Skip to main content

Advertisement

Log in

Marked Differences of Haplotype Tagging SNP Distribution, Linkage, and Haplotype Profile of APOA5 Gene in Roma Population Samples

  • Original Article
  • Published:
Pathology & Oncology Research

Abstract

Roma people are underprivileged, neglected population worldwide, with severe healthcare problems. They have significantly increased prevalence of cardiovascular morbidity, presumably related to their poor social status, alcohol consumption and smoking habits. Assuming that genetic background also plays a role in their susceptibility for cardiovascular diseases, we hypothesized that APOA5 gene polymorphisms, an important role-player in lipid metabolism and in the development of metabolic syndrome and cardio/cerebrovascular events, may also be involved. We examined four APOA5 polymorphisms in 363 Roma and 404 Hungarian DNA samples. For rs662799, rs2266788, rs207560 and rs3135506 we found elevated plasma triglyceride levels in the risk allele carriers compared to non-carriers in both populations. At least a two-fold significant increase was detected in minor allele frequencies in Roma when compared to Hungarians, except the rs2266788 variant. Haplotype analysis revealed significant increase of APOA5*2, APOA5*4 in Roma, as opposed to the higher levels of APOA5*5 found in Hungarians. Different linkage disequilibrium was found between rs207560 and rs3135506 variants in Roma compared to Hungarians. The profound differences observed in almost all APOA5 polymorphisms in Roma require special attention, since these variants are known to associate with cardio/cerebrovascular susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Krauss RM (1998) Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol 81(4A):13B–17B

    Article  CAS  PubMed  Google Scholar 

  2. Hodis HN (1999) Triglyceride-rich lipoprotein remnant particles and risk of atherosclerosis. Circulation 99(22):2852–2854

    Article  CAS  PubMed  Google Scholar 

  3. Cullen P (2000) Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol 86(9):943–949

    Article  CAS  PubMed  Google Scholar 

  4. Haim M, Benderly M, Brunner D, Behar S, Graff E, Reicher-Reiss H, Goldbourt U (1999) Elevated serum triglyceride levels and long-term mortality in patients with coronary heart disease: the Bezafibrate infarction prevention (BIP) registry. Circulation 100(5):475–482

    Article  CAS  PubMed  Google Scholar 

  5. Pennacchio LA, Olivier M, Hubacek JA, Cohen JC, Cox DR, Fruchart JC, Krauss RM, Rubin EM (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294(5540):169–173. doi:10.1126/science.1064852

    Article  CAS  PubMed  Google Scholar 

  6. van der Vliet HN, Sammels MG, Leegwater AC, Levels JH, Reitsma PH, Boers W, Chamuleau RA (2001) Apolipoprotein A-V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 276(48):44512–44520. doi:10.1074/jbc.M106888200

    Article  PubMed  Google Scholar 

  7. Sharma V, Ryan RO, Forte TM (2012) Apolipoprotein A-V dependent modulation of plasma triacylglycerol: a puzzlement. Biochim Biophys Acta 1821(5):795–799. doi:10.1016/j.bbalip.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  8. Gin P, Yin L, Davies BS, Weinstein MM, Ryan RO, Bensadoun A, Fong LG, Young SG, Beigneux AP (2008) The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem 283(43):29554–29562. doi:10.1074/jbc.M802579200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gin P, Beigneux AP, Davies B, Young MF, Ryan RO, Bensadoun A, Fong LG, Young SG (2007) Normal binding of lipoprotein lipase, chylomicrons, and apo-AV to GPIHBP1 containing a G56R amino acid substitution. Biochim Biophys Acta 1771(12):1464–1468. doi:10.1016/j.bbalip.2007.10.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun G, Bi N, Li G, Zhu X, Zeng W, Wu G, Xue H, Chen B (2006) Identification of lipid binding and lipoprotein lipase activation domains of human apoAV. Chem Phys Lipids 143(1–2):22–28. doi:10.1016/j.chemphyslip.2006.04.004

    Article  CAS  PubMed  Google Scholar 

  11. Lookene A, Beckstead JA, Nilsson S, Olivecrona G, Ryan RO (2005) Apolipoprotein A-V-heparin interactions: implications for plasma lipoprotein metabolism. J Biol Chem 280(27):25383–25387. doi:10.1074/jbc.M501589200

    Article  CAS  PubMed  Google Scholar 

  12. Merkel M, Loeffler B, Kluger M, Fabig N, Geppert G, Pennacchio LA, Laatsch A, Heeren J (2005) Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J Biol Chem 280(22):21553–21560. doi:10.1074/jbc.M411412200

    Article  CAS  PubMed  Google Scholar 

  13. Pennacchio LA, Olivier M, Hubacek JA, Krauss RM, Rubin EM, Cohen JC (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11(24):3031–3038

    Article  CAS  PubMed  Google Scholar 

  14. Pennacchio LA, Rubin EM (2003) Apolipoprotein A5, a newly identified gene that affects plasma triglyceride levels in humans and mice. Arterioscler Thromb Vasc Biol 23(4):529–534. doi:10.1161/01.ATV.0000054194.78240.45

    Article  CAS  PubMed  Google Scholar 

  15. Hubacek JA, Skodova Z, Adamkova V, Lanska V, Poledne R (2004) The influence of APOAV polymorphisms (T-1131 > C and S19 > W) on plasma triglyceride levels and risk of myocardial infarction. Clin Genet 65(2):126–130

    Article  CAS  PubMed  Google Scholar 

  16. Kisfali P, Mohas M, Maasz A, Hadarits F, Marko L, Horvatovich K, Oroszlan T, Bagosi Z, Bujtor Z, Gasztonyi B, Wittmann I, Melegh B (2008) Apolipoprotein A5 IVS3 + 476A allelic variant associates with increased trigliceride levels and confers risk for development of metabolic syndrome in Hungarians. Circ J 72(1):40–43

    Article  CAS  PubMed  Google Scholar 

  17. Maasz A, Kisfali P, Horvatovich K, Mohas M, Marko L, Csongei V, Farago B, Jaromi L, Magyari L, Safrany E, Sipeky C, Wittmann I, Melegh B (2007) Apolipoprotein A5 T-1131C variant confers risk for metabolic syndrome. Pathol Oncol Res 13(3):243–247

    Article  CAS  PubMed  Google Scholar 

  18. Maasz A, Kisfali P, Jaromi L, Horvatovich K, Szolnoki Z, Csongei V, Safrany E, Sipeky C, Hadarits F, Melegh B (2008) Apolipoprotein A5 gene IVS3 + G476A allelic variant confers susceptibility for development of ischemic stroke. Circ J 72(7):1065–1070

    Article  CAS  PubMed  Google Scholar 

  19. Maasz A, Kisfali P, Szolnoki Z, Hadarits F, Melegh B (2008) Apolipoprotein A5 gene C56G variant confers risk for the development of large-vessel associated ischemic stroke. J Neurol 255(5):649–654. doi:10.1007/s00415-008-0768-z

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Z, Peng B, Gong RR, Gao LB, Du J, Fang DZ, Song YY, Li YH, Ou GJ (2011) Apolipoprotein A5 polymorphisms and risk of coronary artery disease: a meta-analysis. Biosci Trends 5(4):165–172

    Article  CAS  PubMed  Google Scholar 

  21. Sarwar N, Sandhu MS, Ricketts SL, Butterworth AS, Di Angelantonio E, Boekholdt SM, Ouwehand W, Watkins H, Samani NJ, Saleheen D, Lawlor D, Reilly MP, Hingorani AD, Talmud PJ, Danesh J (2010) Triglyceride-mediated pathways and coronary disease: collaborative analysis of 101 studies. Lancet 375(9726):1634–1639. doi:10.1016/S0140-6736(10)60545-4

    Article  CAS  PubMed  Google Scholar 

  22. Kisfali P, Mohas M, Maasz A, Polgar N, Hadarits F, Marko L, Brasnyo P, Horvatovich K, Oroszlan T, Bagosi Z, Bujtor Z, Gasztonyi B, Rinfel J, Wittmann I, Melegh B (2009) Haplotype analysis of the apolipoprotein A5 gene in patients with the metabolic syndrome. Nutr Metab Cardiovasc Dis 20(7):505–511. doi:10.1016/j.numecd.2009.05.001

    Article  PubMed  Google Scholar 

  23. Kalaydjieva L, Gresham D, Calafell F (2001) Genetic studies of the Roma (gypsies): a review. BMC Med Genet 2:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeman CL, Depken DE, Senchina DS (2003) Roma health issues: a review of the literature and discussion. Ethn Health 8(3):223–249. doi:10.1080/1355785032000136434

    Article  PubMed  Google Scholar 

  25. Gresham D, Morar B, Underhill PA, Passarino G, Lin AA, Wise C, Angelicheva D, Calafell F, Oefner PJ, Shen P, Tournev I, de Pablo R, Kucinskas V, Perez-Lezaun A, Marushiakova E, Popov V, Kalaydjieva L (2001) Origins and divergence of the Roma (gypsies). Am J Hum Genet 69(6):1314–1331. doi:10.1086/324681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. McKee M (1997) The health of gypsies. BMJ 315(7117):1172–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vozarova de Courten B, de Courten M, Hanson RL, Zahorakova A, Egyenes HP, Tataranni PA, Bennett PH, Vozar J (2003) Higher prevalence of type 2 diabetes, metabolic syndrome and cardiovascular diseases in gypsies than in non-gypsies in Slovakia. Diabetes Res Clin Pract 62(2):95–103. doi:10.1016/S0168822703001621

    Article  PubMed  Google Scholar 

  28. Dobranici M, Buzea A, Popescu R (2012) The cardiovascular risk factors of the Roma (gypsies) people in Central-Eastern Europe: a review of the published literature. J Med Life 5(4):382–389

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21(2):263–265. doi:10.1093/bioinformatics/bth457

    Article  CAS  PubMed  Google Scholar 

  30. Havasi V, Szolnoki Z, Talian G, Bene J, Komlosi K, Maasz A, Somogyvari F, Kondacs A, Szabo M, Fodor L, Bodor A, Melegh B (2006) Apolipoprotein A5 gene promoter region T-1131C polymorphism associates with elevated circulating triglyceride levels and confers susceptibility for development of ischemic stroke. J Mol Neurosci 29(2):177–183. doi:10.1385/JMN:29:2:177

    Article  CAS  PubMed  Google Scholar 

  31. Flecha A (2013) Healthier lives for European minority groups: school and health care, lessons from the Roma. Int J Environ Res Public Health 10(8):3089–3111. doi:10.3390/ijerph10083089

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bogdanovic D, Nikic D, Petrovic B, Kocic B, Jovanovic J, Nikolic M, Milosevic Z (2007) Mortality of Roma population in Serbia, 2002-2005. Croat Med J 48(5):720–726

    PubMed  PubMed Central  Google Scholar 

  33. Masseria C, Mladovsky P, Hernandez-Quevedo C (2010) The socio-economic determinants of the health status of Roma in comparison with non-Roma in Bulgaria, Hungary and Romania. Eur J Pub Health 20(5):549–554. doi:10.1093/eurpub/ckq102

    Article  Google Scholar 

  34. Alberty R, Albertyova D, Ahlers I (2009) Distribution and correlations of non-high-density lipoprotein cholesterol in Roma and Caucasian children: the Slovak lipid community study. Coll Antropol 33(4):1015–1022

    CAS  PubMed  Google Scholar 

  35. Dolinska S, Kudlackova M, Ginter E (2007) The prevalence of female obesity in the world and in the Slovak gypsy women. Bratisl Lek Listy 108(4–5):207–211

    CAS  PubMed  Google Scholar 

  36. Carrasco-Garrido P, Lopez de Andres A, Hernandez Barrera V, Jimenez-Trujillo I, Jimenez-Garcia R (2011) Health status of Roma women in Spain. Eur J Pub Health 21(6):793–798. doi:10.1093/eurpub/ckq153

    Article  Google Scholar 

  37. Gualdi-Russo E, Zironi A, Dallari GV, Toselli S (2009) Migration and health in Italy: a multiethnic adult sample. J Travel Med 16(2):88–95. doi:10.1111/j.1708-8305.2008.00280.x

    Article  PubMed  Google Scholar 

  38. Krajcovicova-Kudlackova M, Blazicek P, Spustova V, Valachovicova M, Ginter E (2004) Cardiovascular risk factors in young gypsy population. Bratisl Lek Listy 105(7–8):256–259

    CAS  PubMed  Google Scholar 

  39. Sipeky C, Weber A, Szabo M, Melegh BI, Janicsek I, Tarlos G, Szabo I, Sumegi K, Melegh B (2013) High prevalence of CYP2C19*2 allele in Roma samples: study on Roma and Hungarian population samples with review of the literature. Mol Biol Rep 40(8):4727–4735. doi:10.1007/s11033-013-2569-4

    Article  CAS  PubMed  Google Scholar 

  40. Sipeky C, Csongei V, Jaromi L, Safrany E, Maasz A, Takacs I, Beres J, Fodor L, Szabo M, Melegh B (2011) Genetic variability and haplotype profile of MDR1 (ABCB1) in Roma and Hungarian population samples with a review of the literature. Drug Metab Pharmacokinet 26(2):206–215

    Article  CAS  PubMed  Google Scholar 

  41. Sipeky C, Lakner L, Szabo M, Takacs I, Tamasi V, Polgar N, Falus A, Melegh B (2009) Interethnic differences of CYP2C9 alleles in healthy Hungarian and Roma population samples: relationship to worldwide allelic frequencies. Blood Cells Mol Dis 43(3):239–242. doi:10.1016/j.bcmd.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  42. Sipeky C, Csongei V, Jaromi L, Safrany E, Polgar N, Lakner L, Szabo M, Takacs I, Melegh B (2009) Vitamin K epoxide reductase complex 1 (VKORC1) haplotypes in healthy Hungarian and Roma population samples. Pharmacogenomics 10(6):1025–1032. doi:10.2217/pgs.09.46

    Article  CAS  PubMed  Google Scholar 

  43. Moorjani P, Patterson N, Loh PR, Lipson M, Kisfali P, Melegh BI, Bonin M, Kadasi L, Riess O, Berger B, Reich D, Melegh B (2013) Reconstructing Roma history from genome-wide data. PLoS One 8(3):e58633. doi:10.1371/journal.pone.0058633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mendizabal I, Lao O, Marigorta UM, Wollstein A, Gusmao L, Ferak V, Ioana M, Jordanova A, Kaneva R, Kouvatsi A, Kucinskas V, Makukh H, Metspalu A, Netea MG, de Pablo R, Pamjav H, Radojkovic D, Rolleston SJ, Sertic J, Macek M Jr, Comas D, Kayser M (2012) Reconstructing the population history of European Romani from genome-wide data. Curr Biol 22(24):2342–2349. doi:10.1016/j.cub.2012.10.039

    Article  CAS  PubMed  Google Scholar 

  45. Evans D, Seedorf U, Beil FU (2005) Polymorphisms in the apolipoprotein A5 (APOA5) gene and type III hyperlipidemia. Clin Genet 68(4):369–372. doi:10.1111/j.1399-0004.2005.00510.x

    Article  CAS  PubMed  Google Scholar 

  46. Dallongeville J, Cottel D, Wagner A, Ducimetiere P, Ruidavets JB, Arveiler D, Bingham A, Ferrieres J, Amouyel P, Meirhaeghe A (2008) The APOA5 Trp19 allele is associated with metabolic syndrome via its association with plasma triglycerides. BMC Med Genet 9:84. doi:10.1186/1471-2350-9-84

    Article  PubMed  PubMed Central  Google Scholar 

  47. Melegh BI, Duga B, Sumegi K, Kisfali P, Maasz A, Komlosi K, Hadzsiev K, Komoly S, Kosztolanyi G, Melegh B (2012) Mutations of the apolipoprotein A5 gene with inherited hypertriglyceridaemia: review of the current literature. Curr Med Chem 19(36):6163–6170

    Article  CAS  PubMed  Google Scholar 

  48. Yin RX, Li YY, Lai CQ (2011) Apolipoprotein A1/C3/A5 haplotypes and serum lipid levels. Lipids Health Dis 10:140. doi:10.1186/1476-511X-10-140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Furuya TK, Chen ES, Ota VK, Mazzotti DR, Ramos LR, Cendoroglo MS, Araujo LQ, Burbano RR, Smith MA (2013) Association of APOA1 and APOA5 polymorphisms and haplotypes with lipid parameters in a Brazilian elderly cohort. Genet Mol Res 12(3):3495–3499. doi:10.4238/2013.February.28.7

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ildiko Bock-Marquette and Jon Marquette for their English review. (UTSW Dallas, Texas)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bela Melegh.

Ethics declarations

Funding and Grants

The study was supported by the grant of OTKA K103983.

Conflict of Interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumegi, K., Duga, B., Melegh, B.I. et al. Marked Differences of Haplotype Tagging SNP Distribution, Linkage, and Haplotype Profile of APOA5 Gene in Roma Population Samples. Pathol. Oncol. Res. 23, 853–861 (2017). https://doi.org/10.1007/s12253-017-0197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12253-017-0197-3

Keywords

Navigation