Skip to main content
Log in

Correlation between structural, optical and magnetic properties of Mn-doped ZnO

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have investigated the structural, optical and magnetic properties of Mn-doped ZnO nanoparticles with different doping concentrations (0, 2, 4 and 6 %) synthesised by sol–gel method. Lattice parameters, cell volume, atomic packing fraction, crystallite size and confirmation of hexagonal wurtzite crystal structure have been studied by X-ray diffraction data. Surface morphology as well as grain size and the presence of all the elements have been confirmed by scanning electron microscope and energy-dispersive X-ray spectroscopy, respectively. The decrease in lattice parameters ratio (c/a) with Mn concentration indicates lattice distortion with the incorporation of Mn2+ ions at Zn2+ site of ZnO structure, which has been confirmed by Raman analysis. It has been observed that microstructure defects induced some extra Raman vibration modes. Ultraviolet–visible analysis shows that absorption edge lies in visible region, and encroachment in visible region increases, while energy band gap decreases with the increase in Mn concentrations. We have recorded FTIR spectra at room temperature to study the vibrational bands present in Zn1−x Mn x O samples. The magnetic study of samples indicates ferromagnetic behaviour at room temperature. The magnetic properties increases with doping concentration due to small lattice distortion and defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B.N. Dolea, V.D. Mote, V.R. Huse, Y. Purushotham, M.K. Lande, K.M. Jadhav, S.S. Shah, Curr. Appl. Phys. 11, 762–766 (2011)

    Article  ADS  Google Scholar 

  2. M. Bououdina, K. Omri, M. El Hilo, A. ElAmiri, O.M. Lemine, A. Alyamani, E.K. Hlil, H. Lassri, L. El Mir, Phys. E 56, 107–112 (2014)

    Article  Google Scholar 

  3. G.T. Rao, R.J. Stella, B. Babu, K. Ravindranadh, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, Mater. Sci. Eng. B 201, 72–78 (2015)

    Article  Google Scholar 

  4. K. Rekha, M. Nirmala, M.G. Nair, A. Anukaliani, Phys. B 405, 3180–3185 (2010)

    Article  ADS  Google Scholar 

  5. L.B. Duan, X.R. Zhao, J.M. Liu, T. Wang, G.H. Rao, Appl. Phys. A 99, 679–683 (2010)

    Article  ADS  Google Scholar 

  6. R. Rajalakshmi, S. Angappane, Mater. Sci. Eng. B 178, 1068–1075 (2013)

    Article  Google Scholar 

  7. N.R. Panda, D. Sahu, B.S. Acharya, P. Nayak, Curr. Appl. Phys. 15, 389–396 (2015)

    Article  ADS  Google Scholar 

  8. S. Kahraman, F. Bayansal, H.M. Çakmak, H.A. Çetinkara, H.S. Güder, Appl. Phys. A 109, 87–93 (2012)

    Article  ADS  Google Scholar 

  9. T. Pandiyarajan, R.V. Mangalaraja, B. Karthikeyan, P. Sathishkumar, D. Mansilla, D. Contreras, J. Ruiz, Appl. Phys. A 119, 487–495 (2015)

    Article  ADS  Google Scholar 

  10. M. Peres, A. Cruz, S. Pereira, M.R. Correia, M.J. Soares, A. Neves, M.C. Carmo, T. Monteiro, A.S. Pereira, M.A. Martins, T. Trindade, E. Alves, S.S. Nobre, R.A.S. Ferreira, Appl. Phys. A 88, 129–133 (2007)

    Article  ADS  Google Scholar 

  11. Y.H. Yang, H.G. Zhu, G.W. Yang, Appl. Phys. A 103, 73–79 (2011)

    Article  ADS  Google Scholar 

  12. P.P. Pal, J. Manam, Appl. Phys. A 116, 213–223 (2014)

    Article  ADS  Google Scholar 

  13. S.K. Mandal, A.K. Das, T.K. Nath, Appl. Phys. Lett. 89, 144105 (2006)

    Article  ADS  Google Scholar 

  14. S. Kumar, S. Chatterjee, K.K. Chattopadhyayv, A.K. Ghosh, J. Phys. Chem. C 116, 16700–16708 (2012)

    Article  Google Scholar 

  15. M. Lia, J. Xu, X. Chen, X. Zhang, Y. Wu, L. Ping, X. Niu, C. Luo, L. Li, Superlattices Microstruct. 52, 824–833 (2012)

    Article  ADS  Google Scholar 

  16. S.S. Abdullahi, Y.K. Lu, S. Guner, S. Kazan, B. Kocaman, C.E. Ndikilar, Superlattices and Microstructures 83, 342–352 (2015)

    Article  ADS  Google Scholar 

  17. N. Tsogbadrakh, E. Ae Choi, W. Jin Lee, K.J. Chang, Curr. Appl. Phys. 11, 236–240 (2011)

    Article  ADS  Google Scholar 

  18. R.Y. Sato-Berru, A. Vazquez-Olmos, A.L. Fernandez-Osorio, S. Sotres-Martınez, J. Raman Spectrosc. 38, 1073–1076 (2007)

    Article  ADS  Google Scholar 

  19. S.A. Chambers, D.A. Schwartz, W.K. Liu, K.R. KIttilstved, D.R. Gamelan, Appl. Phys. A 88, 1–5 (2007)

    Article  ADS  Google Scholar 

  20. N. Volbers, H. Zhou, C. Knies, D. Pfisterer, J. Sann, D.M. Hofmann, B.K. Meyer, Appl. Phys. A 88, 153–155 (2007)

    Article  ADS  Google Scholar 

  21. E.R. Shaaban, M. El-Hagary, E.S. Moustafa, H. ShokryHassan, Y.A.M. Ismail, M. Emam-Ismail, A.S. Ali, Appl. Phys. A 122, 20 (2016)

    Article  ADS  Google Scholar 

  22. D.L. Hou, X.J. Ye, H.J. Meng, H.J. Zhou, X.L. Li, C.M. Zhen, G. De Tang, Mater. Sci. Eng. B 138, 184–188 (2007)

    Article  Google Scholar 

  23. Y. Jiang, W. Wang, C. Jing, C. Cao, J. Chu, Mater. Sci. Eng. B 176, 1301–1306 (2011)

    Article  Google Scholar 

  24. C.J. Cong, L. Liao, Q.Y. Li, J.C. Li, K.L. Zhang, Nanotechnology 17, 1520–1526 (2006)

    Article  ADS  Google Scholar 

  25. T. Meron, G. Markovich, J. Phys. Chem. B 109, 20232–20236 (2005)

    Article  Google Scholar 

  26. E. Schlenker, A. Bakin, H. Schmid, W. Mader, H. Bremers, A. Hangleiter, H.-H. Wehmann, M. Al-Suleiman, J. Ludke, M. Albrecht, A. Waag, Appl. Phys. A 91, 375–378 (2008)

    Article  ADS  Google Scholar 

  27. Y. Liu, Y. Wang, S. Zhou, S. Lou, L. Yuan, T. Gao, X. Wu, X. Shi, K. Wang, Appl. Mater. Interfaces 4, 4913–4920 (2012)

    Article  Google Scholar 

  28. L.C.H. Mainet, L.P. Cabrera, E. Rodriguez, A.F. Cruz, G. Santana, J.L. Menchaca, E.P. Tijerina, Nanoscale Res. Lett. 7, 80 (2012)

    Article  ADS  Google Scholar 

  29. A. CheMofo, A. El-Shaer, A. Bakin, H.H. Wehmann, H. Ahler, U. Siegne, S. SieVers, M. Albrecht, W. Schoch, N. Izyumskaya, V. Avrutin, J. Stoemenos, A. Waag, Superlattices Microstruct. 39, 381–386 (2006)

    Article  ADS  Google Scholar 

  30. K.-W. Nielsen, J.B. Philipp, M. Opel, A. Erb, J. Simon, L. Alff, R. Gross, Superlattices Microstruct. 37, 327–332 (2005)

    Article  ADS  Google Scholar 

  31. A. Ramachandran, P. Kalaivanan, K. Gnanasekar, Superlattices Microstruct. 52, 1020–1025 (2012)

    Article  ADS  Google Scholar 

  32. S. Yılmaz, E. McGlynn, E. Bacaksız, J. Bogan, Appl. Phys. A 115, 313–321 (2014)

    Article  ADS  Google Scholar 

  33. T. Dietl, H. Ohno, F. Matsukura, Science 287, 1019–1022 (2000)

    Article  ADS  Google Scholar 

  34. S.J. Han, T.H. Jang, Y.B. Kim, B.G. Park, J.H. Park, Y.H. Jeonga, Appl. Phys. Lett. 83, 920–922 (2003)

  35. J. Luo, J.K. Liang, Q.L. Liu, F.S. Liu, Y. Zhang, B.J. Sun, G.H. Rao, J. Appl. Phys. 97, 086106 (2005)

  36. V.D. Mote, J.S. Dargad, B.N. Dole, Nanosci. Nanoeng. 1, 116–122 (2013)

    Google Scholar 

  37. A. Abdel-Galil, M.R. Balboul, A. Sharaf, Phys. B 477, 20–28 (2015)

    Article  ADS  Google Scholar 

  38. K. Omri, J. El Ghoul, O.M. Lemine, M. Bououdina, B. Zhang, L. El Mir, Superlattices Microstruct. 60, 139–147 (2013)

    Article  ADS  Google Scholar 

  39. R. Lotfi Orimi, K. Khosravi, J. Mod. Opt. 617, 576–581 (2014)

    Article  ADS  Google Scholar 

  40. R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194–200 (2008)

    Article  Google Scholar 

  41. B. Yang, A. Kumar, N. Upia, P. Feng, R.S. Katiyar, J. Raman Spectrosc. 41, 88–92 (2010)

    Article  ADS  Google Scholar 

  42. S. Venkataprasad Bhat, F.L. Deepak, Solid State Commun. 135, 345–347 (2005)

    Article  Google Scholar 

  43. R. Viswanatha, S. Sapra, S.S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303–6310 (2004)

    Article  Google Scholar 

  44. R.B. Bylsma, W.M. Becker, J. Kossut, U. Debska, Phys. Rev. B 33, 8207 (1986)

    Article  ADS  Google Scholar 

  45. H.L. Shi, Y. Duan, Eur. Phys. J. 66, 439–444 (2008)

    Article  ADS  Google Scholar 

  46. Y. Zhang, E. Xie, Appl. Phys. A 99, 955–960 (2010)

    Article  ADS  Google Scholar 

  47. G. Vijayaprasath, R. Murugan, S. Asaithambi, G. AnandhaBabu, P. Sakthivel, T. Mahalingam, Y. Hayakawa, G. Ravi, Appl. Phys. A 122, 122 (2016)

    Article  ADS  Google Scholar 

  48. S. Kumar, S. Basu, B. Rana, A. Barman, S. Chatterjee, S.N. Jha, D. Bhattacharyya, N.K. Sahoo, A.K. Ghosh, J. Mater. Chem. C 2, 481 (2014)

    Article  Google Scholar 

  49. J.B. Wang, G.J. Huang, X.L. Zhong, L.Z. Sun, Y.C. Zhou, E.H. Liu, Appl. Phys. Lett. 88, 252502 (2006)

    Article  ADS  Google Scholar 

  50. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Nat. Mater. 4, 173 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (P.K.) acknowledges the financial support from the Ministry of Human Resources and Development (MHRD) in the form of teaching assistantship. The authors also acknowledge Prof. S. B. Rai and Prof. R. K Singh Department of Physics, Banaras Hindu University, Varanasi, India, for providing the UV and Raman analysis facilities, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen C. Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Singh, B.K., Pal, B.N. et al. Correlation between structural, optical and magnetic properties of Mn-doped ZnO. Appl. Phys. A 122, 740 (2016). https://doi.org/10.1007/s00339-016-0265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0265-7

Keywords

Navigation