concentrations after reversible and irreversible ischemic injury. Circulation. 2002;105:224–9.

    Article  PubMed  Google Scholar 

  28. Grebe O, Paetsch I, Kestler HA, Herkommer B, Schnackenburg B, Hombach V, et al. Optimal acquisition parameters for contrast enhanced magnetic resonance imaging after chronic myocardial infarction. J Cardiovasc Magn Reson. 2003;5:575–87.

    Article  PubMed  Google Scholar 

  29. Blume U, Lockie T, Stehning C, Sinclair S, Uribe S, Razavi R, et al. Interleaved T(1) and T(2) relaxation time mapping for cardiac applications. J Magn Reson Imaging. 2009;29:480–7.

    Article  PubMed  Google Scholar 

  30. Karlsen OT, Verhagen R, Bovée WM. Parameter estimation from Rician-distributed data sets using a maximum likelihood estimator: application to T1 and perfusion measurements. Magn Reson Med. 1999;41:614–23.

    Article  CAS  PubMed  Google Scholar 

  31. Schelbert EB, Testa SM, Meier CG, Ceyrolles WJ, Levenson JE, Blair AJ, et al. Myocardial extravascular extracellular volume fraction measurement by gadolinium cardiovascular magnetic resonance in humans: slow infusion versus bolus. J Cardiovasc Magn Reson. 2011;13:16.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sharma P, Socolow J, Patel S, Pettigrew RI, Oshinski JN. Effect of Gd-DTPA-BMA on blood and myocardial T1 at 1.5T and 3T in humans. J Magn Reson Imaging. 2006;23:323–30.

    Article  PubMed  Google Scholar 

  33. Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:415–22.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rauhalammi SM, Mangion K, Barrientos PH, Carrick DJ, Clerfond G, McClure J, et al. Native myocardial longitudinal (T1) relaxation time: regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging. 2016;44:541–8.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Ogawa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

The study design was approved by the appropriate ethics review boards.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, R., Kido, T., Nakamura, M. et al. T1 mapping using saturation recovery single-shot acquisition at 3-tesla magnetic resonance imaging in hypertrophic cardiomyopathy: comparison to late gadolinium enhancement. Jpn J Radiol 35, 116–125 (2017). https://doi.org/10.1007/s11604-017-0611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-017-0611-5

Keywords

Navigation