Skip to main content
Log in

A comparative experimental study of direct torque control based on adaptive fuzzy logic controller and particle swarm optimization algorithms of a permanent magnet synchronous motor

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Direct torque control (DTC) of permanent magnet synchronous motor (PMSM) drives is receiving increasing attention due to important advantages, such as fast dynamic and low dependence on motor parameters. However, conventional DTC scheme, based on comparators and the switching table, suffers from large torque and flux ripples. In this paper, two intelligent approaches are proposed in order to improve DTC performance. The first approach is based on two adaptive fuzzy logic controllers (AFLC). The first AFLC replaces the conventional comparators and switching table and the second AFLC adjusts in real time the outer loop PI parameters. In the second approach, particle swarm optimization (PSO) is used as another alternative to adjust the PI parameters. Simulation and experimental results demonstrate the effectiveness of the proposed intelligent techniques. Besides, the system associated with these techniques can effectively reduce flux and torque ripples with better dynamic and steady state performance. Quantitatively, PSO-based DTC approach reduces greatly flux and torque ripples. Further, PSO-based approach maintains a constant switching frequency which improves the PMSM drive system control performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tulasi Ram Das G (2008) J. NTUCE Hyderabad, Introduction and control of permanent magnet synchronous machines. Workshop on ‘Modern AC Drives’ at RGMCET, Nandyala, Febrauary-2008

  2. Finch JW, Giaouris D (2008) Controlled AC electrical drives. IEEE Trans Ind Electron 55(2):481–491

    Article  Google Scholar 

  3. Rodriguez J, Kennel RM, Espinoza JR, Trincado M, Silva CA, Rojas CA (2012) High-performance control strategies for electrical drives: an experimental assessment. IEEE Trans Ind Electron 59:812–820

    Article  Google Scholar 

  4. Zhang Y, Akujuobi CM, Ali WH, Tolliver CL, Shieh L-S (2006) Load disturbance resistance speed controller design for PMSM. IEEE Trans Ind Electron 53(4):1198–1208

    Article  Google Scholar 

  5. Dongemei X, Daokui Q, Fang X (2005) Design of H8 feedback controller and IP position controller of PMSM servo system. IEEE Int Conf Mechatron Autom 2(29):578–1108

    Google Scholar 

  6. Nash JH (1986) Direct torque control, induction motor vector control without an encoder. IEEE Trans Ind Appl 33(2):333–341

    Article  MathSciNet  Google Scholar 

  7. Idris NRN, Yatim AHM (2004) Direct torque control of induction machines with constant switching frequency and reduced torque ripple. IEEE Trans Ind Electron 51(4):758–767

    Article  Google Scholar 

  8. Bossoufi B, Karim M, Ionita S, Lagrioui A (2010) Performance analysis of direct torque control (DTC) for synchronous machine permanent magnet (PMSM). In: Proc. IEEE-SIITME’2010, pp. 275–280, 23–26 Sep 2010, Pitesti, Romania

  9. Kumar V, Gaur P, Mittal AP (2014) ANN based self tuned PID like adaptive controller design for high performance PMSM position control. Expert Syst Appl 41:7995–8002

    Article  Google Scholar 

  10. Nyanteh YD, Srivastava SK, Edrington CS, Cartes DA (2013) Application of artificial intelligence to stator winding fault diagnosis in permanent magnet synchronous machines. Electr Power Syst Res 103:201–213

    Article  Google Scholar 

  11. Labiod S, Guerra TM (2012) Fuzzy adaptive control for a class of nonlinear systems with unknown control gain. Evol Syst 3:57–64

    Article  Google Scholar 

  12. Gao Y, Wang J, Qiu X (2011) The improvement of DTC system performance on fuzzy control. Procedia Environ Sci 10:589–594

    Article  Google Scholar 

  13. HAZZAB A, BOUSSERHANE IK, ZERBO M, SICARD P (2006) Real time implementation of fuzzy gain scheduling of PI controller for induction motor machine control. Neural Process Lett 24:203–215

    Article  Google Scholar 

  14. Hajebi P, Taghi AlModarresi SM (2012) Online adaptive fuzzy logic controller using genetic algorithm and neural network for networked control systems. ICACT Transactions on Advanced Communications Technology (TACT) 1(3)

  15. Boudana D, Nezli L, Tlemcani A, Mahmoudi MO, Djemai M (2008) DTC based on fuzzy logic control of a double star synchronous machine drive. Nonlinear Dyn Syst Theory 8(3):269–286

    MathSciNet  MATH  Google Scholar 

  16. Al Gizia A, Mustafaa MW, Jebur HH (2014) A novel design of high-sensitive fuzzy PID controller. Appl Soft Comput 24:794–805

    Article  Google Scholar 

  17. Maldonado Y, Castillo O, Melin P (2013) Particle swarm optimization of interval type-2 fuzzy system for FPGA applications. Appl Soft Comput 13:496–508

    Article  Google Scholar 

  18. Shahnazi R, Shanechi HM, Pariz N (2008) Position control of induction and DC servomotors: a novel adaptive fuzzy PI sliding mode control. IEEE Trans Energy Convers 23(1)

  19. Sangram K, Routray NN, Pravat Kumar RA (2012) Robust fuzzy sliding mode control design for current source inverter based STATCOM. Appl Procedia Technol 4:342–349

    Article  Google Scholar 

  20. Singh M, Chandra A (2011) Application of adaptive network-based fuzzy inference system for sensor less control of PMSG-based wind turbine with nonlinear-load-compensation capabilities. IEEE Trans Power Electron 26(1):165–175

    Article  Google Scholar 

  21. Bhattacharya A, Chakraborty C (2011) A shunt active power filter with enhanced performance using ANN based predictive and adaptive controllers. IEEE Trans Ind Electron 58(2):421–428

    Article  Google Scholar 

  22. Kashif SA, Saqib MA (2014) Sensorless control of a permanent magnet synchronous motor using artificial neural network based estimator—an application of the four-switch three-phase inverter. Electr Power Compon Syst 42(1)

  23. Zhan Z-H, Zhang J, Li Y, Chung HS-H (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern B Cybern 39:1362–1381

    Article  Google Scholar 

  24. Kiranyaz S, Ince T, Yildirim A, Gabbouj M (2009) Fractional particle swarm optimization in multidimensional search space. IEEE Transactions on: Accepted for future publication Vol. pp 1–1, Forthcoming

  25. Vasumathi B, Moorthi S (2012) Implementation of hybrid ANN–PSO algorithm on FPGA for harmonic estimation. Eng Appl Artif Intell 25:476–483

    Article  Google Scholar 

  26. Pourjafari E, Mojallali H (2011) Predictive control for voltage collapse avoidance using a modified discrete multi-valued PSO algorithm. ISA Trans 50:195–200

    Article  Google Scholar 

  27. Mohkami H, Hooshmand R, Khodabakhshian A (2011) Fuzzy optimal placement of capacitors in the presence of nonlinear loads in unbalanced distribution networks using BF-PSO algorithm. Appl Soft Comput 11:3634–3642

    Article  Google Scholar 

  28. Oh S-K, Jang H-J, Pedrycz W (2011) A comparative experimental study of type-1/type-2 fuzzy cascade controller based on genetic algorithms and particle swarm optimization. Expert Syst Appl 38:11217–11229

    Article  Google Scholar 

  29. Chiou J-S, Tsai S-H, Liu M-T (2012) A PSO-based adaptive fuzzy PID-controllers. Simul Model Pract Theory 26:49–59

    Article  Google Scholar 

  30. Bouallegue S, Haggege J, Ayadi M, Benrejeb M (2012) PID-type fuzzy logic controller tuning based on particle swarm optimization. Eng Appl Artif Intell 25:484–493

    Article  Google Scholar 

  31. Takahashi I, Noguchi T (1986) A new quick response and high-efficiency control strategy of an induction motor. IEEE Trans Ind Appl IA-22(5):820–827

    Article  Google Scholar 

  32. Boldea I (2000) Direct torque and flux control (DTFC) of A.C. drives: a review. In: Proceedings of EPEPEMC’2000, vol. 1, Kosice, Slovakia, pp 88–97

  33. Pacas M, Weber J (2005) Predictive direct torque control for the PM synchronous machine. IEEE Trans Ind Electron 52(5):1350–1356

    Article  Google Scholar 

  34. Gatto G, Marongiu I, Serpi A, Perfetto A (2008) A predictive direct torque control of induction machines. In: Proceedings of SPEEDAM 2008, June 2008, Ischia, Italy, pp 1103–1108

  35. Sharmeela C, Mohan MR, Uma G, Baskaran J (2007) Fuzzy logic based controlled three phase shunt active filter for line harmonics reduction. J Comput Sci 3(2):76–80

    Article  Google Scholar 

  36. Mikkili S, Panda AK (2012) Real-time implementation of power theory using FLC based shunt active filter with different fuzzy M.F.s, 38th Annual Conference on IEEE Industrial Electronics Society (IECON 2012) pp 702–707

  37. Benchouia MT, Ghadbane I, Golea A, Srairi K, Benbouzid MH (2014) Implementation of adaptive fuzzy logic and pi controllers to regulate the DC bus voltage of shunt active power filter. Appl Soft Comput 56:1826–1838

    Google Scholar 

  38. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, vol 4, Perth, Australia, pp 1942–1948

  39. Marinakis Y, Marinaki M, Dounias G (2010) A hybrid particle swarm optimization algorithm for the vehicle routing problem. Eng Appl Artif Intell 23:463–472

    Article  MATH  Google Scholar 

  40. Samanta B, Nataraj C (2009) Use of particle swarm optimization for machinery fault detection. Eng Appl Artif Intell 22:308–316

    Article  Google Scholar 

  41. Liu L, Liu W, Cartes DA (2008) Particle swarm optimization-based parameter identification applied to permanent magnet synchronous motors. Eng Appl Artif Intell 21:1092–1100

    Article  Google Scholar 

  42. Venayagamoorthy GK, Smith SC, Singhal G (2007) Particle swarm-based optimal partitioning algorithm for combinational CMOS circuits. Eng Appl Artif Intell 20:177–184

    Article  Google Scholar 

  43. Bouallegue S, Haggege J, Benrejeb M (2010a) Structured loop-shaping HN controller design using particle swarm optimization. In: Proceedings of the 2010 I.E. International Conference on Systems, Man, and Cybernetics SMC’10, Istanbul

  44. Bouallegue S, Haggege J, Benrejeb M (2010b) Structured mixed-sensitivity HN design using particle swarm optimization. In: Proceedings of the 7th IEEE International Multi-Conference on Systems, Signals and Devices SSD’10, Amman

  45. Bouallegue S, Haggege J, Benrejeb M (2011) Particle swarm optimization-based fixed-structure H control design. Int J Control Autom Syst 9(2):258–266

    Article  Google Scholar 

  46. Ray RN, Chatterjee D, Goswami SK (2009) An application of PSO technique for harmonic elimination in a PWM inverter. Appl Soft Comput 9:1315–1320

    Article  Google Scholar 

  47. Kao C-C, Chuang C-W, Fung R-F (2006) The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach. Mechatronics 16:513–522

    Article  Google Scholar 

  48. Wain R-J, Lin Y-F, Chuang K-L (2014) Total sliding-mode-based particle swarm optimization control for linear induction motor. J Frankl Inst 351:2755–2780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mesloub.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesloub, H., Benchouia, M.T., Goléa, A. et al. A comparative experimental study of direct torque control based on adaptive fuzzy logic controller and particle swarm optimization algorithms of a permanent magnet synchronous motor. Int J Adv Manuf Technol 90, 59–72 (2017). https://doi.org/10.1007/s00170-016-9092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-016-9092-4

Keywords

Navigation