Skip to main content
Log in

Effect of Al:Mo molar ratio on elution performance of 99Mo/99mTc generators based on Al99Mo gels

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Aluminum 99Mo-molybdate (VI) gels were prepared by dissolving inactive MoO3 and AlCl3·6H2O in NaOH solution containing 99Mo radiotracer at different Al:Mo molar ratios, then, the precipitation occurred using HCl acid. Characterization of the matrices was carefully investigated. Variation in Al:99Mo ratio gives different polymolybdate (VI) arrangements around the alumina fine particles. The elution efficiencies of 99mTc eluates from the corresponding gel matrices with physiological saline solution increased with increasing Mo content, which was accompanied with slightly increase in 99Mo breakthrough values. The applied chromatographic columns have been modified to introduce 99Mo/99mTc generators of high 99Mo content and high 99mTc performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boyd RE (1982) Technetium-99 m generators-the available options. Int J Appl Radiat Isot 33:801–810

    Article  CAS  Google Scholar 

  2. IAEA (2008) Technetium-99 m radiopharmaceutical: manufacture of kits, Technical Reports Series No. 466, IAEA, Vienna, Austria

  3. Zolle I (2007) Technetium-99 m radiopharmaceutical; preparation and quality control in nuclear medicine. Springer, Berlin

    Google Scholar 

  4. Boyd RE (1997) The gel generator: a viable alternative source of 99 mTc for nuclear medicine. J Appl Radiat Isot 42:1027–1033

    Article  Google Scholar 

  5. Eckelmen WC (2009) Unparalleled contribution of technetium-99 m to medicine after 5 decades. J AM Coll Cardiol Imaging 2:364–368

    Article  Google Scholar 

  6. Eckelman WC, Coursey BM (1982) Technetium-99 m: generators, chemistry and preparation of radiopharmaceutical. Int J Appl Radiat Isot 33:793–799

    Article  Google Scholar 

  7. Bremer K (1987) Large scale production and distribution of Tc-99 m generator for medical use. Radiochim Acta 41:73–81

    Article  CAS  Google Scholar 

  8. De Goeij JJM (1997) Routes for supply of technetium-99 m for diagnostic nuclear medicine. Tarns Am Nucl Soc 77:519–523

    Google Scholar 

  9. Molinsky VJ (1982) A review of 99mTc generator technology. Int J Appl Radiat Isot 33:811–820

    Article  Google Scholar 

  10. IAEA (1995), Alternative technologies for 99mTc generators, TECDOC-852, IAEA, Vienna, Austria

  11. Lyra M, Charalambatou P, Roussou E, Fytros S, Baka I (2011) Alternative production methods to face global molybdenum-99 supply shortage. Hell J Nucl Med 14:49–55

    Google Scholar 

  12. Qaim SM (2012) The present and future of medical radionuclide production. Radichem Acta 100:635–651

    Article  CAS  Google Scholar 

  13. Qaim SM, Sudar S, Scholten B, Koning AL, Coenen HH (2014) Evaluation of excitation functions of 100Mo (p, d + pn) 99Mo and 100Mo (p,2n) 99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced 99mTc. J Appl Radiat Isot. 85:101–113

    Article  CAS  Google Scholar 

  14. Gognon K, Wilson JS, Holt CMB, Abrams DN, McEwan AJB, Mitlin D, McQuarrie SA (2012) Cyclotron production of 99mTc: Recycling of enriched 100Mo targets. J Appl Radiat Isot. 70:1685–1690

    Article  Google Scholar 

  15. Bernard F, Buckley KR, Ruth TL, Zeisler SK, Klug L, Hanemaayer V, Vuckovic M, Hou X, Celler A, Appiah JP, Vaillant J, Kovaes MS, Schaffer P (2014) Implementation of multi-curie production of 99mTc by conventional medical cyclotrons. J Nucl Med 55:1017–1022

    Article  Google Scholar 

  16. Evans JV, Moore PW, Shying ME, Sodeau JM (1987) Zirconium molybdate gel as a generator for technetium-99m. The concept and its evaluation. J Appl Radiat Isot 38:19–23

    Article  CAS  Google Scholar 

  17. Moore PW, Shying ME, Sodeau JM, Evans JV, Maddalena DJ, Farrington KH (1987) Zirconium molybdate gel as a generator for technetium-99m-II high activity generator. J Appl Radiat Isot 38:25–29

    Article  CAS  Google Scholar 

  18. El-Absy MA, El-Bayoumy S (1990) The use of stannic molybdate-99Mo as a 99mTc generator. Isotopenpraxis 2:60–63

    Google Scholar 

  19. El-Absy MA, El-Nagar IM, Audah AI (1994) Technetium-99m generator based on 12-molybdocerate-99Mo precipitate as column matrix. J Radioanal Nucl Chem. Articles. 183:339–350

    Article  CAS  Google Scholar 

  20. Narasimhan DVS, Vanaja KP, Mani RS (1984) A new method for Tc-99m generator preparation. J Radioanal Nucl Chem 85:345–356

    Article  CAS  Google Scholar 

  21. Davarpanah MR, Nosrati AS, Fazlali M, Boudani MK, Khoshhosn H, Maragheh MG (2009) Influence of drying conditions of zirconium molybdate gel on performance of 99mTc gel generator. Appl Radiat Isot 67:1796–1801

    Article  CAS  Google Scholar 

  22. Monroy-Guzman F, Martinez Thania Susana Jimenez, Arriola Humberto, Gandara Luis Carlos Longoria (2011) Magnesium-molybate compounds as Matrix for 99Mo/99mTc Generators. J pharmaceuticals. 4:215–232

    Article  CAS  Google Scholar 

  23. Monroy-Guzman F, Diaz-Archundia LV, Ramírez AC (2003) Effect of Zr: Mo ratio on 99mTc generator performance based on zirconium molybdate gels. J Appl Radiat Isot 59:27–34

    Article  CAS  Google Scholar 

  24. Monroy-Guzman F, Romero OC, Velázquez HD (2007) Titanium molybdate gels as matrix of 99Mo/99mTc generators. J Nucl Radiochem Sci 8:11–19

    Article  CAS  Google Scholar 

  25. Vanaja P, Ramamoorthy N, Iyer SP, Mani RS (1987) Development of a new 99mTc generator using neutron irradiated titanium molybdate as column matrix. Radiochim Acta 42:49–52

    Article  CAS  Google Scholar 

  26. Joseph S (1982) Chemistry of alumina column. Int J Appl Radiat Isot 33:829–834

    Article  Google Scholar 

  27. Amin M (2011) Chromatographic purification of neutron capture molybdenum-99 from cross-contaminant radionuclides, PhD thesis, Facility of Science, Helwan University, Cairo, Egypt

  28. Mostafa M, El-Absy MA, Amin M, El-Amir MA, Farag AB (2010) Partial purification of neutron-activation 99Mo from cross-contaminant radionuclides onto potassium nickel hexacyanoferrate(II) column. J Radioanal Nucl Chem 285:579–588

    Article  CAS  Google Scholar 

  29. El-Absy MA, El-Amir MA, Fasih TW, Ramadan HE, El-Shahat MF (2014) Preparation of 99Mo/99mTc generator based on alumina 99Mo-molybdate (VI) gel. J Radioanal Nucl Chem 299:1859–1864

    Article  CAS  Google Scholar 

  30. El-Absy MA, El-Garhy MA, Fasih TW, El-Amir MA, Ramadan HE, El-Shahat MF (2015) Synthesis of alumina 99Mo-molybdate (VI) gel matrices and evaluation of 99mTc elution performance. J Radiochem Acta 103:73–83

    CAS  Google Scholar 

  31. Mostafa M, Motaleb MA, Sakr TM (2010) Labeling of ceftriaxone for infictive inflammation imaging using 99mTc eluted from 99Mo/99mTc generator based on zirconium molybdate. J Appl Radiat Isot 68:1959–1963

    Article  CAS  Google Scholar 

  32. Duval C (1963) Inorganic thermogravimetric analysis. Elsevier, Amsterdam, p 315

    Google Scholar 

  33. El-Naggar IM, Hebash KA, Sheneshen ES, Abdel-Galil EA (2014) Preparation, characterization and ion-exchange properties of a new ‘organic.inorganic’ composite cation exchanger polyaniline silicotitanate: Its applications for treatment of hazardous metal ions from waste solutions. Inorg Chem Indian J 9:1–14

    CAS  Google Scholar 

  34. El-Naggar IM, Zakaria ES, El-Kenwany WM, El-Shahat MF (2014) Synthesis and equilibrium studies of titanium vanadate and its use in the removal of some hazardous elements. Radiochemistry 56:86–91

    Article  CAS  Google Scholar 

  35. Khan AA, Inamuddin (2006) Preparation, physico-chemical characterization, analytical applications and electrical conductivity measurement studies of an ‘organic–inorganic’ composite cation-exchanger: polyaniline Sn(IV) phosphate. J React Funct Polym 66:1649–1663

    Article  CAS  Google Scholar 

  36. Agasyan PK (1980) Qualitative semi micro analysis, 2nd ed. English Translation, Mir Publisher, Moscow

  37. El-Amir MA, Mostafa M, Ramadan H (2014) Preparation and characterization of cerium (IV) tellurium molybdate gel and its application as a bed for chromatographic 99Mo/99mTc generator. J Nucl Radiochem Sci 14:1–5

    Article  Google Scholar 

  38. John G, Jinming D (2001) Hydrolizing metal salts as coagulants. Pure Appl Chem 73:2017–2026

    Google Scholar 

  39. Greenwood NN, Earnshaw A (1998) Chemistry of the elements, 2nd edn. Butterworth Hienemann, Oxford

    Google Scholar 

  40. Larsen O, Postma D (2001) Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochim Cosmochim Acta 65:1367–1379

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Dr. M. A. El Absy and Dr. T. Fasih, (Radioactive isotopes and Generators Dept. Hot Labs Center. Egyptian Atomic Energy Authority) for their support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amin, M., Abdel-Galil, E.A. & El-Kenany, W.M. Effect of Al:Mo molar ratio on elution performance of 99Mo/99mTc generators based on Al99Mo gels. J Radioanal Nucl Chem 309, 485–492 (2016). https://doi.org/10.1007/s10967-015-4656-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4656-6

Keywords

Navigation