Skip to main content
Log in

Asymptotic Behavior of the Fourth Painlevé Transcendents in the Space of Initial Values

  • Published:
Constructive Approximation Aims and scope

Abstract

We study the asymptotic behavior of solutions of the fourth Painlevé equation as the independent variable goes to infinity in its space of (complex) initial values, which is a generalization of phase space described by Okamoto. We show that the limit set of each solution is compact and connected and, moreover, that any solution that is not rational has an infinite number of poles and infinite number of zeros.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Bassom, A.P., Clarkson, P.A., Hicks, A.C.: Numerical studes of the fourth Painlevé equation. IMA J. Appl. Math. 50, 167–193 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boutroux, P.: Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre. Ann. Sci. École Norm. Sup. (3) 30, 255–375 (1913)

    MathSciNet  MATH  Google Scholar 

  3. Boutroux, P.: Recherches sur les transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre (suite). Ann. Sci. École Norm. Sup. (3) 31, 99–159 (1914)

    MathSciNet  MATH  Google Scholar 

  4. Clarkson, P.A.: The fourth Painlevé equation and associated special polynomials. J. Math. Phys. 44(11), 5350–5374 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Duistermaat, J.J., Joshi, N.: Okamoto’s space for the first Painlevé equation in Boutroux coordinates. Arch. Ratl. Mech. Anal. 202, 707–785 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gerard, R.: Geometric theory of differential equations in the complex domain. In: Complex analysis and its applications (Lectures, Internat. Sem., Trieste, 1975), Vol. II, pp. 269–308. Internat. Atomic Energy Agency, Vienna (1976)

  7. Gordoa, P.R., Joshi, N., Pickering, A.: Bäcklund transformations for fourth Painlevé hierarchies. J. Differ. Equ. 217, 124–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gordoa, P.R., Joshi, N., Pickering, A.: Second and fourth Painlevé hierarchies and Jimbo-Miwa linear problems. J. Math. Phys. 47(7), 07350416 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Howes, P., Joshi, N.: Global asymptotics of the second Painlevé equation in Okamoto’s space. Constr. Approx. 39(1), 11–41 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matano, T., Matumiya, A., Takano, K.: On some Hamiltonian structures of Painlevé systems, II. J. Math. Soc. Jpn. 51(4), 843–866 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nagloo, J., Pillay, A.: On the algebraic independence of generic Painlevé transcendents. Compos. Math. 150, 668–678 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Noumi, M.: Painlevé equations through symmetry, Translations of Mathematical Monographs, vol. 223. American Mathematical Society, Providence, RI (2004). Translated from the 2000 Japanese original by the author

  13. Noumi, M., Okamoto, K.: Irreducibility of the second and the fourth Painlevé equations. Funkcial. Ekvac. 40(1), 139–163 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Noumi, M., Yamada, Y.: Symmetries in the fourth Painlevé equation and Okamoto polynomials. Nagoya Math. J. 153, 53–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Okamoto, K.: Sur les fuilletages associés aux équation du second ordre á points critiques fixes de P. Painlevé. Jpn. J. Math. 5(1), 1–79 (1979)

    MATH  Google Scholar 

  16. Okamoto, K.: Studies on the Painlevé equations. iii. second and fourth Painlevé equations, \(p_{\text{ II }}\) and \(p_{\text{ IV }}\). Math. Ann. 275(2), 221–255 (1986)

    Article  MathSciNet  Google Scholar 

  17. Stoyanova, T.: Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense. Nonlinearity 27(5), 1029–1044 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The research reported in this paper was supported by Grant No. FL120100094 from the Australian Research Council. The work of M.R. was partially supported by Project No. 174020: Geometry and Topology of Manifolds, Classical Mechanics and Integrable Dynamical Systems of the Serbian Ministry of Education, Science and Technological Development. The authors are grateful to the referee for comments and questions, which led to improvement of the manuscript. M.R. thanks Viktoria Heu for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Radnović.

Additional information

Communicated by Percy A. Deift.

M. Radnović: On leave from Mathematical Institute SANU, Belgrade, Serbia.

Appendix: Resolution of the Painlevé Vector Field

Appendix: Resolution of the Painlevé Vector Field

1.1 The Affine Charts

1.1.1 Affine Chart \((u_{01}, v_{01})\)

The first affine chart is defined by the original coordinates

$$\begin{aligned} u_{01}= & {} u, \\ v_{01}= & {} v, \\ E= & {} -uv(u+v+2). \end{aligned}$$

1.1.2 Affine Chart \((u_{02}, v_{02})\)

The second affine chart is given by the following coordinates:

$$\begin{aligned} u_{02}= & {} \frac{1}{u}, \qquad v_{02}=\frac{v}{u}, \\ u= & {} \frac{1}{u_{02}}, \qquad v=\frac{v_{02}}{u_{02}}. \end{aligned}$$

The line at infinity is \(\mathcal {L}_0: u_{02}=0\).

The Painlevé vector field is given by

$$\begin{aligned} u_{02}'= & {} 1+2u_{02}+2v_{02}+\frac{1}{2z}(2\alpha _1u_{02}^2+u_{02}), \\ v_{02}'= & {} \frac{v_{02}}{u_{02}}(4u_{02}+3v_{02}+3)+\frac{1}{z}(-\alpha _2u_{02}+\alpha _1u_{02}v_{02}), \end{aligned}$$

which contain base points at

$$\begin{aligned} b_0\ :\ u_{02}=0,v_{02}=0 \quad \text {and}\quad b_1\ :\ u_{02}=0,v_{02}=-1. \end{aligned}$$

The energy is

1.1.3 Affine Chart \((u_{03}, v_{03})\)

We have the coordinates

$$\begin{aligned} u_{03}= & {} \frac{1}{v}, \qquad v_{03}=\frac{u}{v}, \\ u= & {} \frac{v_{03}}{u_{03}}, \qquad v=\frac{1}{u_{03}}, \end{aligned}$$

and the line at infinity is given by \(\mathcal {L}_0: u_{03}=0\).

The flow is given by

$$\begin{aligned}&u_{03}'=-1-2u_{03}-2v_{03}+\frac{1}{2z}(2\alpha _2u_{03}^2+u_{03}), \\&v_{03}'=-\frac{v_{03}}{u_{03}}(4u_{03}+3v_{03}+3)+\frac{1}{z}(-\alpha _1u_{03}+\alpha _2u_{03}v_{03}), \end{aligned}$$

which contains base points at

$$\begin{aligned} b_2\ :\ u_{03}=0,v_{03}=0 \end{aligned}$$

and \((u_{03}=0,v_{03}=-1)\), which is \(b_1\).

The energy is given by

$$\begin{aligned} E= & {} -\frac{v_{03} (1 + 2 u_{03} + v_{03})}{u_{03}^3}, \\ E'= & {} \frac{1}{2 u_{03}^3 z} \left( 4 \alpha _2 u_{03}^2 v_{03}+ 2 \alpha _2 u_{03} v_{03}^2+ 4 \alpha _1 u_{03}^2 + 3 v_{03}^2 \right. \\&\quad \left. +\,4(\alpha _1+\alpha _2+1)u_{03} v_{03} +\,2 \alpha _1 u_{03} + 3 v_{03} \right) . \end{aligned}$$

1.2 Resolution at Base Points \(b_0\), \(b_1\), \(b_2\)

1.2.1 Resolution at \(b_0\)

The first chart is given by the coordinate change:

$$\begin{aligned} u_{11}= & {} \frac{u_{02}}{v_{02}}=\frac{1}{v}, \qquad v_{11}=v_{02}=\frac{v}{u}, \\ u= & {} \frac{1}{u_{11}v_{11}}, \qquad v=\frac{1}{u_{11}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_1:v_{11}=0\). The preimage of line \(\mathcal {L}_0\) is visible in this chart and given by the equation \(u_{11}=0\).

The flow in this chart:

$$\begin{aligned} u_{11}'= & {} -\frac{1}{v_{11}}(v_{11}+2u_{11}v_{11}+2)+\frac{u_{11}}{2z}(1+2\alpha _2u_{11}), \\ v_{11}'= & {} \frac{1}{u_{11}}(3v_{11}+4u_{11}v_{11}+3)+\frac{u_{11}v_{11}}{z}(-\alpha _2+\alpha _1v_{11}), \end{aligned}$$

contains no new base points.

The energy is given by

The second chart is given by

$$\begin{aligned} u_{12}= & {} u_{02}=\frac{1}{u}, \qquad v_{12}=\frac{v_{02}}{u_{02}}=v, \\ u= & {} \frac{1}{u_{12}}, \qquad v=v_{12}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_1:u_{12}=0\). The preimage of line \(\mathcal {L}_0\) is not visible in this chart.

The flow is

$$\begin{aligned} u_{12}'= & {} 1+2u_{12}+2u_{12}v_{12}+\frac{u_{12}}{2z}(1+2\alpha _1u_{12}), \\ v_{12}'= & {} \frac{v_{12}}{u_{12}}(2u_{12}+2+u_{12}v_{12})-\frac{1}{2z}(2\alpha _2+v_{12}). \end{aligned}$$

Both the vector field and the anticanonical pencil have base point at

$$\begin{aligned} b_3\ :\ u_{12}=0,v_{12}=0. \end{aligned}$$

The energy is given by

1.2.2 Resolution at \(b_1\)

The first chart is given by the coordinate change:

$$\begin{aligned} u_{21}= & {} \frac{u_{02}}{v_{02}+1}=\frac{1}{u+v}, \qquad v_{21}=v_{02}+1=\frac{u+v}{u}, \\ u= & {} \frac{1}{u_{21}v_{21}}, \qquad v=\frac{v_{21}-1}{u_{21}v_{21}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_2:v_{21}=0\). The preimage of the line \(\mathcal {L}_0\) is visible in this chart and given by the equation \(u_{21}=0\).

The flow is given by

$$\begin{aligned} u_{21}'= & {} \frac{(2u_{21}+1)(2-v_{21})}{v_{21}}+\frac{u_{21}}{2z}\big (2(\alpha _1+\alpha _2)u_{21}+1\big ), \\ v_{21}'= & {} \frac{(4u_{21}+3)(v_{21}-1)}{u_{21}}+\frac{u_{21}v_{21}}{z}(\alpha _1v_{21}-\alpha _1-\alpha _2), \end{aligned}$$

and contains a new base point at

$$\begin{aligned} b_4 :\ u_{21}=-\frac{1}{2},v_{21}=0. \end{aligned}$$

The energy is given by

$$\begin{aligned} E= & {} -\frac{( 2 u_{21} +1) (v_{21}-1)}{u_{21}^3 v_{21}^2}, \\ E'= & {} \frac{1}{2 u_{21}^3 v_{21}^2 z}\left( {-3} - 2(2+ \alpha _1 + \alpha _2) u_{21} + 3 v_{21} + 4 (1+ \alpha _2) u_{21} v_{21} \right. \\&\left. +\, 4( \alpha _2 - \alpha _1) u_{21}^2 v_{21} + 2 \alpha _1 u_{21} v_{21}^2 + 4 \alpha _1 u_{21}^2 v_{21}^2\right) . \end{aligned}$$

The second chart is given by

$$\begin{aligned} u_{22}= & {} u_{02}=\frac{1}{u}, \qquad v_{22}=\frac{v_{02}+1}{u_{02}}=u+v, \\ u= & {} \frac{1}{u_{22}}, \qquad v=v_{22}-\frac{1}{u_{22}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_2:u_{22}=0\). The preimage of line \(\mathcal {L}_0\) is not visible in this chart.

The flow is given by

$$\begin{aligned} u_{22}'= & {} -1+2u_{22}+2u_{22}v_{22}+\frac{u_{22}}{2z}(1+2\alpha _1u_{22}), \\ v_{22}'= & {} \frac{(v_{22}+2)(u_{22}v_{22}-2)}{u_{22}}-\frac{1}{2z}(v_{22}+2\alpha _1+2\alpha _2), \end{aligned}$$

and contains a base point \((u_{22}=0,v_{22}=-2)\), which is \(b_4\).

The energy is given by

1.2.3 Resolution at \(b_2\)

The first chart is given by

$$\begin{aligned} u_{31}= & {} \frac{u_{03}}{v_{03}}=\frac{1}{u}, \qquad v_{31}=v_{03}=\frac{u}{v}, \\ u= & {} \frac{1}{u_{31}}, \qquad v=\frac{1}{u_{31}v_{31}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_3:v_{31}=0\). The preimage of line \(\mathcal {L}_0\) is visible in this chart and given by the equation \(u_{31}=0\).

The flow

$$\begin{aligned} u_{31}'= & {} \frac{v_{31}+2u_{31}v_{31}+2}{v_{31}}+\frac{u_{31}}{2z}(1+2\alpha _1u_{31}), \\ v_{31}'= & {} -\frac{3+4u_{31}v_{31}+3v_{31}}{u_{31}}+\frac{u_{31}v_{31}}{z}(-\alpha _1+\alpha _2v_{31}), \end{aligned}$$

contains no base point.

The energy is given by

The second chart is given by

$$\begin{aligned} u_{32}= & {} u_{03}=\frac{1}{v}, \qquad v_{32}=\frac{v_{03}}{u_{03}}=u, \\ u= & {} v_{32}, \qquad v=\frac{1}{u_{32}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_3:u_{32}=0\). The preimage of line \(\mathcal {L}_0\) is not visible in this chart.

The flow is

$$\begin{aligned} u_{32}'= & {} -1-2u_{32}-2u_{32}v_{32}+\frac{u_{32}}{2z}(1+2\alpha _2u_{32}), \\ v_{32}'= & {} -\frac{v_{32}}{u_{32}}(2u_{32}+2+v_{32}u_{32})-\frac{1}{2z}(2\alpha _1+v_{32}). \end{aligned}$$

Both the vector field and the anticanonical pencil have a base point at

$$\begin{aligned} b_5\ :\ u_{32}=0,v_{32}=0. \end{aligned}$$

The energy is given by

1.3 Resolution at Points \(b_3\), \(b_4\), \(b_5\)

1.3.1 Resolution at \(b_3\)

The first chart is

$$\begin{aligned} u_{41}= & {} \frac{u_{12}}{v_{12}}=\frac{1}{uv}, \qquad v_{41}=v_{12}=v, \\ u= & {} \frac{1}{u_{41}v_{41}}, \qquad v=v_{41}, \end{aligned}$$

and the corresponding Jacobian is

$$\begin{aligned} J_{41}=\frac{\partial u_{41}}{\partial u}\frac{\partial v_{41}}{\partial v}-\frac{\partial u_{41}}{\partial v}\frac{\partial v_{41}}{\partial u} =-\frac{1}{u^2v}=-u_{41}^2v_{41}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_4:v_{41}=0\). The preimage of line \(\mathcal {L}_1\) in this chart is \(u_{41}=0\). \(\mathcal {L}_0\) is not visible in this chart.

The flow is given by

$$\begin{aligned} u_{41}'= & {} -\frac{1}{v_{41}}+u_{41}v_{41}+\frac{u_{41} \left( \alpha _2+v_{41}+\alpha _1u_{41}v_{41}^2\right) }{zv_{41}}, \\ v_{41}'= & {} \frac{2}{u_{41}}+2v_{41}+v_{41}^2-\frac{1}{2z}(2\alpha _2+v_{41}), \end{aligned}$$

and contains a base point:

$$\begin{aligned} b_6\ :\ u_{41}=\frac{z}{\alpha _2},v_{41}=0. \end{aligned}$$

The energy and related quantities are

The second chart is given by

$$\begin{aligned} u_{42}= & {} u_{12}=\frac{1}{u}, \qquad v_{42}=\frac{v_{12}}{u_{12}}=uv, \\ u= & {} \frac{1}{u_{42}}, \qquad v=u_{42}v_{42}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_4:u_{42}=0\). The preimages of \(\mathcal {L}_0\) and \(\mathcal {L}_1\) are not visible in this chart.

The flow is

$$\begin{aligned} \begin{aligned} u_{42}'&=1+2u_{42}+2u_{42}^2v_{42}+\frac{u_{42}}{2z}(1+2\alpha _1u_{42}), \\ v_{42}'&=\frac{v_{42}}{u_{42}}-u_{42}v_{42}^2-\frac{1}{zu_{42}} \left( \alpha _2+u_{42}v_{42}+\alpha _1u_{42}^2v_{42}\right) , \end{aligned} \end{aligned}$$

and contains a base point \((u_{42}=0,v_{42}=\frac{\alpha _2}{z})\), which is \(b_6\).

1.3.2 Resolution at \(b_4\)

The first chart is given by

$$\begin{aligned} u_{51}= & {} \frac{u_{21}+\frac{1}{2}}{v_{21}}=\frac{u(u+v+2)}{2(u+v)^2}, \qquad v_{51}=v_{21}=\frac{u+v}{u}, \\ u= & {} \frac{2}{v_{51} (2 u_{51} v_{51}-1)}, \qquad v=\frac{2 (v_{51}-1)}{v_{51} ( 2 u_{51} v_{51}-1)}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_5:v_{51}=0\). The preimage of \(\mathcal {L}_2\) is not visible in this chart, while the preimage of \(\mathcal {L}_0\) is given by \(u_{51}v_{51}=\frac{1}{2}\).

The flow is given by

$$\begin{aligned} \begin{aligned} u_{51}'&=-\frac{2u_{51}(1+2u_{51}v_{51}(3v_{51}-4))}{v_{51}(2u_{51}v_{51}-1)} \\&+\frac{\left( 2u_{51}v_{51}-1\right) \left( \alpha _1+\alpha _2-1-4(\alpha _1+\alpha _2)u_{51}v_{51}+2\alpha _1u_{51}v_{51}^2\right) }{4zv_{51}}, \\ v_{51}'&=\frac{2(v_{51}-1)(4u_{51}v_{51}+1)}{2u_{51}v_{51}-1}+\frac{v_{51}(\alpha _1v_{51}-\alpha _1-\alpha _2)(2u_{51}v_{51}-1)}{2z}, \end{aligned} \end{aligned}$$

and contains a base point

$$\begin{aligned} b_7\ :\ u_{51}=\frac{1-\alpha _1-\alpha _2}{8z},v_{51}=0. \end{aligned}$$

The second chart is

$$\begin{aligned} u_{52}= & {} u_{21}+\frac{1}{2}=\frac{1}{u+v}+\frac{1}{2}, \qquad v_{52}=\frac{v_{21}}{u_{21}+\frac{1}{2}}=\frac{2(u+v)^2}{u(u+v+2)}, \\ u= & {} \frac{2}{(2 u_{52}-1) u_{52}v_{52}}, \qquad v=\frac{2 ( u_{52} v_{52}-1)}{( 2 u_{52}-1)u_{52} v_{52}}, \end{aligned}$$

which has Jacobian

$$\begin{aligned} J_{52}=\frac{\partial u_{52}}{\partial u}\frac{\partial v_{52}}{\partial v}-\frac{\partial u_{52}}{\partial v}\frac{\partial v_{52}}{\partial u} =-\frac{2}{u^2(u+v+2)}=-\frac{1}{8}u_{52}(2u_{52}-1)^3v_{52}^2. \end{aligned}$$

The exceptional line is \(\mathcal {L}_5:u_{52}=0\). In this chart, the preimage of \(\mathcal {L}_2\) is given by \(v_{52}=0\), and of \(\mathcal {L}_0\) by \(u_{52}=\frac{1}{2}\).

The flow is given by

$$\begin{aligned} \begin{aligned} u_{52}'&=-2u_{52}+\frac{4}{v_{52}}+\frac{(2u_{52}-1)(1+(\alpha _1+\alpha _2)(2u_{52}-1))}{4z}, \\ v_{52}'&=\frac{2\left( 1-8u_{52}+6u_{52}^2v_{52}\right) }{u_{52}(2u_{52}-1)} \\&\quad + \frac{v_{52}(2u_{52}-1)\left( \alpha _1+\alpha _2-1-4(\alpha _1+\alpha _2)u_{52}+2\alpha _1u_{52}^2v_{52}\right) }{4zu_{52}}, \end{aligned} \end{aligned}$$

which contains a base point \(\left( u_{52}=0, v_{52}={8z}/(1-\alpha _1-\alpha _2)\right) \), which is \(b_7\).

The energy and related quantities are

$$\begin{aligned} \begin{aligned} E&=-\frac{16 ( u_{52} v_{52}-1)}{u_{52} (2 u_{52}-1)^3 v_{52}^2}, \qquad EJ_{52}=2 ( u_{52} v_{52}-1), \\ E'&=\frac{4}{u_{52}^2 \left( 2 u_{52}-1\right) ^3 v_{52}^2 z} \left( (\alpha _1 + \alpha _2-1) - 2(2+ \alpha _1+ \alpha _2) u_{52} \right. \\&\qquad + (1-\alpha _1-\alpha _2) u_{52} v_{52} + 4(1+\alpha _1) u_{52}^2 v_{52} +4(\alpha _2-\alpha _1) u_{52}^3 v_{52} \\&\left. \qquad - 2 \alpha _1 u_{52}^3 v_{52}^2 + 4 \alpha _1 u_{52}^4 v_{52}^2\right) . \end{aligned} \end{aligned}$$

1.3.3 Resolution at \(b_5\)

The first chart is

$$\begin{aligned} u_{61}= & {} \frac{u_{32}}{v_{32}}=\frac{1}{uv}, \qquad v_{61}=v_{32}=u, \\ u= & {} v_{61}, \qquad v=\frac{1}{u_{61}v_{61}}, \\ J_{61}= & {} \frac{\partial u_{61}}{\partial u}\frac{\partial v_{61}}{\partial v}-\frac{\partial u_{61}}{\partial v}\frac{\partial v_{61}}{\partial u} =\frac{1}{uv^2}=u_{61}^2v_{61}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_6:v_{61}=0\). In this chart, the preimage of \(\mathcal {L}_3\) is given by \(u_{61}=0\), and the preimage of \(\mathcal {L}_0\) is not visible.

The flow is

$$\begin{aligned} \begin{aligned} u_{61}'&=\frac{1-u_{61}v_{61}^2}{v_{61}}+\frac{u_{61}\left( v_{61}+\alpha _1+\alpha _2u_{61}v_{61}^2\right) }{zv_{61}}, \\ v_{61}'&=-\frac{2+u_{61}v_{61}(2+v_{61})}{u_{61}}-\frac{v_{61}+2\alpha _1}{2z}, \end{aligned} \end{aligned}$$

and contains a base point:

$$\begin{aligned} b_8\ :\ u_{61}=-\frac{z}{\alpha _1},v_{61}=0. \end{aligned}$$

The energy is given by

$$\begin{aligned} \begin{aligned} E&=-\frac{1 + 2 u_{61} v_{61} + u_{61} v_{61}^2}{u_{61}^2 v_{61}}, \qquad EJ_{61}=-\left( 1 + 2 u_{61} v_{61} + u_{61} v_{61}^2\right) , \\ E'&=\frac{1}{2 u_{61}^2 v_{61}^2 z} \left( 2 \alpha _1 + 3 v_{61} + 4 \alpha _1 u_{61} v_{61} + 4(1+\alpha _1+\alpha _2) u_{61} v_{61}^2 \right. \\&\left. \quad +\, 3 u_{61} v_{61}^3 + 4 \alpha _2 u_{61}^2 v_{61}^3 + 2 \alpha _2 u_{61}^2 v_{61}^4 \right) . \end{aligned} \end{aligned}$$

The second chart is

$$\begin{aligned} u_{62}= & {} u_{32}=\frac{1}{v}, \qquad v_{62}=\frac{v_{32}}{u_{32}}=uv, \\ u= & {} u_{62}v_{62}, \qquad v=\frac{1}{u_{62}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_6:u_{62}=0\). In this chart, the preimages of \(\mathcal {L}_3\) and \(\mathcal {L}_0\) are not visible.

The flow is

$$\begin{aligned} \begin{aligned} u_{62}'&=-1-2u_{62}-2u_{62}^2v_{62}+\frac{u_{62}(2\alpha _2u_{62}+1)}{2z}, \\ v_{62}'&=\frac{v_{62}(-1+u_{62}^2v_{62})}{u_{62}}-\frac{\alpha _1+u_{62}v_{62}(1+\alpha _2u_{62})}{zu_{62}}, \end{aligned} \end{aligned}$$

and contains a base point is \(u_{62}=0,v_{62}=-\,{\alpha _1}/{z}\), which is \(b_8\).

The energy is given by

$$\begin{aligned} \begin{aligned} E&=-\frac{v_{62}}{u_{62}} \left( 1 + 2 u_{62} + u_{62}^2 v_{62}\right) , \qquad EJ_{62}=-v_{62}\left( 1 + 2 u_{62} + u_{62}^2 v_{62}\right) , \\ E'&=\frac{1}{2 u_{62}^2 z} \left( 2 \alpha _1 + 4 \alpha _1 u_{62} + 3 u_{62} v_{62} + 4(1+\alpha _1+\alpha _2) u_{62}^2 v_{62} \right. \\&\left. \quad +\, 4 \alpha _2 u_{62}^3 v_{62} + 3 u_{62}^3 v_{62}^2 + 2 \alpha _2 u_{62}^4 v_{62}^2\right) . \end{aligned} \end{aligned}$$

1.4 Resolution at Points \(b_6\), \(b_7\), \(b_8\)

1.4.1 Resolution at \(b_6\)

The first chart is

$$\begin{aligned} u_{71}= & {} \frac{u_{42}}{v_{42}-\frac{\alpha _2}{z}}=\frac{z}{u(uvz-\alpha _2)}, \qquad v_{71}=v_{42}-\frac{\alpha _2}{z}=uv-\frac{\alpha _2}{z}, \\ u= & {} \frac{1}{u_{71} v_{71}}, \qquad v=u_{71} v_{71} \left( v_{71}+\frac{\alpha _2}{z} \right) , \end{aligned}$$

which gives the Jacobian

$$\begin{aligned} J_{71}&=\frac{\partial u_{71}}{\partial u}\frac{\partial v_{71}}{\partial v}-\frac{\partial u_{71}}{\partial v}\frac{\partial v_{71}}{\partial u} =\frac{z}{u(\alpha _2-uvz)}=-u_{71}, \\ J_{71}'&=-2u_{71}-3u_{71}^2v_{71}^2 -\frac{u_{71}}{2z}\big (3+4(\alpha _1+2\alpha _2)u_{71}v_{71}\big ) -\frac{(\alpha _1+\alpha _2)\alpha _2}{z^2}u_{71}^2. \end{aligned}$$

The exceptional line is \(\mathcal {L}_7:v_{71}=0\). In this chart, the preimage of \(\mathcal {L}_4\) is given by equation \(u_{71}=0\), while the preimages of \(\mathcal {L}_1\) and \(\mathcal {L}_0\) are not visible.

The flow is given by

$$\begin{aligned} \begin{aligned} u_{71}'&=2u_{71}+3u_{71}^2v_{71}^2 +\frac{u_{71}}{2z}\big (3+4(\alpha _1+2\alpha _2)u_{71}v_{71}\big ) +\frac{(\alpha _1+\alpha _2)\alpha _2}{z^2}u_{71}^2, \\ v_{71}'&= \frac{1}{u_{71}} - u_{71} v_{71}^3 -\frac{v_{71}}{z}\big (1 + (\alpha _1+2\alpha _2) u_{71} v_{71} \big ) -\frac{\alpha _2(\alpha _1+\alpha _2) u_{71} v_{71}}{z^2}, \end{aligned} \end{aligned}$$

and contains no base points.

The energy is given by

$$\begin{aligned} \begin{aligned} E&=-\frac{1 + 2 u_{71} v_{71} + u_{71}^2 v_{71}^3}{u_{71}}-\frac{\alpha _2}{u_{71} v_{71} z}\left( 1 + 2 u_{71} v_{71} + 2 u_{71}^2 v_{71}^3\right) -\frac{\alpha _2^2 }{z^2}u_{71} v_{71}, \\ EJ_{71}&=1 + 2 u_{71} v_{71} + u_{71}^2 v_{71}^3+ \frac{\alpha _2}{v_{71} z}\left( 1 + 2 u_{71} v_{71} + 2 u_{71}^2 v_{71}^3\right) +\frac{\alpha _2^2 }{z^2}u_{71}^2 v_{71}. \end{aligned} \end{aligned}$$

The second chart is

$$\begin{aligned} u_{72}= & {} u_{42}=\frac{1}{u}, \qquad v_{72}=\frac{v_{42}-\frac{\alpha _2}{z}}{u_{42}}=\frac{u(uvz-\alpha _2)}{z}, \\ u= & {} \frac{1}{u_{72}}, \qquad v=\frac{u_{72}}{z}(zu_{72}v_{72}+\alpha _2). \end{aligned}$$

In this chart, the exceptional line \(\mathcal {L}_7\) is given by equation \(u_{72}=0\), while the preimages of \(\mathcal {L}_4\), \(\mathcal {L}_1\), and \(\mathcal {L}_0\) are not visible.

The flow

$$\begin{aligned} \begin{aligned} u_{72}'&=\frac{u_{72}}{2z}\big (1 + 2 (\alpha _1 + 2 \alpha _2) u_{72}\big ) + 1 + 2 u_{72} + 2 u_{72}^3 v_{72}, \\ v_{72}'&=-\frac{2 \alpha _2(\alpha _1+\alpha _2) + 4(\alpha _1+2 \alpha _2) u_{72} v_{72} z + v_{72} z \left( 3 + 4 z + 6 u_{72}^2 v_{72} z\right) }{2 z^2}, \end{aligned} \end{aligned}$$

contains no base points.

1.4.2 Resolution at \(b_7\)

The first chart is

$$\begin{aligned} \begin{aligned} u_{81}&=\frac{u_{51}-\frac{1-\alpha _1-\alpha _2}{8z}}{v_{51}} \\&=\frac{u}{8 (u + v)^3 z}\big ((\alpha _1 + \alpha _2-1) v^2 + (\alpha _1 + \alpha _2 -1 + 4 z)u^2 \\&\quad + 2(\alpha _1 + \alpha _2 -1 + 2 z)uv + 8 u z \big ), \\ v_{81}=&v_{51}=\frac{u+v}{u}, \\ u&=\frac{8 z}{v_{81} ( 8 u_{81} v_{81}^2 z-( \alpha _1 + \alpha _2-1) v_{81} - 4 z )}, \\ v&=\frac{8 (v_{81}-1) z}{v_{81} ( 8 u_{81} v_{81}^2 z-( \alpha _1 + \alpha _2-1) v_{81} - 4 z )}. \end{aligned} \end{aligned}$$

In this chart, the exceptional line \(\mathcal {L}_8\) is given by equation \(v_{81}=0\), while the preimages of \(\mathcal {L}_5\) and \(\mathcal {L}_2\) are not visible.

The flow is given by

$$\begin{aligned} \begin{aligned} u_{81}'&= \left( \frac{1 - 4 \alpha _1 - 4 \alpha _2}{2 z}-10\right) u_{81} -\frac{\alpha _1 (\alpha _1 + \alpha _2-1)^2}{64 z^3}v_{81}-\frac{\alpha _1 (\alpha _1 + \alpha _2-1)}{16 z^2} \\&\quad +\left( \frac{\alpha _1}{z}-\frac{5 ( \alpha _1 + \alpha _2-1) (\alpha _1 + \alpha _2)}{8 z^2} \right) u_{81}v_{81} +\frac{(\alpha _1 + \alpha _2-1)^2 (\alpha _1 + \alpha _2)}{32 z^3} \\&\quad +\frac{3 \alpha _1 (\alpha _1 + \alpha _2-1)}{8 z^2} u_{81}v_{81}^2 +\frac{3(\alpha _1+\alpha _2)}{z}u_{81}^2v_{81}^2-\frac{2\alpha _1}{z}u_{81}^2v_{81}^3 \\&\quad + \frac{3}{16z^2(8 u_{81} v_{81}^2 z-(\alpha _1 + \alpha _2-1) v_{81} - 4 z)} \times \big ({-(\alpha _1 + \alpha _2-1)^3} \\&\quad -4 ( \alpha _1 + \alpha _2-1)^2 z -32 (3(\alpha _1 + \alpha _2-1) + 8 z) z^2u_{81} \\&\quad +8 ( \alpha _1 + \alpha _2-1)( \alpha _1 + \alpha _2-1+ 4z)z u_{81} v_{81} +512 z^3 u_{81}^2 v_{81} \big ), \\ v_{81}'&=-\,4 + 4 v_{81} - \frac{\alpha _1+\alpha _2}{z}u_{81}v_{81}^3+\frac{\alpha _1}{z}u_{81}v_{81}^4 +\frac{(\alpha _1+\alpha _2-1)(\alpha _1+\alpha _2)}{8z^2}v_{81}^2 \\&\quad -\frac{\alpha _1(\alpha _1+\alpha _2-1)}{8z^2}v_{81}^3-\frac{\alpha _1}{2z}v_{81}^2 +\frac{\alpha _1+\alpha _2}{2z}v_{81} \\&\quad +\frac{24z(v_{81}-1)}{8 u_{81} v_{81}^2 z-(\alpha _1 + \alpha _2-1) v_{81} - 4 z }. \end{aligned} \end{aligned}$$

There are no new base points.

The second chart is

$$\begin{aligned} u_{82}= & {} u_{51}-\frac{1-\alpha _1-\alpha _2}{8z}=\frac{u(u+v+2)}{2(u+v)^2}-\frac{1-\alpha _1-\alpha _2}{8z}, \\ v_{82}= & {} \frac{v_{51}}{u_{51}-\frac{1-\alpha _1-\alpha _2}{8z}}= \frac{u+v}{u}\left( \frac{u(u+v+2)}{2(u+v)^2}-\frac{1-\alpha _1-\alpha _2}{8z}\right) ^{-1}, \\ u= & {} \frac{-8 u_{82}^2 z}{v_{82} (4 u_{82} z + v_{82} ( \alpha _1 + \alpha _2 -1 - 8 u_{82} z))}, \\ v= & {} \frac{8 u_{82} (u_{82} - v_{82}) z}{v_{82} (4 u_{82} z + v_{82} ( \alpha _1 + \alpha _2 -1 - 8 u_{82} z))}. \end{aligned}$$

In this chart, the exceptional line \(\mathcal {L}_8\) is given by equation \(u_{82}=0\), and the preimage of \(\mathcal {L}_5\) by \(v_{82}=0\). The preimage of \(\mathcal {L}_2\) is not visible.

The Jacobian is

$$\begin{aligned} \begin{aligned} J_{82}&= \frac{v_{82} (4 u_{82} z + v_{82} (\alpha _1 + \alpha _2-1 - 8 u_{82} z))^3}{512 u_{82}^3 z^3}, \end{aligned} \end{aligned}$$

while the derivative of the Jacobian is

$$\begin{aligned} \begin{aligned} J_{82}'&=\frac{\partial J_{82}}{u_{82}}u_{82}'+\frac{\partial J_{82}}{v_{82}}v_{82}'+\frac{\partial J_{82}}{z} \\&= -\,\frac{(4 u_{82} z + v_{82} ( \alpha _1 + \alpha _2-1 - 8 u_{82} z))^2}{512 u_{82}^4 z^3}\times \left( 3 ( \alpha _1 + \alpha _2-1) v_{82}^2 u_{82}' \right. \\&\quad -\, 4u_{82}(u_{82} z + v_{82} ( \alpha _1 + \alpha _2 -1- 8 u_{82} z)) v_{82}' \\&\left. \quad +\,3 (\alpha _1 + \alpha _2-1) v_{82}^2 \right) . \end{aligned} \end{aligned}$$

The flow is given by

$$\begin{aligned} u_{82}'= & {} \frac{8}{v_{82}}-6u_{82} -\frac{(\alpha _1 + \alpha _2-1)^2}{64 z^3} u_{82} v_{82} (\alpha _1u_{82} v_{82}-2 \alpha _1 -2 \alpha _2) \\&-\,\frac{1}{4 z}\big (3(1 - \alpha _1 - \alpha _2) +2(3\alpha _1+3\alpha _2-1) u_{82} - 2 \alpha _1 u_{82}^2 v_{82} \\&-\, 8 (\alpha _1+\alpha _2) u_{82}^3 v_{82} + 4 \alpha _1 u_{82}^4 v_{82}^2\big ) \\&+\,\frac{\alpha _1 + \alpha _2-1}{16 z^2} \big (3( \alpha _1 + \alpha _2-1) - \alpha _1 u_{82} v_{82} - 8 (\alpha _1+\alpha _2) u_{82}^2 v_{82} \\&+\, 4 \alpha _1 u_{82}^3 v_{82}^2\big ) \\&+\,3\frac{32 z^2 + v_{82} ( \alpha _1 + \alpha _2 -1+ 4 z) ( \alpha _1 + \alpha _2-1 - 8 u_{82} z)}{4 v_{82} z (8 u_{82}^2 v_{82} z-( \alpha _1 + \alpha _2-1) u_{82} v_{82} - 4 z )}, \\ v_{82}'= & {} 10v_{82} +\frac{( \alpha _1 + \alpha _2-1)^2 v_{82}^2 ( \alpha _1 u_{82} v_{82}-2 \alpha _2 -2 \alpha _1)}{64 z^3} \\&+\,\frac{( \alpha _1 + \alpha _2-1) v_{82}^2 (\alpha _1+10\left( \alpha _1+ \alpha _2\right) u_{82} - 6\alpha _1 u_{82}^2 v_{82})}{16 z^2} \\&+\,\frac{v_{82}}{2z} \big ( 4 \alpha _1 + 4 \alpha _2-1 - 2 \alpha _1 u_{82} v_{82} - 6 (\alpha _1+\alpha _2) u_{82}^2 v_{82} + 4 \alpha _1 u_{82}^3 v_{82}^2\big ) \\&+\, \frac{3 v_{82}}{16 z^2 ((1 - \alpha _1 - \alpha _2) u_{82} v_{82} - 4 z + 8 u_{82}^2 v_{82} z)} \\&\quad \times \, \big ( ( \alpha _1 + \alpha _2-1)^3 v_{82} -4 (\alpha _1 + \alpha _2-1)^2 (2 u_{82}-1) v_{82} z \\&\quad -\,32 ( \alpha _1 + \alpha _2-1) (u_{82} v_{82}-3) z^2 +256(1-2u_{82})z^3 \big ). \end{aligned}$$

There are no new base points.

The energy is given by

$$\begin{aligned} \begin{aligned} E&=-\frac{128 ( u_{82} v_{82}-1) z^2 (1 - \alpha _1 - \alpha _2 + 8 u_{82} z)}{u_{82} v_{82} (8 u_{82}^2 v_{82} z-( \alpha _1 + \alpha _2-1) u_{82} v_{82} - 4 z)^3}, \\ EJ_{82}&=-\frac{( u_{82} v_{82}-1) (1 - \alpha _1 - \alpha _2 + 8 u_{82} z)}{4 u_{82}^4 z (8 u_{82}^2 v_{82} z-( \alpha _1 + \alpha _2-1) u_{82} v_{82} - 4 z)^3} \\&\qquad \times \big (4 u_{82} z + v_{82} ( \alpha _1 + \alpha _2 -1 - 8 u_{82} z)\big )^3. \end{aligned} \end{aligned}$$

1.4.3 Resolution at \(b_8\)

The first chart is

$$\begin{aligned} u_{91}= & {} \frac{u_{62}}{v_{62}+\frac{\alpha _1}{z}}=\frac{z}{v(uvz+\alpha _1)}, \qquad v_{91}=v_{62}+\frac{\alpha _1}{z}=uv+\frac{\alpha _1}{z}, \\ u= & {} u_{91}v_{91}\left( v_{91}-\frac{\alpha _1}{z}\right) , \qquad v=\frac{1}{u_{91}v_{91}}, \\ J_{91}= & {} \frac{\partial u_{91}}{\partial u}\frac{\partial v_{91}}{\partial v}-\frac{\partial u_{91}}{\partial v}\frac{\partial v_{91}}{\partial u} =\frac{z}{v(\alpha _1 + u v z)}=u_{91}, \\ J_{91}'= & {} -2 u_{91} - 3 u_{91}^2 v_{91}^2 - \frac{\alpha _1(\alpha _1+ \alpha _2) u_{91}^2}{z^2} + \frac{3 u_{91}}{2 z} +\frac{2(2\alpha _1+\alpha _2)u_{91}^2 v_{91}}{z}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_9:v_{91}=0\). In this chart, the preimage of \(\mathcal {L}_6\) is given by equation \(u_{91}=0\), while the preimages of \(\mathcal {L}_3\) and \(\mathcal {L}_0\) are not visible.

The flow is

$$\begin{aligned} \begin{aligned} u_{91}'&=-2 u_{91} - 3 u_{91}^2 v_{91}^2 - \frac{\alpha _1(\alpha _1+ \alpha _2) u_{91}^2}{z^2} + \frac{3 u_{91}}{2 z} +\frac{2(2\alpha _1+\alpha _2)u_{91}^2 v_{91}}{z}, \\ v_{91}'&=-\frac{1}{u_{91}} + u_{91} v_{91}^3 + \frac{\alpha _1(\alpha _1+\alpha _2) u_{91} v_{91}}{z^2} - \frac{v_{91}}{z} - \frac{(2 \alpha _1+\alpha _2) u_{91} v_{91}^2}{z}, \end{aligned} \end{aligned}$$

and contains no base points.

Energy:

$$\begin{aligned} \begin{aligned} E&=\frac{(v_{91} z-\alpha _1 ) (\alpha _1 u_{91}^2 v_{91}^2 - z - 2 u_{91} v_{91} z - u_{91}^2 v_{91}^3 z)}{u_{91} v_{91} z^2}, \\ EJ_{91}&=-1 - 2 u_{91} v_{91} - u_{91}^2 v_{91}^3 - \frac{\alpha _1^2 u_{91}^2 v_{91}}{z^2} + \frac{ 2 \alpha _1 u_{91}}{z} + \frac{\alpha _1}{v_{91} z} + \frac{2 \alpha _1 u_{91}^2 v_{91}^2}{z}. \end{aligned} \end{aligned}$$

The second chart is

$$\begin{aligned} u_{92}= & {} u_{62}=\frac{1}{v}, \qquad v_{92}=\frac{v_{62}+\frac{\alpha _1}{z}}{u_{62}}=\frac{v(uvz+\alpha _1)}{z}, \\ u= & {} u_{92}^2v_{92}-\frac{\alpha _1}{z}u_{92}, \qquad v=\frac{1}{u_{92}}. \end{aligned}$$

The exceptional line is \(\mathcal {L}_9:u_{92}=0\). In this chart, the preimages of \(\mathcal {L}_6\), \(\mathcal {L}_3\) and \(\mathcal {L}_0\) are not visible.

The flow is given by

$$\begin{aligned} \begin{aligned} u_{92}'&=-1 - 2 u_{92} - 2 u_{92}^3 v_{92} + \frac{u_{92}}{2 z} + \frac{(2 \alpha _1+\alpha _2) u_{92}^2}{z}, \\ v_{92}'&=2 v_{92} + 3 u_{92}^2 v_{92}^2 + \frac{\alpha _1(\alpha _1+\alpha _2)}{z^2} -\frac{ 3 v_{92}}{2 z} - \frac{ 2(2 \alpha _1+\alpha _2) u_{92} v_{92}}{z}. \end{aligned} \end{aligned}$$

and contains no base points.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, N., Radnović, M. Asymptotic Behavior of the Fourth Painlevé Transcendents in the Space of Initial Values. Constr Approx 44, 195–231 (2016). https://doi.org/10.1007/s00365-016-9329-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-016-9329-3

Keywords

Mathematics Subject Classification

Navigation