Skip to main content
Log in

A physically based methodology for predicting anisotropic creep properties of Ni-based superalloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

This paper is focused on developing suitable methodology for predicting creep characteristics (i.e., the minimum creep strain rate, stress rupture life and time to a specified creep strain) of typical Ni-based directionally solidified (DS) and single-crystal (SC) superalloys. A modern method with high accuracy on simulating wide ranging creep properties was fully validated by a sufficient amount of experimental data, which was then developed to model anisotropic creep characteristics by introducing a simple orientation factor defined by the ultimate tensile strength (UTS). Physical confidence on this methodology is provided by the well-predicted transitions of creep deformation mechanisms. Meanwhile, this method was further adopted to innovatively evaluate the creep properties of different materials from a relative perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Scholz A, Wang Y, Linn S. Modeling of mechanical properties of alloy CMSX-4. Mater Sci Eng A. 2009;510(10):278.

    Article  Google Scholar 

  2. Liu H, Xuan FZ. A new model of creep rupture data extrapolation based on power processes. Eng Fail Anal. 2011;18(8):2324.

    Article  Google Scholar 

  3. Harrison W, Whittaker M, Williams S. Recent advances in creep modelling of the nickel base superalloy, alloy 720Li. Materials. 2013;6(3):1118.

    Article  Google Scholar 

  4. Lin YC, Xia YC, Chen MS. Modeling the creep behavior of 2024-T3 Al alloy. Comput Mater Sci. 2013;67:243.

    Article  Google Scholar 

  5. Tamura M, Esaka H, Shinozuka K. Stress and temperature dependence of time to rupture of heat resisting steels. ISIJ Int. 1999;39(4):380.

    Article  Google Scholar 

  6. Wilshire B, Scharning PJ. A new methodology for analysis of creep and creep fracture data for 9 %–12 % chromium steels. Int Mater Rev. 2008;53(2):91.

    Article  Google Scholar 

  7. Wilshire B, Scharning PJ, Hurst R. New methodology for long term creep data generation for power plant components. Mater Sci Eng Energy Syst. 2007;2(2):84.

    Article  Google Scholar 

  8. Li SX, Ellison EG. The influence of orientation on the elastic and low cycle fatigue properties of several single crystal nickel base superalloys. J Strain Anal Eng Des. 1994;29(2):147.

    Article  Google Scholar 

  9. Han GM, Yu JJ, Sun YL. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99. Mater Sci Eng A. 2010;527(21):5383.

    Article  Google Scholar 

  10. Yuan C, Guo JT, Yang HC. Deformation mechanism for high temperature creep of a directionally solidified nickel-base superalloy. Scripta Mater. 1998;39(7):991.

    Article  Google Scholar 

  11. China Aeronautical Materials Handbook Editorial Board. China Aeronautical Materials Handbook, vol. 2. 2nd ed. Beijing: Standards Press of China; 2002. 113.

  12. Meng XL. Microstructure and creep behaviours of DZ125 nickel based superalloy. Shenyang: Shenyang University of Technology; 2012. 145.

  13. Yuan C, Guo JT, Yang HC. Effect of grain boundary orientation and cyclic load on creep and fracture behaviour in directionally solidified nickel base superalloy. Mater Sci Tech Lond. 2002;18(1):73.

    Article  Google Scholar 

  14. Ibanez AR, Srinivasan VS, Saxena A. Creep deformation and rupture behaviour of directionally solidified GTD 111 superalloy. Fatigue Fract Eng Mater. 2006;29(12):1010.

    Article  Google Scholar 

  15. Gordon AP. Crack Initiation modeling of a directionally-solidified nickel-base superalloy. Atlanta: Georgia Institute of Technology; 2006. 123.

  16. Ibanez AR. Modeling creep behavior in a directionally solidified nickel base superalloy. Atlanta: Georgia Institute of Technology; 2003. 75.

  17. MacLachlan DW, Knowles DM. Modeling and prediction of the stress rupture behaviour of single crystal superalloys. Mater Sci Eng A. 2001;302(2):275.

    Article  Google Scholar 

  18. Ma A, Dye D, Reed RC. A model for the creep deformation behaviour of single-crystal superalloy CMSX-4. Acta Mater. 2008;56(8):1657.

    Article  Google Scholar 

  19. Woodford DA. Parametric analysis of monocrystalline CMSX-4 creep and rupture data. Metall Mater Trans A. 1998;29(10):2645.

    Article  Google Scholar 

  20. Monkman FC, Grant NJ. An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. Proc ASTM. 1956;56:593.

    Google Scholar 

  21. Mukherjee AK, Bird JE, Dorn JE. Experimental correlations for high-temperature creep. Trans ASM. 1969;62:155.

    Google Scholar 

  22. Evans M. Prediction of long-term creep rupture data for 18Cr–12Ni–Mo steel. Int J Press Vessels Pip. 2011;88(11):449.

    Article  Google Scholar 

  23. Liu JL, Jin T, Sun XF. Anisotropy of stress rupture properties of a Ni base single crystal superalloy at two temperatures. Mater Sci Eng A. 2008;479(1):277.

    Article  Google Scholar 

  24. Whittaker MT, Harrison WJ, Lancaster RJ. An analysis of modern creep lifing methodologies in the titanium alloy Ti6-4. Mater Sci Eng A. 2013;577(15):114.

    Article  Google Scholar 

  25. Sajjadi SA, Nategh S. A high temperature deformation mechanism map for the high performance Ni-base superalloy GTD-111. Mater Sci Eng A. 2001;307(1):158.

    Article  Google Scholar 

  26. Reed RC. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press; 2006. 154.

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (No. 51275023) and the Innovation Foundation of BUAA for Ph.D. Graduates (No. YWF-14-YJSY-49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo-Qi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Shi, DQ. & Yang, XG. A physically based methodology for predicting anisotropic creep properties of Ni-based superalloys. Rare Met. 35, 606–614 (2016). https://doi.org/10.1007/s12598-015-0544-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0544-z

Keywords

Navigation