Skip to main content
Log in

Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The biochemical properties of Spirulina platensis in an internally illuminated photobioreactor (IlPBR) were investigated under different light-emitted diode (LED) wavelengths; blue (λmax= 450 and 460 nm), green (λmax= 525 nm), red (λmax = 630 and 660 nm), and white (6,500K), with various light intensities (200, 500, 1,000, and 2,000 μmol/m2/sec) were examined. The highest specific growth rate, maximum biomass, and phycocyanin productivity occurred under the red LEDs (0.39/day, 0.10 g/L/day, and 0.14 g/g-cell/day, respectively) at 1,000 μmol/m2/sec; the lowest growth rate was obtained under blue LEDs. Indeed, the size of trichomes was changed into short form under blue LEDs at all light intensities or all LEDs at 2,000 μmol/m2/sec for the first 2 days after inoculation, and S. platensis did not grow in the IlPBR under the dark condition. These results provide a base for different approaches for designing the pilot scale photobioreactor and developing cost-effective light sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ogbonna, J. C., T. Soejima, and H. Tanaka (1999) An integrated solar and artificial light system for internal illumination of photobioreactors. J. Biotechnol. 70: 289–297.

    Article  CAS  Google Scholar 

  2. Suh, I. S., H. N. Joo, and C. G. Lee (2006) A novel double-layered photobioreactor for simultaneous Haematococcus pluvialis cell growth and astaxanthin accumulation. J. Biotechnol. 125: 540–546.

    Article  CAS  Google Scholar 

  3. Chen, H.-B., J.-Y. Wu, C.-F. Wang, C.-C. Fu, C.-J. Shieh, C.-I. Chen, C.-Y. Wang, and Y.-C. Liu (2010) Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes. Biochem. Eng. J. 53: 52–56.

    Article  Google Scholar 

  4. Wang, C.-Y., C.-C. Fu, and Y.-C. Liu (2007) Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochem. Eng. J. 37: 21–25.

    Article  Google Scholar 

  5. Xie, Y., Y. Jin, X. Zeng, J. Chen, Y. Lu, and K. Jing (2015) Fedbatch strategy for enhancing cell growth and C-phycocyanin production of Arthrospira (Spirulina) platensis under phototrophic cultivation. Bioresour. Technol. 180: 281–287.

    Article  CAS  Google Scholar 

  6. Mohsenpour, S. F. and N. Willoughby (2013) Luminescent photobioreactor design for improved algal growth and photosynthetic pigment production through spectral conversion of light. Bioresour. Technol. 142: 147–153.

    Article  CAS  Google Scholar 

  7. Fu, W., O. Guethmundsson, G. Paglia, G. Herjolfsson, O. S. Andresson, B. O. Palsson, and S. Brynjolfsson (2013) Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97: 2395–2403.

    Article  CAS  Google Scholar 

  8. Philippis, R. D. and M. Vincenzini (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 22: 151–175.

    Article  Google Scholar 

  9. Kim, D. G., C. Lee, S. M. Park, and Y. E. Choi (2014) Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour. Technol. 159: 240–248.

    Article  CAS  Google Scholar 

  10. Shu, C.-H., C.-C. Tsai, W.-H. Liao, K.-Y. Chen, and H.-C. Huang (2012) Effects of light quality on the accumulation of oil in a mixed culture of Chlorella sp. and Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 87: 601–607.

    Article  CAS  Google Scholar 

  11. Wu, H., K. Gao, V. E. Villafane, T. Watanabe, and E. W. Helbling (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71: 5004–5013.

    Article  CAS  Google Scholar 

  12. Oldenhof, H., K. Bisova, H. van den Ende, and V. Zachleder (2004) Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiol. Biochem. 42: 341–348.

    Article  CAS  Google Scholar 

  13. Wu., H., K. Gao, V. E. Villafane, T. Watanabe, and E. W. Helbling (2005) Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis. Appl. Environ. Microbiol. 71: 5004–5013.

    Article  CAS  Google Scholar 

  14. Schulze, P. S., L. A. Barreira, H. G. Pereira, J. A. Perales, and J. C. Varela (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol. 32: 422–430.

    Article  CAS  Google Scholar 

  15. Claude Zarrouk (1966) Contribution a l’etude d’une cyanobacterie: Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setchell et Gardner) Geitler. Ph. D. Thesis. University of Paris, France.

    Google Scholar 

  16. Bennett, A. and L. Bogorad (1973) Complementary chromatic adaptation in a filamentous blue-green alga. J. Cell Biol. 58: 419–435.

    Article  CAS  Google Scholar 

  17. Melis, A. (1999) Photosystem-II damage and repair cycle in chloroplasts: What modulates the rate of photodamage? Trends Plant Sci. 4: 130–135.

    Article  CAS  Google Scholar 

  18. Wang, J., J. Liu, and T. Liu (2015) The difference in effective light penetration may explain the superiority in photosynthetic efficiency of attached cultivation over the conventional open pond for microalgae. Biotechnol. Biofuels. 8: 49.

    Article  Google Scholar 

  19. Fernandez, F. G., F. G. Camacho, J. A. Perez, J. M. Sevilla, and E. M. Grima (1998) Modeling of biomass productivity in tubular photobioreactors for microalgal cultures: Effects of dilution rate, tube diameter, and solar irradiance. Biotechnol. Bioeng. 58: 605–616.

    Article  CAS  Google Scholar 

  20. Jeeji-Bai, N. and C. V. Seshadri (1980) Coiling and uncoiling of trichomes in the genus Spirulina. Arch. Hydrobiol. Suppl. 60: 32–47.

    Google Scholar 

  21. Jeeji-Bai, N. (1985) Competitive exclusion or morphological transformation? A case study with Spirulina fusiformis. Arch. Hydrobiol. Suppl. 38–39: 191–199.

    Google Scholar 

  22. Lewin, R. (1980) Uncoiled variants of Spirulina platensis (Cyanophyceae;Oscillatoriaceae). Arch. Hydrobiol. Suppl. 26: 48–52.

    Google Scholar 

  23. Vonshak, A. (2002) Spirulina Platensis Arthrospira: Physiology, Cell-Biology And Biotechnology. Taylor & Francis.

    Google Scholar 

  24. Pelosi, E., B. Pushparaj, and G. Florenzano (1971) Mutazione di Spirulina platensis indotta dai raggi U.V.e da antibiotici. Ann. Microbiol. 21: 21.

    Google Scholar 

  25. Wagner, I., C. Steinweg, and C. Posten (2016) Mono-and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnol. J. 11: 1060–1071.

    Article  CAS  Google Scholar 

  26. Marriott, M. F. H. and R. E. Blankenship (2011) Evolution of photosynthesis. Annu. Rev. Plant Biol. 62: 515–548.

    Article  Google Scholar 

  27. Keeling, P. J. (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu. Rev. Plant Biol. 64: 583–607.

    Article  CAS  Google Scholar 

  28. Itoha, K.-I., K. Nakamurab, T. Aoyamac, T. Kakimotoc, M. Murakamia, and T. Takidoc (2014) The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Lett. 55: 435–437.

    Article  Google Scholar 

  29. Xue, S., Z. Su, and W. Cong (2011) Growth of Spirulina platensis enhanced under intermittent illumination. J. Biotechnol. 151: 271–277.

    Article  CAS  Google Scholar 

  30. Eriksen, N. T. (2008) Production of phycocyanin—a pigment with applications in biology, biotechnology, foods and medicine. Appl. Microbiol. Biotechnol. 80: 1–14.

    Article  CAS  Google Scholar 

  31. Kuddus, M., P. Singh, G. Thomas, and A. Al-Hazimi (2013) Recent developments in production and biotechnological applications of C-phycocyanin. Biomed. Res. Int. 2013: 742859.

    Article  CAS  Google Scholar 

  32. Sun, L., S. Wang, and Z. Qiao (2006) Chemical stabilization of the phycocyanin from cyanobacterium Spirulina platensis. J. Biotechnol. 121: 563–569.

    Article  CAS  Google Scholar 

  33. Qiang, H., H. Zheungu, Z. Cohen, and A. Richond (1997) Enhancement of eicosapentaenoic acid (EPA) and γ-linolenic acid (GLA) production by manipulating algal density of outdoor cultures of Monodus subterraneus (Eustigmatophyta) and Spirulina platensis (Cyanobacteria). Europ. J. Phycol. 32: 81–86.

    Article  Google Scholar 

  34. Lu, S., J. Wang, Y. Niu, J. Yang, J. Zhou, and Y. Yuan (2012) Metabolic profiling reveals growth related FAME productivity and quality of Chlorella sorokiniana with different inoculum sizes. Biotechnol. Bioeng. 109: 1651–1662.

    Article  CAS  Google Scholar 

  35. Chen, C. Y., P. C. Kao, C. J. Tsai, D. J. Lee, and J. S. Chang (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour. Technol. 145: 307–312.

    Article  CAS  Google Scholar 

  36. Zeng, X., M. K. Danquah, S. Zhang, X. Zhang, M. Wu, X. D. Chen, I.-S. Ng, K. Jing, and Y. Lu (2012) Autotrophic cultivation of Spirulina platensis for CO2 fixation and phycocyanin production. Chem. Eng. J. 183: 192–197.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Ho Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yim, SK., Ki, DW., Doo, HS. et al. Internally illuminated photobioreactor using a novel type of light-emitting diode (LED) bar for cultivation of Arthrospira platensis . Biotechnol Bioproc E 21, 767–776 (2016). https://doi.org/10.1007/s12257-016-0428-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0428-6

Keywords

Navigation