Skip to main content
Log in

Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns

  • Research Article
  • Published:
Frontiers of Earth Science Aims and scope Submit manuscript

Abstract

This study examines the seasonal connections between the interannual variations in LOD (length of day)/AAMglobe (the relative atmospheric angular momentum for the whole globe) and the ENSO-like SST (El Niño/Southern Oscillation-like sea surface temperature) pattern and corresponding zonal and vertical circulations. Consistent with previous studies, the ENSO-like SST impact the following season LOD/AAMglobe, with the strongest correlations in DJF (December, January, and February), when it is likely to be the peak El Niño/La Niña period. Lag correlations between the interannual variations in LOD/AAMglobe and surface temperature, and the interannual variations in LOD and both zonal circulation and vertical airflow around the equator, consistently indicate that the LOD/AAMglobe reflect the potential impacts of variations in the Earth’s rotation rate on the following season’s sea surface temperatures (SST) over the tropical central and eastern Pacific (where the ENSO-like SST pattern is located). Moreover, the centers of strongest variation in the AAMcolumn (the relative atmospheric angular momentum for an air column and the unit mass over a square meter) are located over the mid-latitudinal North Pacific in DJF and MAM (March, April, and May), and over the mid-latitudinal South Pacific in JJA (June, July, and August) and SON (September, October, and November). This suggests that the AAMcolumn over the mid-latitudinal Pacific around 30°N (30°S) dominate the modulation of Earth’s rotation rate, and then impact the variations in LOD during DJF and MAM (JJA and SON).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abarca del Rio R, Gambis D, Salstein D A (2000). Interannual signals in length of day and atmospheric angular momentum. Ann Geophysicae, EGS-Springer-Verlag 18: 347–364

    Article  Google Scholar 

  • Abarca del Rio R, Gambis D, Salstein D A (2012). Interdecadal oscillations in atmospheric angular momentum variations. J Geodetic Sci, 2(1): 42–52

    Article  Google Scholar 

  • Barnes R T H, Hide R, White A A, Wilson C A (1983). Atmospheric angular momentum fluctuations, length of day changes and polar motion. Proc R Soc Lon 387: 31–73

    Article  Google Scholar 

  • Black R X, Salstein D A, Rosen R D (1996). Interannual modes of variability in atmospheric angular momentum. J Clim, 9(11): 2834–2849

    Article  Google Scholar 

  • Chao B F (1988). Correlation of interannual length-of-day variation with El Nino/Southern Oscillation, 1972-1986. J Geophys Res, 93(B7): 7709–7715

    Article  Google Scholar 

  • Chao B F (1989). Length-of-day variations caused by El Nino Southern Oscillation and Quasi-Biennial Oscillation. Science, 243(4893): 923–925

    Article  Google Scholar 

  • Chen J L, Wilson C R, Chao B F, Shum C K, Tapley B D (2000). Hydrological and oceanic excitations to polar motion and length-ofday variation. Geophys J Int, 141(1): 149–156

    Article  Google Scholar 

  • Dickey J O, Marcus S L, Chin T M (2007). Thermal wind forcing and atmospheric angular momentum: origin of the Earth’s delayed response to ENSO. Geophys Res Lett, 34(17): L17803

    Article  Google Scholar 

  • Eubanks T M, Steppe J A, Dickey J O, Callahan P S (1985). A spectral analysis of the Earth’s angular momentum budget. J Geophys Res, 90 (B7): 5385–5404

    Article  Google Scholar 

  • Gu Z N (1996). Imbalance of seasonal budget in the atmospheric angular momentum and length of day. Annals of Shanghai Observatory Academia Sinica, 17: 73–79 (in Chinese)

    Google Scholar 

  • Hide R, Dickey J O (1991). Earth’s variable rotation. Science, 253(5020): 629–637

    Article  Google Scholar 

  • Höpfner J (1997). Seasonal variations in length of day and atmospheric angular momentum. Scientific Technical Report, No.: STR97/08

  • Höpfner J (1999). Interannual variations in length of day and atmospheric angular momentum with respect to ENSO cycles. Scientific Technical Report, No.: STR99/07

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D (1996). The NCEP/NCAR 40- year reanalysis project. Bull Am Meteorol Soc, 77(3): 437–471

    Article  Google Scholar 

  • Lambeck K (1980). The Earth’s Variable Rotation. New York: Cambridge University Press

    Book  Google Scholar 

  • Lambeck K, Cazenave A (1976). Long term variations in the length of day and climatic change. Geophys J R Astr Soc, 46: 555–573

    Article  Google Scholar 

  • Li C Y (1996). A further study on interaction between anomalous winter monsoon in East Asia and El Nino. Acta Meteorol Sin, 10: 309–320

    Google Scholar 

  • Li G, Ren B H, Yang C Y, Zheng J Q (2010). Traditional El Nino and El Nino Modoki revisited: Is El Nino Modoki linearly independent of traditional El Nino? Atmos Oceanic Sci Let, 3(2): 70–74

    Article  Google Scholar 

  • Li Y F, Harrison S P, Zhao P, Ju J H (2009). Simulations of the impacts of dynamic vegetation on interannual and interdecadal variability of Asian summer monsoon with modern and mid-Holocene orbital forcings. Global Planet Change, 66: 235–252

    Article  Google Scholar 

  • Li Y F, Leung L R (2013). Potential impacts of the Arctic on interannual and interdecadal summer precipitation over China. J Clim, 26(3): 899–917

    Article  Google Scholar 

  • Luo F F, Li S L, Gao Y Q, Tore F (2012). A new method for predicting the decadal component of global SST. Atmos Ocea Sci Let, 5(6): 521–526

    Google Scholar 

  • Morgan P J, King R W, Shapiro I I (1985). Length of day and atmospheric angular momentum: a comparison for 1981-1983. J Geophys Res, 90(B14): 12645–12652

    Article  Google Scholar 

  • Munk W H, Miller R L (1950). Variation in the Earth’s angular velocity resulting from fluctuations in atmospheric and cceanic circulation. Tellus, 2(2): 93–101

    Article  Google Scholar 

  • Oort A H (1983). Global atmospheric circulation statistics, 1958-1973. NOAA Prof. Paper 14, original from University of California, 1–180 (read on http://catalog.hathitrust.org/Record/008332859)

    Google Scholar 

  • Qian W H, Chou J F (1996). Atmosphere-earth angular momentum exchange and ENSO cycle. Sci China Ser D, 26: 80–86

    Google Scholar 

  • Rasmusson EM, Carpenter T H (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nino. Mon Weather Rev, 110(5): 354–384

    Article  Google Scholar 

  • Ren Z Q, Zhang S Q (1986). Decrease of Earth rotation and El Nino events. Acta Meteorol Sin, 44: 411–416 (in Chinese)

    Google Scholar 

  • Rosen R D (1993). The axial momentum balance of earth and its fluid envelope. Surv Geophys, 14(1): 1–29

    Article  Google Scholar 

  • Rosen R D, Salstein D A (1983). Variations in atmospheric angular momentum on global and regional scales and the length of day. J Geophys Res, 88(C9): 5451–5470

    Article  Google Scholar 

  • Rosen R D, Salstein D A (1985). Contribution of stratospheric winds to annual and semi-annual fluctuations in atmospheric angular momentum and the length of day. J Geophys Res, 90(D5): 8033–8041

    Article  Google Scholar 

  • Salstein D A, Kann D M, Miller A J, Rosen R D (1993). The sub-bureau for atmospheric angular momentum of the international Earth rotation service: a meteorological data center with geodetic applications. Bull Am Meteorol Soc, 74(1): 67–80

    Article  Google Scholar 

  • Satoh M, Yoshida S (1996). Response of the atmospheric angular momentum and the length of the day to the surface temperature increase for an aqua planet model. Geophys Res Lett, 23(18): 2569–2572

    Article  Google Scholar 

  • Starr V P (1948). An essai on the general circulation of the Earth’s atmosphere. J Meteorol, 5(2): 39–43

    Article  Google Scholar 

  • Stefanick M (1982). Interannual atmospheric angular momentum variability 1963-1973 and the southern oscillation. J Geophys Res, 87(C1): 428–432

    Article  Google Scholar 

  • Torrence C, Compo G P (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79: 61–78

    Article  Google Scholar 

  • Wu R G, Chen J L, Chen W (2012). Different types of ENSO influences on the Indian summer monsoon variability. J Clim, 25(3): 903–920

    Article  Google Scholar 

  • Yang S, Lau K M, Kim K M (2002). Variations of the East Asian jet stream and Asian–Pacific–American winter climate anomalies. J Clim, 15(3): 306–325

    Article  Google Scholar 

  • Zheng D W, Luo S F, Song G X (1988). Interannual variation of Earth rotation, El Nino event and atmospheric angular momentum. Sci China Ser B, 3: 332–337 (in Chinese)

    Google Scholar 

  • Zhong M, Yan H M, Zhu Y Z, Lei X P (2002). Atmospheric angular momentum fluctuations and the excitations on earth rotation at seasonal scale. ACTA Astronomica Sinica, 43: 90–98 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (No. 2012CB957804) and the National Natural Science Foundation of China (Grant Nos. 41505079 and 41375069). The authors are grateful for the comments and suggestions provided by four anonymous reviewers, which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuefeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xiao, Z., Shi, W. et al. Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns. Front. Earth Sci. 11, 751–764 (2017). https://doi.org/10.1007/s11707-016-0602-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11707-016-0602-3

Keywords

Navigation