Skip to main content

Advertisement

Log in

Carbon dioxide capture strategies from flue gas using microalgae: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen RA (2005) Algal culturing techniques. Elsevier/Academic Press pp 1-13.

  • Anjos M, Fernandes BD, Vicente AA, Teixeira JA, Dragone G (2013) Chlamydomonas reinhardii optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol 139:149–154

    Article  CAS  Google Scholar 

  • Ara´ujo SC, Garcia VMT (2005) Growth biochemical composition of the diatom Chaetoceros cf. Wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 46:405–412

    Article  Google Scholar 

  • Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. technological use of CO2. Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  • Banerjee C, Gupta P, Mishra S, Sen G, Shukla P, Bandopadhyay R (2012) Study of polyacrylamide grafted starch based algal flocculation towards applications in algal biomass harvesting. Int J Biol Macrol 51:456–461

    Article  CAS  Google Scholar 

  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohyd Polym 92:675–681

    Article  CAS  Google Scholar 

  • Berberoglu H, Gomez PS, Pilon L (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production. J Quant Spectrosc Ra 110:1879–1893

    Article  CAS  Google Scholar 

  • Bermudez SPC, Perez JSG, Rittmann BE, Saldivar RP (2014) Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J Clean Prod. doi:10.1016/j.jclepro.2014.03.034

    Google Scholar 

  • Blaker LA, Urban NR, Brezonik PL, Sherman LA (1989) Sulfur cycling in a seepage lake. In Biogenic sulfur in the environment. In: Saltzman E, Cooper W (ed) Washington DC pp. 79-100.

  • Brilman W, Alba LG, Veneman R (2013) Capturing atmospheric CO2 using supported amine sorbents for microalgae cultivation. Biomass Bioenerg 53:39–47

    Article  CAS  Google Scholar 

  • Chang EH, Yang SS (2003) Some characteristics of microalgae isolated in Taiwan for biofixation of carbon dioxide. Bot Bull Acad Sin 44:43–52

    CAS  Google Scholar 

  • Chen CY, Yeh KL, Su HM, Lo YC, Chen WM, Chang JS (2010) Strategies to enhance cell growth and achieve high-level oil production of a Chlorella vulgaris isolate. Biotechnol Prog 26:679–686

    Article  CAS  Google Scholar 

  • Cheng LH, Zhang L, Chen HL, Gao CJ (2006) Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep Purif Technol 50(3):324–329

    Article  CAS  Google Scholar 

  • Cheng J, Huang Y, Feng J, Sun J, Zhou J, Cen K (2013) Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2. Bioresour Technol 136:496–501

    Article  CAS  Google Scholar 

  • Chi Z, O’Fallon JV, Chen S (2011) Bicarbonate produced from carbon capture for algae culture. Trends Biotechnol 29(11):537–541

    Article  CAS  Google Scholar 

  • Chi Z, Xie Y, Elloy F, Zheng Y, Hu Y, Chen S (2013) Bicarbonate-based integrated carbon capture and algae production system with alkali halophilic cyanobacterium. Bioresour Technol 133:513–521

    Article  CAS  Google Scholar 

  • Chi Z, Elloy F, Xie Y, Hu Y, Chen S (2014) Selection of microalgae and cyanobacteria strains for bicarbonate-based integrated carbon capture and algae production system. Appl Biochem Biotechnol 172:447–457

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS (2011) Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. Cultures. Bioresour Technol 102:9135–9142

    Article  CAS  Google Scholar 

  • Choi W, Kim G, Lee K (2012) Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresour Technol 120:295–299

    Article  CAS  Google Scholar 

  • DOE and EPA (2000) Carbon dioxide emissions from the generation of electric power in the United States., www.airimpacts.org/documents/local/co2emiss00.pdf

    Google Scholar 

  • Drummond ML, Cundari TR, Wilson AK (2012) Protein-based carbon capture: progress and potential. Greenhouse Gases Sci Technol 2(4):223–238

    Article  CAS  Google Scholar 

  • Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30:1525–1536

    Article  CAS  Google Scholar 

  • Fan LH, Zhang YT, Zhang L, Chen HL (2008) Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris. J Membr Sci 325:336–345

    Article  CAS  Google Scholar 

  • Fernandes BD, Mota A, Teixeira JA, Vicente AA (2015) Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends, Biotechnol Adv doi:10.1016/j.biotechadv.2015.03.004.

  • Fernández FGA, González-López CV, Fernández Sevilla JMF, Grima EM (2012) Conversion of CO2 into biomass by microalgae: how realistic a contribution may it be to significant CO2 removal? Appl Microbiol Biotechnol 96:577–586

    Article  Google Scholar 

  • Forsyth C, Thomas WS, Yip TWS, Patwardhan SV (2013) CO2 sequestration by enzyme immobilized onto bioinspired silica. Chem Commun 49:3191–3193

    Article  CAS  Google Scholar 

  • Fostas B, Gangstad A, Nenseter B, Pedersen S, Sjovoll M, Sorensen AL (2011) Effects of NOx in the flue gas degradation of MEA. Energy Procedia 4:1566–1573

    Article  Google Scholar 

  • Gebreslassie BH, Waymire R, You F (2013) Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. Am Inst Chem Eng 59(5):1599–1621

    Article  CAS  Google Scholar 

  • Grima EM, Belarbi EH, Fernandez FGA, Medina RA, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Grobbelaar JU (2004) Algal nutrition. In Handbook of microalgal culture: biotechnology and applied phycology. Richmond, A. Ed. Blackwell pp. 97–115.

  • Gudin C, Thepenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Processes 6:73–110

    CAS  Google Scholar 

  • Hende SVD, Vervaeren H, Boon N (2012) Flue gas compounds and microalgae: (bio) chemical interactions leading to biotechnological opportunities. Biotech Adv 30:1405–1424

    Article  Google Scholar 

  • Herzog HJ (2001) What future for carbon capture and sequestration? Environ Sci Tech 35:148 A–153 A

    Article  CAS  Google Scholar 

  • Ho S, Chen C, Lee D, Chang J (2011) Perspectives on microalgal CO2-emission mitigation systems—a review. Biotech Adv 29:189–198

    Article  CAS  Google Scholar 

  • Hunt AJ, Sin EHK, Marriott R, Clark JH (2010) Generation, capture, and utilization of industrial carbon dioxide. ChemSusChem 3:306–322. doi:10.1002/cssc.200900169

    Article  CAS  Google Scholar 

  • Idem R, Wilson M, Tontiwachwuthikul P, Chakma A, Veawab A, Aroonwilas A, Gelowitz D (2006) Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the university of regina CO2 capture technology development plant and the boundary dam CO2 capture demonstration plant. Ind Eng Chem Res 45(8):2414–2420

    Article  CAS  Google Scholar 

  • Indian Chamber of Commerce, (2012) The Indian coal sector: Challenges and future outlook. PricewaterhouseCoopers Private Limited, www.pwc.in/assets/pdfs/industries/power-mining/icc-coal-report.pdf.

  • Janssen M, Janssen M, Winter MD, Tramper J, Mur LR, Snel J, Wijffels RH (2000) Efficiency of light utilization of Chlamydomonas reinhardtii under medium duration light:dark cycles. J Biotechnol 78:123–137

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    Article  CAS  Google Scholar 

  • Jinjikhashvily G, Meir R, Amotz AB, Weiss H (2009) Application of nano-membranes in CO2 bioconversion. Israel Electric Co Ltd, Israel, www.seambiotic.com

    Google Scholar 

  • Kadam KL (1997) Plant flue gas as a source of CO2 for microalgae cultivation. Economic impact of different process options. Energy Conversion Manag 38:S505–S510

    Article  CAS  Google Scholar 

  • Kao CY, Chiu SY, Huang TT, Dai L, Hsu LK, Lin CS (2012) Ability of a mutant strain of the microalga Chlorella sp. to capture carbon dioxide for biogas upgrading. Appl Energ 93:176–183

    Article  CAS  Google Scholar 

  • Kao C-Y, Chen T-Y, Chang Y-B, Chiu T-W, Lin H-Y, Chen C-D, Chang J-S, Lin C-S (2014) Utilization of carbon dioxide in industrial flue gases for the cultivation of microalgae Chlorella sp. Bioresour Technol 166:485–493

    Article  CAS  Google Scholar 

  • Khan SA, Rashmi HMZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Rev 13:2361–2372

    Article  CAS  Google Scholar 

  • Kim HW, Marcus AK, Shin JH, Rittmann BE (2011) Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environ Sci Technol 45:5032–5038

    Article  CAS  Google Scholar 

  • Kim G, Choi W, Lee C, Lee K (2013) Enhancement of dissolved inorganic carbon and carbon fixation by green alga Scenedesmus sp. in the presence of alkanolamine CO2 absorbents. Biochem Eng J 78:18–23

    Article  CAS  Google Scholar 

  • Kopp G, Lean JL (2011) A new, lower value of total solar irradiance: evidence and climate significance. Geophys Res Lett 38

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, Langenhove HV (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28:371–380

    Article  CAS  Google Scholar 

  • Kumar K, Dasgupta CN, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953

    Article  CAS  Google Scholar 

  • Kumar K, Banerjee D, Das D (2014) Carbon dioxide sequestration from industrial flue gas by Chlorella Sorokiniana. Bioresour Technol 152:225–233

    Article  CAS  Google Scholar 

  • Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S (1995) Fixation and utilization of carbon dioxide by microalgal photosynthesis Energ. Convers Manage 36:689–692

    Article  CAS  Google Scholar 

  • Kvamsdal HM, Haugen G, Svendsen HF (2011) Flue-gas cooling in post combustion capture plants. Chem Eng Res Des 89:1544–1552

    Article  CAS  Google Scholar 

  • Lam MK, Lee KT, Mohamed AR (2012) Current status and challenges on microalgae-based carbon capture. Int J Greenh Gas Con 10:456–469

    Article  CAS  Google Scholar 

  • Lee JS, Lee JP (2003) Review of advances in biological CO2 mitigation technology. Biotechnol Bioprocess Eng 8:354–359

    Article  CAS  Google Scholar 

  • Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS, Kim SW (2002a) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 82:1–4

    Article  CAS  Google Scholar 

  • Lee JS, Kim DK, Lee JP, Park SC, Koh JH, Cho HS, Kim SW (2002b) Effects of SO2 and NO on growth of Chlorella sp. KR-1. Bioresour Technol 8:1–4

    Article  Google Scholar 

  • Leunga DYC, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    Article  Google Scholar 

  • Li FF, Yang ZH, Zeng R, Yang G, Chang X, Yan JB, Hou YL (2011) Microalgae capture of CO2 from actual flue gas discharged from a combustion chamber. Ind Eng Chem Res 50:6496–6502

    Article  CAS  Google Scholar 

  • Li H, Chen Q, Zhang X, Finney KN, Sharifi VN, Swithenbank J (2012) Evaluation of a biomass drying process using waste heat from process industries: a case study. Appl Therm Eng 35:71–80

    Article  Google Scholar 

  • Li S, Luo S, Guo R (2013) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    Article  CAS  Google Scholar 

  • Luis P, Bruggen BV (2013) The role of membranes in post combustion CO2 capture. Greenhouse Gas Sci Technol 3:318–337. doi:10.1002/ghg.1365

    Article  CAS  Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Energy Biosciences Institute, California, digitalcommons.calpoly.edu/cgi

    Google Scholar 

  • Mallapragada DS, Singh NR, Curteanu V, Agrawal R (2013) Sun-to-fuel assessment of routes for fixing CO2 as liquid fuel. Ind Eng Chem Res 52:5136–5144

    Article  CAS  Google Scholar 

  • Menetrez MY (2012) An overview of algal biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  CAS  Google Scholar 

  • Ministry of New and Renewable Energy (2011) Bioenergy. Issue 9 & 10 – July– September & October. Ministry of New and Renewable Energy, New Deihi, http://mnre.gov.in/file-manager/bioenergy-india/bio9-10-1211.pdf

    Google Scholar 

  • Monastersky R (2013) Global carbon dioxide levels near worrisome milestone. Nature 497:13–14

    Article  CAS  Google Scholar 

  • Morais MGD, Costa JAV (2007) Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular. J Biotechnol 129:439–445

    Article  Google Scholar 

  • Muraleedharan R, Mondal A, Mandal B (2012) Absorption of carbon dioxide into aqueous blends of 2-amino-2-hydroxymethyl-1,3-propanediol and monoethanolamine. Sep Purif Technol 94:92–96

    Article  CAS  Google Scholar 

  • Murphy CF, Allen DT (2011) Energy-water nexus for mass cultivation of algae. Environ Sci Technol 45:5861–5868

    Article  CAS  Google Scholar 

  • Noel JD, Koros WJ, McCool BA, Ronald R (2012) Chance membrane-mediated delivery of carbon dioxide for consumption by photoautotrophs: eliminating thermal regeneration in carbon capture. Ind Eng Chem Res 51:4673–4681

    Article  CAS  Google Scholar 

  • Olguin EJ, Galicia S, Mercado G, Perez T (2003) Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J Appl Phycol 15:249–257

    Article  CAS  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energ Policy 37:3428–3437

    Article  Google Scholar 

  • Pires JCM, Alvim-Ferraz MCM, Martins FG, Simões M (2013) Wastewater treatment to enhance the economic viability of microalgae culture. Environ Sci Pollut R 20(8):5096–5105

    Article  CAS  Google Scholar 

  • Posten C (2009) Design principles of photo-bioreactors for cultivation of microalgae. Eng Life Sci 9(3):165–177

    Article  CAS  Google Scholar 

  • Powell CE, Qiao GG (2006) Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J Membr Sci 279:1–49

    Article  CAS  Google Scholar 

  • Putt R, Singh M, Chinnasamy S, Das KC (2011) An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresour Technol 102:3240–3245

    Article  CAS  Google Scholar 

  • Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M (2011) Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): effect of agitation, salinity and CO2 addition. Food Bioprod Process 89:209–216

    Article  CAS  Google Scholar 

  • Ronda SR, Kethineni C, Parupudi LCP, Thunuguntla VBSC, Vemula S, Settaluri VS, Allu PR, Grande SK, Sharma S, Kandala CV (2014) A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere. Bioresour Technol 152:283–291

    Article  CAS  Google Scholar 

  • Savile CK, Lalonde JJ (2011) Biotechnology for the acceleration of carbon dioxide capture and sequestration. Curr Opin Biotechnol 22:818–823

    Article  CAS  Google Scholar 

  • Schipper K, Gijp SVD, Stel RVD, Goetheer W (2013) New methodologies for the integration of power plants with algae ponds. Energy Procedia 37:6687–6695

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program—biodiesel from algae. NREL/TP-580-24190. U.S. Department of Energy’s Office of Fuels Development, Washington DC

    Book  Google Scholar 

  • Shekhawat D, Luebke DR, Pennline HW (2003) A review of carbon dioxide selective membranes—a topical report. National Energy Technology Laboratory, United States Department of Energy.

  • Strazisar B, Anderson RR, White CM (2003) Degradation pathways for monoethanolamine in a CO2 capture facility. Energy Fuel 17(4):1034–1039

    Article  CAS  Google Scholar 

  • Su C, Ran X, Hu J, Shao C (2013) Photocatalytic process of simultaneous desulfurization and denitrification of flue gas by TiO2–polyacrylonitrile nanofibers. Environ Sci Technol 47:11562–11568. doi:10.1021/es4025595

    Article  CAS  Google Scholar 

  • Sun Z, Zhang D, Yan C, Cong W, Lu Y (2015) Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine. J Chem Technol Biotechnol 90:730–738

    Article  CAS  Google Scholar 

  • Tastan BE, Duygu E, Atakol O, Donmez G (2012) SO2 and NO2 tolerance of microalgae with the help of some growth stimulators. Energ Convers Manage 64:28–34

    Article  CAS  Google Scholar 

  • Tollefson J (2013) Scientists ask public to hunt for power plants. Nature. doi:10.1038/nature.2013,12969

    Google Scholar 

  • Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  Google Scholar 

  • US DOE (2010) National algal biofuels technology roadmap. U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Maryland

    Google Scholar 

  • USEPA (2011) Inventory of U.S. greenhouse gas emissions and sinks: 1990–2009. Environmental Protection Agency, Washington, DC, http://www.epa.gov/climatechange/Downloads/ghgemissions/US-GHG-Inventory-2011-Complete_Report.pdf

    Google Scholar 

  • Wall TF (2007) Combustion processes for carbon capture. Proceedings of the Combustion Institute 31. doi:10.1016/j.proci.2006.08.123

  • Watanabe Y (1993) A highly CO2 tolerant microalga. Japan patent. 304945.

  • WMO (2012) The state of greenhouse gases in the atmosphere based on global observation through 2011. Green house gas bulletin. www.wmo.int/pages/prog/arep/gaw/ghg/documents/GHG_Bulletin_No.8_en.pdf.

  • Yanagi M, Watanabe Y, Saiki A (1995) CO2 fixation by Chlorella HA- 1 and its utilization. Energ Convers Manage 36:713–716

    Article  CAS  Google Scholar 

  • Yang Y, Gao K (2003) Effects of CO2 concentrations on the freshwater microalgae, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J Appl Phycol 15:379–389

    Article  CAS  Google Scholar 

  • Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20:14–27

    Article  CAS  Google Scholar 

  • Yeh JT, Resnik KP, Rygle K, Pennline HW (2005) Semibatch absorption and regeneration studies for CO2 capture by aqueous ammonia. Fuel Process Technol 86(14-15):1533–1546

    Article  CAS  Google Scholar 

  • Yoshihara KI, Nagase H, Eguchi K, Hirata K, Miyamoto K (1996) Biological elimination of nitric oxide and carbon dioxide from flue gas by marine microalga NOA-13 cultivated in a long tubular photobioreactor. J Ferment Bioeng 82(4):351–354

    Article  CAS  Google Scholar 

  • Yun YS, Park JM, Yang JW (1996) Enhancement of CO2 tolerance of Chlorella vulgaris by gradual increase of CO2 concentration. Biotechnol Tech 10:713–716

    CAS  Google Scholar 

  • Zavarzin GA, Zhilina TN, Kevbrin VV (1999) The alkaliphilic microbial community and its functional diversity. Microbiology 68:503–521

    CAS  Google Scholar 

  • Zhang X (2015) IEA Clean Coal Centre—Microalgae removal of CO2 from flue gas. London. www.iea-coal.org

  • Zhang Y, Sunarso J, Liu S, Wang R (2013) Current status and development of membranes for CO2/CH4 separation: a review. Int J Greenh Gas Con 12:84–107

    Article  CAS  Google Scholar 

  • Zhang X, Chen H, Chen W, Qiao Y, He C, Wang Q (2014) Evaluation of an oil-producing green alga Chlorella sp. C2 for biological DeNOx of industrial flue gases. Environ Sci Technol 48:10497–10504

    Article  CAS  Google Scholar 

  • Zhou Y, Richard SJ (2005) Evaluating the costs of desalination and water transport Water. Resour Res 41(3) doi: 10.1029/2004WR003749.

  • Zhu B, Sun F, Yang M, Lu L, Yang G, Pan K (2014) Large-scale biodiesel production using flue gas from coal-fired power plants with Nannochloropsis microalgal biomass in open raceway ponds. Bioresour Technol 174:53–59. doi:10.1016/j.biortech.2014.09.116

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Department of Environment and Climate Change (DoECC), Govt. of Kerala, India, and Kerala State Council for Science Technology and Environment (KSCSTE), Govt. of Kerala, India, respectively, for research fellowship. The research work is partially supported by University Grants Commission (UGC), Govt. of India (F41/2012 (SR) dated 26 July2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniya M. Thomas.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, D.M., Mechery, J. & Paulose, S.V. Carbon dioxide capture strategies from flue gas using microalgae: a review. Environ Sci Pollut Res 23, 16926–16940 (2016). https://doi.org/10.1007/s11356-016-7158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7158-3

Keywords

Navigation