Skip to main content
Log in

Synthesis of Al–Al2O3 and Al–Aln Nanoparticle Composites Via Electric Explosion of Wires

  • Published:
Russian Physics Journal Aims and scope

Composite Al–Al2O3 and Al–AlN nanoparticles were synthesized via electric explosion of aluminum wires in an argon–oxygen gas mixture and in nitrogen. The parameters of electric explosion and gas medium affect the size and relative content of nitride and aluminum oxide in the nanoparticles. Processes of forming chemical compounds during aluminum oxidation at the contact surface between explosive products and gas and of nitrogen diffusions into the nanoparticles of the condensed phase are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. S. Sarkisov, P. V. Sasorov, K. W. Struve, and D. H. McDaniel, J. Appl. Phys., 96, No. 3, 1674–1686 (2004).

    Article  ADS  Google Scholar 

  2. R. B. Baksht, S. I. Tkachenko, V. M. Romanova, et al., Tech. Phys., 58, No. 8, 1129–1137 (2013).

    Article  Google Scholar 

  3. Yu. A. Kotov, Ross. Nanotekh., 4, Nos. 1–2, 40–49 (2009).

    Google Scholar 

  4. A. N. Fomenko, I. N. Tikhonova, O. V. Bakina, et al., AIP Conf. Proc., 1623, 159–162 (2014).

    Article  Google Scholar 

  5. A. Kocjan, A. Dakskobler, K. Krnel, and T. Kosmac, J. Eur. Ceram. Soc., 31, 815–823 (2011).

    Article  Google Scholar 

  6. A. A. Gromov, U. Förter-Barth, and U. Teipel, Powder Technol., 164, 111–115 (2006).

    Article  Google Scholar 

  7. A. S. Lozhkomoev, E. A. Glazkova, S. O. Kazantsev, et al., Nanotechnol. in Russia, 10, Nos. 11–12, 858–864 (2015).

    Google Scholar 

  8. A. P. Il’in, O. B. Nazarenko, and V. Ya. Ushakov, Russ. Phys. J., 39, No. 6, 510-513 (1996).

  9. M. I. Lerner, N. V. Svarovskaya, S. G. Psakh’e, and O. V. Bakina, Ross. Nanotekhnol., 4, Nos. 9–10, 6–18 (2009).

    Google Scholar 

  10. Yu. A. Kotov, J. Nanopart. Res., 5, 539–550 (2003).

    Article  Google Scholar 

  11. A. P. Il’in and L. O. Root, Fund. Issled., No. 6, 1377–1381 (2013).

  12. S. I. Tkachenko, A. R. Mingaleev, V. M. Romanova, et al., Plasma Phys. Rep., 35, 734–752 (2009).

    Article  ADS  Google Scholar 

  13. V. S. Sedoi, Zh. Tekh. Fiz., 46, No. 8, 1707–1710 (1976).

    Google Scholar 

  14. V. E. Fortov and A. A. Leont’ev, Teplofiz. Vysok. Temp., No. 4, 711 (1976).

  15. N. V. Grevtsev, V. D. Zolotukhin, Yu. M. Kashurnikov, et al., Teplofiz. Vysok. Temp., 15, No. 2, 362–369 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Lerner.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 91–98, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lerner, M.I., Lozhkomoev, A.S., Pervikov, A.V. et al. Synthesis of Al–Al2O3 and Al–Aln Nanoparticle Composites Via Electric Explosion of Wires. Russ Phys J 59, 422–429 (2016). https://doi.org/10.1007/s11182-016-0789-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0789-5

Keywords

Navigation