Skip to main content
Log in

LINE-related component of mouse heterochromatin and complex chromocenters’ composition

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Chromocenters are interphase nuclear landmark structures of constitutive heterochromatin. The tandem repeat (TR)-enriched parts of different chromosomes cluster together in chromocenters. There has been progress in recent years in determining the protein content of chromocenters, although it is not clear which DNA sequences underly constitutive heterochromatin apart from the TRs. The aim of the current work was to find out which DNA sequences besides TRs are involved in chromocenters’ formation. Biochemically isolated chromocenters and microdissected centromeric regions were amplified by DOP-PCR, then cloned and sequenced. Alignment to Repbase, the mouse reference genome and WGS databases separated the sequences from both libraries into three groups: (1) sequences with similarity to pericentromere mouse major satellite; (2) sequences without similarity to any repetitive sequences; (3) sequences with similarity to long interspersed nuclear elements (LINEs). LINE-related sequences have a disperse pattern distribution on chromosomes predicted in silico. Selected clones were used for fluorescent in situ hybridization (FISH). The 10 clones tested hybridized to chromocenters and centromeric regions of metaphase chromosomes. These clones were used for double FISH with four known cloned TRs (satDNA, satellite DNA) and a probe specific for the sex chromosomes. The probes bind various chromocenters’ regions without overlapping; so, FISH results reveal a complex chromocenter composition. We mapped 18 LINE-derived clones to the RepBase L1 records. Most of them grouped in a ∼2-kb region at the end of the second ORF and 3′ untranslated region (UTR). So, even the limited number of the clones allows us to determine the region of the L1 element that is specific for heterochromatic regions. Although the L1 full-length probe did not hybridize at detectable levels to the heterochromatic region on any chromosome, the 2-kb fragment found is definitely a part of these regions. The precise LINE ∼2-kb fragment is the component of mouse and human constitutive heterochromatin enriched with TRs. The method used for amplification of the probes from two sources of the heterochromatic material uncovered the enrichment of a precise fragment of LINE within chromocenters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CEN:

Centromere

ChrmC:

Chromocenters isolated by the biochemical approach

DAPI:

4′, 6-diami-dino-2-phenylindole

DOP-PCR:

PCR with DOP primer described in the Material and methods section

FISH:

Fluorescent in situ hybridization

GPG:

Golden Path Gap, 3 Mb empty region around each centromere in assembled genome

MdCP:

Microdissected centromeric DNA

MEF:

Mouse embryo fibroblast from C3H line

MiSat and MaSat:

Centromeric minor and pericentromeric major satellites

MS3 and MS4:

Mouse satellite 3 and 4, respectively

LINE:

Long interspersed nuclear element

periCEN:

Pericentromeric heterochromatin

satDNA:

Satellite DNA

SINE:

Short interspersed nuclear element

TE:

Transposable elements

TR:

Tandem repeat

References

  • Abdurashitov MA, Chernukhin VA, Gonchar DA, Degtyarev SK (2009) GlaI digestion of mouse γ-satellite DNA: study of primary structure and ACGT sites methylation. BMC Genomics 10(1):322

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmed M, Liang P (2012) Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Andrey P, Kiêu K, Kress C et al (2010) Statistical analysis of 3D images detects regular spatial distributions of centromeres and chromocenters in animal and plant nuclei. PLoS Comput Biol 6(7):e1000853

    Article  PubMed  PubMed Central  Google Scholar 

  • Arneson N, Hughes S, Houlston R, Done S (2008) Whole-genome amplification by degenerate oligonucleotide primed PCR (DOP-PCR). Cold Spring Harb Protoc 2008(1):pdb-prot4919

    Google Scholar 

  • Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed element sequences in the mouse genome: chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci 87(19):7757–7761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broccoli D, Miller OJ, Miller DA (1990) Relationship of mouse minor satellite DNA to centromere activity. Cytogenet Genome Res 54(3-4):182–186

    Article  CAS  Google Scholar 

  • Broccoli D, Trevor KT, Miller OJ, Miller DA (1991) Isolation of a variant family of mouse minor satellite DNA that hybridizes preferentially to chromosome 4. Genomics 10(1):68–74

    Article  CAS  PubMed  Google Scholar 

  • Carter NP, Bebb CE, Nordenskjo M, Ponder BA, Tunnacliffe A (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13(3):718–725

    Article  PubMed  Google Scholar 

  • Chinwalla AT, Cook LL, Delehaunty KD et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562

    Article  PubMed  Google Scholar 

  • Cooke HJ, Brown WAR (1984) Closely related sequences on human X and Y chromosomes outside the pairing region. Nature 311:259–261

    Article  CAS  PubMed  Google Scholar 

  • Cooke HJ, Brown WR, Rappold GA (1985) Hypervariable telomeric sequences from the human sex chromosomes are pseudoautosomal. Nature 317:687–692

    Article  CAS  PubMed  Google Scholar 

  • de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD (2011) Repetitive elements may comprise over two-thirds of the human genome. PLoS Genet 7(12):e1002384

    Article  PubMed  PubMed Central  Google Scholar 

  • Dernburg AF (2012) DOP-PCR amplification of probe DNA for whole-mount FISH in drosophila. Cold Spring Harb Protoc 2012(3):pdb-prot067306

    PubMed  Google Scholar 

  • Elgin SC, Reuter G (2013) Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb Perspect Biol 5(8):a017780

    Article  PubMed  PubMed Central  Google Scholar 

  • Galaktionov NK, Solovyeva AI, Fedorov AV, Podgornaya OI (2014) Trematode Himasthla elongata mariner element (Hemar): structure and applications. J Exp Zool B Mol Dev Evol 322(3):142–155

    Article  CAS  PubMed  Google Scholar 

  • Garagna S, Redi CA, Capanna E, Andayani N, Alfano RM, Viale G (1993) Genome distribution, chromosomal allocation, and organization of the major and minor satellite DNAs in 11 species and subspecies of the genus Mus. Cytogenet Genome Res 64(3-4):247–255

    Article  CAS  Google Scholar 

  • Guenatri M, Bailly D, Maison C, Almouzni G (2004) Mouse centric and pericentric satellite repeats form distinct functional heterochromatin. J Cell Biol 166(4):493–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo W, Wu H (2008) Metaphase preparation from murine bone. Exchange. doi:10.1038/nprot.2008.16

    Google Scholar 

  • Heitz E (1929) Heterochromatin, chromocentren. Chromomeren Berichte der Deutschen Botanischen Gesellschaft 47:274–284

    Google Scholar 

  • Helgason CD, Miller CL (eds) (2005) Basic cell culture protocols (Vol. 1). Humana Press

  • Kipling D, Ackford HE, Taylor BA, Cooke HJ (1991) Mouse minor satellite DNA genetically maps to the centromere and is physically linked to the proximal telomere. Genomics 11(2):235–241

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Wilson HE, Mitchell AR, Taylor BA, Cooke HJ (1994) Mouse centromere mapping using oligonucleotide probes that detect variants of the minor satellite. Chromosoma 103(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Kipling D, Mitchell AR, Masumoto H, Wilson HE, Nicol L, Cooke HJ (1995) CENP-B binds a novel centromeric sequence in the Asian mouse Mus caroli. Mol Cell Biol 15(8):4009–4020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in RepBase: RepBase submitter and censor. BMC Bioinf 7(1):474

    Article  Google Scholar 

  • Komissarov AS, Gavrilova EV, Demin SJ, Ishov AM, Podgornaya OI (2011) Tandemly repeated DNA families in the mouse genome. BMC Genomics 12(1):531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuznetsova IS, Prusov AN, Enukashvily NI, Podgornaya OI (2005) New types of mouse centromeric satellite DNAs. Chromosom Res 13(1):9–25

    Article  CAS  Google Scholar 

  • Kuznetsova I, Podgornaya O, Ferguson-Smith MA (2006) High-resolution organization of mouse centromeric and pericentromeric DNA. Cytogenet Genome Res 112(3-4):248–255

    Article  CAS  PubMed  Google Scholar 

  • Kuznetsova IS, Enukashvily NI, Noniashvili EM et al (2007) Evidence for the existence of satellite DNA‐containing connection between metaphase chromosomes. J Cell Biochem 101(4):1046–1061

    Article  CAS  PubMed  Google Scholar 

  • Miga KH, Newton Y, Jain M, Altemose N, Willard HF, Kent WJ (2014) Centromere reference models for human chromosomes X and Y satellite arrays. Genome Res 24(4):697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moens PB, Pearlman RE (1990) Telomere and centromere DNA are associated with the cores of meiotic prophase chromosomes. Chromosoma 100(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Morris CA, Moazed D (2007) Centromere assembly and propagation. Cell 128(4):647–650

    Article  CAS  PubMed  Google Scholar 

  • Namekawa SH, Payer B, Huynh KD, Jaenisch R, Lee JT (2010) Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Mol Cell Biol 30(13):3187–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papait R, Pistore C, Grazini U et al (2008) The PHD domain of Np95 (mUHRF1) is involved in large-scale reorganization of pericentromeric heterochromatin. Mol Biol Cell 19(8):3554–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertile MD, Graham AN, Choo KA, Kalitsis P (2009) Rapid evolution of mouse Y centromere repeat DNA belies recent sequence stability. Genome Res 19(12):2202–2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Probst AV, Almouzni G (2011) Heterochromatin establishment in the context of genome-wide epigenetic reprogramming. Trends Genet 27(5):177–185

    Article  CAS  PubMed  Google Scholar 

  • Prusov AN, Zatsepina OV (2002) Isolation of the chromocenter fraction from mouse liver nuclei. Biochem Mosc 67(4):423–431

    Article  CAS  Google Scholar 

  • Radic MZ, Lundgren K, Hamkalo BA (1987) Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50(7):1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Saksouk N, Simboeck E, Déjardin J (2015) Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 8(1):3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning. A laboratory manual. Third. Cold pring Harbor Laboratory Press, New York

    Google Scholar 

  • Shatskikh AS, Gvozdev VA (2013) Heterochromatin formation and transcription in relation to trans-inactivation of genes and their spatial organization in the nucleus. Biochem Mosc 78(6):603–612

    Article  CAS  Google Scholar 

  • Snapp RR, Goveia E, Peet L, Bouffard NA, Badger GJ, Langevin HM (2013) Spatial organization of fibroblast nuclear chromocenters: component tree analysis. J Anat 223(3):255–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Solovei I, Kreysing M, Lanctôt C et al (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137(2):356–368

    Article  CAS  PubMed  Google Scholar 

  • Telenius H, Ponder BA, Tunnacliffe A et al (1992) Cytogenetic analysis by chromosome painting using dop‐pcr amplified flow‐sorted chromosomes. Genes Chromosom Cancer 4(3):257–263

    Article  CAS  PubMed  Google Scholar 

  • Vissel B, Choo KH (1989) Mouse major (γ) satellite DNA is highly conserved and organized into extremely long tandem arrays: implications for recombination between nonhomologous chromosomes. Genomics 5(3):407–414

    Article  CAS  PubMed  Google Scholar 

  • Wijchers PJ, Geeven G, Eyres M, et al (2015) Characterization and dynamics of pericentromere-associated domains in mice. Genome Res gr-186643

  • Wong AKC, Rattner JB (1988) Sequence organization and cytological localization of the minor satellite of mouse. Nucleic Acids Res 16(24):11645–11661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang F, Trifonov V, Ng BL, Kosyakova N, Carter NP (2009) Generation of paint probes by flow-sorted and microdissected chromosomes. In Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer Berlin Heidelberg, p 35–52

  • Yunis JJ, Yasmineh WG (1971) Heterochromatin, satellite DNA, and cell function. Science 174(4015):1200–1209

    Article  CAS  PubMed  Google Scholar 

  • Zatsepina OV, Zharskaya OO, Prusov AN (2008) Isolation of the constitutive heterochromatin from mouse liver nuclei. In The Nucleus. Humana Press, p 169-180

Download references

Acknowledgments

The authors are entirely grateful to the anonymous reviewers for the very professional and helpful comments. This work was supported by the Russian Foundation for Basic Research (grant nos. 05-04-49156-а, 11-04-01700), the Russian Science Foundation (grant no.15-15-20026), Saint-Petersburg State University (grant no. 1.37.153.2014) and the granting program of “Molecular and Cell Biology” of the Presidium of Russian Academy of Sciences (no. 01.2.014571). We would like to thank Prof. Eugene D. Ponomarev (The Chinese University of Hong Kong) for the help with English corrections. Editing and publishing costs have been paid for by a grant from the Russian Science Foundation (grant no.15-15-20026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii I. Ostromyshenskii.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical standards

Mice were housed and maintained according to the approved standards in the Laboratory Animal Resources facility at Institute of Cytology RAS (St Petersburg, Russia).

Additional information

Responsible Editor: Rachel O’Neill, Ph.D.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 2012 kb)

Table S1

(DOC 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, I.S., Ostromyshenskii, D.I., Komissarov, A.S. et al. LINE-related component of mouse heterochromatin and complex chromocenters’ composition. Chromosome Res 24, 309–323 (2016). https://doi.org/10.1007/s10577-016-9525-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-016-9525-9

Keywords

Navigation