Skip to main content

Advertisement

Log in

On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Ephedrine is one of the main precursor compounds used in the illegal production of amphetamines and related drugs. Actually, conventional analytical methods such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and gas chromatography–mass spectrometry (GC–MS) are used for the detection of ephedrine; sadly, these methods require qualified personnel and are time-consuming and expensive. In order to overcome these problems, in recent years, different methods have been developed based on the surface plasmon resonance (SPR) and electrochemical method. In this work, we present a simple, rapid, and effective method to detect the presence of ephedrine in solution, based on competitive fluorescence resonance energy transfer (FRET) assay. The antibody anti-ephedrine and ephedrine derivative were produced and labeled respectively, with two different fluorescent probes (donor and acceptor). The change in FRET signal intensity between donor and acceptor ephedrine compounds gives the possibility of detecting ephedrine traces of at least 0.81 ± 0.04 ppm (LOD).

A new Time-resolved Fluorescence Resonance Energy Transfer (FRET) assay for ephedrine detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abourashed EA, El-Alfy AT, Khan IA, Walker L. Ephedra in perspective—a current review. Phytother Res. 2003;17:703–12.

    Article  CAS  Google Scholar 

  2. Rege B, Carter KM, Sarkar MA, Kellogg GE, Soine WH. Irreversible inhibition of CYP2D6 by (−)-chloroephedrine, a possible impurity in methamphetamine. Drug Metab Dispos. 2002;30:1337–43.

    Article  CAS  Google Scholar 

  3. Deventer K, Van Eenoo P, Baele G, Pozo OJ, Van Thuyne W, Delbeke FT. Interpretation of urinary concentrations of pseudoephedrine and its metabolite cathine in relation to doping control. Drug Test Anal. 2009;1:209–13.

    Article  CAS  Google Scholar 

  4. Fang H, Liu M, Zeng Z. Solid-phase microextraction coupled with capillary electrophoresis to determine ephedrine derivatives in water and urine using a sol-gel derived butyl methacrylate/silicone fiber. Talanta. 2006;5:979–86.

    Article  Google Scholar 

  5. Deng D, Deng H, Zhang L, Su YJ. Determination of ephedrine and pseudoephedrine by field-amplified sample injection capillary electrophoresis. Chromatogr Sci. 2014;52:357–62.

    Article  CAS  Google Scholar 

  6. Drake SJ, Morrison C, Smith F. Simultaneous chiral separation of methylamphetamine and common precursors using gas chromatography/mass spectrometry. Chirality. 2011;23:593–601.

    Article  CAS  Google Scholar 

  7. Hu Z, Zou Q, Tian J, Sun L, Zhang ZJ. Simultaneous determination of codeine, ephedrine, guaiphenesin and chlorpheniramine in beagle dog plasma using high performance liquid chromatography coupled with tandem mass spectrometric detection: application to a bioequivalence study. Chromatogr B Anal Technol Biomed Life Sci. 2011;15:3937–42.

    Article  Google Scholar 

  8. Niemann RA, Gay ML. Determination of ephedrine alkaloids and synephrine in dietary supplements by column-switching cation exchange high-performance liquid chromatography with scanning-wavelength ultraviolet and fluorescence detection. J Agric Food Chem. 2003;51:5630–8.

    Article  CAS  Google Scholar 

  9. Matapatara W, Thongnopnua P, Lipipun V. Simultaneous detection of amphetamine, methamphetamine and ephedrine by heterology competitive enzyme-linked immunosorbent assay. Asian Biomed. 2007;1:167–79.

    CAS  Google Scholar 

  10. Mazzotta E, Picca RA, Malitesta C, Piletsky SA, Piletska EV. Development of a sensor prepared by entrapment of MIP particles in electrosynthesised polymer films for electrochemical detection of ephedrine. Biosens Bioelectron. 2008;28:1152–6.

    Article  Google Scholar 

  11. Varriale A, Staiano M, Marzullo VM, Strianese M, Di Giovanni S, Ruggiero G, et al. A surface plasmon resonance-based biochip to reveal traces of ephedrine. Anal Methods. 2012;4:1940–4.

    Article  CAS  Google Scholar 

  12. Di Giovanni S, Varriale A, Marzullo VM, Ruggiero G, Staiano M, Secchi A, et al. Determination of benzyl methyl ketone—a commonly used precursor in amphetamine manufacture. Anal Methods. 2012;4:3558–64.

    Article  Google Scholar 

  13. Jares-Erijman EA, Jovin TM. FRET imaging. Nat Biotechnol. 2003;21:1387.

    Article  CAS  Google Scholar 

  14. Haas E, Wilchek M, Katchalski-Katzir E, Steinberg IZ. Distribution of end-to-end distances of oligopeptides in solution as estimated by energy transfer. Proc Natl Acad Sci U S A. 1975;72:1807.

    Article  CAS  Google Scholar 

  15. Lakowicz JR, Gryczynski I, Wiczk W, Laczko G, Prendergast FC, Johnson ML. Conformational distributions of melittin in water/methanol mixtures from frequency-domain measurements of nonradiative energy transfer. Biophys Chem. 1990;36:99.

    Article  CAS  Google Scholar 

  16. Chapman ER, Alexander K, Vorherr T, Carafoil E, Storm DR. Biochemistry. 1992;31:12819.

    Article  CAS  Google Scholar 

  17. Heyduk T. Measuring protein conformational changes by FRET/LRET. Curr Opin Biotechnol. 2002;13:292.

    Article  CAS  Google Scholar 

  18. Hink MA, Bisselin T, Visser AJ. Imaging protein-protein interactions in living cells. Plant Mol Biol. 2002;50:871.

    Article  CAS  Google Scholar 

  19. Parsons M, Vojnovic B, Ameer-Beg S. Imaging protein–protein interactions in cell motility using fluorescence resonance energy transfer (FRET). Biochem Soc Trans. 2004;32:431.

    Article  CAS  Google Scholar 

  20. Bunt G, Wouters FS. Visualization of molecular activities inside living cells with fluorescent labels. Int Rev Cytol. 2004;237:205.

    Article  CAS  Google Scholar 

  21. Van Der Meer BW, Coker G, Chen SYS. Resonance energy transfer: theory and data. New York: VCH; 1994.

    Google Scholar 

  22. Lakowicz JR. Principles of fluorescence spectroscopy. 2nd ed. New York: Kluwer; 1999.

    Book  Google Scholar 

  23. Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struct Biol. 2000;7:730.

    Article  CAS  Google Scholar 

  24. Cheng LT, Kim SY, Chung A, Castro A. Amphetamines: new radioimmunoassay. FEBS Lett. 1973;36:339–42.

    Article  CAS  Google Scholar 

  25. Staiano M, Scognamiglio V, Rossi M, D’Auria S, Stepanenko OV, Kuznetsova IM, et al. Unfolding and refolding of the glutamine-binding protein from Escherichia coli and its complex with glutamine induced by guanidine hydrochloride. Biochemistry. 2005;44:5625–33.

    Article  CAS  Google Scholar 

  26. Pennacchio A, Ruggiero G, Staiano M, Piccialli G, Oliviero G, Lewkowicz A, et al. A surface plasmon resonance based biochip for the detection of patulin toxin. Opt Mater. 2014;10:1670–5.

    Article  Google Scholar 

  27. De Champdoré M, Bazzicalupo P, De Napoli L, Montesarchio D, Di Fabio G, Cocozza I, et al. A new competitive fluorescence assay for the detection of patulin toxin. Anal Chem. 2007;79:751–7.

    Article  Google Scholar 

  28. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29:49–52.

    Google Scholar 

Download references

Acknowledgments

This project is in the framework of the FP7 EU Project “CUSTOM” grant agreement number: 242387 (DS, AV, MS).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Varriale or Sabato D’Auria.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varriale, A., Marzullo, V.M., Di Giovanni, S. et al. On the possibility of ephedrine detection: time-resolved fluorescence resonance energy transfer (FRET)-based approach. Anal Bioanal Chem 408, 6329–6336 (2016). https://doi.org/10.1007/s00216-016-9738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9738-y

Keywords

Navigation