Skip to main content

Advertisement

Log in

2D Fourier series representation of gravitational functionals in spherical coordinates

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

2D Fourier series representation of a scalar field like gravitational potential is conventionally derived by making use of the Fourier series of the Legendre functions in the spherical harmonic representation. This representation has been employed so far only in the case of a scalar field or the functionals that are related to it through a radial derivative. This paper provides a unified scheme to represent any gravitational functional in terms of spherical coordinates using a 2D Fourier series representation. The 2D Fourier series representation for each individual point is derived by transforming the spherical harmonics from the geocentric Earth-fixed frame to a rotated frame so that its equator coincides with the local meridian plane of that point. In the obtained formulation, each functional is linked to the potential in the spectral domain using a spectral transfer. We provide the spectral transfers of the first-, second- and third-order gradients of the gravitational potential in the local north-oriented reference frame and also those of some functionals of frequent use in the physical geodesy. The obtained representation is verified numerically. Moreover, spherical harmonic analysis of anisotropic functionals and contribution analysis of the third-order gradient tensor are provided as two numerical examples to show the power of the formulation. In conclusion, the 2D Fourier series representation on the sphere is generalized to functionals of the potential. In addition, the set of the spectral transfers can be considered as a pocket guide that provides the spectral characteristics of the functionals. Therefore, it extends the so-called Meissl scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albertella A, Sacerdote F (1995) Spectral analysis of block averaged data in geopotential global model determination. J Geod 70(3):166–175. doi:10.1007/BF00943692

    Article  Google Scholar 

  • Antoni M, Keller W (2013) Closed solution of the Hill differential equation for short arcs and a local mass anomaly in the central body. Celest Mech Dyn Astron 115(2):107–121. doi:10.1007/s10569-012-9454-7

    Article  Google Scholar 

  • Betti B, Sansò F (1989) The integrated approach to satellite geodesy. In: Sansò F, Rummel R (eds) Lecture notes in earth sciences. Theory of satellite geodesy and gravity field determination, vol 25. Springer, Berlin, pp 373–416. doi:10.1007/BFb0010557

  • Brovelli M, Sansò F (1990) Gradiometry: the study of the \({V}_{yy}\) component in the BVP approach. Manuscr Geod 15(4):240–248

    Google Scholar 

  • Casotto S, Fantino E (2009) Gravitational gradients by tensor analysis with application to spherical coordinates. J Geod 83(7):621–634. doi:10.1007/s00190-008-0276-z

    Article  Google Scholar 

  • Cheong HB, Park JR, Kang HG (2012) Fourier-series representation and projection of spherical harmonic functions. J Geod 86(11):975–990. doi:10.1007/s00190-012-0558-3

    Article  Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Tech. Rep. No. 310, Ohio State University, Columbus

  • Colombo OL (1989) Advanced techniques for high-resolution mapping of the gravitational field. In: Sansò F, Rummel R (eds) Lecture notes in earth sciences. Theory of satellite geodesy and gravity field determination, vol 25. Springer, Berlin, pp 335–369

  • Dilts GA (1985) Computation of spherical harmonic expansion coefficients via FFT’s. J Comput Phys 57(3):439–453. doi:10.1016/0021-9991(85)90189-5

    Article  Google Scholar 

  • EGG-C (2010) GOCE Level 2 product data handbook. Issue 4, GO-MA-HPF-GS-0110

  • Fantino E, Casotto S (2009) Methods of harmonic synthesis for global geopotential models and their first-, second- and third-order gradients. J Geod 83(7):595–619. doi:10.1007/s00190-008-0275-0

    Article  Google Scholar 

  • Giacaglia GEO (1980) Transformations of spherical harmonics and applications to geodesy and satellite theory. Stud Geophys Geod 24(1):1–11. doi:10.1007/BF01628375

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2008) On the inclination functions and a rapid stable procedure for their evaluation together with derivatives. Celest Mech Dyn Astron 101(3):247–272. doi:10.1007/s10569-008-9145-6

    Article  Google Scholar 

  • Gooding RH, Wagner CA (2010) On a Fortran procedure for rotating spherical-harmonic coefficients. Celest Mech Dyn Astron 108(1):95–106. doi:10.1007/s10569-010-9293-3

    Article  Google Scholar 

  • Gruber C, Abrykosov O (2014) High resolution spherical and ellipsoidal harmonic expansions by fast Fourier transform. Stud Geophys Geod 58(4):595–608. doi:10.1007/s11200-013-0578-3

    Article  Google Scholar 

  • Gruber C, Novák P, Sebera J (2011) FFT-based high-performance spherical harmonic transformation. Stud Geophys Geod 55(3):489–500. doi:10.1007/s11200-011-0029-y

    Article  Google Scholar 

  • Gruber C, Novák P, Flechtner F, Barthelmes F (2014) Derivation of the topographic potential from global DEM models. In: Rizos C, Willis P (eds) International association of geodesy symposia, earth on the edge: science for a sustainable planet, vol 139. Springer, Berlin, pp 535–542. doi:10.1007/978-3-642-37222-3_71

  • Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San Francisco

    Google Scholar 

  • Hofsommer D, Potters M (1960) Table of Fourier coefficients of associated Legendre functions. Proc KNAW Ser A Math Sci 63(5):460

    Google Scholar 

  • Holmes SA, Featherstone WE (2002) A unified approach to the Clenshaw summation and the recursive computation of very high degree and order normalised associated Legendre functions. J Geod 76(5):279–299. doi:10.1007/s00190-002-0216-2

    Article  Google Scholar 

  • Hwang C (1991) Orthogonal functions over the oceans and applications to the determination of orbit error, geoid and sea suface topography from satellite altimetry. Tech. Rep. No. 414, Ohio State University, Columbus

  • Jeffreys B (1965) Transformation of tesseral harmonics under rotation. Geophys J Int 10(2):141–145. doi:10.1111/j.1365-246X.1965.tb03057.x

    Article  Google Scholar 

  • Jekeli C (1996) Spherical harmonic analysis, aliasing, and filtering. J Geod 70(4):214–223. doi:10.1007/BF00873702

    Article  Google Scholar 

  • Kaula WM (1966) Theory of satellite geodesy. Blaisdel Publishing company, Waltham

    Google Scholar 

  • Koop R (1993) Global gravity field modelling using satellite gravity gradiometry. Tech. Rep. New Series, 38, The Netherlands Geodetic Commission, Delft

  • Kostelec PJ, Rockmore DN (2008) FFTs on the rotation group. J Fourier Anal Appl 14(2):145–179. doi:10.1007/s00041-008-9013-5

    Article  Google Scholar 

  • Meissl P (1971) A study of covariance functions related to the Earth’s disturbing potential. Tech. Rep. No. 151, Ohio State University, Columbus

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth gravitational model 2008 (EGM2008). J Geophys Res Solid Earth (1978–2012) 117(B4). doi:10.1029/2011JB008916

  • Petrovskaya MS, Vershkov AN (2006) Non-singular expressions for the gravity gradients in the local north-oriented and orbital reference frames. J Geod 80(3):117–127. doi:10.1007/s00190-006-0031-2

    Article  Google Scholar 

  • Ricardi LJ, Burrows ML (1972) A recurrence technique for expanding a function in spherical harmonics. IEEE Trans Comput 6:583–585

    Article  Google Scholar 

  • Risbo T (1996) Fourier transform summation of Legendre series and \(D\)-functions. J Geod 70(7):383–396. doi:10.1007/BF01090814

  • Rummel R, Van Gelderen M (1992) Spectral analysis of the full gravity tensor. Geophys J Int 111(1):159–169. doi:10.1111/j.1365-246X.1992.tb00562.x

  • Rummel R, Van Gelderen M (1995) Meissl scheme-spectral characteristics of physical geodesy. Manuscr Geod 20(5):379–385

    Google Scholar 

  • Schuster A (1902) On some definite integrals, and a new method of reducing a function of spherical co-ordinates to a series of spherical harmonics. Philos Trans R Soc Lond Ser A 200:181–223

    Article  Google Scholar 

  • Sharifi MA, Ghobadi-Far K (2015) Representation of gradients of a scalar field on the sphere using a 2D Fourier expression. In: Arefi H, Motagh M (eds) The international archives of photogrammetry, remote sensing and spatial information sciences, vol XL-1/W5. Copernicus GmbH, Gottingen, pp 689–694

  • Sneeuw N (1992) Representation coefficients and their use in satellite geodesy. Manuscr Geod 17:117–123

    Google Scholar 

  • Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observations. C-527, Deutsche Geodätische Kommission, München

  • Sneeuw N, Bun R (1996) Global spherical harmonic computation by two-dimensional Fourier methods. J Geod 70(4):224–232. doi:10.1007/BF00873703

    Article  Google Scholar 

  • Šprlák M, Novák P (2014) Integral formulas for computing a third-order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J Geod 89(2):141–157. doi:10.1007/s00190-014-0767-z

    Article  Google Scholar 

  • Tóth G, Földváry L (2005) Effect of geopotential model errors on the projection of GOCE gradiometer observables. In: Jekeli C, Bastos L, Fernandes L (eds) International association of geodesy symposia. Gravity, geoid and space missions, vol 129. Springer, Berlin, pp 72–76. doi:10.1007/3-540-26932-0_13

  • Wessel P, Smith W (1998) New, improved version of generic mapping tools released. Eos Trans Am Geophys Union 79(47):579–579. doi:10.1029/98EO00426

    Article  Google Scholar 

  • Wigner E (1959) Group theory and its application to the quantum mechanics of atomic spectra. Academic Press, New York

    Google Scholar 

  • Yi W, Rummel R, Gruber T (2013) Gravity field contribution analysis of GOCE gravitational gradient components. Stud Geophys Geod 57(2):174–202. doi:10.1007/s11200-011-1178-8

    Article  Google Scholar 

Download references

Acknowledgments

Figure 2 of the paper was produced using the generic mapping tools (GMT) (Wessel and Smith 1998). Helpful comments of the three anonymous reviewers are acknowledged. The authors would like to also thank the editor-in-chief J. Kusche and responsible editor S. Bettadpur for handling the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khosro Ghobadi-Far.

Appendix

Appendix

The differential operators of the first- to third-order gradients are given in the following. Employing these operators and making use of the Laplace equation and its derivatives in the spectral domain results in the corresponding spectral transfers.

  • First-order gradients

    $$\begin{aligned} D_{x}= & {} \frac{1}{r}\partial {_\phi }, \end{aligned}$$
    (20)
    $$\begin{aligned} D_{y}= & {} \frac{1}{r}\partial {_{\phi '}}, \end{aligned}$$
    (21)
    $$\begin{aligned} D_{z}= & {} \frac{1}{r}\partial {_r}. \end{aligned}$$
    (22)
  • Second-order gradients

    $$\begin{aligned} D_{xx}= & {} \frac{1}{r^2}\partial {_{\phi \phi }}+\frac{1}{r}\partial {_r}, \end{aligned}$$
    (23)
    $$\begin{aligned} D_{xy}= & {} \frac{1}{r^2}\partial {_{\phi {\phi '}}}, \end{aligned}$$
    (24)
    $$\begin{aligned} D_{xz}= & {} \frac{1}{r}\partial {_{r\phi }}-\frac{1}{r^2}\partial {_{\phi }}, \end{aligned}$$
    (25)
    $$\begin{aligned} D_{yy}= & {} \frac{1}{r^2}\partial {_{{\phi '}{\phi '}}}+\frac{1}{r}\partial {_r}, \end{aligned}$$
    (26)
    $$\begin{aligned} D_{yz}= & {} \frac{1}{r}\partial {_{r{\phi '}}}-\frac{1}{r^2}\partial {_{\phi '}}, \end{aligned}$$
    (27)
    $$\begin{aligned} D_{zz}= & {} \partial {_{rr}}. \end{aligned}$$
    (28)
  • Third-order gradients

    $$\begin{aligned} D_{xxx}= & {} \frac{1}{r^3}\partial {_{\phi \phi \phi }}+\frac{3}{r^2}\partial {_{r\phi }}- \frac{2}{r^3}\partial {_\phi }, \end{aligned}$$
    (29)
    $$\begin{aligned} D_{xxy}= & {} \frac{1}{r^2}\partial {_{r{\phi '}}}+\frac{1}{r^3} \partial {{\phi \phi {\phi '}}}, \end{aligned}$$
    (30)
    $$\begin{aligned} D_{xxz}= & {} \frac{1}{r}\partial {_{rr}}+\frac{1}{r^2}\partial {_{r\phi \phi }}- \frac{1}{r^2}\partial {_r}-\frac{2}{r^3}\partial {_{\phi \phi }}, \end{aligned}$$
    (31)
    $$\begin{aligned} D_{xyy}= & {} \frac{1}{r^2}\partial {_{r\phi }}+\frac{1}{r^3} \partial {_{\phi {\phi '}{\phi '}}}- \frac{1}{r^3}\partial {_\phi }, \end{aligned}$$
    (32)
    $$\begin{aligned} D_{xyz}= & {} \frac{1}{r^2}\partial {_{r\phi {\phi '}}}-\frac{2}{r^3} \partial {_{\phi {\phi '}}}, \end{aligned}$$
    (33)
    $$\begin{aligned} D_{xzz}= & {} \frac{1}{r}\partial {_{rr\phi }}-\frac{2}{r^2}\partial {_{r\phi }}+ \frac{2}{r^3}\partial {_\phi }, \end{aligned}$$
    (34)
    $$\begin{aligned} D_{yyy}= & {} \frac{3}{r^2}\partial {_{r{\phi '}}}+\frac{1}{r^3} \partial {_{{\phi '}{\phi '}{\phi '}}}-\frac{2}{r^3}\partial {_{\phi '}}, \end{aligned}$$
    (35)
    $$\begin{aligned} D_{yyz}= & {} \frac{1}{r}\partial {_{rr}}-\frac{1}{r^2} \partial {_r}+\frac{1}{r^2}\partial {_{r{\phi '}{\phi '}}}- \frac{2}{r^3}\partial {_{{\phi '}{\phi '}}}, \end{aligned}$$
    (36)
    $$\begin{aligned} D_{yzz}= & {} \frac{1}{r}\partial {_{rr{\phi '}}}-\frac{2}{r^2} \partial {_{r{\phi '}}}+\frac{2}{r^3}\partial {_{\phi '}}, \end{aligned}$$
    (37)
    $$\begin{aligned} D_{zzz}= & {} \partial {_{rrr}} \end{aligned}$$
    (38)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi-Far, K., Sharifi, M.A. & Sneeuw, N. 2D Fourier series representation of gravitational functionals in spherical coordinates. J Geod 90, 871–881 (2016). https://doi.org/10.1007/s00190-016-0916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00190-016-0916-7

Keywords

Navigation