Skip to main content

Advertisement

Log in

The chalk hyporheic zone: a true ecotone?

  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This review summarises the main ecotonal properties of chalk hyporheic zone (CHZ), using a holistic approach on both structure and functionality of this habitat. The corroborated results suggest that the CHZ represents a typically shallow habitat (approx. 40–50 cm deep), with a homogenous distribution of both fauna and chemistry between heads and tails of riffles (putative down and, respectively, upwelling zones). Despite being groundwater fed, the CHZ is equally influenced by surface waters, chemically and biologically. However, despite its shallowness, the CHZ plays a very important role in nutrients (re)cycling and in the energy flux towards river ecosystems, fuelling benthic food webs with surface-derived macronutrients and subsurface chemosynthetic C. Although groundwater variation influences strongly the river flow during winter, the effects on interstitial fauna dynamic are limited, suggesting the active role of CHZ played in the stochastic events of down/upward migration of fauna across habitats. Overall, the CHZ represents a confined, but critical habitat in the structure and functionality of chalk river ecosystems and fulfils most properties of a true ecotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abesser, C., P. Shand, D. Goodd & D. Peach, 2008. The role of alluvial valley deposits in groundwater surface water exchange in a Chalk river. In Abesser, C., T. Wagener & G. Nuetzmann (eds), Groundwater–Surface Water Interaction: Process Understanding, Conceptualization and Modelling. IAHS Press, Wallingford: 11–20.

    Google Scholar 

  • Allen, D. J., W. G. Darling, D. C. Gooddy, D. J. Lapworth, A. J. Newell, A. T. Williams, D. Allen & C. Abesser, 2010. Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeology Journal 18: 1125–1141.

    Article  CAS  Google Scholar 

  • Baker, M. A., C. N. Dahm & H. M. Vallet, 2000. Anoxia, Anaerobic Metabolism and Biogeochemistry of Stream Water–Groundwater Interface. lx. Academic Press, London: 259–283.

    Google Scholar 

  • Borges, N., J. Spindler, G. Strauch & M. Rode, 2006. Temporal variation of hyporheic denitrification in a lowland agricultural drainage system. Geophysical Resources Abstract 8: 105–125.

    Google Scholar 

  • Berrie, A. D., 1992. The chalk stream environment. Hydrobiologia 248: 3–9.

    Article  CAS  Google Scholar 

  • Boulton, A. J., 2000. The subsurface macrofauna. In Jones, J. B. & P. J. Mulholland (eds), Streams and Ground Waters. Academic Press, San Diego: 120–137.

    Google Scholar 

  • Boulton, A. J., M. R. Scarsbrook, J. M. Quinn & G. P. Burrell, 1997. Land-use effects on the hyporheic ecology of five small streams near Hamnilton, New Zealand. New Zeeland Journal of Marine and Freshwater Research 31: 609–622.

    Article  CAS  Google Scholar 

  • Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Valett, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.

    Article  Google Scholar 

  • Casey, H., 1981. Discharge and chemical changes in a chalk stream headwater affected by the outflow of a commercial water cress bed. Environmental Pollution 2: 373–385.

    CAS  Google Scholar 

  • Casey, H. & V. R. Newton, 1973. The chemical composition and flow of the River Frome and its main tributaries. Freshwater Biology 3: 317–333.

    Article  Google Scholar 

  • Collins, A. L. & D. E. Walling, 2007. Sources of fine sediment from the channel bed of lowland groundwater-fed catchments in the UK. Geomorphology 88: 20–138.

    Article  Google Scholar 

  • Collins, A. L., L. J. Williams, Y. S. Zhang, M. Marius, J. A. Dungait, D. J. Smallman, E. R. Dixon, A. Stringfellow, D. A. Sear, J. I. Jones & P. S. Naden, 2013. Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456–457: 181–195.

    Article  PubMed  Google Scholar 

  • Danielopol, D. L., 1976. The distribution of the fauna in the interstitial habitats of riverine sediments of the Danube and the Piestig (Austria). International Journal of Speleology 8: 23–51.

    Article  Google Scholar 

  • Davy-Bowker, J.-D., W. Sweeting, N. Wright, R. T. Clark & S. Arnott, 2006. The distribution of benthic and hyporheic macroinvertebrates from the heads and tails of riffles. Hydrobiologia 563: 109–123.

    Article  Google Scholar 

  • Dole-Olivier, M.-J., M. Creuzé des Châtelliers & P. Marmonier, 1993. Repeated gradients in subterranean landscape – example of stygofauna in the alluvial floodplain of the River Rhone (France). Fundamental and Applied Limnology 127: 451–471.

    Google Scholar 

  • Dole-Olivier, M.-J., P. Marmonier, M. Creuzé des Châtelliers & D. Martin, 1994. Interstitial fauna associated with the alluvial deposits of the Rhone River (France). In Danielopol, D., J. Gibert & J. Standford (eds), Groundwater Ecology. Academic Press, London: 140–176.

    Google Scholar 

  • Findlay, S., 1995. Importance of surface- subsurface exchange in stream ecosystems: the hyporheic zone. Limnology and Oceanogrphy 40: 159–164.

    Article  CAS  Google Scholar 

  • Flynn, N. J., T. Paddison & P. G. Whitehead, 2002. INCA modelling of the Lee system: strategies or the reduction of nitrogen loads. Hydrology and Earth System Science 6: 467–483.

    Article  Google Scholar 

  • Gledhill, T., 1973. Observations on the numbers of water mites (Hydrachnellae, Porohalacaridae) in Karaman/Chappuis samples from the interstitial habitats of riverine gravels in Britain. In Livre du cinquantenaire de l’Institut de Speologie “Emil Racovitza”, Bucuresti. Editura Academiei Republicii Socialiste Romania: 249–257.

  • Gledhill, T., 1977. Numerical fluctuations of four species of subterranean amphipods during a five year period. Crustaceana Supplement 4: 144–152.

    Google Scholar 

  • Gledhill, T. & M. Ladle, 1969. Observations on the life history of the subterranean amphipod Niphargus aquilex aquilex Schiodte. Crustaceana 16: 51–56.

    Article  Google Scholar 

  • Grapes, T. R., C. Bradley & G. E. Petts, 2005. Dynamics of river-aquifer interactions along a chalk stream: the River Lambourn, UK. Hydrological Processes 19: 2035–2053.

    Article  Google Scholar 

  • Griffiths, J., A. Binley, N. Crook, J. Nutter, A. Young & S. Fletcher, 2006. Streamflow generation in the Pang and Lambourn catchments, Berkshire, UK. Journal of Hydrology 330: 71–83.

    Article  Google Scholar 

  • Hanrah, G., M. Gledhill, W. A. House & P. J. Worsfold, 2001. Phosphorous loading in the Frome catchment, UK: seasonal refinement of the Coefficient Modelling Approach. Journal of Environmental Quality 30: 1738–1746.

    Article  Google Scholar 

  • Harrison, S. S. & I. T. Harris, 2002. The effects of bank side management on chalk stream invertebrate communities. Freshwater Biology 47: 2233–2245.

    Article  Google Scholar 

  • Hartland, A., G. D. Fenwick & S. J. Bury, 2011. Tracing sewage-derived organic matter into a shallow groundwater food web using stable isotopes and fluorescence signatures. Marine and Freshwater Resources 62: 119–129.

    CAS  Google Scholar 

  • Harvey, J. W. & K. E. Bencala, 1993. The effect of streambed topography on surface–subsurface water exchange in mountain catchments. Water Resources 29: 89–98.

    Article  Google Scholar 

  • Headworth, H. G., T. Keating & M. J. Packman, 1982. Evidence for a shallow highly permeable zone in the Chalk of Hampshire, U.K. Journal of Hydrology 55: 93–112.

    Article  Google Scholar 

  • Hill, A. R. & D. J. Limbourner, 1998. Hyporheic zone chemistry and stream-subsurface exchange in two groundwater –fed streams. Canadian Journal of Fisheries and Aquatic Sciences 55: 495–506.

    Article  CAS  Google Scholar 

  • Howden, N. & T. Burt, 2009. Statistical analysis of nitrate concentrations from the River Frome and Piddle (Dorset, UK) for the period 1965–2007. Ecohydrology 2: 55–65.

    Article  CAS  Google Scholar 

  • Howden, N.J.K., H.S. Wheater, D.W. Peach & A.D. Butler, 2004. Hydrogeological controls on surface/groundwater interactions in a lowland permeable chalk catchment. In Webb, B., M. Acreman, C. Maksimovic, H. Smithers & C. Kirby (eds), Hydrology: science and practice for the 21st century. Proceedings of the British Hydrological Society International Conference, Imperial College, London: 113–122.

  • Hynes, H. B. N., 1983. Groundwater and stream ecology. Hydrobiologia 100: 93–99.

    Article  Google Scholar 

  • Iepure, S., S. Herrera, R. Rasines-Ladero & I. de Bustamante, 2013. Response of microcrustacean communities from the surface—groundwater interface to water contamination in urban river system of the Jarama basin (central Spain). Environmental Science and Pollution Research 20: 5813–5826.

    Article  CAS  PubMed  Google Scholar 

  • Ireson, A. M., H. S. Wheater, A. P. Butler, S. A. Mathias, J. Finch & J. D. Cooper, 2006. Hydrological processes in the Chalk unsaturated zone: Insights from an intensive monitoring programme. Journal of Hydrology 330: 29–43.

    Article  Google Scholar 

  • Jarvie, H. P., M. D. Jurgens, R. J. Williams, C. Neal, J. J. L. Davies, C. Barrett & J. White, 2005. Role of river bed sediments as sources and sinks of phosphorus across two major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. Journal of Hydrology 301: 51–74.

    Article  Google Scholar 

  • Jones, J. B., S. G. Fisher & N. B. Grimm, 1995. Vertical hydrologic exchange and ecosystem metabolism in a Sonoran Desert stream. Ecology 76: 942–952.

    Article  Google Scholar 

  • Jones, J. I., I. Growns, A. Arnold, S. McCall & M. Bowes, 2015. The effects of increased flow and fine sediment on hyporheic invertebrates and nutrients in stream mesocosms. Freshwater Biology 60: 813–826.

    Article  CAS  Google Scholar 

  • Lapworth, D. J., D. C. Gooddy, D. Allen & G. H. Old, 2009. Understanding groundwater, surface water, and hyporheic zone biogeochemical processes in a Chalk catchment using fluorescence properties of dissolved and colloidal organic matter. Journal of Geophysical Research 114: G3.

    Article  Google Scholar 

  • Lapworth, D. J., D. C. Goody & H. P. Jarvie, 2011. Understanding phosphorous mobility and bioavailability in the hyporheic zone of a chalk stream. Water, Air and Soil Pollution 213: 218–236.

    Google Scholar 

  • Marmstrong, S. & F. Barlocher, 1989. Adsorption and release of amino acids from epilithic biofilms in streams. Freshwater Biology 22: 153–159.

    Article  Google Scholar 

  • Maurice, L. D., T. C. Atkinson, J. A. Barker, J. P. Bloomfield, A. R. Farrant & A. T. Wiliams, 2006. Karstic behaviour of groundwater in the English Chalk. Journal of Hydrology 330: 63–70.

    Article  Google Scholar 

  • Malard, F., S. Plenet & J. Gibert, 1996. The use of invertebrates in ground water monitoring: a rising research field. Groundwater Monitoring Research 16: 103–113.

    Article  CAS  Google Scholar 

  • Malard, F., K. Tockner, M.-J. Dole-Olivier & J. V. Ward, 2002. A landscape perspective of surface–subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.

    Article  Google Scholar 

  • Motas, C., 1962. Procédé des sondages phréatiques. Division du domaine souterrain. Classification écologique des animaux souterrains—Le psammon. Acta Museum Macedonici Science Naturale Skopje 8: 135–173.

    Google Scholar 

  • McInerney, C. E., L. Maurice, A. Robertson, L. R. F. D. Knight, J. Arnscheidt, T. Mathers, S. Matthijs, K. Eriksson, G. S. Proudlove & B. Hänfling, 2014. The ancient Britons: groundwater fauna survived extreme climate change over tens of millions of years across NW Europe. Molecular Ecology 23: 1153–1166.

    Article  PubMed  Google Scholar 

  • Mulholand, P., E. Marzolf, J. R. Webster, D. R. Hart & S. P. Hendricks, 1997. Evidence that hyporheic zones increase heterotrophic metabolism and phosphorus uptake in forest streams. Limnology and Oceanography 42: 443–451.

    Article  Google Scholar 

  • Nogaro, G., T. Datry, F. Mermillon-Blondin, S. Descloux & B. Montuelle, 2010. Influence of streambed sediment clogging on microbial processes in the hyporheic zone. Freshwater Biology 55: 1288–1302.

    Article  CAS  Google Scholar 

  • Pacioglu, O., 2010. Ecology of the hyporheic zone: a review. Cave and Karst Science 3: 69–76.

    Google Scholar 

  • Pacioglu, O., 2011. The effect of diffuse nitrate pollution and land use on hyporheic habitats in lowland English chalk rivers. PhD thesis, University of Roehampton, UK.

  • Pacioglu, O., P. Shaw & A. Robertson, 2012. Patch scale response of hyporheic invertebrates to fine sediment removal in two chalk rivers. Fundamental and Applied Limnology 4: 283–288.

    Article  Google Scholar 

  • Pacioglu, O., O. T. Moldovan, P. Shaw & A. Robertson, 2016. Response of invertebrates from the hyporheic zone of chalk rivers to eutrophication and land use. Environmental Science and Pollution Research 23: 4741.

    Article  PubMed  Google Scholar 

  • Pretty, J. L., A. G. Hilldrew & M. Trimmer, 2006. Nutrient dynamics in relation to surface-groundwater hydrological exchange in a groundwater fed chalk stream. Journal of Hydrology 330: 84–100.

    Article  CAS  Google Scholar 

  • Riley, W. D., M. G. Pawson, V. Quayle & M. J. Ives, 2009. The effects of stream canopy management on macroinvertebrate communities and juvenile salmonid production in a chalk stream. Fisheries Management and Ecology 16: 100–111.

    Article  Google Scholar 

  • Sanders, I. A., C. M. Heppel, J. A. Cotton, G. Wharton, A. G. Hildrew, E. J. Flowers & M. Trimmer, 2007. Emission of methane from chalk streams has potential implications for agricultural practices. Freshwater Biology 52: 1176–1186.

    Article  CAS  Google Scholar 

  • Sear, D. A., P. D. Armitage & F. H. Dawson, 1999. Groundwater dominated rivers. Hydrological Processes 13: 255–276.

    Article  Google Scholar 

  • Shand, P., W.M. Edmunds, S. Wagsta & R. Flavin, 1995. The application of hydrogeochemical data and maps for environmental interpretation in upland Britain. British Geological Survey Technical Report WD194/57, Natural Environment Research Council, Swindon, UK.

  • Snook, D. & P. G. Whitehead, 2004. Water quality and ecology of the River Lee: mass balance and a review of temporal and spatial data. Hydrology and Earth System Science 8: 630–650.

    Article  Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1993. An Ecosystem Perspective of Alluvial Rivers: connectivity and the Hyporheic Corridor. Freshwater Science 12: 48–56.

    Google Scholar 

  • Stein, H., C. Kellermann, S. I. Schmid, H. Brielmann, C. Steube, S. E. Berkhoff, A. Fuchs, H. Jurgen, T. B. Hahn & C. Griebler, 2010. The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality. Journal of Environmental Monitoring 12: 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Stubbington, R., A. J. Boulton, S. Little & P. J. Wood, 2015. Changes in invertebrate assemblage composition in benthic and hyporheic zones during a severe supraseasonal drought. Freshwater Science 34: 344–354.

    Article  Google Scholar 

  • Strauss, E. A. & G. A. Lamberti, 2000. Effect of dissolved organic carbon quality on microbial decomposition and nitrification rates in stream sediments. Freshwater Biology 47: 1854–1859.

    Google Scholar 

  • Tod, S. & J. M. Schmid-Araya, 2009. Meiofauna versus macrofauna: secondary production of invertebrates in a lowand chalk stream. Limnology and Oceanography 54: 450–456.

    Article  Google Scholar 

  • Trimmer, M., I. A. Sanders & C. M. Heppel, 2009a. Carbon and nitrogen cycling in a vegetated lowland chalk river impacted by sediment. Hydrological Processes 23: 2225–2238.

    Article  CAS  Google Scholar 

  • Trimmer, M., A. Hildrew, G. Jackson, C. Michelle, J. Pretty & J. Grey, 2009b. Evidence for the role of methane-derived carbon in a free-flowing, lowland river food web. Limnology and Oceanography 54: 1541–1547.

    Article  CAS  Google Scholar 

  • Trimmer, M., J. Grey, C. Heppell, A. G. Hildrew, K. Lansdown, H. Stahl & G. Yvon-Durocher, 2012. River bed carbon and nitrogen cycling: State of play and some new directions. Science of the Total Environment 434: 143–158.

    Article  CAS  PubMed  Google Scholar 

  • Ward, J.V., N.J. Voelz & P. Marmonier, 1992. Groundwater faunas at riverine sites receiving treated sewage effluent. In Stanford, J.A. & J.J. Simons JJ (eds), Proceedings of the first international conference on ground water ecology. AWRA, Bethesda, MD: 351–364.

  • Wheater, H. S., D. Peach & A. Binley, 2007. Characterising groundwater-dominated lowland catchments: the UK Lowland Catchment Research Programme (LOCAR). Hydrology and Earth System Sciences Discussions, European Geosciences Union 11: 108–124.

    Article  CAS  Google Scholar 

  • Williams, D. D., 1993. Nutrient and flow vector dynamics at the hyporheic/groundwater interface and their effects on the interstitial fauna. Hydrobiologia 251: 185–198.

    Article  CAS  Google Scholar 

  • Williams, D. D. & H. B. N. Hynes, 1974. The occurrence of benthos deep in the substratum of a stream. Freshwater Biology 4: 233–256.

    Article  Google Scholar 

  • Williams, D. D., C. M. Febria & J. C. Y. Wong, 2010. Ecotonal and other properties of the Hyporheic Zone. Fundamental and Applied Limnology 176: 349–364.

    Article  Google Scholar 

  • Wood, P. J. & P. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmantal Management 21: 203–217.

    Article  CAS  Google Scholar 

  • Wood, P. J., A. J. Boulton, S. Little & R. Stubbington, 2010. Is the hyporheic zone a refugium for aquatic macroinvertebrates during severe low flow conditions? Fundamental and Applied Limnology 176: 377–390.

    Article  Google Scholar 

  • Wright, J. F., 1992. Spatial and temporal occurrence of invertebrates in a chalk stream, Berkshire, England. Hydrobiologia 248: 11–30.

    Article  Google Scholar 

  • Wright, J. F. & K. L. Symes, 1999. A nine year study of the macroinvertebrate fauna of a chalk stream. Hydrological Processes 13: 371–385.

    Article  Google Scholar 

  • Wright, J. F., R. T. Clarke, R. J. M. Gunn, N. T. Kneebone & J. Davy-Bowker, 2004. Impact of major changes in flow regime on the macroinvertebrate assemblages of four chalk stream sites, 1997–2001. River Research and Applications 20: 775–794.

    Article  Google Scholar 

  • Wriedt, G., J. Spindler, T. Neef, R. Meisner & M. Rode, 2007. Groundwater dynamic and channel activity as major controls of in stream nitrate concentration in a lowland catchment system? Journal of Hydrology 330: 154–168.

    Article  Google Scholar 

Download references

Acknowledgements

The lead author is grateful for guidance and useful comments during his PhD thesis to Anne Robertson and Peter Show (Roehampton University). OP was supported by a PhD scholarship offered by Roehampton University, London, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavian Pacioglu.

Additional information

Handling editor: Koen Martens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacioglu, O., Pârvulescu, L. The chalk hyporheic zone: a true ecotone?. Hydrobiologia 790, 1–12 (2017). https://doi.org/10.1007/s10750-016-3035-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-3035-9

Keywords

Navigation