Skip to main content
Log in

Comparison of electrical properties of x-ray detector based on PbI2 crystal with different bias electric field configuration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work we report the dark current, photocurrent and carrier transport properties of the x-ray detector based on lead iodide (PbI2) crystal. The detectors were built with two orthogonal directions configuration as the bias electric field parallel to the crystallographic c-axis E//c and perpendicular to the c-axis Ec. It presents the electrical anisotropy including resistivity, dark current, carrier transport and x-ray induced photoelectricity properties with considering the configuration of bias field and c-axis. A mechanism of carrier scattering effect from anisotropic lattice structure, dislocation and stacking fault could be mainly responsible for this anisotropy property in PbI2 crystal. All the results indicate that the crystal orientation will be taken into account when we design and fabricate the x-ray detectors based on PbI2 crystals or films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.S. Shah, P. Bennett, M. Klugerman, L. Moy, L. Cirignano, Y. Dmitriyev, M.R. Squillante, F. Olschner, W.W. Moses, I.E.E.E. Trans, Nucl. Sci. 44, 448 (1997). doi:10.1109/23.603688

    Article  Google Scholar 

  2. K. Yixiu, L.E. Antonuk, Y. El-Mohri, L. Hu, Y. Li, A. Sawant, S. Zhong, Y. Wang, J. Yamamoto, Q. Zhao, IEEE Trans. Nucl. Sci. 52, 38 (2005). doi:10.1109/TNS.2004.843135

    Article  Google Scholar 

  3. X.H. Zhu, Z.R. Wei, Y.R. Jin, A.P. Xiang, Cryst. Res. Technol. 42, 456 (2007). doi:10.1002/crat.200610847

    Article  Google Scholar 

  4. X. Zhu, H. Sun, D. Yang, J. Yang, X. Li, X. Gao, J. Mater. Sci.: Mater. Electron. 25, 3337 (2014). doi:10.1007/s10854-014-2023-y

    Google Scholar 

  5. S. Yakunin, M. Sytnyk, D. Kriegner, S. Shrestha, M. Richter, G.J. Matt, H. Azimi, C.J. Brabec, J. Stangl, M.V. Kovalenko, W. Heiss, Nat. Photon. 9, 444 (2015). doi:10.1038/nphoton.2015.82

    Article  Google Scholar 

  6. D. Liu, T.L. Kelly, Nat. Photon. 8, 133 (2014). doi:10.1038/nphoton.2013.342

    Article  Google Scholar 

  7. K.S. Shah, F. Olschner, L.P. Moy, P. Bennett, M. Misra, J. Zhang, M.R. Squillante, J.C. Lund, Nucl. Instrum. Methods Phys. Res. A 380, 266 (1996). doi:10.1016/S0168-9002(96)00346-4

    Article  Google Scholar 

  8. P.A. Beckmann, Cryst. Res. Technol. 45, 455 (2010). doi:10.1002/crat.201000066

    Article  Google Scholar 

  9. B. Palosz, J. Phys.: Condens. Matter 2, 5285 (1990). doi:10.1088/0953-8984/2/24/001

    Google Scholar 

  10. M. Schlüter, M.L. Cohen, Phys. Rev. B 14, 424 (1976). doi:10.1103/PhysRevB.14.424

    Article  Google Scholar 

  11. C. Gähwiller, G. Harbeke, Phys. Rev. 185, 1141 (1969). doi:10.1103/PhysRev.185.1141

    Article  Google Scholar 

  12. H. Sun, X. Zhu, D. Yang, Z. He, S. Zhu, B. Zhao, J. Semicond. 33, 053002 (2012)

    Article  Google Scholar 

  13. J. Tonn, A.N. Danilewsky, A. Cröll, M. Matuchova, J. Maixner, J. Cryst. Growth 318, 558 (2011). doi:10.1016/j.jcrysgro.2010.10.059

    Article  Google Scholar 

  14. M. Matuchova, K. Zdansky, J. Zavadil, A. Danilewsky, J. Maixner, D. Alexiev, J. Mater. Sci.: Mater. Electron. 20, 289 (2009). doi:10.1007/s10854-008-9831-x

    Google Scholar 

  15. T. Hayashi, M. Kinpara, J.F. Wang, K. Mimura, M. Isshiki, J. Cryst. Growth 310, 47 (2008). doi:10.1016/jcrysgro.2007.10.004

    Article  Google Scholar 

  16. H. Sun, X. Zhu, D. Yang, J. Yang, X. Gao, X. Li, Phys. Status Solidi A 211, 823 (2014). doi:10.1002/pssa.201330319

    Article  Google Scholar 

  17. G. Zentai, L.D. Partain, R. Pavlyuchkova, C.H. Proano, M.M. Schieber, J. Thomas, Proc. SPIE 5541, 171 (2004). doi:10.1117/12.581223

    Article  Google Scholar 

  18. X. Zhu, H. Sun, D. Yang, X. Zheng, Nucl. Instrum. Methods Phys. Res. A 691, 10 (2012). doi:10.1016/j.nima.2012.07.003

    Article  Google Scholar 

  19. R.A. Street, S.E. Ready, F. Lemmi, K.S. Shah, P. Bennett, Y. Dmitriyev, J. Appl. Phys. 86, 2660 (1999). doi:10.1063/1.371107

    Article  Google Scholar 

  20. Y. Dmitriev, P.R. Bennett, L.J. Cirignano, M. Klugerman, K.S. Shah, Nucl. Instrum. Methods Phys. Res. A 592, 334 (2008). doi:10.1016/j.nima.2008.04.003

    Article  Google Scholar 

  21. P.D. Bloch, J.W. Hodby, T.E. Jenkins, D.W. Stacey, G. Lang, F. Levy, C. Schwab, J. Phys. C: Solid State Phys. 11, 4997 (1978). doi:10.1088/0022-3719/11/24/028

    Article  Google Scholar 

  22. L. Mark, Fundamentals of Carrier Transport, 2nd edn. (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  23. K. Seeger, Semiconductor Physics: An Introduction, 8th edn. (Springer, Berlin, 2002)

    Book  Google Scholar 

  24. R. Minder, G. Ottaviani, C. Canali, J. Phys. Chem. Solids 37, 417 (1976). doi:10.1016/0022-3697(76)90023-8

    Article  Google Scholar 

  25. W.T. Read. Jr., Lond, Edinb Dublin Philos Mag J Sci: Ser 7 46, 111 (1955). doi:10.1080/14786440208520556

    Article  Google Scholar 

  26. J.P. Zielinger, B. Pohoryles, J.C. Balland, J.G. Gross, A. Coret, J. Appl. Phys. 57, 293 (1985). doi:10.1063/1.334803

    Article  Google Scholar 

  27. C. De Blasi, S. Galassini, C. Manfredotti, G. Micocci, L. Ruggiero, A. Tepore, Solid State Commun. 25, 149 (1978). doi:10.1016/0038-1098(78)91467-9

    Article  Google Scholar 

  28. P.A. Lee, Physics and Chemistry of Materials with Layered Structures. Optical and Electrical Properties, vol. 4 (D. Reidel Publishing Company, Dordrecht, 1976)

    Google Scholar 

  29. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.-J. Xue, M. Luo, Y. Cao, Y. Cheng, E.H. Sargent, J. Tang, Nat. Photon. 9, 409 (2015). doi:10.1038/nphoton.2015.78

    Article  Google Scholar 

  30. S.M. Ryvkin, Photoelectric Effects in Semiconductors (Consultants Bureau, New York, 1964)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund of Sichuan Provincial Education Department No. 15ZB0173, Technology Support Program Fund of Science and Technology Department of Sichuan Province No. 2014GZ0020, 2015GZ0194 2014GZX0012 and 2016FZ0018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Sun, H., Yang, D. et al. Comparison of electrical properties of x-ray detector based on PbI2 crystal with different bias electric field configuration. J Mater Sci: Mater Electron 27, 11798–11803 (2016). https://doi.org/10.1007/s10854-016-5320-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5320-9

Keywords

Navigation