Skip to main content
Log in

Sustained elevation of activity of developing neurons grown on polyimide microelectrode arrays (MEA) in response to ultrasound exposure

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

High frequency ultrasound (HFUS) is an attractive modality for noninvasive clinical applications such as imaging, diagnostics and more recently for stimulation of the central nervous system. The aim of this study was to investigate the modulation in the electrical activity of developing neurons due to the application of HFUS using polyimide based microelectrode array (MEA) that is acoustically transparent in order to allow ultrasound waves to transmit through the substrate and reach the growing neural layer. High frequency tone bursts of ultrasound were applied to a monolayer of developing primary neurons grown on an acoustical transparent polyimide MEA. HFUS was applied to primary neuronal culture at two frequencies (4.4 and 96 MHz) with spatial peak-temporal average intensities of 100 and 10 mW/cm2. Exposures were found to increase the spike rate of neurons in culture up to 20-fold in some cases and induce silent or still developing neurons to fire at a maximum rate of up to three new units per recording microelectrode. Another new observation reported in this study is that the increase in spike rate was sustained for over 6 min post stimulation. Our results also suggest that mechanical and not thermal effects of ultrasound largely mediate the increase in electrical excitability without any discernible spatial pattern or preference across the monolayer for the US parameters used in this study. The accessibility of the disassociated neuronal cultures to stimulation, imaging and recording provides a useful model for investigating the exact mechanisms behind the effect of ultrasound on neuronal excitability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ang ES Jr, Gluncic V, Duque A, Schafer ME, Rakic P (2006) Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci USA 103:12903–12910

    Article  Google Scholar 

  • Bachtold MR, Rinaldi PC, Jones JP, Reines F, Price LR (1998) Focused ultrasound modifications of neural circuit activity in a mammalian brain. Ultrasound Med Biol 24:557–565

    Article  Google Scholar 

  • Bello SO (2006) How we may be missing some harmful effects of ultrasound—a hypothesis. Med Hypotheses 67:765–767

    Article  Google Scholar 

  • Boppart SA, Wheeler BC, Wallace CS (1992) A flexible perforated microelectrode array for extended neural recordings. IEEE Trans Biomed Eng 39:37–42

    Article  Google Scholar 

  • Chang JC, Brewer GJ, Wheeler BC (2001) Modulation of neural network activity by patterning. Biosens Bioelectron 16:527–533

    Article  Google Scholar 

  • Chiappalone M, Bove M, Vato A, Tedesco M, Martinoia S (2006) Dissociated cortical networks show spontaneously correlated activity patterns during in vitro development. Brain Res 1093:41–53. doi:10.1016/J.Brainres.2006.03.049

    Article  Google Scholar 

  • Cohen AS, Pfister BJ, Schwarzbach E, Grady MS, Goforth PB, Satin LS (2007) Injury-induced alterations in CNS electrophysiology. Prog Brain Res 161:143–169. doi:10.1016/S0079-6123(06)61010-8

    Article  Google Scholar 

  • Duck FA (2008) Hazards, risks and safety of diagnostic ultrasound. Med Eng Phys 30:1338–1348

    Article  Google Scholar 

  • Fleischer AC, Fleischer A, Toy EC, Toy E, Lee W, Manning FA (2011) Sonography in obstetrics and gynecology: principles and practice by 6 edition. McGraw-Hill Professional, New York City

    Google Scholar 

  • Geddes-Klein DM, Schiffman KB, Meaney DF (2006) Mechanisms and consequences of neuronal stretch injury in vitro differ with the model of trauma. J Neurotrauma 23:193–204. doi:10.1089/neu.2006.23.193

    Article  Google Scholar 

  • Hachiya H (2006) Safety of ultrasound diagnosis. J Med Ultrason 33(4):195

    Article  Google Scholar 

  • Hu JH, Ulrich WD (1976) Effects of low-intensity ultrasound on the central nervous system of primates. Aviat Space Environ Med 47:640–643

    Google Scholar 

  • Hu Y, Zhong W, Wan JM, Alfred C (2013) Ultrasound can modulate neuronal development: impact on neurite growth and cell body morphology. Ultrasound Med Biol 39:915–925

    Article  Google Scholar 

  • Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6:8264. doi:10.1038/ncomms9264

    Article  Google Scholar 

  • Jackson N, Muthuswamy J (2009) Flexible chip scale package and interconnect for implantable MEMS movable microelectrodes for the brain. J Microelectromech Syst 18:396–404. doi:10.1109/JMEMS.2009.2013391

    Article  Google Scholar 

  • Khraiche ML, Phillips WB, Jackson N, Muthuswamy J (2008) Ultrasound induced increase in excitability of single neurons. Conf Proc IEEE Eng Med Biol Soc 2008:4246–4249. doi:10.1109/IEMBS.2008.4650147

    Google Scholar 

  • King RL, Brown JR, Newsome WT, Pauly KB (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331. doi:10.1016/J.Ultrasmedbio.2012.09.009

    Article  Google Scholar 

  • Korb AS, Shellock FG, Cohen MS, Bystritsky A (2014) Low-intensity focused ultrasound pulsation device used during magnetic resonance imaging: evaluation of magnetic resonance imaging-related heating at 3 Tesla/128 MHz. Neuromodul Technol Neural Interface 17:236–241. doi:10.1111/ner.12075

    Article  Google Scholar 

  • Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, Tyler WJ (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322–329. doi:10.1038/nn.3620

    Article  Google Scholar 

  • Maeda K, Kurjak A (2012) The safe use of diagnositic ultrasound in obstetrics and gynecology, Donald School. J Ultrasound Obstet Gynecol 3:313–317

    Article  Google Scholar 

  • Marinac-Dabic D, Krulewitch CJ, Moore RM Jr (2002) The safety of prenatal ultrasound exposure in human studies. Epidemiology 13(Suppl 3):S19–S22  

    Article  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117:2449–2460. doi:10.1242/jcs.01232

    Article  Google Scholar 

  • Mehic E, Xu JM, Caler CJ, Coulson NK, Moritz CT, Mourad PD (2014) Increased anatomical specificity of neuromodulation via modulated focused ultrasound. PLoS One 9:e86939. doi:10.1371/journal.pone.0086939

    Article  Google Scholar 

  • Mihran RT, Barnes FS, Wachtel H (1990a) Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med Biol 16:297–309

    Article  Google Scholar 

  • Mihran RT, Barnes FS, Wachtel H (1990b) Transient modification of nerve excitability in vitro by single ultrasound pulses. Biomed Sci Instrum 26:235–246

    Google Scholar 

  • Miller DL, Smith NB, Bailey MR, Czarnota GJ, Hynynen K, Makin IR (2012) Overview of therapeutic ultrasound applications and safety considerations. J Ultrasound Med 31:623–634

    Article  Google Scholar 

  • Morin FO, Takamura Y, Tamiya E (2005) Investigating neuronal activity with planar microelectrode arrays: achievements and new perspectives. J Biosci Bioeng 100:17–24

    Article  Google Scholar 

  • Philips WB (2002) In vitro modification of nerve excitability via high frequency ultrasound pulses. Dissertation, Arizona State University, Tempe

    Google Scholar 

  • Phillips WB, Larson PJ, Towe BC (2004) Ultrasonically-assisted intracortical microstimulation of the rat. Conf Proc IEEE Eng Med Biol Soc 6:4217–4220

    Google Scholar 

  • Potter SM, DeMarse TB (2001) A new approach to neural cell culture for long-term studies. J Neurosci Methods 110:17–24

    Article  Google Scholar 

  • Sachs F, Morris CE (1998) Mechanosensitive ion channels in nonspecialized cells. Rev Physiol Biochem Pharmacol 132:1–77

    Article  Google Scholar 

  • Stephenson J (2005) Fetal ultrasound safety, vol 293. doi:10.1001/jama.293.3.286-c

  • Sutton Y, Shaw A, Zeqiri B (2003) Measurement of ultrasonic power using an acoustically absorbing well. Ultrasound Med Biol 29:1507–1513

    Article  Google Scholar 

  • Takagi SF, Higashino S, Shibuya T, Osawa N (1960) The actions of ultrasound on the myelinated nerve, the spinal cord and the brain. Jpn J Physiol 10:183–193

    Article  Google Scholar 

  • Tarantal AF, O’Brien WD, Hendrickx AG (1993) Evaluation of the bioeffects of prenatal ultrasound exposure in the cynomolgus macaque (Macaca fascicularis): III. Dev Hematol Studies Teratol 47:159–170

    Google Scholar 

  • Treeby BE, Jaros J, Rendell AP, Cox BT (2012) Modeling nonlinear ultrasound propagation in heterogeneous media with power law absorption using a k-space pseudospectral method. J Acoust Soc Am 131:4324–4336. doi:10.1121/1.4712021

    Article  Google Scholar 

  • Tufail Y et al (2010) Transcranial pulsed ultrasound stimulates intact brain circuits. Neuron 66:681–694. doi:10.1016/j.neuron.2010.05.008

    Article  Google Scholar 

  • Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C (2008) Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS One 3:e3511

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Bruce Towe, Professor of Biomedical Engineering at Arizona State University for his helpful discussions and insights.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jit Muthuswamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khraiche, M.L., Phillips, W.B., Jackson, N. et al. Sustained elevation of activity of developing neurons grown on polyimide microelectrode arrays (MEA) in response to ultrasound exposure. Microsyst Technol 23, 3671–3683 (2017). https://doi.org/10.1007/s00542-016-3150-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3150-6

Keywords

Navigation