Skip to main content
Log in

Improving microalgae removal efficiency using chemically-processed clays

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chemically-processed clays (PRCs) by base and acid treatments were developed to effectively remove microalgae, and their removal efficiencies were evaluated and compared to that of natural clay. The processed clays were produced by using sodium hydroxide and different amounts of sulfuric acid, and their characteristics were analyzed. Microalgae removal efficiency of the clay was varied depending on the amount of sulfuric acid used in treatments. When adding 1 g/L of a PRC-D type (treated with 1.5 v/w sulfuric acid) to the Microcystis aeruginosa suspension (1 × 106 cells/mL), the highest removal performance (87.3 ± 1.5%) without significant pH variation of the suspension was found among tested PRCs, whereas that of natural clay was 32.1 ± 2.2%. Finally, when selected PRC-D showing best efficiency was applied to lake water taken at a local algae bloomed lake, it exhibited 77.6% removal efficiency of microalgae, indicating 1.7 times higher than the natural clay. The results suggest that processed clays in this study could contribute to effective removal of microalgae in the algal-bloomed area with minimal environmental impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kim, Z. H., H. Park, Y. J. Ryu, D. W. Shin, S. J. Hong, H.L. Tran, S. M. Lim, and C. G. Lee (2015) Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763–1773.

    Article  CAS  Google Scholar 

  2. Kim, Z. H., H. Park, S. J. Hong, S. M. Lim, and C. G. Lee (2016) Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst. Eng. 39: 713–723.

    Article  CAS  Google Scholar 

  3. Paerl, H. W. and J. Huisman (2008) Blooms like it hot. Science 320: 57–58.

    Article  CAS  Google Scholar 

  4. Brooks, B. W., J. M. Lazorchak, M. D. Howard, M. V. V. Johnson, S. L. Morton, D. A. Perkins, E. D. Reavie, G. I. Scott, S. A. Smith, and J. A. Steevens (2016) Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? Environ. Toxicol. Chem. 35: 6–13.

    Article  CAS  Google Scholar 

  5. Li, Q., W. Hu, and S. Zhai (2016) Integrative indicator for assessing the alert levels of algal bloom in lakes: Lake Taihu as a case study. Environ. Manage. 57: 237–250.

    Article  Google Scholar 

  6. Paerl, H. W. and T. G. Otten (2013) Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 65: 995–1010.

    Article  CAS  Google Scholar 

  7. Sengco, M. R. and D. M. Anderson (2004) Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51: 169–172.

    Article  CAS  Google Scholar 

  8. Guo, L. (2007) Doing battle with the green monster of Taihu Lake. Science 317: 1166–1166.

    Article  CAS  Google Scholar 

  9. Li, L. and G. Pan (2013) A universal method for flocculating harmful algal blooms in marine and fresh waters using modified sand. Environ. Sci. Technol. 47: 4555–4562.

    Article  CAS  Google Scholar 

  10. Park, T. G., W. A. Lim, Y. T. Park, C. K. Lee, and H. J. Jeong (2013) Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30: S131–S143.

    Article  Google Scholar 

  11. Hamdi, N. and E. Srasra (2012) Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite. J. Environ. Sci. 24: 617–623.

    Article  CAS  Google Scholar 

  12. Liu, Y., X. Cao, Z. Yu, X. Song, and L. Qiu (2016) Controlling harmful algae blooms using aluminum-modified clay. Mar. Pollut. Bull. 103: 211–219.

    Article  CAS  Google Scholar 

  13. Yu, J. J., K. L. Lee, H. J. Lee, J. W. Hwang, H. S. Lyu, L. Y. Shin, A. R. Park, and S. U. Chen (2015) Relations of nutrient concentrations on the seasonality of algal community in the Nakdong River, Korea. J. Kor. Soc. Water Environ. 31: 110–119.

    Article  Google Scholar 

  14. Fukuyo, Y., I. Imai, M. Kodama, and K. Tamai (2002) Red tides and other harmful blooms in Japan. pp. 7–20. In: F. J. R., Taylor, and V. L. Trainer (eds.). Harmful Algal Blooms in the PICES Region of the North Pacific. PICES Scientific Report No. 23. North Pacific Marine Sci. Org. (PICES), Sidney, Canada.

    Google Scholar 

  15. Lee, Y. J., J. K. Choi, E. K. Kim, S. H. Youn, and E. J. Yang (2008) Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton. Harmful Algae 7: 154–162.

    Article  Google Scholar 

  16. Han, M. Y. and W. Kim (2001) A theoretical consideration of algae removal with clays. Microchem. J. 68: 157–161.

    Article  CAS  Google Scholar 

  17. Pan, G., L. Dai, L. Li, L. He, H. Li, L. Bi, and R. D. Gulati (2012) Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ. Sci. Technol. 46: 5077–5084.

    Article  CAS  Google Scholar 

  18. Li, L., H. Zhang, and G. Pan (2015) Influence of zeta potential on the flocculation of cyanobacteria cells using chitosan modified soil. J. Environ. Sci. 28: 47–53.

    Article  CAS  Google Scholar 

  19. Priscila, F., Z. M. Magriotis, M. A. Rossi, R. F. Resende, and C. A. Nunes (2013) Optimization by response surface methodology of the adsorption of Coomassie Blue dye on natural and acidtreated clays. J. Environ. Manage. 130: 417–428.

    Article  Google Scholar 

  20. Panda, A. K., B. Mishra, D. Mishra, and R. Singh (2010) Effect of sulphuric acid treatment on the physico-chemical characteristics of kaolin clay. Colloids Surf. A Physicochem. Eng. Asp. 363: 98–104.

    Article  CAS  Google Scholar 

  21. Yoon, M. Y., S. Lee, J. H. Choo, H. Jang, W. Cho, H. Kang, and J. K. Park (2016) Economical synthesis of complex silicon fertilizer by unique technology using loess. Kor. J. Chem. Eng. 33: 958–963.

    Article  CAS  Google Scholar 

  22. Cook, H., P. Johnson, J. Matti, and I. Zemmels (1975) IV. Methods of Sample Preparation, and X-ray Diffraction Data Analysis, X-ray Mineralogy Laboratory, Deep Sea Drilling Project, University of California, Riverside. Institute of Geophysics and Planetary Physics, University of California, Riverside, Contribution No. 74-5. Initial reports of the deep sea drilling project. 25.

    Google Scholar 

  23. Madejová, J. (2003) FTIR techniques in clay mineral studies. Vibrat. Spectrosc. 31: 1–10.

    Article  Google Scholar 

  24. André, R., A. Jardani, P. Sava, and A. Haas (2015) The Seismoelectric Method: Theory and Application. pp. 2–3. John Wiley & Sons, NY, USA.

    Google Scholar 

  25. Comm, A. L. A. and Ohio River Valley Sanitation Commission (1955) Aquatic life water quality criteria. First progress report. Sewage Ind. Waste 27: 321–331.

    Google Scholar 

  26. Qian, F., D. R. Dixon, G. Newcombe, L. Ho, J. Dreyfus, and P. J. Scales (2014) The effect of pH on the release of metabolites by cyanobacteria in conventional water treatment processes. Harmful Algae 39: 253–258.

    Article  CAS  Google Scholar 

  27. Pan, G., H. Zou, H. Chen, and X. Yuan (2006) Removal of harmful cyanobacterial blooms in Taihu Lake using local soils III. Factors affecting the removal efficiency and an in situ field experiment using chitosan-modified local soils. Environ. Pollut. 141: 206–212.

    Article  CAS  Google Scholar 

  28. Chatsungnoen, T. and Y. Chisti (2016) Harvesting microalgae by flocculation–sedimentation. Algal Res. 13: 271–283.

    Article  Google Scholar 

  29. Srivastava, A., C. Y. Ahn, R. K. Asthana, H. G. Lee, and H. M. Oh (2015) Status, alert system, and prediction of cyanobacterial bloom in South Korea. Biomed Res. Int. 2015: 584696.

    Google Scholar 

  30. Pan, G., B. Yang, D. Wang, H. Chen, B.-H. Tian, M.-L. Zhang, X.-Z. Yuan, and J. Chen (2011) In-lake algal bloom removal and submerged vegetation restoration using modified local soils. Ecol. Eng. 37: 302–308.

    Article  Google Scholar 

  31. Kann, J. and V. H. Smith (1999) Estimating the probability of exceeding elevated pH values critical to fish populations in a hypereutrophic lake. Can. J. Fish. Aquat. Sci. 56: 2262–2270.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choul-Gyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, ZH., Thanh, N.N., Yang, JH. et al. Improving microalgae removal efficiency using chemically-processed clays. Biotechnol Bioproc E 21, 787–793 (2016). https://doi.org/10.1007/s12257-016-0655-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0655-x

Keywords

Navigation