Skip to main content
Log in

Microbial population analysis improves the evidential value of faecal traces in forensic investigations

  • Original Article
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Abstract

The forensic science community has a growing interest in microbial population analysis, especially the microbial populations found inside and on the human body. Both their high abundance, microbes outnumber human cells by a factor 10, and their diversity, different sites of the human body harbour different microbial communities, make them an interesting tool for forensics. Faecal material is a type of trace evidence which can be found in a variety of criminal cases, but is often being ignored in forensic investigations. Deriving a human short tandem repeat (STR) profile from a faecal sample can be challenging. However, the microbial communities within faecal material can be of additional criminalistic value in linking a faecal trace to the possible donor. We present a microarray technique in which the faecal microbial community is used to differentiate between faecal samples and developed a decision model to predict the possible common origin of questioned samples. The results show that this technique may be a useful additional tool when no or only partial human STR profiles can be generated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kakizaki E, Ogura Y, Kozawa S, Nishida S, Uchiyama T, Hayashi T, Yukawa N (2012) Detection of diverse aquatic microbes in blood and organs of drowning victims: first metagenomic approach using high-throughput 454-pyrosequencing. Forensic Sci Int 220(1–3):135–146

    Article  CAS  PubMed  Google Scholar 

  2. Horswell J, Cordiner SJ, Maas EW, Martin TM, Sutherland KBW, Speir TW, Nogales B, Osborn AM (2002) Forensic comparison of soils by bacterial community DNA profiling. J Forensic Sci 47(2):350–353

    Article  CAS  PubMed  Google Scholar 

  3. Quaak FCA, Kuiper I (2011) Statistical data analysis of bacterial t-RFLP profiles in forensic soil comparisons. Forensic Sci Int 210:96–101

    Article  CAS  PubMed  Google Scholar 

  4. Macdonald LM, Singh BK, Thomas N, Brewer MJ, Campbell CD, Dawson LA (2008) Microbial DNA profiling by multiplex terminal restriction fragment length polymorphism for forensic comparison of soil and the influence of sample condition. J Appl Microbiol 105(3):813–821

    Article  CAS  PubMed  Google Scholar 

  5. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vázquez-Baeza Y, Van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345(6200):1048–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326:1694–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Inglis GD, Thomas MC, Thomas DK, Kalmokoff ML, Brooks SPJ, Selinger LB (2012) Molecular methods to measure intestinal bacteria: a review. J AOAC Int 95(1):5–23

    Article  CAS  PubMed  Google Scholar 

  8. Kuczynski J, Costello EK, Nemergut DR, Zaneveld J, Lauber CL, Knights D, Koren O, Fierer N, Kelley ST, Ley RE, Gordon JI, Knight R (2010) Direct sequencing of the human microbiome readily reveals community differences. Genome Biol 11:210

    Article  PubMed  PubMed Central  Google Scholar 

  9. The Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214

    Article  PubMed Central  Google Scholar 

  10. Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R (2010) Forensic identification using skin bacterial communities. Proc Natl Acad Sci 107(14):6477–6481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aaspollu A, Lillsaar T, Tummeleht L, Simm J, Metsis M (2011) Can microbes on skin help linking persons and crimes. Forensic Sci Int Genet Suppl Ser 3(1):e269–e270

    Article  Google Scholar 

  12. Goga H (2012) Comparison of bacterial DNA profiles of footwear insoles and soles of feet for the forensic discrimination of footwear owners. Int J Legal Med 126:815–823

    Article  PubMed  Google Scholar 

  13. Finley SJ, Benbow ME, Javan GT (2015) Microbial communities associated with human decomposition and their potential use as postmortem clocks. Int J Legal Med 129(3):623–632

    Article  PubMed  Google Scholar 

  14. Rajilic-Stojanovic M, Heilig HGHJ, Tims S, Zoetendal EG, de Vos WM (2013) Long-term monitoring of the human intestinal microbiota composition. Environ Microbiol 15(4):1146–1159

    Article  CAS  Google Scholar 

  15. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martínez I, Muller CE, Walter J (2013) Long-term temporal analysis of the human fecal microbiota revealed a stable core of dominant bacterial species. PLoS ONE 8(7):e69621

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arumugam M, Raes J et al (2011) Eneterotypes of the human gut microbiome. Nature 473:174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vanderberg N, van Oorschot R (2002) A.H. Extraction of human nuclear DNA from feces samples using QIAamp DNA stool mini kit. J Forensic Sci 47(5):993–995

    Google Scholar 

  19. Johnson DJ, Martin LR, Roberts KA (2005) STR-typing of human DNA from human fecal matter using the QIAGEN QIAamp Stool Mini Kit. J Forensic Sci 50(4):802–808

    Article  CAS  PubMed  Google Scholar 

  20. Leake SL (2013) Is human DNA enough?—potential for bacterial DNA. Front Genet 4 article 282

  21. Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methé B, DeSantis TZ, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benschop CCG, Quaak FCA, Boon ME, Sijen T, Kuiper I (2012) Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? Int J Legal Med 126:303–310

    Article  PubMed  Google Scholar 

  23. Yushan H, Lei L, Weijia L, Xiaoguang C (2010) Sequence analysis of the groEL gene and its potential application in identification of pathogenic bacteria. Afr J Microbiol Res 4(16):1733–1741

    Google Scholar 

  24. Nicklas JA, Buel E (2003) Development of an Alu-based, real-time PCR method for quantitation of human DNA in forensic samples. J Forensic Sci 48:936–944

    CAS  PubMed  Google Scholar 

  25. Nicklas JA, Buel E (2006) Simultaneous determination of total human and male DNA using a duplex real-time PCR assay. J Forensic Sci 51:1005–1015

    Article  CAS  PubMed  Google Scholar 

  26. Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:326–349

    Article  Google Scholar 

  27. Beals EW (1984) Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data. Adv Ecol Res 14:1–55

    Article  Google Scholar 

  28. Grant A, Ogilvie LA (2003) Terminal restriction fragment length polymorphism data analysis. Appl Environ Microbiol 69:6342–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lindenbergh A, de Pagter M, Ramdayal G, Visser M, Zubakov D, Kayser M, Sijen T (2012) A multiplex (m)RNA-profiling system for the forensic identification of body fluids and contact traces. Forensic Sci Int Genet 6(5):265–577

    Article  Google Scholar 

  30. Virkler K, Lednev IK (2009) Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene. Forensic Sci Int 188:1–17

    Article  CAS  PubMed  Google Scholar 

  31. Sijen T (2015) Molecular approaches for forensic cell type identification: on mRNA, miRNA, DNA methylation and microbial markers. Forensic Sci Int 18:21–32

    Article  CAS  Google Scholar 

  32. (2015) ENFSI guideline for evaluative reporting in forensic science - Strengthening the Evaluation of Forensic Results across Europe (STEOFRAE) www.ensfi.eu

Download references

Acknowledgments

We are very grateful to all volunteers who provided stool samples for this study. And we would like to thank M.P.J. Piët (Netherlands Forensic Institute) for critically reading this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederike C. A. Quaak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

(PDF 214 kb)

Supplementary Table 1

(PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quaak, F.C.A., de Graaf, ML.M., Weterings, R. et al. Microbial population analysis improves the evidential value of faecal traces in forensic investigations. Int J Legal Med 131, 45–51 (2017). https://doi.org/10.1007/s00414-016-1390-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00414-016-1390-8

Keywords

Navigation