Skip to main content
Log in

Cerebellar Pathways in Mouse Model of Purkinje Cell Degeneration Detected by High-Angular Resolution Diffusion Imaging Tractography

  • Original Paper
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

Cerebellar MR imaging has several challenging aspects, due to the fine, repetitive layered structure of cortical folia with underlying axonal pathways. In this MR study, we imaged with high-angular resolution diffusion imaging (HARDI) abnormal cerebellar cortical structure (gray matter) and myelinated axonal pathways (white matter) of a mouse spontaneous mutation, Purkinje cell degeneration (pcd), in which almost all Purkinje neurons degenerate, mainly between postnatal days 20 and 35. Mouse brains at postnatal day 20 (P20) and at 8 months were scanned, and known or expected abnormalities, such as reduction of the white matter volume, disorganized pathways likely linked to parallel fibers, mossy fibers, and other fibers running from/to the cerebellar cortex were observed in mutant mice. Such abnormalities were detected at both an early and a fully advanced degeneration stage. These results suggest that our diffusion MR tractography is useful for early detection and tracking of neuropathology in the cerebellum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K, Shigemoto R, Katsuki M, Aiba A. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science. 2009;288(5472):1832–4.

    Article  Google Scholar 

  2. Sarna JR, Hawkes R. Patterned Purkinje cell death in the cerebellum. Prog Neurobiol. 2003;70:473–507.

    Article  CAS  PubMed  Google Scholar 

  3. Thatch W. A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem. 1998;70(1–2):177–88.

    Article  Google Scholar 

  4. Kapfhammer JP. Cellular and molecular control of dendritic growth and development of cerebellar Purkinje cells. Prog Histochem Cytochem. 2004;39:131–82.

    Article  PubMed  Google Scholar 

  5. Mavroudis IA, Fotiou DF, Adipepe LF, Manani MG, Njau SD, Psaroulis D, Costa VG, Baloyannis SJ. Morphological changes of the human Purkinje cells and deposition of neuritic plaques and neurofibrillary tangles on the cerebellar cortex of Alzheimer’s disease. Am J Alzheimers Dis Other Demen. 2010;25:585–91.

    Article  PubMed  Google Scholar 

  6. Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Systems Neurosci. 2013;7:15.

    Article  Google Scholar 

  7. Sirzen-Zelenskaya A, Zeyse J, Kapfhammer JP. Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures. Eur J Neurosci. 2006;24:2978–86.

    Article  PubMed  Google Scholar 

  8. Fernandez-Gonzalez A, La Spada AR, Treadaway J, Higdon JC, Harris BS, Sidman RL, Morgan JI, Zuo J. Purkinje cell degeneration (pcd) phenotypes caused by mutations in the axotomy-induced gene, Nna1. Science. 2002;295:1904–6.

    Article  CAS  PubMed  Google Scholar 

  9. Wang T, Morgan JI. The Purkinje cell degeneration (pcd) mouse: an unexpected molecular link between neuronal degeneration and regeneration. Brain Res. 2007;1140:26–40.

    Article  CAS  PubMed  Google Scholar 

  10. Li J, Gu X, Ma Y, Calicchio ML, Kong D, Teng YD, Yu L, Crain AM, Vartanian TK, Pasqualini R, Arap W, Libermann TA, Snyder EY, Sidman RL. Nna1 mediates Purkinje cell dendritic development via lysyl oxidase propeptide and NF-κB signaling. Neuron. 2010;68:45–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ. Diffusion MRI of complex neural architecture. Neuron. 2003;40:885–95.

    Article  CAS  PubMed  Google Scholar 

  12. Takahashi E, Dai G, Rosen GD, Wang R, Ohki K, Folkerth RD, Galaburda AL, Wedeen VJ, Grant PE. Developing neocortex organization and connectivity in cats revealed by direct correlation of diffusion tractography and histology. Cereb Cortex. 2011;21:200–11.

    Article  PubMed  Google Scholar 

  13. Takahashi E, Folkerth RD, Galaburda AL, Grant PE. Emerging cerebral connectivity in the human fetal brain: an MR tractography study. Cereb Cortex. 2012;22:455–64.

    Article  PubMed  Google Scholar 

  14. Takahashi E, Hayashi E, Schmahmann JD, Grant PE. Development of cerebellar connectivity in human fetal brains revealed by high angular resolution diffusion tractography. NeuroImage. 2014;96:326–33.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Takahashi E, Song JW, Folkerth RD, Grant PE, Schmahmann JD. Detection of cerebellar cortex and white matter pathways using high angular resolution diffusion tractography. NeuroImage. 2013;68:105–11.

    Article  PubMed  Google Scholar 

  16. Mori S. Introduction to diffusion tensor imaging. 1st ed. Oxford: Elsevier Science; 2007.

    Google Scholar 

  17. Schmahmann JD, Pandya DN, Wang R, Dai G, D'Arceuil HE, de Crespigny AJ, Wedeen VJ. Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain. 2007;130:630–53.

    Article  PubMed  Google Scholar 

  18. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai G, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. NeuroImage. 2008;41(4):1267–77.

    Article  CAS  PubMed  Google Scholar 

  19. Lodato S, Molyneaux BJ, Zuccaro E, Goff LA, Chen H-H, Yuan W, Meleski A, Takahashi E, Mahony S, Rinn JL, Gifford DK, Arlotta P. Gene co-regulation by Fezf2 selects neurotransmitter identity and connectivity of corticospinal neurons. Nat Neurosci. 2014;17:1046–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rosen GD, Azoulay NG, Griffin EG, Newbury A, Koganti L, Fujisaki N, Takahashi E, Grant PE, Truong DT, Fitch RH, Lu L, Williams RW. Bilateral subcortical heterotopia with partial callosal agenesis in a mouse mutant. Cereb Cortex. 2013;23:859–72.

    Article  CAS  PubMed  Google Scholar 

  21. Song JW, Mitchell PD, Kolasinski J, Ellen Grant P, Galaburda AM, Takahashie E. Asymmetry of white matter pathways in developing human brains. Cereb Cortex. 2015;25:2883–93.

    Article  PubMed  Google Scholar 

  22. Takahashi E, Dai G, Wang R, Ohki K, Rosen GD, Galaburda AL, Grant PE, Wedeen VJ. Development of cerebral fiber pathways in cats revealed by diffusion spectrum imaging. NeuroImage. 2010;49:1231–40.

    Article  PubMed  Google Scholar 

  23. Greer CA, Shepherd GM. Mitral cell degeneration and sensory function in the neurological mutant mouse Purkinje cell degeneration (PCD). Brain Res. 1982;235(1):156–61.

    Article  CAS  PubMed  Google Scholar 

  24. Mullen RJ, Eicher EM, Sidman RL. Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A. 1976;73(1):208–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. O'Gorman S, Sidman RL. Degeneration of thalamic neurons in "Purkinje cell degeneration" mutant mice. I. Distribution of neuron loss. J Comp Neurol. 1985;234:277–97.

    Article  PubMed  Google Scholar 

  26. O'Gorman S. Degeneration of thalamic neurons in "Purkinje cell degeneration" mutant mice. II Cytology of neuron loss J Comp Neurol. 1985;234(3):298–316.

    PubMed  Google Scholar 

  27. Javad F, Warren JD, Micallef C, Thornton JS, Golay X, Yousry T, Mancini L. Auditory tracts identified with combined fMRI and diffusion tractography. NeuroImage. 2014;84(100):562–74.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CAM, Boulby PA, Barker GJ, Sillery EL, Sheehan K, Ciccarelli O, Thompson AJ, Brady JM, Matthews PM. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750–7.

    Article  CAS  PubMed  Google Scholar 

  29. Seurinine KK, Alexander DC. (2009). Multiple fibers: beyond the diffusion tensor. Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Academic Press. 55–72.

  30. Mullen RJ. Site of pcd gene action and Purkinje cell mosaicism in cerebella of chimaeric mice. Nature. 1977;270(5634):245–7.

    Article  CAS  PubMed  Google Scholar 

  31. Carletti B, Rossi F. Neurogenesis in the cerebellum. Neurosci. 2008;14:91–100.

    Google Scholar 

  32. Dusart I, Guenet JL, Sotelo C. Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum. 2006;5:163–73.

    Article  PubMed  Google Scholar 

  33. Goldowitz D, Hamre K. The cells and molecules that make a cerebellum. Trends Neurosci. 1998;21:375–82.

    Article  CAS  PubMed  Google Scholar 

  34. Landis SC, Mullen RJ. The development and degeneration of Purkinje cells in pcd mutant mice. J Comp Neurol. 1978;177:125–43.

    Article  CAS  PubMed  Google Scholar 

  35. Alomair OI, Brereton IM, Smith MT, Galloway GJ, Kurniawan ND. In vivo high angular resolution diffusion-weighted imaging of mouse brain at 16.4 tesla. PLoS One. 2015;10:e0130133.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Jones M, DeBoy CA, Reich DS, Farrell JA, Hoffman PN, Griffin JW, Sheikh KA, Miller MI, Mori S, Calabresi PA. Diffusion tensor magnetic resonance imaging of Wallerian degeneration in rat spinal cord after dorsal root axotomy. J Neurosci. 2009;29(10):3160–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Boston Children’s Hospital and NIH (R01HD078561, R21HD069001, R03NS091587) (ET). The authors thank Guangping Dai for technical advice and Natalie Stewart for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emi Takahashi.

Ethics declarations

All procedures were in accordance with NIH-approved institutional guidelines maintained by the Institutional Animal Care and Use Committee of Harvard Medical School and the University of Connecticut.

Conflict of Interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanamaru, Y., Li, J., Stewart, N. et al. Cerebellar Pathways in Mouse Model of Purkinje Cell Degeneration Detected by High-Angular Resolution Diffusion Imaging Tractography. Cerebellum 16, 648–655 (2017). https://doi.org/10.1007/s12311-016-0842-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-016-0842-5

Keywords

Navigation