Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter December 17, 2015

Synthesis and properties of new N,N′-phenyltetrazole podand

  • Agnieszka Pazik EMAIL logo , Beata Kamińska , Anna Skwierawska , Sandra Nakonieczna and Tadeusz Ossowski
From the journal Chemical Papers

Abstract

The synthesis of a new chromogenic N,N′-phenyltetrazole receptor is reported here. The cationbinding properties of this receptor in solution were investigated by naked-eye colour change, electrochemical methods and UV-Vis spectroscopy in various solvents (CH3CN, dimethylsulphoxide (DMSO), DMSO/H2O, CH3CN/H2O and CH3CN/MeOH). In addition, the receptor was used as a sensing material in ion-selective membrane electrodes. The selectivity and sensitivity of these electrodes towards alkali, alkali-earth, transition and heavy metal cations in aqueous solution were tested. The relation between the carrier structure and membrane plasticisers was investigated.

References

Ala, A., Walker, A. P., Ashkan, K., Dooley, J. S., & Schilsky, M. L. (2007). Wilson’s disease. Lancet, 369, 397-408. DOI: 10.1016/s0140-6736(07)60196-2.10.1016/S0140-6736(07)60196-2Search in Google Scholar

Aromí, G., Barrios, L. A., Roubeau, O., & Gamez, P. (2011). Triazoles and tetrazoles: Prime ligands to generate remarkable coordination materials. Coordination Chemistry Reviews, 255, 485-546. DOI: 10.1016/j.ccr.2010.10.038.10.1016/j.ccr.2010.10.038Search in Google Scholar

Baker, E. (1997). Determination of unbiased selectivity coefficients of neutral carrier-based cation-selective electrodes. Analytical Chemistry, 69, 1061-1069. DOI: 10.1021/ac960891m.10.1021/ac960891mSearch in Google Scholar

Barceloux, D. G. (1999). Copper. Journal of Toxicology - Clinical Toxicology, 37, 217-230.10.1081/CLT-100102421Search in Google Scholar

Benesi, H. A., & Hildebrand, J. H. (1949). A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Journal of the American Chemical Society, 71, 2703-2707. DOI: 10.1021/ja01176a030.10.1021/ja01176a030Search in Google Scholar

Brewer, G. J. (2007). Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzheimer’s disease. Experimental Biology Medicine, 232, 323-335.Search in Google Scholar

Brzózka, Z. (1988). Transition metal ion-selective membrane electrodes based on complexing compounds with heteroatoms. Part II. Complexing compounds containing sulphur atoms. Analyst, 113, 1803-1805. DOI: 10.1039/an9881301803.10.1039/AN9881301803Search in Google Scholar

Chao, J. B., Zhang, Y., Wang, H. F., Zhang, Y. B., Huo, F. J., Yin, C. X., Qin, L. P., & Wang, Y. (2013). A coumarin - based fluorescent probe for selective detection of Cu2+ in water. Journal of Coordination Chemistry, 66, 3857-3867. DOI: 10.1080/00958972.2013.855896.10.1080/00958972.2013.855896Search in Google Scholar

Gaggelli, E., Kozlowski, H., Valensin, D., & Valensin, G. (2006). Copper homeostasis and neurodegenerative disorders (Alzheimer’s, Prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chemical Reviews, 106, 1995-2044. DOI: 10.1021/cr040410w.10.1021/cr040410wSearch in Google Scholar

Ganjali, M. R., Poursaberi, T., Babaei, L. H., Rouhani, S., Yoursefi, M., Karga-Razi, M., Moghimi A., Aghabozorg, H., & Shamsipur, M. (2001). Highly selective and sensitive copper( II) membrane coated graphite electrode based on a recently synthesized Schiff’s base. Analytica Chimica Acta, 440, 81-87. DOI: 10.1016/s0003-2670(01)01051-0.10.1016/S0003-2670(01)01051-0Search in Google Scholar

Georgopoulos, P. G., Roy, A., Yonone-Lioy, M. J., Opiekun, R. E., & Lioy, P. J. (2001). Environmental copper: its dynamics and human exposure issues. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 4, 341-394. DOI: 10.1080/109374001753146207.10.1080/109374001753146207Search in Google Scholar PubMed

Goswami, S., Maity, S., Das, A. K., & Maity, A. C. (2013). Single chemosensor for highly selective colorimetric and fluorometric dual sensing of Cu(II) as well as ‘NIRF’ to acetate ion. Tetrahedron Letters, 54, 6631-6634. DOI: 10.1016/j.tetlet.2013.09.126.10.1016/j.tetlet.2013.09.126Search in Google Scholar

Hassan, S. S. M., Elnemma, E. M., & Mohamed, A. H. K. (2005). Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta, 66, 1034-1041. DOI: 10.1016/j.talanta. 2005.01.007.Search in Google Scholar

Herr, R. J. (2002). 5-Substiuted 1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorganic & Medicinal Chemistry, 10, 3379-3393. DOI: 10.1016/s0968-0896(02)00239-0.10.1016/S0968-0896(02)00239-0Search in Google Scholar

Holland, G. F., & Pereira, J. N. (1967). Heterocyclic tetrazoles, a new class of lipolysis inhibitors. Journal of Medicinal Chemistry, 10, 149-154. DOI: 10.1021/jm00314a004.10.1021/jm00314a004Search in Google Scholar PubMed

Huang, J. H., Xu, Y. F., & Qian, X. H. (2009). A colorimetric sensor for Cu2+ in aqueous solution based on metal ion-induced deprotonation: deprotonation/protonation mediated by Cu2+ - ligand interactions. Dalton Transactions, 14, 1761-1766. DOI: 10.1039/b816999c.10.1039/b816999cSearch in Google Scholar PubMed

Huo, J. Z., Liu, K., Zhao, X. J., Zhang, X. X., & Wang, Y. (2014). Simple and sensitive colorimetric sensors for the selective detection of Cu2+ in aqueous buffer. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 789-792. DOI: 10.1016/j.saa.2013.09.104.10.1016/j.saa.2013.09.104Search in Google Scholar PubMed

Hrishikesan, E., & Kannan, P. (2013). Azobenzene chemosensor based on nitrogen chelator for the detection of Cu(II) ion in aqueous medium. Inorganic Chemistry Communications, 37, 21-25. DOI: 10.1016/j.inoche.2013.09.010.10.1016/j.inoche.2013.09.010Search in Google Scholar

Kamel, A. H., Mahmoud, W. H., & Mostafa, M. S. (2010). Response characteristics of copper-selective polymer membrane electrodes based on a newly synthesized macrocyclic calix[4]arene derivative as a neutral carrier ionophore. Electroanalysis, 22, 2453-2459. DOI: 10.1002/elan.201000187.10.1002/elan.201000187Search in Google Scholar

Kamel, A. H., Kalifa, M. E., Abd El-Maksoud, S. A., & Egendy, F. A. (2014). Fabrication of novel sensors based on a synthesized acyclic pyridine derivative ionophore for potentiometric monitoring of copper. Analytical Methods, 6, 7814-7822. DOI: 10.1039/c4ay00818a.10.1039/C4AY00818ASearch in Google Scholar

Klapötke, T. M., Mayer, P., Schulz, A., & Weigand, J. J. (2005). 1,5-Diamino-4-methyltetrazolium dinitramide. Journal of the American Chemical Society, 127, 2032-2033. DOI: 10.1021/ja042596m.10.1021/ja042596mSearch in Google Scholar PubMed

Kumar, A., Kumar, V., Diwan, U., & Upadhyay, K. K. (2013). Highly sensitive and selective naked-eye detection of Cu2+ in aqueous medium by a ninhydrin-quinoxaline derivative. Sensors and Actuators B: Chemical, 176, 420-427. DOI: 10.1016/j.snb.2012.09.089.10.1016/j.snb.2012.09.089Search in Google Scholar

Marcus, Y. (1985). Ions solvation. Chichester, UK: Willey.Search in Google Scholar

Miao, L. J., Xin, J. W., Shen, Z. Y., Zhang, Y. J., Wang, H. Y., & Wu, A. G. (2013). Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity. Sensors and Actuators B: Chemical, 176, 906-912. DOI: 10.1016/j.snb.2012.10.070.10.1016/j.snb.2012.10.070Search in Google Scholar

Millhuster, G. L. (2004). Copper binding in the prion protein. Accounts of Chemical Research, 37, 79-85. DOI: 10.1021/ar0301678.10.1021/ar0301678Search in Google Scholar

Noh, J. Y., Park, G. J., Na, Y. J., Jo, H. Y., Lee, S. A., & Kim, C. (2014). A colorimetric “naked-eye” Cu(II) chemosensor and pH indication in 100 % aqueous solution. Dalton Transactions, 43, 5652-5656. DOI: 10.1039/c3dt53637h.10.1039/C3DT53637HSearch in Google Scholar

Ogihara, W., Yashizawa, M., & Ohno, H. (2004). Novel ionic liquids composed of only azole ions. Chemistry Letters, 33, 1022-1023. DOI: 10.1246/cl.2004.1022.10.1246/cl.2004.1022Search in Google Scholar

Park, S. J., Shon, O. J., Rim, J. A., Lee, J. K., Kim, J. S., Nam, H., & Kim, H. (2001). Calixazacrown ethers for copper( II) ion-selective electrode. Talanta, 55, 297-304. DOI: 10.1016/s0039-9140(01)00420-9.10.1016/S0039-9140(01)00420-9Search in Google Scholar

Pazik, A., & Skwierawska, A. (2012). Chromogenic derivatives of new bis(phenylhydrazono-1H-tetrazol-5-yl-acetonitriles) - synthesis and properties. Supramolecular Chemistry, 24, 726-736. DOI: 10.1080/10610278.2012.701303.10.1080/10610278.2012.701303Search in Google Scholar

Pazik, A., & Skwierawska, A. (2013). Synthesis and spectroscopic properties of new bis-tetrazoles. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 77, 83-94. DOI: 10.1007/s10847-012-0219-4.10.1007/s10847-012-0219-4Search in Google Scholar

Pazik, A., & Skwierawska, A. (2014). Synthesis and application of tetrazole di- and triamide derivatives in ion-selective membrane electrodes. Sensors and Actuators B: Chemical, 196, 370-380. DOI: 10.1016/j.snb.2014.01.072.10.1016/j.snb.2014.01.072Search in Google Scholar

Sadeghi, S., Eslahi, M., Naseri, M. A., Naeimi, H., Sharghi, H., & Shameli, A. (2003). Copper ion selective membrane electrodes based on some schiff base derivatives. Electroanalysis, 15, 1327-1333. DOI: 10.1002/elan.200302807.10.1002/elan.200302807Search in Google Scholar

Shamsipur, M., Javanbakht, M.,Mousavi, M. F., Ganjali,M. R., Lippolis, V., Garau, A., & Tei, L. (2001). Copper(II)-selective membrane electrodes based on some recently synthesized mixed aza-thioether crowns containing a 1,10-phenanthroline sub-unit. Talanta, 55, 1047-1054. DOI: 10.1016/s0039-9140(01)00434-9.10.1016/S0039-9140(01)00434-9Search in Google Scholar

Singh, L. P., & Bhatnagar, J. M. (2004). Copper(II) selective electrochemical sensor based on Schiff base complexes. Talanta, 64, 313-319. DOI: 10.1016/j.talanta.2004.02.020.10.1016/j.talanta.2004.02.020Search in Google Scholar PubMed

Stern, B. R. (2010). Essentiality and toxicity in copper health risk assessment: Overview, update and regulatory considerations. Journal of Toxicology and Environmental Health, Part A: Current Issues, 73, 114-127. DOI: 10.1080/15287390903337100.10.1080/15287390903337100Search in Google Scholar PubMed

Suganya, S., Velmathi, S., & MubarakAli, D. (2014). Highly selective chemosensor for nano molar detection of Cu2+ ion by fluorescent turn-on response and its application in living cells. Dyes and Pigments, 104, 116-122. DOI: 10.1016/j.dyepig.2014.01.001.10.1016/j.dyepig.2014.01.001Search in Google Scholar

Wang, Z. J., Fan, X. J., Li, D. H., & Feng, L. H. (2008). A highly selective and colorimetric naked-eye chemosensor for Cu2+. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1224-1227. DOI: 10.1016/j.saa.2008.03.021.10.1016/j.saa.2008.03.021Search in Google Scholar PubMed

Wang, C. M., Lu, L. J., Ye, W. M., Zheng, O., Qiu, B., Lin, Z.Search in Google Scholar

Y., Guo, L. H., & Chen, G. N. (2014). Fluorescence sensor for Cu(II) in the serum sample based on click chemistry. Analyst, 139, 656-659. DOI: 10.1039/c3an01262j.10.1039/C3AN01262JSearch in Google Scholar

Xu, Z. H., Zhang, L., Guo, R., Xiang, T. C., Wu, C. Z., Zheng, Z., & Yang, F. L. (2011). A highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ based on rhodamine B derivative. Sensors and Actuators B: Chemical, 156, 546-552. DOI: 10.1016/j.snb.2011.01.066.10.1016/j.snb.2011.01.066Search in Google Scholar

Xue, H., Gao, Y., Twamley, B., & Shreeve, J. M. (2005). New energetic salts based on nitrogen-containing heterocycles. Chemistry of Materials, 17, 191-198. DOI: 10.1021/cm0488 64x.Search in Google Scholar

Yu, C. W., Wang, T., Xu, K., Zhao, J., Li, M. H., Weng, S. X., & Zhang, J. (2013). Characterization of a highly Cu2+ - selective fluorescent probe derived from rhodamine B. Dyes and Pigments, 96, 38-44. DOI: 10.1016/j.dyepig.2012.07.016.10.1016/j.dyepig.2012.07.016Search in Google Scholar

Zhang, L., & Zhang, X. A. (2014). A selectively fluorescein - based colorimetric probe for detecting copper(II) ion. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133, 54-59. DOI: 10.1016/j.saa.2014.04.130. 10.1016/j.saa.2014.04.130Search in Google Scholar PubMed

Received: 2015-4-1
Revised: 2015-8-9
Accepted: 2015-8-20
Published Online: 2015-12-17
Published in Print: 2016-3-1

Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/chempap-2015-0209/html
Scroll to top button