Skip to main content

Advertisement

Log in

Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

We recently reported that stressed adipocytes release extracellular vesicles (EVs) that act as “find-me” signals to promote macrophage migration and activation. In this study, we performed a comprehensive characterization of stressed adipocyte-derived EVs, assessing their antigenic composition, lipidomics, and RNA profiles. Perilipin A was identified as one of the adipose-specific proteins and studied as a potential novel biomarker to detect adipocyte-derived EVs in circulation. Circulating EVs were significantly increased in mice with diet-induced obesity (DIO) and in obese humans with metabolic syndrome compared to lean controls. This increase was associated with decreased glucose tolerance in the DIO mice and metabolic dysfunction, elevated insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) in the obese humans. EVs from both DIO mice and obese humans were enriched in perilipin A, a central gatekeeper of the adipocyte lipid storehouse and a marker of adipocyte differentiation. In obese humans, circulating levels of EVs enriched in perilipin A were dynamic, decreasing 35 % (p < 0.05) after a 3-month reduced calorie diet intervention. This translational study provides an extensive characterization of adipocyte-derived EVs. The findings identify perilipin A as a novel biomarker of circulating EVs of adipocyte origin and support the development of circulating perilipin A-positive EVs as indicators of adipose tissue health.

Key message

• Extensive characterization of 3T3L1 EVs identified perilipin A in their composition.

• Circulating EVs are elevated in obese mice and associated with glucose intolerance.

• Circulating EVs are elevated in obese human and correlated with metabolic factors.

• Perilipin A and EV levels are increased in the circulation of obese mice and human.

• Circulating EV and perilipin A levels decrease with low calorie intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Staels B (2006) When the clock stops ticking, metabolic syndrome explodes. Nat Med 12:54–55, discussion 55

    Article  CAS  PubMed  Google Scholar 

  2. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, Allen K, Lopes M, Savoye M, Morrison J et al (2004) Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 350:2362–2374

    Article  CAS  PubMed  Google Scholar 

  3. Browning JD, Horton JD (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin lnvest 114:147–152

    Article  CAS  Google Scholar 

  4. Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin lnvest 118:829–838

    Article  CAS  Google Scholar 

  6. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I (2004) Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin lnvest 114:1752–1761

    Article  CAS  Google Scholar 

  7. Gornicka A, Fettig J, Eguchi A, Berk MP, Thapaliya S, Dixon LJ, Feldstein AE (2012) Adipocyte hypertrophy is associated with lysosomal permeability both in vivo and in vitro: role in adipose tissue inflammation. Am J Physiol Endocrinol Metab 303:E597–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Neels JG, Olefsky JM (2006) Inflamed fat: what starts the fire? J Clin lnvest 116:33–35

    Article  CAS  Google Scholar 

  9. Schenk S, Saberi M, Olefsky JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin lnvest 118:2992–3002

    Article  CAS  Google Scholar 

  10. Wellen KE, Hotamisligil GS (2005) Inflammation, stress, and diabetes. J Clin lnvest 115:1111–1119

    Article  CAS  Google Scholar 

  11. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin lnvest 112:1796–1808

    Article  CAS  Google Scholar 

  12. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr (2006) CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin lnvest 116:115–124

    Article  CAS  Google Scholar 

  13. Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY, Watt MJ, Benner C, Febbraio MA, Nguyen AK et al (2007) Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulin sensitivity and full antidiabetic effects of thiazolidinediones. J Clin lnvest 117:1658–1669

    Article  CAS  Google Scholar 

  14. Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin lnvest 117:175–184

    Article  CAS  Google Scholar 

  15. Eguchi A, Mulya A, Lazic M, Radhakrishnan D, Berk MP, Povero D, Gornicka A, Feldstein AE (2015) Microparticles release by adipocytes act as “find-me” signals to promote macrophage migration. PLoS One 10, e0123110. doi:10.1371/journal.pone.0123110

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee MJ, Wu Y, Fried SK (2012) A modified protocol to maximize differentiation of human preadipocytes and improve metabolic phenotypes. Obesity 20:2334–2340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Aspects Med 34:1–11

    Article  CAS  PubMed  Google Scholar 

  18. Yoshizaki T, Milne JC, Imamura T, Schenk S, Sonoda N, Babendure JL, Lu JC, Smith JJ, Jirousek MR, Olefsky JM (2009) SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Mol Cell Biol 29:1363–1374

    Article  CAS  PubMed  Google Scholar 

  19. Guttman M, Betts GN, Barnes H, Ghassemian M, van der Geer P, Komives EA (2009) Interactions of the NPXY microdomains of the low density lipoprotein receptor-related protein 1. Proteomics 9:5016–5028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McCormack AL, Schieltz DM, Goode B, Yang S, Barnes G, Drubin D, Yates JR 3rd (1997) Direct analysis and identification of proteins in mixtures by LC/MS/MS and database searching at the low-femtomole level. Anal Chem 69:767–776

    Article  CAS  PubMed  Google Scholar 

  21. Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, Conaway JW, Florens L, Washburn MP (2006) Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A 103:18928–18933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL et al (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Quehenberger O, Yamashita T, Armando AM, Dennis EA, Palinski W (2011) Effect of gestational hypercholesterolemia and maternal immunization on offspring plasma eicosanoids. Am J Obstet Gynecol 205(156):e115–125

    Google Scholar 

  24. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A 105:10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu G, Abraham E (2013) MicroRNAs in immune response and macrophage polarization. Arterioscler, Thromb, Vasc Biol 33:170–177

    Article  Google Scholar 

  26. Gray WD, Mitchell AJ, Searles CD (2015) An accurate, precise method for general labeling of extracellular vesicles. MethodsX 2:360–367

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13:1–9

    Article  CAS  PubMed  Google Scholar 

  28. Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4, e7250. doi:10.1371/journal.pone.0007250

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chapman J, Miles PD, Ofrecio JM, Neels JG, Yu JG, Resnik JL, Wilkes J, Talukdar S, Thapar D, Johnson K et al (2010) Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS One 5, e13959. doi:10.1371/journal.pone.0013959

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bickel PE, Tansey JT, Welte MA (2009) PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochim Biophys Acta 1791:419–440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fujimoto T, Parton RG (2011) Not just fat: the structure and function of the lipid droplet. Cold Spring Harbor Perspect Biol 3:a004838

    Article  Google Scholar 

  32. Nowicka P, Santoro N, Liu H, Lartaud D, Shaw MM, Goldberg R, Guandalini C, Savoye M, Rose P, Caprio S (2011) Utility of hemoglobin A(1c) for diagnosing prediabetes and diabetes in obese children and adolescents. Diabetes Care 34:1306–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mathurin P, Bataller R (2015) Trends in the management and burden of alcoholic liver disease. J Hepatol 62:S38–46

    Article  PubMed  PubMed Central  Google Scholar 

  34. Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  CAS  PubMed  Google Scholar 

  35. Kern PA, Di Gregorio G, Lu T, Rassouli N, Ranganathan G (2004) Perilipin expression in human adipose tissue is elevated with obesity. J Clin Endocrinol Metab 89:1352–1358

    Article  CAS  PubMed  Google Scholar 

  36. Feng D, Tang Y, Kwon H, Zong H, Hawkins M, Kitsis RN, Pessin JE (2011) High-fat diet-induced adipocyte cell death occurs through a cyclophilin D intrinsic signaling pathway independent of adipose tissue inflammation. Diabetes 60:2134–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolak M, Westerbacka J, Velagapudi VR, Wagsater D, Yetukuri L, Makkonen J, Rissanen A, Hakkinen AM, Lindell M, Bergholm R et al (2007) Adipose tissue inflammation and increased ceramide content characterize subjects with high liver fat content independent of obesity. Diabetes 56:1960–1968

    Article  CAS  PubMed  Google Scholar 

  38. Bastos-Amador P, Royo F, Gonzalez E, Conde-Vancells J, Palomo-Diez L, Borras FE, Falcon-Perez JM (2012) Proteomic analysis of microvesicles from plasma of healthy donors reveals high individual variability. J Proteomics 75:3574–3584

    Article  CAS  PubMed  Google Scholar 

  39. Ostergaard O, Nielsen CT, Iversen LV, Jacobsen S, Tanassi JT, Heegaard NH (2012) Quantitative proteome profiling of normal human circulating microparticles. J Proteome Res 11:2154–2163

    Article  PubMed  Google Scholar 

  40. Yracheta JM, Alfonso J, Lanaspa MA, Roncal-Jimenez C, Johnson SB, Sanchez-Lozada LG, Johnson RJ (2015) Hispanic Americans living in the United States and their risk for obesity, diabetes and kidney disease: genetic and environmental considerations. Postgrad Med 127:503–510

    Article  PubMed  Google Scholar 

  41. Barteneva NS, Fasler-Kan E, Bernimoulin M, Stern JN, Ponomarev ED, Duckett L, Vorobjev IA (2013) Circulating microparticles: square the circle. BMC Cell Biol 14:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Marilyn Farquhar (University of California, San Diego, UCSD) for the use of the electron microscopy facility; Timo Meerloo for electron microscopy sample preparation; Dr. Majid Ghassemian of the Biomolecular and Proteomics Mass Spectrometry facility (UCSD) for the proteomics study; Dr. Gary Hardiman, director of UCSD Biomedical Genomics Facility (BIOGEM); and Dr. Roman Sasik for analysis of the sequencing study. We acknowledge One World Lab for the assistance with selecting antibodies and providing test size quantities. This work was supported by NIH grant (U01 AA022489) and (DK082451) to AEF, Gilead research scholars program in liver disease to AE, and P. Robert Majumder Charitable Foundation to DDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel E. Feldstein.

Ethics declarations

Conflict of interest

DDS was a paid consultant of Zone Labs, Inc. prior to the initiation of the human diet intervention study for which Zone Labs, Inc. donated food supplies.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Proteomic analysis of total protein composition in palmitic-acid induced sadEV. (XLSX 22 kb)

Supplementary Table 2

Complete list of fatty acids and their bioactive lipid mediators in sadEVs. Unit: pmol/106 sadEV (XLSX 47 kb)

Supplementary Table 3

Complete list of miRNAs in sadEVs and control sadEVs and their respective parent adipocytes by RNA sequencing. (with a lower threshold of >5 raw counts for positive results). (XLS 82 kb)

Supplementary Table 4

Metabolic parameters at baseline and post-calorie restriction. (DOCX 16 kb)

ESM 5

(DOCX 479 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eguchi, A., Lazic, M., Armando, A.M. et al. Circulating adipocyte-derived extracellular vesicles are novel markers of metabolic stress. J Mol Med 94, 1241–1253 (2016). https://doi.org/10.1007/s00109-016-1446-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-016-1446-8

Keywords

Navigation