Skip to main content

Advertisement

Log in

Biodistribution and Efficacy of Low Temperature-Sensitive Liposome Encapsulated Docetaxel Combined with Mild Hyperthermia in a Mouse Model of Prostate Cancer

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Low temperature sensitive liposome (LTSL) encapsulated docetaxel were combined with mild hyperthermia (40–42°C) to investigate in vivo biodistribution and efficacy against a castrate resistant prostate cancer.

Method

Female athymic nude mice with human prostate PC-3 M-luciferase cells grown subcutaneously into the right hind leg were randomized into six groups: saline (+/− heat), free docetaxel (+/− heat), and LTSL docetaxel (+/− heat). Treatment (15 mg docetaxel/kg) was administered via tail vein once tumors reached a size of 200-300 mm3. Mice tumor volumes and body weights were recorded for up to 60 days. Docetaxel concentrations of harvested tumor and organ/tissue homogenates were determined by LC-MS. Histological evaluation (Mean vessel density, Ki67 proliferation, Caspase-3 apoptosis) of saline, free Docetaxel and LTSL docetaxel (+/− heat n = 3–5) was performed to determine molecular mechanism responsible for tumor cell killing.

Result

LTSL/heat resulted in significantly higher tumor docetaxel concentrations (4.7-fold greater compared to free docetaxel). Adding heat to LTSL Docetaxel or free docetaxel treatment resulted in significantly greater survival and growth delay compared to other treatments (p < 0.05). Differences in body weight between all Docetaxel treatments were not reduced by >10% and were not statistically different from each other. Molecular markers such as caspase-3 were upregulated, and Ki67 expression was significantly decreased in the chemo-hyperthermia group. Vessel density was similar post treatment, but the heated group had reduced vessel area, suggesting thermal enhancement in efficacy by reduction in functional perfusion.

Conclusion

This technique of hyperthermia sensitization and enhanced docetaxel delivery has potential for clinical translation for prostate cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DLS:

Dynamic light scattering

DPPC:

Dipalmitoylphosphatidylcholine

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000]

DSPG:

1,2-dioctadecanoyl-sn-glycero-3-phospho-(1′-rac-glycerol)

DTX:

Docetaxel

H&E:

Hematoxylin & Eosin

IVIS:

In vivo imaging system

LC/MS:

Liquid chromatography–mass spectrometry

LTSL:

Low temperature sensitive liposomes

MSPC:

1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine

PBS:

Phosphate buffered Saline

References

  1. Jemal A. Global cancer statistics (vol 61, pg 69, 2011). CA Cancer J Clin. 2011;61:134.

    Article  Google Scholar 

  2. Rozet F, Hennequin C, Fromont G, Mongiat-Artus P, Bastide C, Beuzeboc P, et al. High-risk prostate cancer. Review. Prog Urol. 2011;21:901–8.

    Article  CAS  PubMed  Google Scholar 

  3. Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, Chane JD, et al. The University of California, San Francisco cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J Urol. 2005;173:1938–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst. 1998;90:766–71.

    Article  CAS  Google Scholar 

  5. Antonarakisand ES, Eisenberger MA. Phase III trials with docetaxel-based combinations for metastatic castration-resistant prostate cancer: time to learn from past experiences. J Clin Oncol. 2013;31:1709–12.

    Article  Google Scholar 

  6. Mohler JL, Armstrong AJ, Bahnson RR, Boston B, Busby JE, D’Amico AV, et al. Prostate cancer, Version 3.2012: featured updates to the NCCN guidelines. J Natl Compr Canc Netw. 2012;10:1081–7.

    CAS  PubMed  Google Scholar 

  7. Lee DJ, Cha EK, Dubin JM, Beltran H, Chromecki TF, Fajkovic H, Scherr DS, Tagawa ST, Shariat SF. Novel therapeutics for the management of castration-resistant prostate cancer (CRPC). BJU Int. 2011.

  8. Mohamed F, Stuart OA, Glehen O, Urano M, Sugarbaker PH. Docetaxel and hyperthermia: factors that modify thermal enhancement. J Surg Oncol. 2004;88:14–20.

    Article  CAS  PubMed  Google Scholar 

  9. Tashjian JA, Dewhirst MW, Needham D, Viglianti BL. Rationale for and measurement of liposomal drug delivery with hyperthermia using non-invasive imaging techniques. Int J Hyperth. 2008;24:79–90.

    Article  CAS  Google Scholar 

  10. Needham D, Anyarambhatla G, Kong G, Dewhirst MW. A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 2000;60:1197–201.

    CAS  PubMed  Google Scholar 

  11. Changand HI, Yeh MK. Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int J Nanomedicine. 2012;7:49–60.

    Google Scholar 

  12. Ranjan A, Jacobs GC, Woods DL, Negussie AH, Partanen A, Yarmolenko PS, et al. Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model. J Control Release. 2012;158:487–94.

    Article  CAS  PubMed  Google Scholar 

  13. Negussie AH, Yarmolenko PS, Partanen A, Ranjan A, Jacobs G, Woods D, et al. Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperth. 2011;27:140–55.

    Article  CAS  Google Scholar 

  14. de Smet M, Langereis S, van den Bosch S, Grull H. Temperature-sensitive liposomes for doxorubicin delivery under MRI guidance. J Control Release. 2010;143:120–7.

    Article  PubMed  Google Scholar 

  15. Kong G, Anyarambhatla G, Petros WP, Braun RD, Colvin OM, Needham D, et al. Efficacy of liposomes and hyperthermia in a human tumor xenograft model: importance of triggered drug release. Cancer Res. 2000;60:6950–7.

    CAS  PubMed  Google Scholar 

  16. Yeo SY, Verel I, Custers EA, Berben M, Sio CF, Langereis S, et al. Hyperthermia-mediated docetaxel derivative release from temperature sensitive liposomes. Drug Deliv Lett. 2015;5:132–9.

    Article  CAS  Google Scholar 

  17. Zhang H, Gong W, Wang ZY, Yuan SJ, Xie XY, Yang YF, et al. Preparation, characterization, and pharmacodynamics of thermosensitive liposomes containing docetaxel. J Pharm Sci. 2014;103:2177–83.

    Article  CAS  PubMed  Google Scholar 

  18. El Hilali N, Rubio N, Blanco J. Noninvasive in vivo whole body luminescent analysis of luciferase labelled orthotopic prostate tumours. Eur J Cancer. 2004;40:2851–8.

    Article  PubMed  Google Scholar 

  19. Tagami T, Ernsting MJ, Li SD. Efficient tumor regression by a single and low dose treatment with a novel and enhanced formulation of thermosensitive liposomal doxorubicin. J Control Release: Off J Control Release Soc. 152:303–309.

  20. Orikasa S, Saito M, Kawashima T. Effect of scopolamine on the electrical resistance of the paw pads of mice. Pharmacol Biochem Behav. 1992;41:855–7.

    Article  CAS  PubMed  Google Scholar 

  21. Tang Y, Parmakhtiar B, Simoneau AR, Xie J, Fruehauf J, Lilly M, et al. Lycopene enhances docetaxel’s effect in castration-resistant prostate cancer associated with insulin-like growth factor I receptor levels. Neoplasia. 2011;13:108–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ischiaand J, Gleave M. Radical prostatectomy in high-risk prostate cancer. Int J Urol. 2013;20:290–300.

    Article  Google Scholar 

  23. Wirthand MP, Hakenberg OW. Curative treatment of prostate cancer. Urol Int. 1999;63:72–9.

    Article  Google Scholar 

  24. Hinev AL, Anakievski A, Hadjiev VS. Radical prostatectomy as a first-line treatment in patients with initial PSA >20 ng/mL. Int J Surg Oncol. 2012;2012:10.

    Google Scholar 

  25. Rukstalis DB. Treatment options after failure of radiation therapy-a review. Rev Urol. 2002;4:6.

    Google Scholar 

  26. Bracarda S, Logothetis C, Sternberg CN, Oudard S. Current and emerging treatment modalities for metastatic castration-resistant prostate cancer. BJU Int. 2011;107:13–20.

    Article  CAS  PubMed  Google Scholar 

  27. Rove KO, Debruyne FM, Djavan B, Gomella LG, Koul HK, Lucia MS, et al. Role of testosterone in managing advanced prostate cancer. Urology. 2012;80:754–62.

    Article  PubMed  Google Scholar 

  28. Huang T, Gong WH, Li XC, Zou CP, Jiang GJ, Li XH, et al. Synergistic increase in the sensitivity of osteosarcoma cells to thermochemotherapy with combination of paclitaxel and etoposide. Mol Med Rep. 2012;6:1013–7.

    CAS  PubMed  Google Scholar 

  29. Hahn GM. Potential for therapy of drugs and hyperthermia. Cancer Res. 1979;39:2264–8.

    CAS  PubMed  Google Scholar 

  30. Dahland O, Mella O. Enhanced effect of combined hyperthermia and chemotherapy (bleomycin, BCNU) in a neurogenic rat-tumor (BT4A) in vivo. Anticancer Res. 1982;2:359–64.

    Google Scholar 

  31. Dayanc BE, Beachy SH, Ostberg JR, Repasky EA. Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses. Int J Hyperth. 2008;24:41–56.

    Article  CAS  Google Scholar 

  32. Oyama T, Kawamura M, Abiko T, Izumi Y, Watanabe M, Kumazawa E, et al. Hyperthermia-enhanced tumor accumulation and antitumor efficacy of a doxorubicin-conjugate with a novel macromolecular carrier system in mice with non-small cell lung cancer. Oncol Rep. 2007;17:653–9.

    CAS  PubMed  Google Scholar 

  33. de Smet M, Heijman E, Langereis S, Hijnen NM, Grull H. Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study. J Control Release: Off J Control Release Soc. 2010;150:102–10.

    Article  Google Scholar 

  34. Schluter C, Duchrow M, Wohlenberg C, Becker MHG, Key G, Flad HD, et al. The cell proliferation-associated antigen of antibody Ki-67 - a very large, ubiquitous nuclear-protein with numerous repeated elements, representing a new kind of cell cycle-maintaining proteins. J Cell Biol. 1993;123:513–22.

    Article  CAS  PubMed  Google Scholar 

  35. Staruch R, Chopra R, Hynynen K. Localised drug release using MRI-controlled focused ultrasound hyperthermia. Int J Hyperth. 2010;27:156–71.

    Article  Google Scholar 

  36. Hossann M, Wang T, Wiggenhorn M, Schmidt R, Zengerle A, Winter G, et al. Size of thermosensitive liposomes influences content release. J Control Release: Off J Control Release Soc. 2010;147:436–43.

    Article  CAS  Google Scholar 

  37. Hossann M, Syunyaeva Z, Schmidt R, Zengerle A, Eibl H, Issels RD, et al. Proteins and cholesterol lipid vesicles are mediators of drug release from thermosensitive liposomes. J Control Release: Off J Control Release Soc. 2012;162:400–6.

    Article  CAS  Google Scholar 

  38. Sen A, Capitano ML, Spernyak JA, Schueckler JT, Thomas S, Singh AK, et al. Mild elevation of body temperature reduces tumor interstitial fluid pressure and hypoxia and enhances efficacy of radiotherapy in murine tumor models. Cancer Res. 2011;71:3872–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vaupeland P, Horsman MR. Tumour perfusion and associated physiology: characterization and significance for hyperthermia. Int J Hyperth. 2010;26:209–10.

    Article  Google Scholar 

  40. Chung LWK, Baseman A, Assikis V, Zhau HE. Molecular insights into prostate cancer progression: the missing link of tumor microenvironment. J Urol. 2005;173:10–20.

    Article  PubMed  Google Scholar 

  41. Loberg RD, Logothetis CJ, Keller ET, Pienta KJ. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J Clin Oncol. 2005;23:8232–41.

    Article  CAS  PubMed  Google Scholar 

  42. Farley SJ. Prostate cancer: synergistic sequential enhancement of docetaxel. Nat Rev Urol. 2011;8:59.

    Article  PubMed  Google Scholar 

  43. Mathew P, Thall PF, Jones D, Perez C, Bucana C, Troncoso P, et al. Platelet-derived growth factor receptor inhibitor imatinib mesylate and docetaxel: a modular phase I trial in androgen-independent prostate cancer. J Clin Oncol. 2004;22:3323–9.

    Article  CAS  PubMed  Google Scholar 

  44. Issels RD. Hyperthermia adds to chemotherapy. Eur J Cancer. 2008;44:2546–54.

    Article  CAS  PubMed  Google Scholar 

  45. Mohamed F, Marchettini P, Stuart OA, Urano M, Sugarbaker PH. Thermal enhancement of new chemotherapeutic agents at moderate hyperthermia. Ann Surg Oncol. 2003;10:463–8.

    Article  PubMed  Google Scholar 

  46. Citron BA, Arnold PM, Sebastian C, Qin F, Malladi S, Ameenuddin S, et al. Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp Neurol. 2000;166:213–26.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This research was supported by the Center for Interventional Oncology in the Intramural Research Program of the National Institutes of Health (NIH). NIH and Celsion Corp. have a Cooperative Research and Development Agreement. We are grateful for NCI pathology/histotechnology laboratory for their advice and useful discussions. We also thank Apredica inc. for their support and technical expertise in LC/MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford J. Wood.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 297 kb)

ESM 2

(XLS 25 kb)

ESM 3

(XLS 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, A., Benjamin, C.J., Negussie, A.H. et al. Biodistribution and Efficacy of Low Temperature-Sensitive Liposome Encapsulated Docetaxel Combined with Mild Hyperthermia in a Mouse Model of Prostate Cancer. Pharm Res 33, 2459–2469 (2016). https://doi.org/10.1007/s11095-016-1971-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-016-1971-8

KEY WORDS

Navigation