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Abstract
Network meta-analysis (NMA) usually provides estimates of the relative effects
with the highest possible precision. However, sparse networks with few avail-
able studies and limited direct evidence can arise, threatening the robustness and
reliability ofNMAestimates. In these cases, the limited amount of available infor-
mation canhamper the formal evaluation of the underlyingNMAassumptions of
transitivity and consistency. In addition, NMA estimates from sparse networks
are expected to be imprecise and possibly biased as they rely on large-sample
approximations that are invalid in the absence of sufficient data. We propose a
Bayesian framework that allows sharing of information between two networks
that pertain to different population subgroups. Specifically, we use the results
froma subgroupwith a lot of direct evidence (a dense network) to construct infor-
mative priors for the relative effects in the target subgroup (a sparse network).
This is a two-stage approach where at the first stage, we extrapolate the results of
the dense network to those expected from the sparse network. This takes place
by using a modified hierarchical NMA model where we add a location param-
eter that shifts the distribution of the relative effects to make them applicable
to the target population. At the second stage, these extrapolated results are used
as prior information for the sparse network. We illustrate our approach through
a motivating example of psychiatric patients. Our approach results in more pre-
cise and robust estimates of the relative effects and can adequately inform clinical
practice in presence of sparse networks.
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1 INTRODUCTION

Networkmeta-analysis (NMA) has become an essential tool for the comparative effectiveness research of healthcare inter-
ventions because it allows integrating all available information on a specific disease and usually provides estimates of
relative effects with the highest possible precision (Chaimani et al., 2019; Nikolakopoulou et al., 2018). However, networks
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of interventions with limited data that fail to provide useful conclusions may arise under certain situations. A recent
empirical study found 92 (7.4%) published NMAs that included more treatments than the number of studies in a sample
of 1236 NMAs of randomized controlled trials (RCTs) with at least four interventions (Veroniki et al., 2021). These num-
bers suggest that the phenomenon of ‘‘sparse’’ networks, namely, networks with limited direct evidence in the form of
few direct comparisons and/or few—1 or 2—studies per comparison, is not very rare in the literature. For example, this is
often the case for ‘‘sensitive’’ subgroups of the population that cannot be easily included in trials, such as children, elder
patients, or individuals with multimorbidity.
Results from such networks of interventions are accompanied with substantial uncertainty not only in the estimation of

the relative treatment effects but also in the plausibility of the underlying assumptions because their formal evaluation is
impossible (Dias et al., 2010). In addition, the large-sample approximations on which NMAmodels typically rely upon fail
in the presence of only a handful of studies per comparison.Hence, lack of robustness and potentially limited reliability are
common issues that might be encountered when analyzing sparse treatment networks (Yoon et al., 2021). To avoid these
issues, it might seem reasonable to wait until more studies become available for the outcome(s) of interest. However, the
pace of trial production in these contexts is usually very slow and the chance to obtain new study results shortly is low.
The use of external evidence in the form of informative prior distributions has been suggested previously in meta-

analysis, either to achieve more accurate estimation of the heterogeneity parameter (Röver et al., 2019; Turner et al., 2019)
or for the incorporation of non-randomized evidence (Efthimiou et al., 2017). Here, we introduce a new framework that
allows sharing information between two networks of treatments that pertain to different subgroups of the population. Our
framework refers to the case when only aggregate data are available; in the presence of individual participant data, other
approaches may be used, such as population adjustment methods (Phillippo et al., 2020). Specifically, we use the results
from a subgroup with a lot of direct evidence (i.e., many direct comparisons and many studies per comparison) forming a
‘‘dense’’ network to construct informative priors for the relative effects in the target subgroup forming a sparse network.
Information sharing across population subgroups is also common outside the context of NMA. For example, similar

approaches are used in the so-called ‘‘basket trials,’’ where information is borrowed from large baskets to facilitate the
estimation of treatment effects in smaller baskets (Parmar et al., 2017; Renfro & Sargent, 2017; Turner et al., 2022) involving
subpopulations that are challenging to include in clinical trials. The idea of extrapolating information from a population
with a lot of data to another with limited evidence has been discussed previously in an FDA report (U.S. Department of
Health & Human Services Food & Drug Administration, 2016) that used adult data to draw conclusions for children for
the case of individual studies. Extending these ideas to the meta-analytic setting would allow us to obtain more robust
conclusions as individual trials are often underpowered (Salanti et al., 2008).
In this manuscript, we propose a two-stage approach where at the first stage, we synthesize the data from the dense

network using a hierarchical NMA model. This includes a location parameter that shifts the distribution of the relative
effects to make them applicable to the population of the sparse network. We also add a scale parameter that allows us to
further downweight the external data and to reduce their influence. At the second stage, the results from the first stage
are used as prior information in the analysis of the sparse network. We inform the location and scale parameters either
through the data or using expert opinion. We illustrate our approach through an example examining the relative effects
of antipsychotic treatments in two subgroups of patients: a target subgroup of children adolescents (CAs) that forms a
rather sparse network and a subgroup of chronic adult patients with acute exacerbation of schizophrenia, referred here
as “general patients” (GP), which forms a dense network.

2 MOTIVATING DATASET

Our work is motivated by a recent article investigating the differences in the treatment effects among several subgroups
of schizophrenia patients (Leucht et al., 2022). The aim of the article was to compare the subgroup of GP, defined as
chronic patients with an acute exacerbation of positive symptoms, with more specific subgroups of patients: CA, first-
episode patients, treatment-resistant patients, patientswith negative symptoms, patients under substance abuse, and elder
patients. In contrast to the dataset for GP, all these specific subgroups were informed by very limited direct evidence, and
therefore, the original authors, who acknowledged the problems of analyzing sparse networks, only used pairwise meta-
analysis. To illustrate our approach, we use the data from two of the above subgroups: CA andGP. The former is considered
the target subgroup that forms a sparse network and the latter is the only available subgroupwith abundant direct evidence
(forming a dense network) that can be safely used to elicit informative priors for CA.
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F IGURE 1 Sparse network for the population of CA (Panel A) and informative network for GP (Panel B). The size of the edges (lines in
the networks) is proportional to the number of studies that compare the respective treatments, whereas the size of the nodes is proportional to
number of patients who received each treatment.

The CA network comprises 19 RCTs published between 1973 and 2017 comparing 14 antipsychotics and placebo, and
providing direct information for 21 out of 105 possible comparisons (Figure 1a). Out of these 21 comparisons, two include
two RCTs and the rest include one RCT only. In addition, many of these RCTs are small, with a median study sample
size of 113 patients. The pace of new RCT production for this subgroup is very slow (on average, one RCT every 2.3 years),
which confirms the difficulty of conducting RCTs for this group of patients. On the other hand, the network for GPs
contains 255 RCTs comparing 33 antipsychotics and placebo, and forming 116 direct comparisons (Figure 1b). We also
used the community detection algorithm proposed by Law et al. (2019) to examine how sparse or dense the two networks
are (Online Appendix 1). The conclusions from this approach are in agreement with what can be obtained by descriptive
characteristics and visual inspection of the network diagrams. Specifically, almost all treatments except one (Molindone)
in the GP network appear to be very close to each other and thus well identified (Appendix 1, Figure 1). In contrast, six
treatments in the CA network appear isolated that reveals that at least 40% of this network is not well identified.
The two networks are distinct, which means that they do not have any RCT in common. However, some drugs are

included in both networks; this is a necessary condition to allow sharing information between them. The outcome of
interest is the reduction of the overall schizophrenia symptoms that is measured in a continuous scale. Following the
original article, we used the standardized mean difference (SMD) as effect measure because the different RCTs have used
different scales.

3 METHODS

3.1 Notation and general setting

Suppose that we have a set of 𝑁 = 𝑛1 + 𝑛2 studies. Studies {1, 2, … , 𝑛1} inform the target population subgroup 𝑃1 and
form a sparse network, while the rest {𝑛1 + 1, 𝑛1 + 2,… ,𝑁} inform a different population subgroup 𝑃2 and form a dense
network. Suppose also that 𝑇1 treatments have been evaluated for population 𝑃1 and 𝑇2 treatments for population 𝑃2. We
denote with 𝑇𝑎 = 𝑇1 ∪ 𝑇2 the set of all available treatments and with 𝑇𝑐 = 𝑇1 ∩ 𝑇2 the set of common treatments included
in both networks; the latter is the group of treatments for which information can be extrapolated from 𝑃2 to the target
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subgroup 𝑃1. Each study 𝑖 provides the observed mean (change score/endpoint) 𝑦𝑖𝑡𝑘 for the treatment 𝑡𝑘 ∈ 𝑇𝑎 of arm 𝑘

with 𝑘 = 1,… , 𝐾𝑖 and 𝐾𝑖 the total number of arms in 𝑖. For simplicity, in what follows we write the 𝑦𝑖𝑡𝑘 as 𝑦𝑖𝑘, its variance
𝑠𝑑2

𝑖𝑘
, and the respective ‘‘true’’ mean is denoted as 𝜃𝑖𝑘. We consider treatment 𝑗 = 1 as the common network reference for

both 𝑃1 and 𝑃2 and the relative effects 𝜇1𝑗 (𝑗 > 1, 𝑗 ∈ 𝑇𝑎) as the basic parameters. For every study, we arbitrarily choose
the treatment of arm 𝑘 = 1 (𝑡1) as the study-specific baseline treatment.

3.2 Models for sharing information between two population subgroups

Different models stem from different assumptions about the relation between the two subgroups 𝑃1 and 𝑃2. We start with
the description of the standardhierarchicalNMAmodel that in the present setting synthesizes the two subgroups in anaïve
way, namely, as if they were equivalent. Then, wemove tomore plausible NMAmodels in whichwe incorporate a location
parameter acknowledging the difference between 𝑃1 and 𝑃2 and a scale parameter aiming to increase the uncertainty of
the studies in subgroup 𝑃2.

3.2.1 Naïve synthesis

In this approach, the two subgroups are combined together as if all participants were coming from the same population
𝑃. In other words, this approachmakes the strong assumption that 𝑃1 and 𝑃2 are equivalent, namely, 𝑃1 ≡ 𝑃2 ≡ 𝑃. Hence,
for every study 𝑖 = 1, …𝑁 and treatment 𝑡𝑘 ∈ 𝑇𝛼, the observed means follow a normal distribution

𝑦𝑖𝑘 ∼ N
(
𝜃𝑖𝑘, 𝑠𝑑

2
𝑖𝑘

)
. (1)

Then, the underlying SMD between every treatment 𝑡2, 𝑡3, … , 𝑡𝐾𝑖 versus the baseline treatment 𝑡1 is

𝛿𝑖,1𝑘 =
𝜃𝑖𝑘 − 𝜃𝑖1

𝑠𝑑
𝑝𝑜𝑜𝑙𝑒𝑑

𝑖

, (𝑘 > 1) , (2)

with 𝑠𝑑pooled
𝑖

=

√∑𝐾𝑖
𝑘=1

𝑛ik𝑠𝑑
2
ik

𝑛ik−𝐾𝑖
the between-arm standard deviation. Under the random-effects assumption, the underlying

relative effects are assumed to follow a multivariate normal distribution

𝜹𝐢 ∼ N𝐾𝑖−1 (𝝁, 𝚺) , (3)

where𝝁 = (𝜇12, … , 𝜇1𝐾𝑖 ) is the vector of the summary relative effects and𝚺 the between-study variance–covariancematrix

with entries 𝜏2 (the common heterogeneity variance across comparisons) in the diagonal and 𝝉2

2
in the off-diagonal.

Finally, the transitivity assumption for every pair of treatments 𝑗, 𝑙 ∈ 𝑇𝑎 (𝑗, 𝑙 > 1) implies that
𝜇𝑗𝑙 = 𝜇1𝑙 − 𝜇1𝑗.

Non-informative prior distributions are usually employed for every 𝜇1𝑗 and 𝜏, such as N(0, 10000) and the half-normal
HN(1), respectively.
Apart from the strong assumption about the similarity of the two subgroups, a further problem in the present setting is

that the final results for the joint population 𝑃 will be dominated by the dense network (𝑃2) rather than from the target
subgroup 𝑃1. The same would apply if the results of the dense network were used directly as prior information for 𝑃1. To
avoid this issue, in the proposed approach, we extrapolate the results from 𝑃2 to 𝑃1, acknowledging differences between
the two subgroups, before forming informative prior distributions for 𝑃1.

3.2.2 Using the external subgroup 𝑃2 to construct informative priors for the target subgroup 𝑃1

This is a two-stage approach where at the first stage, we extrapolate the results from the dense network of subgroup 𝑃2 to
𝑃1, and at the second stage, we use predictions from this extrapolation to form prior distributions for the analysis of 𝑃1.
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First stage: Extrapolating external results to the target population subgroup
In contrast to the naïve synthesis, the main assumption here is that the two subgroups have some underlying differ-
ences in the treatment effects that can be considered as a different location of their outcome distributions. To incorporate
some uncertainty about this assumption, in Equation (1), we introduce a scale parameter𝑤𝑖 ∈ (0, 1] that inflates the vari-
ance of each 𝑦𝑖𝑘 in subgroup 𝑃2 for each 𝑖 = 𝑛1 + 1, 𝑛1 + 2,… ,𝑁 (Baker & Jackson, 2013). This modifies Equation (1)
into

𝑦𝑖𝑘 ∼ N

(
𝜃𝑖𝑘,

𝑠𝑑2
𝑖𝑘

𝑤𝑖

)
. (4)

Equation (4) implies that the parameters 𝑤𝑖 only affect the variance of the the mean scores 𝑦𝑖𝑘 and not the true study-
specific SMDs that are still the same as in Equation (2). Assuming that 𝛽1𝑗 = 𝜇

𝑃2
1𝑗
− 𝜇

𝑃1
1𝑗
for each {1, 𝑗}, 𝑗 ∈ 𝑇𝑐, the location

parameters 𝜷 that aim to shift the original distribution of the SMDs in 𝑃2 toward the distribution of 𝑃1 are then added in
Equation (3):

𝜹𝐢 ∼ NKi−1

(
𝝁𝑷2 − 𝜷, 𝚺

)
, (5)

with 𝜷 = (𝛽12, … , 𝛽1𝐾𝑖 ) being the vector of the ‘‘true’’ differences between the comparison-specific SMDs of the two sub-
groups. The extrapolated means 𝝁∗ = 𝝁𝑃2 − 𝜷 for population 𝑃2 in Equation (5) are then considered similar to those
expected for population 𝑃1. Note that Equation (5) could be equivalently written as 𝜹𝐢 ∼ NKi−1(𝝁

𝑷2 + 𝜷, 𝚺), if we had
assumed that 𝛽1𝑗 = 𝜇

𝑃1
1𝑗
− 𝜇

𝑃2
1𝑗
.

By fitting thismodified NMAmodel, we obtain the extrapolated SMD estimates �̂�∗
𝑗𝑙
for every pair of treatments 𝑗, 𝑙 ∈ 𝑇𝑐.

Subsequently, the predictive distributions (Higgins et al., 2009) of 𝜇𝑛𝑒𝑤
𝑗𝑙

, namely,N(𝜇∗
𝑗𝑙
, (𝜏𝑃2)

2
) are used at the second stage

as prior distributions for 𝑃1. Note that the parameter (𝜏𝑃2)
2
represents the heterogeneity across the studies in 𝑃2.

Second stage: NMA of the target subgroup using informative prior distributions for relative effects
Here, the model of Section 3.2.1 is used for 𝑖 = 1, … , 𝑛1. The key difference is that for the 𝜇1𝑙 s, we use as prior distribution
𝜇
𝑃1
1𝑙
∼ N(�̂�𝑛𝑒𝑤

1𝑙
, var(�̂�𝑛𝑒𝑤

1𝑙
))where �̂�𝑛𝑒𝑤

1𝑙
and var(�̂�𝑛𝑒𝑤

1𝑙
) are the posterior mean and variance of 𝜇𝑛𝑒𝑤

1𝑙
, respectively. The use of

informative priors is expected to improve the precision in the final NMA estimates without dominating the analysis. This
is because the priors are constructed at the first stage by extrapolating the results of the dense network to those expected
for the target sparse network.

3.2.3 Informing the location and the scale parameters

Constructing prior distributions for 𝛽s using the data
To obtain an estimate of the difference in the outcome distributions between the two subgroups, we first use the estimates
𝑢
𝑃1
1𝑗
and 𝑢𝑃2

1𝑗
obtained from separate pairwise meta-analyses for each population and each pair of treatments {1, 𝑗}, 𝑗 ∈ 𝑇𝑐.

To allow the estimation of heterogeneity for every comparison in 𝑃1, here we assume a common comparison-specific

heterogeneity across the two subgroups (𝜎𝑃1
1𝑗
)
2
= (𝜎

𝑃2
1𝑗
)
2
= 𝜎2

1𝑗
. Using the difference of these estimates 𝑑1𝑗 = 𝑢

𝑃2
1𝑗
− 𝑢

𝑃1
1𝑗
,

we construct prior distributions for the parameters 𝛽1𝑗 , namely,

𝛽1𝑗 ∼ N
(
𝑑1𝑗, var

(
𝑑1𝑗

))
. (6)

For treatment comparisons not evaluated in 𝑃2, we use a non-informative normal prior N(0, 10000).

Constructing prior distributions for 𝛽s using expert opinion
Elicitation of expert opinion can be undertaken with several methods such as face-to-face interviews, software tools, or
questionnaires. Τhe pooled change score of each treatment 𝑗 ∈ 𝑇𝑐 in 𝑃2 can be used as a reference for the experts who need
to provide an ‘‘estimate’’ for the change score in 𝑃1. Suppose that 𝑥ℎ𝑗 is the change score and 𝑠𝑑ℎ𝑗 the standard deviation
provided by the expert ℎ = 1, 2, … ,𝐻 for treatment 𝑗 ∈ 𝑇𝑐. Let also 𝛾ℎ denote the overall confidence of each expert to
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provided opinions. To combine the estimates provided by different experts, we can then use the following meta-analysis
model:

𝑥ℎ𝑗 ∼ N

(
𝑐ℎ𝑗,

𝑠𝑑2
ℎ𝑗

𝛾ℎ

)
, (7)

𝑑ℎ𝑗 ∼ N
(
𝜉
𝑃1
𝑗
, 𝜎2

)
, (8)

with 𝑑ℎ𝑗 =
𝑐ℎ𝑗

med(𝑠𝑑
𝑝𝑜𝑜𝑙𝑒𝑑
𝑖

)
, ∀𝑖, ℎ, 𝑗 the standardized values of 𝑐ℎ𝑗 . Given that the pooled standard deviation cannot be elicited

by experts, the median across the studies in the data is used. Note that standardization is not necessary when all studies in
the data use the same scale. Then, the pooled SMDs can be obtained as 𝑢𝑃1

1𝑗
= 𝜉

𝑃1
𝑗
− 𝜉

𝑃1
1
and the priors for the parameter

𝛽1𝑗 is constructed as in Equation (6).

Prior distributions for the scale parameter
Dividing the variances in Equation (4) by𝑤𝑖 can be seen as a special case of the power priormethodwhere a specific power
is chosen for the likelihood of each study (Chen & Ibrahim, 2000; Efthimiou et al., 2017; Ibrahim et al., 2015). Values of
𝑤𝑖 close to 0 reflect a serious downweight of the evidence coming from the external subgroup 𝑃2, whereas values close to
1 imply a mild downweight. Typical choices of prior distributions for the scale parameter can be the beta or the uniform
distribution. The parameters of these distributions should be chosen to reflect the prior beliefs regarding the specific
characteristic according to which the downweight takes place. For example, a Beta(3, 3) can be used for cases where a
moderate downweight needs to apply for the external information. This distribution places its mass around 0.5 with 95%
range equal to [0.15, 0.84] thus reflecting more uncertainty about the magnitude of our downweighting. Left-skewed beta
priors (e.g., Beta(1, 6)) can be used for weight values close to 0, while on the other hand, right-skewed beta priors (e.g.,
Beta(6, 1)) can be used for weight values close to 1. The previous downweighting schemes can be achievedwith other types
of prior distributions. For example, a Unif (0.4, 0.6), a Unif (0.1, 0.3) or a Unif (0.8, 1) can be used for moderate, serious,
or mild downweight, respectively. Finally, it is generally not recommended to use priors for the scale parameter that can
allow for values larger than 1. This could further increase the impact of external data and enable their dominance in the
final NMA estimates.

4 APPLICATION

4.1 Implementation

We consider throughout CA being the target population subgroup 𝑃1 and GP the external subgroup 𝑃2. We applied in
total nine models six of which refer to the combinations of the different prior distributions for the location (𝛽1𝑗) and scale
parameters (𝑤𝑖).

1. Naïve synthesis model for CA and GP with non-informative priors.
2. NMA for CA with informative priors from GP.

a. data-based prior distributions for the location parameters with
(i) no downweight for any GP study (𝑤𝑖 = 1) using only treatments in 𝑇𝑐 (No DW)
(ii) moderate downweight (i.e., 𝑤𝑖 ∼ Beta(3, 3)) to high risk of bias (RoB) GP studies using only treatments in 𝑇𝑐

(RoB DW). The risk of bias was assessed according to the Cochrane’s RoB tool (Sterne et al., 2019) and in total
16 studies were rated at high RoB for GP.

(iii) no downweight for any GP study evaluating treatments in 𝑇𝑐 and moderate downweight (i.e., 𝑤𝑖 ∼ Beta(3, 3))

for those evaluating at least one treatment in 𝑇𝑎 − 𝑇𝑐 (NCTDW). This means that here we use the full network
of GP with the 34 treatments and we downweight all studies that contain at least one treatment that has never
been evaluated in CA (107 studies).

b. prior distributions based on expert opinion for the location parameter combined the three above (i–iii) possibilities
for the scale parameters.

3. NMA for CA with non-informative priors (i.e., ‘‘standard’’ NMA).
4. Pairwise meta-analysis for CA with non-informative priors.



EVRENOGLOU et al. 7 of 11

All the analyseswere conducted using the rjags (22) package through the R statistical software (R version 4.0.3, 2020-10-
10) (23). For all models, we ran two chains in parallel, performed 50,000 iterations and discarded the first 10,000 samples
of each chain. We checked the chains convergence using the Gelman–Rubin criterion (Brooks & Gelman, 1998) with a
value below 1.1 to indicate failure of convergence. We also visually checked the Markov chains using trace plots to inspect
the sampling behavior and assess mixing across chains and convergence. The R code and the data used in this article are
available in the Appendix and can also be accessed at: https://github.com/TEvrenoglou/codes_sharing_information

4.2 Elicitation of expert’s opinion

We prepared a questionnaire and circulated it to psychiatrists with experience in treating schizophrenia for CA and GP
(available in Appendix 2). We asked each expert to provide an estimate of the ‘‘expected’’ mean score reduction in the
PANSS scale from baseline to endpoint for each drug for CA given the pooled mean score reduction obtained from the
data for GP. We further asked them to provide a measure of uncertainty around the given expected mean scores (a) in
the form of standard deviation and (b) in a 10-point scale of their confidence. We obtained in total 22 responses which we
averaged for each drug using the meta-analysis model given in Equations (7)–(8). We used a non-informative N(0, 10000)
and a weakly informative HN(1) prior for the means 𝜉𝑃1

𝑗
, 𝑗 ∈ 𝑇𝑐 and the parameter 𝜎, respectively.

4.3 Results

The estimates for the basic comparisons of the CA network are depicted in Figure 2 and for all relative comparisons in
Online Appendix 1, Tables 10–17. As expected, for most comparisons, the use of informative priors leads to a substantial
improvement in the precision of the relative effects. The naïve synthesis model provides the most precise results but relies
on a strong assumption that is likely to be implausible. Interestingly, CA results from the standard NMA model (with
non-informative priors) tend to be less precise than the respective direct estimates. This occurs often in sparse networks
because indirect comparisons as well as heterogeneity are estimated with large uncertainty. Overall, standard NMAmost
often does not give any insight for comparisons without direct evidence as it yields very large credible intervals. For some
of these comparisons (e.g., Haloperidol vs. Placebo), the NMA models with informative priors result in more conclusive
relative effect estimates. In terms of point estimates, results appear generally robust across the different models with only
few exceptions, such as the extreme cases of Fluphenazine and Trifluoperazine. Those two are very old drugs for which the
evidence is outdated and sparse in both GP and CA networks. The latter implies that the informative prior can dominate
in the analysis and yield to estimate closer to the GP. Overall, point estimates appeared to be more robust for the basic
comparisons for which direct evidence is available in the network of CA. Finally, no convergence issues were identified
across the chains. The corresponding trace plots are available in Appendix 1, Figures 8–13.
Only small differences can be observed among the six models with informative priors, suggesting that the approach

of informing the location and the scale parameters does not affect materially the final predictions; this is possibly due
to the huge amount of data in the GP network. For a few comparisons, the data-based approach for 𝜷 provides to some
degree different relative effects than those obtained from the expert opinion approach, implying that the experience from
clinical practice does not fully agree with the available data. Those comparisons might need to be prioritized for the
design of new trials. Of course, when the full GP network was used and only studies comparing treatments in 𝑇𝑎 − 𝑇𝑐
were downweighted some extra precision was gained. Such an approachmight be more useful when the external network
is not as dense as in the present dataset.
Assessment of inconsistency was performed using the node-splitting method (Dias et al., 2010). Inference regarding the

presence of inconsistency was based on Bayesian p-values, and on the visual inspection of the posterior densities of direct
and indirect evidence, Bayesian p-values were calculated as 2 × min{𝑃, 1 − 𝑃}where 𝑃 is the probability that the difference
between direct and indirect comparisons is positive. Additionally, the different antipsychotics and placebo were ranked
across all models using the surface under the cumulative ranking curve (SUCRA) (Salanti et al., 2011) method. Overall,
the respective posterior densities of the direct and indirect estimates appeared to be quite similar across the different com-
parisons and models and no p-value indicated lack of consistency (Online Appendix 1, Figures 2–6, Tables 2–9). In terms
of ranking, the results appear to be generally robust across models including the naïve synthesis and the standard NMA
model. Clozapinewas always ranked as themost effective antipsychotic. Finally, Olanzapine, Risperidone, andMolindone
were ranked in second, third, and fourth positions, respectively, in most of the fitted models (Appendix 1, Figure 7).

https://github.com/TEvrenoglou/codes_sharing_information
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F IGURE 2 Results from the analysis of the network defined for the population of CA. The outcome of interest is the reduction of the
overall schizophrenia symptoms and the effect measure is the standardized mean difference. DW, downweight; RoB, risk of bias; NCT,
non-common treatment.

5 DISCUSSION

In this paper, we present a Bayesian framework for NMA of sparse networks aiming to improve the performance of the
relative effect estimates in terms of precision and reliability. To this end, we borrow information using external data from a
dense network that targets a different subgroup of the population. Wemodel the differences between the two populations
with a two-stage approach. At the first stage, we analyze only the dense network, andwe extrapolate its results to the sparse
network though the incorporation of a location parameter in the distribution of the summary relative effects. Then, we use
the extrapolated results to construct informative prior distributions for the target population subgroup. Similar approaches
have been used previously at the level of primary studies (Dunne et al., 2011; Dunoyer, 2011; Hampson et al., 2014; Rhodes
et al., 2015). We further introduce a scale parameter that inflates the variance of the studies in the dense network to reflect
the potential uncertainty regarding the assumed relationship between the two population subgroups (Hlavin et al., 2016;
Wadsworth et al., 2018).
We proposed two different approaches for informing the location parameters; one based on the data and one based

on expert opinion. The former is easier to implement but the data are used in both stages: once to form the priors and
once to perform the NMA. This is a drawback of the data-based approach as it might introduce some correlation that is
ignored. In addition, this approach requires that a certain number of direct comparisons are available in both networks;
otherwise, the use of non-informative priors would be necessary for several 𝛽s at the first stage. The prior elicitation
approach is general as it does not rely on the amount of direct evidence. However, results from such an approach are
always subjective to some degree and handling disagreements between different experts might be challenging. Here, we
requested the necessary information from the psychiatrists through a questionnaire and some of them raised concerns that
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it was difficult for them tomake a suggestion. Otherways to elicit information fromexperts exist. For example, Turner et al.
used a three-stage elicitation approach where the experts were interviewed through 1:1 meetings or by telephone (Turner
et al., 2022). Alternatively, information on these parameters may be obtained by using, when available, external data,
such as from observational studies, electronic health records, or other networks pertaining to populations with similar
characteristics.
In our motivating example, the two approaches for constructing priors for the location parameters were generally in

agreement except the comparison between Loxapine and Placebo where, in contrast to the data-based approach, the anal-
yses based on the expert opinion may not support the presence of an important effect. In all other comparisons, despite
some differences in the magnitude of the estimated summary effects, the two approaches yielded similar conclusions.
Regarding the scale parameters, we applied no downweight for trials considered more relevant to our target population
and moderate downweight for studies that were considered less relevant or reliable. The results remained robust across
the different downweighing schemes that we used. However, the use of Beta(3, 3) prior for the 𝑤𝑖s can be considered a
conservative choice as it is centered at 0.5 and provides similar mass to both the left and right tails allowing for both strong
and mild downweight, for example, 𝑤𝑖 ≈ 0 or 𝑤𝑖 ≈ 1, respectively. Sensitivity analysis could further consider left-skewed
Beta distributions (e.g., Beta(1, 8)) that would assign weights mostly close to 0 and right-skewed Beta′s (e.g., Beta(8, 1))
that would assign weights mostly close to 1. Compared to the standard NMA with non-informative priors, our two-stage
approach provided substantiallymore precise estimates. The lack of robustness of the standardNMAmodel for this dataset
is also deduced from the fact that almost always it yielded less precise results than pairwise meta-analysis. As expected,
the most precise results were obtained from the naïve synthesis model. Nevertheless, this model does not account for any
differences across the two population subgroups.
In the presence of few studies, estimation of the heterogeneity is challenging (Turner et al., 2019). In our analysis, we

used a weakly-informative half normal prior distribution for the heterogeneity parameter (Röver et al., 2021). However, a
sensitivity analysis on the prior distribution for heterogeneity could be considered as in the absence of sufficient data, the
estimation of heterogeneity might be affected by the choice of the prior. For example, using informative priors for hetero-
geneity could possibly further increase the precision of our approach. Usually, these are based on empirical distributions
that depend on the type of outcome and treatment comparisons (Rhodes et al., 2015; Turner et al., 2012, 2015). Alternatively,
more sophisticated options that allow the incorporation of external data in the estimation of the heterogeneity parameter
may be applied (Turner et al., 2019).
A limitation of our work is that we did not explore under which conditions the introduced location parameters reduce

or increase the bias of the summary estimates. This would require to evaluate the proposed Bayesian framework through
a simulation study. Nevertheless, data generation in this setting might be challenging as it would require construction
of the differences between the two populations based on clinically meaningful baseline characteristics. This merits a lot
of further consideration and can form a follow-up article. In addition, such a study could only evaluate the data-based
approach for the priors as it would be impossible to obtain expert opinion for many simulated datasets.
Our proposed method was built upon a Bayesian framework as this offers a straightforward and intuitive way to incor-

porate external information in the analysis through informative prior distributions. Alternatively, a two-stage frequentist
framework could be used where the prior information for the location parameters could be incorporated through pseu-
dodata as in Rhodes et al. (Rhodes et al., 2016). However, this approach uses meta-regression to fit an NMA model, and
therefore, it is directly applicable only to NMA of two-arm studies (Rhodes et al., 2016). A further possibility may be to
model the differences in the two populations through inconsistency parameters using the random inconsistency design-
by-treatment interactionmodel proposed by Jackson et al. (2014). Such an approachwould assume different inconsistency
parameters for populations 𝑃1 and 𝑃2 but the same for studies within each population. A potential future simulation study
could investigate similarities and differences in the estimation between the three approaches.
Overall, the proposed framework offers a reliable approach for assisting the analysis of sparse networks. Of course, its

application requires close collaboration between statisticians and experienced clinicians to ensure that sharing of informa-
tion betweendifferent population subgroups is clinicallymeaningful. Finally, performingNMA in cases of sparse networks
will always be a challenging procedure and the best approach will likely be context-dependent.
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