Skip to main content
Log in

Patterns of striatal functional connectivity differ in early and late onset Parkinson’s disease

  • Original Communication
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

To map functional connectivity (FC) patterns of early onset Parkinson’s disease (EOPD) and late onset PD (LOPD) in drug-naïve early stage. MRI was used to assess atrophy and resting-state FC focusing on striatal subregions of EOPD and LOPD in two subgroups of 18 patients matched for disease duration and severity, relative to age- and sex- matched healthy controls. Compared with controls, both PD subgroups showed FC alterations in cortico-striatal and cerebello-striatal loops but with different patterns in resting state. EOPD patients showed widespread increased FC between striatum and sensorimotor cortex, middle frontal gyrus, superior and inferior parietal lobules, superior and inferior temporal gyri, and cerebellum. While LOPD patients were evidenced with increased FC in cerebello-striatal circuit and decreased FC between orbitofrontal gyrus and striatum. In addition, Unified Parkinson’s Disease Rating Scale part III scores were negatively correlated with the increased FC between the caudate nucleus and sensorimotor cortex (r = −0.571, p = 0.013) in EOPD patients, while negatively correlated with the increased FC between the putamen and cerebellum (r = −0.478, p = 0.045) in LOPD patients, suggesting that increased FC is here likely to reflect compensatory mechanism. FC changes in EOPD and LOPD share common features and have differences, which may suggest that the responses to defective basal ganglia are different between the two subtypes. Improved insights into the onset-related subtypes of PD and its disruptive FC pattern will be valuable for improving our understanding of the pathogenesis of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Agosta F, Caso F, Stankovic I, Inuggi A, Petrovic I, Svetel M, Kostic VS, Filippi M (2014) Cortico-striatal-thalamic network functional connectivity in hemiparkinsonism. Neurobiol Aging 35:2592–2602

    Article  PubMed  Google Scholar 

  2. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  3. Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113

    Article  PubMed  Google Scholar 

  4. Bonelli RM, Cummings JL (2007) Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci 9:141–151

    PubMed  PubMed Central  Google Scholar 

  5. Brooks DJ, Ibanez V, Sawle GV, Quinn N, Lees AJ, Mathias CJ, Bannister R, Marsden CD, Frackowiak RS (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555

    Article  CAS  PubMed  Google Scholar 

  6. Buhmann C, Glauche V, Sturenburg HJ, Oechsner M, Weiller C, Buchel C (2003) Pharmacologically modulated fMRI–cortical responsiveness to levodopa in drug-naive hemiparkinsonian patients. Brain J Neurol 126:451–461

    Article  CAS  Google Scholar 

  7. Cerasa A, Salsone M, Morelli M, Pugliese P, Arabia G, Gioia CM, Novellino F, Quattrone A (2013) Age at onset influences neurodegenerative processes underlying PD with levodopa-induced dyskinesias. Parkinsonism Relat Disord 19:883–888

    Article  PubMed  Google Scholar 

  8. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, Quigley MA, Meyerand ME (2001) Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. AJNR Am J Neuroradiol 22:1326–1333

    CAS  PubMed  Google Scholar 

  9. de la Fuente-Fernandez R, Schulzer M, Kuramoto L, Cragg J, Ramachandiran N, Au WL, Mak E, McKenzie J, McCormick S, Sossi V, Ruth TJ, Lee CS, Calne DB, Stoessl AJ (2011) Age-specific progression of nigrostriatal dysfunction in Parkinson’s disease. Ann Neurol 69:803–810

    Article  PubMed  Google Scholar 

  10. Ferguson LW, Rajput AH, Rajput A (2015) Early-onset vs. Late-onset Parkinson’s disease: a clinical-pathological study. Can J Neurol Sci J Can Sci Neurol 1(1):1–7. doi:10.1017/cjn.2015.244

    Google Scholar 

  11. Fuchs J, Tichopad A, Golub Y, Munz M, Schweitzer KJ, Wolf B, Berg D, Mueller JC, Gasser T (2008) Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J 22:1327–1334

    Article  CAS  PubMed  Google Scholar 

  12. Gibb WR, Lees AJ (1988) A comparison of clinical and pathological features of young- and old-onset Parkinson’s disease. Neurology 38:1402–1406

    Article  CAS  PubMed  Google Scholar 

  13. Grafton ST (2004) Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol 14:715–719

    Article  CAS  PubMed  Google Scholar 

  14. Guo X, Song W, Chen K, Chen X, Zheng Z, Cao B, Huang R, Zhao B, Wu Y, Shang HF (2013) Gender and onset age-related features of non-motor symptoms of patients with Parkinson’s disease–a study from Southwest China. Parkinsonism Relat Disord 19:961–965

    Article  PubMed  Google Scholar 

  15. Hacker CD, Perlmutter JS, Criswell SR, Ances BM, Snyder AZ (2012) Resting state functional connectivity of the striatum in Parkinson’s disease. Brain 135:3699–3711

    Article  PubMed  PubMed Central  Google Scholar 

  16. Helmich RC, Derikx LC, Bakker M, Scheeringa R, Bloem BR, Toni I (2010) Spatial remapping of cortico-striatal connectivity in Parkinson’s disease. Cereb Cortex 20:1175–1186

    Article  PubMed  Google Scholar 

  17. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL (2005) The cerebellum communicates with the basal ganglia. Nat Neurosci 8:1491–1493

    Article  CAS  PubMed  Google Scholar 

  18. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55:181–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jankovic J, McDermott M, Carter J, Gauthier S, Goetz C, Golbe L, Huber S, Koller W, Olanow C, Shoulson I, The Parkinson Study Group et al (1990) Variable expression of Parkinson’s disease: a base-line analysis of the DATATOP cohort. Neurology 40:1529–1534

    Article  CAS  PubMed  Google Scholar 

  20. Katzman R, Zhang MY, Ouang Ya Q, Wang ZY, Liu WT, Yu E, Wong SC, Salmon DP, Grant I (1988) A Chinese version of the mini-mental state examination; impact of illiteracy in a Shanghai dementia survey. J Clin Epidemiol 41:971–978

    Article  CAS  PubMed  Google Scholar 

  21. Kempster PA, Gibb WR, Stern GM, Lees AJ (1989) Asymmetry of substantia nigra neuronal loss in Parkinson’s disease and its relevance to the mechanism of levodopa related motor fluctuations. J Neurol Neurosurg Psychiatry 52:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med 318:876–880

    Article  CAS  PubMed  Google Scholar 

  23. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57:176–179

    Article  CAS  PubMed  Google Scholar 

  24. Kwak Y, Peltier S, Bohnen NI, Muller ML, Dayalu P, Seidler RD (2010) Altered resting state cortico-striatal connectivity in mild to moderate stage Parkinson’s disease. Front Syst Neurosci 4:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131

    Article  CAS  PubMed  Google Scholar 

  26. Liu SY, Wu JJ, Zhao J, Huang SF, Wang YX, Ge JJ, Wu P, Zuo CT, Ding ZT, Wang J (2015) Onset-related subtypes of Parkinson’s disease differ in the patterns of striatal dopaminergic dysfunction: a positron emission tomography study. Parkinsonism Relat Disord 21:1448–1453

    Article  PubMed  Google Scholar 

  27. Luo C, Song W, Chen Q, Zheng Z, Chen K, Cao B, Yang J, Li J, Huang X, Gong Q, Shang HF (2014) Reduced functional connectivity in early stage drug-naive Parkinson’s disease: a resting-state fMRI study. Neurobiol Aging 35:431–441

    Article  PubMed  Google Scholar 

  28. Marras C, Lang A (2013) Parkinson’s disease subtypes: lost in translation? J Neurol Neurosurg Psychiatry 84:409–415

    Article  PubMed  Google Scholar 

  29. Middleton FA, Strick PL (2001) Cerebellar projections to the prefrontal cortex of the primate. J Eurosci Off J Soci Neurosci 21:700–712

    CAS  Google Scholar 

  30. Mounayar S, Boulet S, Tande D, Jan C, Pessiglione M, Hirsch EC, Feger J, Savasta M, Francois C, Tremblay L (2007) A new model to study compensatory mechanisms in MPTP-treated monkeys exhibiting recovery. Brain J Neurol 130:2898–2914

    Article  Google Scholar 

  31. Oakes TR, Fox AS, Johnstone T, Chung MK, Kalin N, Davidson RJ (2007) Integrating VBM into the general linear model with voxelwise anatomical covariates. Neuroimage 34:500–508

    Article  PubMed  Google Scholar 

  32. Ouchi Y, Kanno T, Okada H, Yoshikawa E, Futatsubashi M, Nobezawa S, Torizuka T, Tanaka K (2001) Changes in dopamine availability in the nigrostriatal and mesocortical dopaminergic systems by gait in Parkinson’s disease. Brain 124:784–792

    Article  CAS  PubMed  Google Scholar 

  33. Perez-Otano I, Oset C, Luquin MR, Herrero MT, Obeso JA, Del Rio J (1994) MPTP-induced parkinsonism in primates: pattern of striatal dopamine loss following acute and chronic administration. Neurosci Lett 175:121–125

    Article  CAS  PubMed  Google Scholar 

  34. Rascol O, Sabatini U, Fabre N, Brefel C, Loubinoux I, Celsis P, Senard JM, Montastruc JL, Chollet F (1997) The ipsilateral cerebellar hemisphere is overactive during hand movements in akinetic parkinsonian patients. Brain 120(Pt 1):103–110

    Article  PubMed  Google Scholar 

  35. Rolland AS, Herrero MT, Garcia-Martinez V, Ruberg M, Hirsch EC, Francois C (2007) Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism. Brain 130:265–275

    Article  PubMed  Google Scholar 

  36. Sabatini U, Boulanouar K, Fabre N, Martin F, Carel C, Colonnese C, Bozzao L, Berry I, Montastruc JL, Chollet F, Rascol O (2000) Cortical motor reorganization in akinetic patients with Parkinson’s disease: a functional MRI study. Brain J Neurol 123(Pt 2):394–403

    Article  Google Scholar 

  37. Schrag A, Hovris A, Morley D, Quinn N, Jahanshahi M (2003) Young- versus older-onset Parkinson’s disease: impact of disease and psychosocial consequences. Mov Disord Off J Mov Disord Soc 18:1250–1256

    Article  Google Scholar 

  38. Schrag A, Schott JM (2006) Epidemiological, clinical, and genetic characteristics of early onset parkinsonism. Lancet Neurol 5:355–363

    Article  CAS  PubMed  Google Scholar 

  39. Shih MC, Franco de Andrade LA, Amaro E Jr, Felicio AC, Ferraz HB, Wagner J, Hoexter MQ, Lin LF, Fu YK, Mari JJ, Tufik S, Bressan RA (2007) Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson’s disease?—a [99 mTc]-TRODAT-1 SPECT study. Mov Disord 22:863–866

    Article  PubMed  Google Scholar 

  40. Simioni AC, Dagher A, Fellows LK (2016) Compensatory striatal-cerebellar connectivity in mild-moderate Parkinson’s disease. Neuroimage Clin 10:54–62

    Article  PubMed  Google Scholar 

  41. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF (2011) REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One 6:e25031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sossi V, de la Fuente-Fernandez R, Schulzer M, Adams J, Stoessl J (2006) Age-related differences in levodopa dynamics in Parkinson’s: implications for motor complications. Brain J Neurol 129:1050–1058

    Article  Google Scholar 

  43. Thobois S, Jahanshahi M, Pinto S, Frackowiak R, Limousin-Dowsey P (2004) PET and SPECT functional imaging studies in Parkinsonian syndromes: from the lesion to its consequences. NeuroImage 23:1–16

    Article  CAS  PubMed  Google Scholar 

  44. Uitti RJ, Baba Y, Whaley NR, Wszolek ZK, Putzke JD (2005) Parkinson disease: handedness predicts asymmetry. Neurology 64:1925–1930

    Article  CAS  PubMed  Google Scholar 

  45. Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A, Bloch DA, Nelson LM (2003) Incidence of Parkinson’s disease: variation by age, gender, and race/ethnicity. Am J Epidemiol 157:1015–1022

    Article  Google Scholar 

  46. van der Merwe C, Haylett W, Harvey J, Lombard D, Bardien S, Carr J (2012) Factors influencing the development of early- or late-onset Parkinson’s disease in a cohort of South African patients. S Afr Med J 102:848–851

    Article  PubMed  Google Scholar 

  47. Wickremaratchi MM, Ben-Shlomo Y, Morris HR (2009) The effect of onset age on the clinical features of Parkinson’s disease. Eur J Neurol Off J Eur Fed Neurol Soc 16:450–456

    CAS  Google Scholar 

  48. Wu T, Hallett M (2013) The cerebellum in Parkinson’s disease. Brain J Neurol 136:696–709

    Article  Google Scholar 

  49. Wu T, Long X, Wang L, Hallett M, Zang Y, Li K, Chan P (2011) Functional connectivity of cortical motor areas in the resting state in Parkinson’s disease. Hum Brain Mapp 32:1443–1457

    Article  PubMed  Google Scholar 

  50. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K, Chan P (2009) Regional homogeneity changes in patients with Parkinson’s disease. Hum Brain Mapp 30:1502–1510

    Article  PubMed  Google Scholar 

  51. Wu T, Wang L, Chen Y, Zhao C, Li K, Chan P (2009) Changes of functional connectivity of the motor network in the resting state in Parkinson’s disease. Neurosci Lett 460:6–10

    Article  CAS  PubMed  Google Scholar 

  52. Wu T, Wang L, Hallett M, Chen Y, Li K, Chan P (2011) Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. Neuroimage 55:204–215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients for their participation in our study, and thank the technical staffs of the Department of Radiology for their collaboration and assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiyong Gong or Huifang Shang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Financial disclosure

The present study was supported by the fund of National Nature Science Foundation of China (No. 81571247).

Additional information

Y. Hou and J. Yang authors contribute to this work equally.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Yang, J., Luo, C. et al. Patterns of striatal functional connectivity differ in early and late onset Parkinson’s disease. J Neurol 263, 1993–2003 (2016). https://doi.org/10.1007/s00415-016-8211-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-016-8211-3

Keywords

Navigation