Skip to main content
Log in

Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage

  • Original Paper
  • Published:
Radiation and Environmental Biophysics Aims and scope Submit manuscript

Abstract

As humans, we are constantly exposed to ionizing radiation from natural, man-made and cosmic sources which can damage DNA, leading to deleterious effects including cancer incidence. In this work, we introduce a method to monitor strand breaks resulting from damage due to the direct effect of ionizing radiation and provide evidence for sequence-dependent effects leading to strand breaks. To analyze only DNA strand breaks caused by radiation damage due to the direct effect of ionizing radiation, we combined an established technique to generate dehydrated DNA samples with a technique to analyze single-strand breaks on short oligonucleotide sequences via denaturing gel electrophoresis. We find that direct damage primarily results in a reduced number of strand breaks in guanine triplet regions (GGG) when compared to isolated guanine (G) bases with identical flanking base context. In addition, we observe strand break behavior possibly indicative of protection of guanine bases when flanked by pyrimidines and sensitization of guanine to strand break when flanked by adenine (A) bases in both isolated G and GGG cases. These observations provide insight into the strand break behavior in GGG regions damaged via the direct effect of ionizing radiation. In addition, this could be indicative of DNA sequences that are naturally more susceptible to strand break due to the direct effect of ionizing radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdoul-Carime H, Gohlke S, Illenberger E (2004) Site-specific dissociation of DNA bases by slow electrons at early stages of irradiation. Phys Rev Lett 16:168103. doi:10.1103/PhysRevLett.92.168103

    Article  ADS  Google Scholar 

  • Adhikary A, Becker D, Palmer BJ, Heizer AN, Sevilla MD (2012) Direct formation of the C5′-radical in the sugar-phosphate backbone of DNA by high energy radiation. J Phys Chem B 116:5900–5906. doi:10.1021/jp3023919

    Article  Google Scholar 

  • Adhikary A, Kumar A, Palmer BJ, Todd AD, Sevilla MD (2013) Formation of S-Cl phosphorothioate adduct radicals in dsDNA-S-oligomers: hole transfer to guanine vs. disulfide anion radical formation. J Am Chem Soc 135:12827–12838. doi:10.1021/ja406121x

    Article  Google Scholar 

  • Arumainayagam CR, Lee HL, Nelson RB, Haines DR, Gunawardane RP (2010) Low energy electron-induced reactions in condensed matter. Surf Sci Rep 65:1–44. doi:10.1016/j.surfrep.2009.09.001

    Article  ADS  Google Scholar 

  • Ayouaz A, Raynaud C, Heride C, Revaud D, Sabatier L (2008) Telomeres: hallmarks of radiosensitivity. Biochimie 90:60–72. doi:10.1016/j.biochi.2007.09.011

    Article  Google Scholar 

  • Balasubramanian B, Pogozelski WK, Tullius TD (1998) DNA strand breaking by the hydroxyl radical is governed by the accessible surface areas of the hydrogen atoms of the DNA backbone. Proc Natl Acad Sci USA 95:9738–9743. doi:10.1073/pnas.95.17.9738

    Article  ADS  Google Scholar 

  • Becker D, Sevilla MD (1993) The chemical consequences of radiation damage to DNA. Adv Radiat Biol 17:121–180. doi:10.1016/B978-0-12-035417-7.50006-4

    Article  Google Scholar 

  • Becker D, Adhikary A, Sevilla MD (2010) Physicochemical mechanisms of radiation-induced DNA damage. In: Hatano Y, Katsumura Y, Mozumder A (eds) Charged particle and photon interactions with matter: recent advances, applications, and interfaces, 1st edn. CRC Press, New York, pp 503–541

    Chapter  Google Scholar 

  • Bernhard WA (2009) Radical reaction pathways initiated by direct energy deposition in DNA by ionizing radiation. In: Greenberg MM (ed) Radical and radical ion reactivity in nucleic acid chemistry, 1st edn. Wiley, New Jersey, pp 41–68

    Chapter  Google Scholar 

  • Biffi G, Tannahill D, McCafferty J, Balasubramanian S (2013) Quantitative visualization of DNA g-quadruplex structures in human cells. Nat Chem 5:182–186. doi:10.1038/nchem.1548

    Article  Google Scholar 

  • Caron LC, Sanche L (2012) Theoretical studies of electron interactions with DNA and its subunits: from tetrahydrofuran to plasmid DNA. In: Čársky P, Čurik R (eds) Low-energy electron scattering from molecules, biomolecules and surfaces, 1st edn. CRC Press, New York, pp 161–230

    Google Scholar 

  • Chung MH, Kiyosawa H, Ohtsuka E, Nishimura S, Kasai H (1992) DNA strand cleavage at 8-hydroxyguanine residues by hot piperidine treatment. Biochem Biophys Res Commun 188:1–7. doi:10.1016/0006-291X(92)92341-T

    Article  Google Scholar 

  • Close DM (2008) From the primary radiation induced radicals in DNA constituents to strand breaks: low temperature EPR/ENDOR studies. In: Shukla MK, Leszcyznski J (eds) Radiation-induced molecular phenomena in nucleic acids: a comprehensive theoretical and experimental analysis, 1st edn. Springer, New York, pp 493–529

    Chapter  Google Scholar 

  • Cullings HM, Fujita S, Funamoto S, Grant EJ, Kerr GD, Preston DL (2006) Dose estimation for atomic bomb survivor studies: its evolution and present status. Radiat Res 166:219–254. doi:10.1667/RR3546.1

    Article  Google Scholar 

  • Ding LH, Shingyoji M, Chen F, Hwang JJ, Burma S, Lee C, Cheng JF, Chen DJ (2005) Gene expression profiles of normal human fibroblasts after exposure to ionizing radiation: a comparative study of low and high doses. Radiat Res 164:17–26. doi:10.1667/RR3354

    Article  Google Scholar 

  • Dixon WJ, Hayes JJ, Levin JR, Weidner MF, Dombroski BA, Tullius TD (1991) Hydroxyl radical footprinting. Methods Enzymol 208:380–413. doi:10.1016/0076-6879(91)08021-9

    Article  Google Scholar 

  • Douple EB, Mabuchi K, Cullings HM, Preston DL, Kodama K, Shimizu Y, Fujiwara S, Shore RE (2011) Long-term radiation-related health effects in a unique human population: lessons learned from the atomic bomb survivors of Hiroshima and Nagasaki. Disaster Med Public Health Prep 5:S122–S133. doi:10.1001/dmp.2011.21

    Article  Google Scholar 

  • Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, Bucci G, Dobreva M, Matti V, Beausejour CM, Herbig U, Longhese MP, D’adda diFagagna F (2012) Telomeric DNA damage is irreparable and causes persistent DNA damage-response activation. Nat Cell Biol 14:355–365. doi:10.1038/ncb2466

    Article  Google Scholar 

  • Gates K (2009) An overview of chemical processes that damage cellular DNA: spontaneous hydrolysis, alkylation, and reactions with radicals. Chem Res Toxicol 22:1747–1760. doi:10.1021/tx900242k

    Article  Google Scholar 

  • Genesca A, Martin M, Latre L, Soler D, Pampalona J, Tusell L (2006) Telomere dysfunction: a new player in radiation sensitivity. BioEssays 28:1172–1180. doi:10.1002/bies.20501

    Article  Google Scholar 

  • Gomez D, O’Donohue MF, Wenner T, Douarre C, Macadré J, Koebel P, Giraud-Panis MJ, Kaplan H, Kolkes A, Shin-ya K, Riou JF (2006) The g-quadruplex ligand telomestatin inhibits POT1 binding to telomeric sequences in vitro and induces GFP-POT1 dissociation from telomeres in human cells. Cancer Res 66:6908–6912. doi:10.1158/0008-5472.CAN-06-1581

    Article  Google Scholar 

  • Hänsel R, Löhr F, Trantirek L, Dötsch V (2013) High-resolution insight into g-overhang architecture. J Am Chem Soc 135:2816–2824. doi:10.1021/ja312403b

    Article  Google Scholar 

  • Henle ES, Han Z, Tang N, Rai P, Luo Y, Linn S (1999) Sequence-specific DNA cleavage by Fe2+-mediated Fenton reactions has possible biological implications. J Biol Chem 274:962–971. doi:10.1074/jbc.274.2.962

    Article  Google Scholar 

  • Honda S, Hjelmeland L, Handa J (2001) Oxidative stress-induced single-strand breaks in chromosomal telomeres of human retinal pigment epithelial cells in vitro. Invest Ophthalmol Vis Sci 42:2139–2144

    Google Scholar 

  • Ilyenko I, Lyaskivska O, Bazyka D (2011) Analysis of relative telomere length and apoptosis in humans exposed to ionising radiation. Exp Oncol 33:235–238

    Google Scholar 

  • Kawanishi S, Oikawa S (2004) Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci 1019:278–284. doi:10.1196/annals.1297.047

    Article  ADS  Google Scholar 

  • Kawanishi S, Oikawa S, Murata M, Tsukitome H, Saito I (1999) Site-specific oxidation at gg and ggg sequences in double-stranded DNA by benzoyl peroxide as a tumor promoter. Biochemistry 38:16733–16739. doi:10.1021/bi990890z

    Article  Google Scholar 

  • Krisch R, Flick M, Trumbore C (1991) Radiation chemical mechanisms of single- and double-strand break formation in irradiated SV40 DNA. Radiat Res 126:251–259. doi:10.2307/3577826

    Article  Google Scholar 

  • Kumar A, Sevilla M (2012) Low-energy electron (LEE)-induced DNA damage: theoretical approaches to modeling experiment. In: Shukla M, Leszczynski J (eds) Handbook of computational chemistry volume III: applications-biomolecules. Springer, Berlin, pp 1215–1256

    Chapter  Google Scholar 

  • Kumar N, Sahoo B, Varun K, Maiti S, Maiti S (2008) Effect of loop length variation on quadruplex-Watson Crick duplex competition. Nuc Acids Res 36:4433–4442. doi:10.1093/nar/gkn402

    Article  Google Scholar 

  • Lam E, Beraldi D, Tannahill D, Balasubramanian S (2013) G-quadruplex structures are stable and detectable in human genomic DNA. Nat Commun 4:1796. doi:10.1038/ncomms2792

    Article  ADS  Google Scholar 

  • Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362:709–715

    Article  ADS  Google Scholar 

  • Lu J, Liu Y (2010) Deletion of Ogg1 DNA glycosylase results in telomere base damage and length alteration in yeast. EMBO J 29:398–409. doi:10.1038/emboj.2009.355

    Article  Google Scholar 

  • Morikawa M, Kino K, Oyoshi T, Suzuki M, Kobayashi T, Miyazawa H (2014) Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA. Biomolecules 4:140–159. doi:10.3390/biom4010140

    Article  Google Scholar 

  • Naaman R, Sanche L (2007) Low-energy electron transmission through thin-film molecular and biomolecular solids. Chem Rev 107:1553–1579. doi:10.1021/cr040200j

    Article  Google Scholar 

  • Oikawa S, Tada-Oikawa S, Kawanishi S (2001) Site-specific DNA damage at the ggg sequence by UVA involves acceleration of telomere shortening. Biochemistry 40:4763–4768. doi:10.1021/bi002721g

    Article  Google Scholar 

  • Paeschke K, Simonsson T, Postberg J, Rhodes D, Lipps HJ (2005) Telomere end-binding proteins control the formation of g-quadruplex DNA structures in vivo. Nat Struct Mol Biol 12:847–854. doi:10.1038/nsmb982

    Article  Google Scholar 

  • Paeschke K, Juranek S, Simonsson T, Hempel A, Rhodes D, Lipps HJ (2008) Telomerase recruitment by the telomere end binding protein-beta facilitates g-quadruplex DNA unfolding in ciliates. Nat Struct Mol Biol 15:598–604. doi:10.1038/nsmb

    Article  Google Scholar 

  • Purkayastha S, Milligan J, Bernhard W (2006) The role of hydration in the distribution of free radical trapping in directly ionized DNA. Radiat Res 166:1–8. doi:10.1667/RR3585.1

    Article  Google Scholar 

  • Ray S, Daube S, Cohen H, Naaman R (2007) Electron capturing by DNA. Isr J Chem 47:149–159. doi:10.1560/IJC.47.2.149

    Article  Google Scholar 

  • Sagstuen E, Hole E (2009) Radiation produced radicals. In: Brustolon M, Giamello E (eds) Electron paramagnetic resonance: a practitioner’s toolkit, 1st edn. Wiley, New Jersey, pp 325–381

    Chapter  Google Scholar 

  • Saito I, Nakamura T, Nakatani K, Yoshioka Y, Yamaguchi K, Sugiyama H (1998) Mapping of the hot spots for DNA damage by one-electron oxidation: efficacy of gg doublets and ggg triplets as a trap in long-range hole migration. J Am Chem Soc 120:12686–12687. doi:10.1021/ja981888i

    Article  Google Scholar 

  • Salin H, Ricoul M, Morat L, Sabatier L (2008) Increased genomic alteration complexity and telomere shortening in B-CLL cells resistant to radiation-induced apoptosis. Cytogenet Genome Res 122:343–349. doi:10.1159/000167821

    Article  Google Scholar 

  • Sen D, Gilbert W (1988) Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis. Nature 334:364–366. doi:10.1038/334364a0

    Article  ADS  Google Scholar 

  • Sharma K, Milligan J, Bernhard W (2008) Multiplicity of DNA single-strand breaks produced in pUC18 exposed to the direct effects of ionizing radiation. Radiat Res 170:156–162. doi:10.1667/RR1277.1

    Article  Google Scholar 

  • Sharma K, Tyagi R, Purkayastha S, Bernhard W (2010) One-electron oxidation of DNA by ionizing radiation: competition between base-to-base hole transfer and hole-trapping. J Phys Chem B 114:7672–7680. doi:10.1021/jp101717u

    Article  Google Scholar 

  • Sharma K, Swarts S, Bernhard W (2011) Mechanisms of direct radiation damage to DNA: the effect of base sequence on base end products. J Phys Chem B 115:4843–4855. doi:10.1021/jp200902h

    Article  Google Scholar 

  • Shukla L, Adhikary A, Pazdro R, Becker D, Sevilla M (2004) Formation of 8-oxo-7,8-dihydroguanine-radicals in γ-irridated DNA by multiple one-electron oxidations. Nucleic Acids Res 32:6565–6574. doi:10.1093/nar/gkh989

    Article  Google Scholar 

  • Spotheim-Maurizot M, Davidkova M (2011) Radiation damage to DNA in DNA-protein complexes. Mutat Res 711:41–48. doi:10.1016/j.mrfmmm.2011.02.003

    Article  Google Scholar 

  • Steenken S, Jovanovic S (1997) How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618. doi:10.1021/ja962255b

    Article  Google Scholar 

  • Sutherland B, Bennett P, Saparbaev M, Sutherland J, Laval J (2001) Clustered DNA damages as dosemeters for ionising radiation exposure and biological responses. Radiat Prot Dosim 97:33–38. doi:10.1093/oxfordjournals.rpd.a006635

    Article  Google Scholar 

  • Swarts S, Sevilla M, Becker D, Tokar C, Wheeler K (1992) Radiation-induced DNA damage as a function of hydration. I. Release of unaltered bases. Radiat Res 129:333–344. doi:10.2307/3578034

    Article  Google Scholar 

  • Swarts S, Gilbert D, Sharma K, Razskazovskiy Y, Purkayastha S, Naumenko K, Bernhard W (2007) Mechanisms of direct radiation damage in DNA, based on a study of the yields of base damage, deoxyribose damage, and trapped radicals in d (GCACGCGTGC)(2). Radiat Res 168:367–381. doi:10.1667/RR1058.1

    Article  Google Scholar 

  • von Sonntag C (1987) The chemical basis of radiation biology, 1st edn. Taylor and Francis, New York

    Google Scholar 

  • von Sonntag C (2006) DNA and double-stranded oligonucleotides. In: Shreck S (ed) Free radical induced DNA and its repair, 1st edn. Springer, Berlin, pp 382–390

    Chapter  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344. doi:10.1016/S0968-0004(02)02110-2

    Article  Google Scholar 

  • von Zglinicki T, Martin-Ruiz C (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5:197–203. doi:10.2174/1566524053586545

    Article  Google Scholar 

  • von Zglinicki T, Saretzki G, Docke W, Lotze C (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence. Exp Cell Res 220:186–193. doi:10.1006/excr.1995.1305

    Article  Google Scholar 

  • von Zglinicki T, Petrie J, Kirkwood T (2003) Telomere-driven replicative senescence is a stress response. Nat Biotechnol 21:229–230. doi:10.1038/nbt0303-229b

    Article  Google Scholar 

  • Wong K, Chang S, Weiler S, Ganesan S, Chaudhuri J, Zhu C, Artandi S, Rudolph K, Gottlieb G, Chin L, Alt F, Depinho R (2000) Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation. Nat Genet 26:85–88. doi:10.1038/79232

    Article  Google Scholar 

  • Wu Y, Shin-ya K, Brosh R Jr (2008) FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 28:4116–4128. doi:10.1128/MCB.02210-07

    Article  Google Scholar 

  • Yoshioka Y, Kitagawa Y, Takano Y, Yamaguchi K, Nakamura T, Saito I (1999) Experimental and theoretical studies on the selectivity of ggg triplets toward one- electron oxidation in B-form DNA. J Am Chem Soc 121:8712–8719. doi:10.1021/ja991032t

    Article  Google Scholar 

  • Zheng Y, Cloutier P, Hunting D, Sanche L, Wagner J (2005) Chemical basis of DNA sugar-phophate cleavage by low-energy electrons. J Am Chem Soc 127:16592–16598. doi:10.1021/ja054129q

    Article  Google Scholar 

  • Zheng Y, Wagner J, Sanche L (2006) DNA damage induced by low-energy electrons: electron transfer and diffraction. Phys Rev Lett 96:208101. doi:10.1103/PhysRevLett.96.208101

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The investigation was supported by PHS Grant R01 CA32546, awarded by National Cancer Institute, DHHS. Miller was currently supported by NIH Grant R01 GM057814. Hayes was currently supported by NIH Grant R01 GM052426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. Miller.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Paul J. Black and Adam S. Miller contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, P.J., Miller, A.S. & Hayes, J.J. Radioresistance of GGG sequences to prompt strand break formation from direct-type radiation damage. Radiat Environ Biophys 55, 411–422 (2016). https://doi.org/10.1007/s00411-016-0660-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00411-016-0660-7

Keywords

Navigation