

⁷Li NMR Spectroscopy: a Tool for Determining Dimerization Constants and Averaged Dimerization Constants of the Monomer/Dimer Equilibrium of Hierarchical Helicates

Tobias Krückel⁺,^[a] Steffen Schauerte⁺,^[a] Jinbo Ke,^[a] Marcel Schlottmann,^[a] Sandra Bausch,^[a] Xiaofei Chen,^[a] Christoph Räuber,^[a] Igor d'Anciães Almeida Silva,^[b] Thomas Wiegand,^[b, c] and Markus Albrecht^{*[a]}

⁷Li nuclear magnetic resonance (NMR) spectroscopy is an ideal tool to study hierarchically assembled helicates of the form $\text{Li}[\text{Li}_3\text{L}_6\text{Ti}_2]$. Internally bound and external lithium ions can be well distinguished by solution- or solid-state NMR spectroscopy

Introduction

Supramolecular chemistry may be described as multi-component chemistry. Two or more molecular species interact by non-covalent interactions to form well defined aggregates.^[1] If the assembly process of a supramolecular entity proceeds in a stepwise fashion with successive aggregation steps depending on each other, it represents an example of hierarchical (self)assembly. Such hierarchical assembly processes are important in nature as well as in chemistry. They offer an easy entry into the formation of complex functional structures starting from simple building blocks. Therefore it is important to gain a deeper understanding in basic principles of hierarchical assembly.^[2]

Since some time, we are studying hierarchically formed helicates.^[3,4,5] In contrast to related complexes described by others in the literature,^[6] our system shows a monomer-dimer equilibrium in solution.^[7] This allows to thoroughly investigate the energetics of the equilibrium and to use the equilibrium as a solvent-dependent molecular switch.^[8] Based on this, a

 [a] T. Krückel,⁺ S. Schauerte,⁺ J. Ke, Dr. M. Schlottmann, S. Bausch, Dr. X. Chen, Dr. C. Räuber, Prof. M. Albrecht Institut für Organische Chemie RWTH Aachen University Landoltweg 1, D-52074 Aachen, Germany E-mail: markus.albrecht@oc.rwth-aachen.de

- [b] Dr. I. d'A. Almeida Silva, Prof. Dr. T. Wiegand Max-Planck Institut für chemische Energiekonversion Stiftstr. 34–36, D-45470 Mülheim/Ruhr, Germany
- [c] Prof. Dr. T. Wiegand Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2, D-52074 Aachen, Germany
- [⁺] Equally contributed to this article.
- Supporting information for this article is available on the WWW under https://doi.org/10.1002/chem.202400387
- © 2024 The Authors. Chemistry A European Journal published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

and dimerization constants of the monomer/dimer equilibrium can be easily determined in solution. Averaged dimerization constants can be estimated in case of statistical mixtures of helicates formed from mixtures of ligands.

molecular balance^[9] for the estimation of solvent effects^[10] and for the determination of London dispersion effects in solution^[11] has been developed.^[12] In addition, the hierarchical helicates have been used as platform for switching selectivity of reactions and catalytic processes,^[13,14] for dendrimer assembly^[15] or for lithium dependent^[16] expandable/compressible spring-like^[17] switches^[18] (Figure 1).

Our hierarchical helicates are obtained from carbonyl substituted catechol ligands and appropriate metal ions (e.g. titanium(IV)) in the presence of lithium cations. Over the years a broad variety of differently substituted catechol ligands has been used.^[19]

In the crystal, the hierarchical helicates are exclusively present as the triple lithium bridged coordination compounds –

Figure 1. Schematic representation of the monomer-dimer equilibrium of catecholate based hierarchical helicates and use of the system for different purposes.

Chem. Eur. J. 2024, e202400387 (1 of 7)

the "dimers". In solution, a monomer-dimer equilibrium is observed which strongly depends on the substituent R at the catecholate ligand (R=H: aldehyde, R=R': ketone, R=OR': ester, R=SR': thioester). In addition, the solvent exerts considerable influence on the equilibrium (Scheme 1).^[7,19]

When the dimeric helicates are dissolved, they slowly dissociate into the monomer and finally the thermodynamic equilibrium is reached.^[20] Depending on this equilibrium, different ratios of coordinated and solvated lithium cations are present in solution. As exemplified in a very early study, the different lithium cations of $Li[Li_31_6Ti_2]$ (R=H) can be distinguished by ⁷Li solution-state NMR (in THF-d₈) for which resonances at $\delta = 1.80$ (bridging/"bound" Li⁺) and 0.41 ppm (solvated/"free" Li+) have been observed.[7] After this early study, ⁷Li NMR has not been used again for the evaluation of the hierarchical helicates. This is unfortunate, because ⁷Li NMR provides an excellent tool to explore the neighborhood of the bridging lithium cations^[21] and to determine dimerization constants of the hierarchical helicates. It is even possible to obtain averaged dimerization constants for mixtures of helicates formed from mixtures of ligands.^[22] In here, thorough ⁷Li NMR spectroscopic studies in solution, as well as in the solid state are presented for hierarchically assembled catecholate based triplelithium bridged titanium(IV) helicates.

Scheme 1. The monomer-dimer equilibrium of catecholate based hierarchical helicates showing solvated as well as bridging lithium cations. The bound lithium cations are shown in bold.

Aldehyde: R = H (1-H₂)

Esters:

 $\begin{array}{l} \underline{Alkyl \ ester:} \\ \mathsf{R} = \mathsf{OMe} \ (\textbf{2a}-H_2), \ \mathsf{OEt} \ (\textbf{2b}-H_2), \ \mathsf{OnPr} \ (\textbf{2c}-H_2), \ \mathsf{OnBu} \ (\textbf{2d}-H_2), \ \mathsf{OnPent} \ (\textbf{2e}-H_2), \\ \mathsf{OnOct} \ (\textbf{2f}-H_2), \mathsf{OOPr} \ (\textbf{2g}-H_2), \ \mathsf{OcyBu} \ (\textbf{2h}-H_2), \ \mathsf{OcyPent} \ (\textbf{2i}-H_2), \ \mathsf{O-CH}_2\mathsf{CH}_2\mathsf{Ph} \ (\textbf{2j}-H_2), \\ \underline{\mathsf{Benzyl}} \ ester: \\ \mathsf{R} = \mathsf{OCH}_2\mathsf{Ph} \ (\textbf{3a}-H_2), \ \mathsf{OCH}_2-2-\mathsf{MePh} \ (\textbf{3b}-H_2), \ \mathsf{OCH}_2-4-\mathsf{MeOPh} \ (\textbf{3c}-H_2), \\ \mathsf{OCH}_2-4-\mathsf{NO}_2\mathsf{Ph} \ (\textbf{3d}-H_2), \mathsf{OCH}_2-3, 5-\mathsf{Me}_2\mathsf{Ph} \ (\textbf{3e}-H_2), \ \mathsf{OCH}_2-3, 5-\mathsf{F}_2\mathsf{Ph} \ (\textbf{3f}-H_2), \\ \end{array}$

OCH₂-4-NO₂Ph (**3d**-H₂),OCH₂-3,5-Me₂Ph (**3e**-H₂), OCH₂-3,5-F₂Ph (**3f**-H₂) OCH₂-3,5-Cl₂Ph (**3g**-H₂), OCH₂-3,5-Br₂Ph (**3h**-H₂)

Diester:

Figure 2. Catechol-based ligands discussed in this study.

Results and Discussion

⁷Li Solution-State NMR Spectroscopy of Triple Lithium Bridged Hierarchical Helicates

A series of hierarchical helicates $Li[Li_3L_6Ti_2]$ with aldehyde 1 and ester-based ligands (2, 3) as well as a bridged complex $Li[Li_3L'_3Ti_2]$ (4) are investigated herein by ⁷Li NMR spectroscopy (Figure 2).

The complexes Li[Li₃L₆Ti₂] obtained from ligands 1-H₂-3-H₂ and Li[Li₃L₃Ti₂] from 4-H₄ were studied by using ⁷Li solution-state NMR spectroscopy in methanol-d₄, acetone-d₆ and DMSO-d₆.

Chemical-Shift Effects Observed by ⁷Li Solution-State NMR Spectroscopy

Two signals are typically observed by ⁷Li NMR for the hierarchical helicates Li[Li₃L₆Ti₂], a high-field shifted resonance corresponding to the solvated ("free") and a low-field shifted one for the encapsulated ("bound") lithium cations (Figure 3).^[7]

For example, the ⁷Li NMR signals of the methyl ester $\text{Li}[\text{Li}_32a_6\text{Ti}_2]^7$ are observed at $\delta = 1.36$ and -1.05 ppm (in methanol-d₄, Figure 3), 1.28 and -1.52 (DMSO-d₆) or at 1.50 and 1.21 ppm (acetone-d₆). Hereby, the separation of the chemical-shift values of the bound and free lithium cations strongly depends on the chosen solvent. Nevertheless, the chemical shift serves as a measure of the magnetic shielding of the lithium cations. Figure 4 shows the representation of chemical-shift differences $\Delta\delta$ of complexes Li[Li_3L₆Ti₂] as determined in methanol-d₆ (a), acetone-d₆ (b) or DMSO-d₆ (c) sorted by increasing $\Delta\delta$.

The $\Delta\delta$ -values depend on the solvents as well as on the substituents R. For ester-substituents in methanol-d₄. $\Delta\delta$ is ranging in-between 2.2–2.7 ppm, which is comparable to DMSO-d₆; with $\Delta\delta$ = 2.5–3.0 ppm. Only acetone-d₆ shows significantly smaller values for $\Delta\delta$ = 0.2–0.6 ppm.

The esters may be grouped into two different subclasses:

The **alkyl esters**^[11] (including the 2-phenylethyl ester) Li[Li₃ 2_6Ti_2] show relatively small signal separations $\Delta\delta$

 $\ensuremath{\mathbb{C}}$ 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Chem. Eur. J. 2024, e202400387 (2 of 7)

Figure 4. ⁷Li NMR shift differences $\Delta\delta$ between the resonances of bound and free lithium cations of Li[Li₃L₆Ti₂] as determined in methanol-d₄ (a), acetone-d₆(b) and DMSO-d₆ (c).

 $(<2.5\ ppm\ in\ methanol-d_4,\ <0.4\ ppm\ in\ acetone-d_6\ and <2.9\ ppm\ in\ DMSO-d_6).$

The $\Delta\delta$ -values of the **benzyl esters**^[19] Li[Li₃**3**₆Ti₂] are observed above the threshold given for the alkyl esters. The larger splitting of the resonances of the free and bound lithium cations in the benzylic-derivatives Li[Li₃**3**₆Ti₂] is either due to an anisotropic effect of the phenyl group which probably is located in close proximity of the lithium cations. Alternatively, the electronic polarization at the benzylic methylene unit may influence the ⁷Li NMR shift. With the elongated CH₂CH₂Ph unit of Li[Li₃**2***j*₆Ti₂] a similar orientation or electronic effect is not possible, since this substituent behaves like an alkyl group.

In addition, it is remarkable that $\Delta\delta$ of the benzylic systems Li[Li₃**3**₆Ti₂] for sterically comparable moieties increases with increasing electron density at the aromatic unit (4-NO₂Ph (Li[Li₃**3d**₆Ti₂]) < Ph (Li[Li₃**3d**₆Ti₂]) < 4-MeOPh (Li[Li₃**3c**₆Ti₂])). In DMSO-d₆ the dimer Li[Li₃**3d**₆Ti₂] (4-NO₂Ph) was not observed, therefore $\Delta\delta$ could not be determined.

The aldehyde complex Li[Li₃1₆Ti₂]/Li₂[1₃Ti]⁷ in methanol-d₄ as well as in DMSO-d₆ leads to the by far smallest $\Delta\delta$ -value (2.13 ppm in methanol-d₄, 2.16 ppm in DMSO-d₆), while relative to the esters a much higher one is observed for the aldehyde in acetone-d₆ (0.28 ppm).

Chemistry Europe

European Chemical Societies Publishing

⁷Li Solution-State NMR Spectroscopy for the Determination of Dimerization Constants

⁷Li NMR also is a valuable tool for the evaluation of dimerization constants of hierarchical helicates. The resonances of bound and free lithium cations appear well separated and can be easily integrated. Thus, in a solution with a well-known concentration the lithium cations of the dimer show two signals with three ions bound in the complex (at low field) and one being a solvated counter-cation (at high field). The remaining integral of the signal of solvated ions is due to the presence of the monomer. From the ratio of monomer and dimer the dimerization constant is calculated from the equations shown in Scheme 2 (see also SI for more details).

Figure 5 depicts as representative examples of ⁷Li NMR spectra the ones of Li[Li₃3 d₆Ti₂] ($R = OCH_2$ -4-NO₂Ph) in DMSO-d₆ and of Li[Li₃2 e₆Ti₂] (R = On-pent) in methanol-d₄; as well as in DMSO-d₆; at concentrations of 2 mmol/L (the concentration corresponds to the initially introduced amount of dimer).

For Li[Li₃3 d₆Ti₂] in DMSO-d₆ only one signal is observed by ⁷Li NMR at $\delta = -1.58$ ppm. This resonance corresponds to "free" solvated lithium cations. Here only the monomer Li₂[3 d₃Ti] is present in solution.

In case of Li[Li₃2 e₆Ti₂] two signals are found at $\delta = 1.36$ and -1.08 ppm (in methanol-d₄) or at 1.21 and -1.56 ppm (in DMSO-d₆). In methanol-d₄ the ratio of signal intensities is 3:1. This corresponds to the dimeric complex Li[Li₃2 e₆Ti₂]. In DMSO-d₆ the observed ratio is 3:2.26. The latter integral represents the "free" lithium cation of the dimer Li[Li₃2 e₆Ti₂] (integral 1.0) and of the monomeric complex Li₂2e₃Ti (integral 1.26). From this ratio, a dimerization constant of K_{dim} = 1602 ± 441 M⁻¹ is calculated for the monomer-dimer equilibrium of Li₂2 e₃Ti/Li[Li₃2 e₆Ti₂] in DMSO-d₆.

In methanol- d_4 or acetone- d_6 , the dimer is the dominating species. ⁷Li NMR spectroscopy does not show significant amounts of monomer.

$$K_{dim} = \frac{3 \cdot I_{solvated} \cdot I_{bound} + 3 \cdot I_{bound}^{2}}{36 \cdot c_{0} \cdot \left(\frac{I_{solvated} - \frac{I_{bound}}{3}}{2}\right)^{2}}$$

 K_{dim} dimerization constant $I_{solvated}$ integral of the solvated Li* in the 7Li-NMR spectrum I_{bound} integral of the bound Li* in the 7Li-NMR spectrum

Scheme 2. Calculation of K_{dim} from the integral of the ⁷Li-signals.

Research Article doi.org/10.1002/chem.202400387

Figure 5. Representative ⁷Li NMR spectra of Li[Li₃**3** d₆Ti₂] (in DMSO-d₆) (a) and of Li[Li₃**2e**₆Ti₂] in methanol-d₄ (b) as well as in DMSO-d₆ (c).

In DMSO-d₆ both monomer and dimer are easily observable for the ester-based systems. Therefore, a series of dimerization constants was determined in this solvent using ¹H as well as ⁷Li NMR.

Table 1 reveals the dimerization constants of the helicates $Li[Li_32/3_6Ti_2]$ in DMSO-d₆ showing similar values obtained by NMR of the two different nuclei (¹H or ⁷Li). For comparison, the

data shown in Table 1 are represented as a graph in Figure 6. Within the error limit ¹H as well as ⁷Li NMR spectroscopy show similar K_{dim} for the monomer-dimer equilibrium.

⁷Li Solid-State NMR Spectroscopy of Hierarchical Helicates

In the solid state, the differentiation of encapsulated (bound) and free Li cations (coordinated by solvent molecules in the crystal) in the hierarchical helicates is achieved from the ⁷Li chemical-shift values deduced from magic-angle spinning (MAS) solid-state NMR spectra. Figure 7a and b shows the ⁷Li MAS spectra of Li[Li₃2d₆Ti₂] and Li[Li₃3a₆Ti₂] recorded at 16.4 T with 17.0 kHz MAS. For Li[Li₃2d₆Ti₂], two ⁷Li resonances with isotropic chemical-shift values of 1.8 and 0.6 ppm assigned to the three crystallographically-identical encapsulated and the single free Li cations, respectively, were detected, which is in agreement with the observation of two resonances in the solution-state NMR spectra. In case of Li[Li₃3a₆Ti₂], three resonances with ⁷Li chemical-shift values of 2.0, 0.7 and 0.1 ppm are observed. Those are assigned again to encapsulated and free Li cations. The two resonances for the free Li cations at lower frequencies are attributed to different Li coordination sites (vide infra). To determine the quadrupolar coupling information of the quadrupolar ⁷Li nuclei (l=3/2), satellitetransition spectroscopy experiments (SATRAS)^[23] were performed. The guadrupolar coupling parameters determined from such spectra (the ⁷Li quadrupolar coupling constant C_0 , as well as the asymmetry parameter η_Q) serve as sensitive probes for the electronic environments of the Li nuclei as well as for local dynamics. Figure 7c and 7d show the comparison of the

Table 1. Dimerization constants K_{dim} of the ester-based helicates Li[Li ₃ 2/ 3_6Ti_2] determined by ¹ H and ⁷ Li NMR in DMSO-d ₆ at room temperature and 2 mmol/L of dimer concentration.			
	R=	K _{dim} ⁷ Li NMR, M ⁻¹	K _{dim} ¹ H NMR, M ⁻¹
Li[Li ₃ 2 a ₆ Ti ₂]	OMe	$120\!\pm\!34$	$134\!\pm\!19$
Li[Li ₃ 2 b ₆ Ti ₂]	OEt	855 ± 216	930 ± 158
$Li[Li_3 2 c_6 Ti_2]$	OnPr	1236 ± 327	1142 ± 190
Li[Li ₃ 2d ₆ Ti ₂]	O <i>n</i> Bu	1431 ± 386	1217 ± 210
$Li[Li_3 2 e_6 Ti_2]$	O <i>n</i> Pent	1602 ± 441	1900 ± 337
Li[Li ₃ 2 f ₆ Ti ₂]	OnOct	1539 ± 421	1806 ± 319
Li[Li ₃ 2 g ₆ Ti ₂]	O <i>i</i> Pr	$904\!\pm\!230$	949 ± 161
Li[Li ₃ 2 h ₆ Ti ₂]	O <i>cy</i> Bu	$147\pm\!40$	183 ± 27
Li[Li ₃ 2 i ₆ Ti ₂]	O <i>cy</i> Pent	456 ± 112	481 ± 77
Li[Li ₃ 3 a ₆ Ti ₂]	OCH ₂ Ph	123 ± 34	$146\pm\!21$
Li[Li ₃ 3 b ₆ Ti ₂]	OCH ₂ -2-MePh	$62\!\pm\!21$	59 ± 7
$Li[Li_3 3 \mathbf{c}_6 Ti_2]$	OCH ₂ -4-MeOPh	$94\!\pm\!28$	104 ± 14
Li[Li ₃ 3 d ₆ Ti ₂]	OCH ₂ -4-NO ₂ Ph	monomer	monomer
Li[Li ₃ 3 e ₆ Ti ₂]	OCH ₂ -3,5-Me ₂ Ph	$302\!\pm\!75$	378 ± 59
Li[Li ₃ 3f ₆ Ti ₂]	OCH ₂ -3,5-F ₂ Ph	$66\!\pm\!22$	70 ± 9
Li[Li ₃ 3 g ₆ Ti ₂]	OCH ₂ -3,5-Cl ₂ Ph	$127\!\pm\!35$	122 ± 17
Li[Li ₃ 3 h ₆ Ti ₂]	OCH ₂ -3,5-Br ₂ Ph	$108\pm\!31$	124 ± 17

Figure 6. Comparison of dimerization constants K_{dim} of the alkyl Li[Li₃2₆Ti₂] (a) and benzyl ester complexes Li[Li₃3₆Ti₂] (b) obtained by ⁷Li (square) and ¹H NMR (circle) in DMSO-d₆.

Chem. Eur. J. 2024, e202400387 (4 of 7)

 $\ensuremath{\textcircled{\sc 0}}$ 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

Research Article doi.org/10.1002/chem.202400387

Figure 7. ⁷Li solid-state NMR spectra of samples Li[Li₃**2d**₆Ti₂] (a) and Li[Li₃**3a**₆Ti₂] (b) recorded at 17.0 kHz MAS and 16.4 T magnetic-field strength with their respective numerical deconvolutions (coloured lines). (c) and (d) show the ⁷Li SATRAS NMR spectra of samples Li[Li₃**2d**₆Ti₂] (c) and Li[Li₃**3a**₆Ti₂] (d) recorded at 5.0 kHz MAS and 11.7 T magnetic-field strength with their respective numerical deconvolutions (coloured lines). Zooms into the central transition are given in addition. The simulations only take the first-order quadrupolar interaction into account, which explains small deviations compared to the experimental spectrum, *e.g.* for the first MAS sideband.

experimental spectra with the simulated ones. For Li[Li₃2d₆Ti₂], the ⁷Li resonance at 1.8 ppm possesses a C_Q -value of 145 kHz $(\eta_0 = 0.2)$, whereas the C₀-value for the second resonance at 0.6 ppm is much smaller ($C_0 = 30$ kHz). The first resonance corresponds to encapsulated Li species and the latter to free species, in which the Li nuclei possess different electronic environments and thus Co-values. Similar conclusions can be drawn for Li[Li₃3 a₆Ti₂] (Figure 7d). The resonance at 2.00 ppm with the largest C₀-value of 140 kHz and η_0 of 0.35 is again assigned to the encapsulated Li species, while the resonances at 0.7 ppm ($C_0 = 20$ kHz) and at 0.1 ppm ($C_0 = 40$ kHz) are assigned to free Li species. The two resonances for the free species are attributed to Li⁺ atoms bound to terminal catechol oxygen atoms as well as solvent molecules and to "solvated" $\mathrm{Li}^{\scriptscriptstyle +}$ species only. Binding of $\mathrm{Li}^{\scriptscriptstyle +}$ to the terminus of the hierarchical helicates was frequently observed in crystal structures of the complexes.^[19]

Expandable/Compressible Helicates

Besides the simple monocatechol-ester ligands the alkyl (4- H_4) bridged dicatechol has been used to obtain an expandable/ compressible helicate Li[Li₃4₃Ti₂] which in its compressed state bears three internal bridging lithium cations.

Hereby we observed that alkyl bridged dicatechol esters with alkyl bridges with 8-12 CH₂ units only form the compressed helicates. Those expand by decomplexation of the lithium cations using [2.1.1] cryptand.^[16]

Now the hexadecyl-bridged ligand $4-H_4$ has been prepared. In the ¹H NMR spectrum of the complex Li[Li₃ 4_3Ti_2] in DMSO-d₆ the typical signals of the compressed helicate are observed as it is shown in Figure 8b for the catecholate protons marked with a. In addition, a minor second set of signals (denoted with b) appears.

Chemistry Europe

European Chemical Societies Publishing

Due to the characteristic chemical $shift_{r}^{[11]}$ set b of the signals is assigned to the expanded species $Li_4[4_3Ti_2]$ which is in equilibrium with the compressed one (set a). Integration of the ¹H NMR spectrum shows a ratio of 1:0.3 for compressed to expanded helicate. This finding is supported by the ⁷Li NMR spectrum in which a ratio of bound to free lithium cations of 3:2.31 is observed corresponding to a ratio of 1:0.3 of $Li[Li_34_3Ti_2]:Li_4[4_3Ti_2].$

Averaged Dimerization Constants of Hierarchical Helicates Obtained from Ligand Mixtures

The formation of heteroleptic hierarchical helicates possessing two (or more) different catecholate ligands leads to statistical mixtures of complexes. Such mixtures having distinct kinds of ligands in the complexes are of interest for reaction control or catalysis.^[22]

Figure 9 shows as an example the negative ESI MS spectra of three different mixtures of Li[Li₃3 c_n3 d_mTi₂] (n+m=6) obtained with the ligand ratios 3c:3d=5:1, 3:3; and 1:5; The change of the maximum of the distribution of complexes Li[Li₃3 c_n3 d_mTi₂] in the mixture depending on the used ratio of the ligands is nicely observed.

Nevertheless, in solution the monomer-dimer equilibrium still is found for the mixture of heteroleptic hierarchical helicates $Li[Li_3L1_nL2_mTi_2]$. The ¹H NMR spectrum of the mixture is extremely complicated and cannot be interpreted. On the other hand, ⁷Li NMR does allow to estimate the ratio between monomeric and dimeric species (Figure 8c) and even an

Figure 8. Equilibrium of the compressed and expanded form of $Li[Li_34_3Ti_2]$ (a) which can be observed by ¹H (b, only aromatic region is shown) and ⁷Li NMR (c). Solvent:DMSO-d₆.

Chem. Eur. J. 2024, e202400387 (5 of 7)

Research Article doi.org/10.1002/chem.202400387

Figure 9. Negative ESI MS (MeOH) of mixtures of complexes Li[Li₃3 c_n 3 d_m Ti₂] (n + m = 6) obtained with the ligand ratios 3 c:3 d = 5:1 (a), 3:3 (b) and 1:5 (c) as well as the ⁷Li NMR spectrum of Li[Li₃3 c_n 3 d_m Ti₂] (n:m = 5:1) in DMSO-d₆ (d).

averaged dimerization constant is calculated for the dimerization of the triscatecholates by ignoring the difference at the substituents.

Figure 9d shows as an example the ⁷Li NMR spectrum of Li[Li₃**3**c_n**3**d_mTi₂] (n:m=5:1) in DMSO-d₆. It reveals only one averaged signal for internally bound lithium cations at δ = 2.0 ppm, although a mixture of dimeric helicates is present (see ESI MS). Besides this signal the resonance of the solvated lithium cations appears around δ =-1 ppm. From the ratio of the signal intensities an averaged dimerization constant of K_{dim}(av)=95 M⁻¹ is estimated.

Figure 10 shows the dependence of the averaged dimerization constant on the ratio between the two ligands 3c and 3d. The homoleptic complex Li[Li₃ $3c_6Ti_2$] reveals a dimerization constant of $K_{dim} = 94 \text{ M}^{-1}$ similar to the one of the 5:1 complex Li[Li₃ $3c_n 3d_mTi_2$] (n:m=5:1). However, starting with Li-

Figure 10. Averaged dimerization constants of complex mixtures Li-[Li₃3 c_n 3 d_m Ti₂] (n+m=6) with two different ligands 3 c and 3 d depending on the ratio of the ligands.

 $[Li_3 3 c_n 3 d_m Ti_2]$ (n:m=4:2) K_{dim} drops dramatically to 24 M⁻¹. Further change of the ligand ratio in favour of 3d results in further minor reduction of K_{dim} and finally the homoleptic complex of 3d forms exclusively as the monomer Li₂3d₃Ti. Thus, the least stabilizing ligand 3d seems to have the highest impact on the dimerization constants in the heteroleptic (mixed) complexes.

A similar behaviour as observed for Li[Li₃3c_n3d_mTi₂] (n + m = 6) is found by mixing the ligands 3a and 3d.

In case of the ligands **3a** and **3c** the homoleptic complexes $Li[Li_33a_6Ti_2]$ and $Li[Li_33c_6Ti_2]$ show - within the error - similar dimerization constants of 123 or 94 M⁻¹, respectively. Consequently, the mixed complexes show a similar dimer stability.

The destabilization of the dimeric complexes by the least stabilizing ligand also takes place for the alkyl substituted ester complexes with the ligand pairs 2g/2h, 2i/2e and 2i/2f (Figure 11).

In conclusion it can be stated that ⁷Li NMR is a simple, but very effective tool to study the monomer/dimer equilibrium of catechol based hierarchical helicates and of related lithium dependent molecular switches in solution. The ⁷Li NMR signals of the internally bound (encapsulated) and the external (free) lithium cations are well separated. Their chemical-shift differences report on the shielding of the internally bound lithium cations and allow distinguishing between alkyl and benzyl ester substituted catechol ligands. From the integration of the ⁷Li NMR signals, dimerization constants are estimated. This is even possible for mixtures of complexes resulting in averaged dimerization constants. Solid-state ⁷Li MAS NMR is also sufficiently sensitive to reveal the difference in the chemical shift of internal and external lithium cations complementing crystallographic studies.

Furthermore, expendable/compressable switches based on a tethered "hierachical helicate" can be well investigated showing the ratio between expanded and compressed species.

In summary, here we present an analytical tool which makes it easy to study lithium bridged hierarchical helicates even if ¹H NMR spectroscopy does not give useful information. Thus, it is expected that this technique will be able to help solving some mysteries which up to now can be tentatively explained but are not fully

Figure 11. Averaged dimerization constants of complex mixtures Li-[Li₃L1,L2, $_{m}$ Ti₂] with two different ligands (circle: 2g/2h, triangle: 2i/2e and sqare: 2i/2f) depending on the ratio of the two ligands m:n.

understood.^{[24] 7}Li NMR is a valuable tool to investigate supramolecular systems containing lithium cations as components.

Conclusion

In conclusion it can be stated that ⁷Li NMR is a simple, but very effective tool to study the monomer/dimer equilibrium of catechol based hierarchical helicates and of related lithium dependent molecular switches in solution. The ⁷Li NMR signals of the internally bound (encapsulated) and the external (free) lithium cations are well separated. Their chemical-shift differences report on the shielding of the internally bound lithium cations and allow distinguishing between alkyl and benzyl ester substituted catechol ligands. From the integration of the ⁷Li NMR signals, dimerization constants are estimated. This is even possible for mixtures of complexes resulting in averaged dimerization constants. Solid-state ⁷Li MAS NMR is also sufficiently sensitive to reveal the difference in the chemical shift of internal and external lithium cations complementing crystallographic studies.

Furthermore, expendable/compressable switches based on a tethered "hierachical helicate" can be well investigated showing the ratio between expanded and compressed species.

In summary, here we present an analytical tool which makes it easy to study lithium bridged hierarchical helicates even if ¹H NMR spectroscopy does not give useful information. Thus, it is expected that this technique will be able to help solving some mysteries which up to now can be tentatively explained but are not fully understood.²⁴ ⁷Li NMR is a valuable tool to investigate supramolecular systems containing lithium cations as components.

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft (DFG, project number 444762295) is gratefully acknowledged. T.W. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Heisenberg fellowship, project number 455238107) and the Max Planck Society. Open Access funding enabled and organized by Projekt DEAL.

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Hierarchical helicate \cdot ⁷Li NMR \cdot equilibrium \cdot thermodynamic \cdot coordination chemistry

- J. M. Lehn, Supramolecular Chemistry, Concepts and Perspective, VCH, Weinheim, 1995.
- [2] a) S. Datta, M. L. Saha, P. J. Stang, Acc. Chem. Res. 2018, 51 9, 2047–2063;
 b) A. Wang, J. Huang, Y. Yan, Soft Matter 2014, 10, 3362–3373; c) Y. Sang, M. Liu, Chem. Sci. 2022, 13, 633–656; d) M.-P. Zhou, J.-J. Wu, X.-D. Wang, Y.-C. Tao, Y. Yao, L.-S. Liao, Nat. Commun. 2019, 10, 3839; e) J. Liu, T. Luo, Y. Xue, L. Mao, P. J. Stang, M. Wang, Angew. Chem. Int. Ed. 2020, 60, 5429–5435; f) C. X. Guzman, R. M. Krick Calderon, Z. Li, S. Yamazaki,

S. R. Peurifoy, C Guo, S. K. Davidowski, M. M. A. Mazza, X. Han, G. Holland, A. M. Scott, A. B. Braunschweig, J. Phys. Chem. C 2015, 119, 19584–19589; g) J. K. Clegg, S. S. Iremonger, M. J. Hayter, P. D. Southon, R, B. Macquart, M. B. Duriska, P. Jensen, P. Turner, K. A. Jolliffe, C. J. Kepert, G. V. Meehan, L. F. Lindoy, Angew. Chem. Int. Ed. 2010, 49, 1075–1078; h) C. Zhang, F. Wang, R. S. Patil, Ch. L. Barnes, T. Li, J. L. Atwood, Chem. Eur. J. 2018, 24, 14335–14340.

- [3] Review: M. Albrecht, Synergy in Supramolecular Chemistry, ed. Nabeshima, T. CRC Press, Boca Raton, 2015, chapter 2, 19–32.
- [4] Helicates: a) J.-M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras, *Proc. Natl. Acad. Sci. USA* **1987**, *84*, 2565–2569; b) C. Piguet, G. Bernardinelli, G. Hopfgartner, *Chem. Rev.* **1997**, *97*, 2005–2062; c) M. Albrecht, *Chem. Rev.* **2001**, *101*, 3457–3497; d) N. M. Tran, H. Yoo, *Dalton Trans.* **2020**, *49*, 11819–11827.
- [5] a) T. Konno, K. Takuda, T. Suzuki, K.-I. Okamoto, *Bull. Chem. Soc. Jpn.* **1998**, *71*, 1049–1054; b) Y. Sakata, S. Hiraoka, M. Shionoya, *Chem. Eur. J.* **2010**, *16*, 3318–3325; c) S. Hiraoka, Y. Sakata, M. Shionoya, *J. Am. Chem. Soc.* **2008**, *130*, 10058–10059; d) M. Wang, V. Vajpayee, S. Shanmugaraju, Y.-R. Zheng, Z. Zhao, H. Kim, P. S. Mukherjee, K.-W. Chi, P. J. Stang, *Inorg. Chem.* **2011**, *50*, 1506–1512; e) T. Nakagawa, H. Danjo, M. Kawahata, K. Yamaguchi, *Tetrahedron* **2019**, *75*, 315.323; f) Q.-Y. Zhu, L.-P. Zhou, L.-X. Cai, X.-Z. Li, J. Zhouc, Q.-F. Sun, *Chem. Commun.* **2020**, *56*, 2861–2864; g) hydrogen bonded hierarchical helicates: S. G. Telfer, R. Kuroda, *Chem. Eur. J.* **2005**, *11*, 57–68.
- [6] E.g. a) M. H. W. Lam, S. T. C. Cheung, K.-M. Fung, W.-T. Wong, *Inorg. Chem.* **1997**, *36*, 4618–4619; b) X. Sun, D. W. Johnson, D. Caulder, R. E. Powers, K. N. Raymond, E. H. Wong, *Angew. Chem. Int. Ed.* **1999**, *38*, 1303–1306.
- [7] M. Albrecht, S. Mirtschin, M. de Groot, I. Janser, J. Runsink, G. Raabe, M. Kogej, C. A. Schalley, R. Fröhlich, J. Am. Chem. Soc. 2005, 127, 10371–10387.
- [8] X. Chen, D. Van Craen, M. Albrecht, Chem. Eur. J. 2019, 25, 4265–4273.
- [9] a) S. Paliwal, S. Geib, C. S. Wilcox, J. Am. Chem. Soc. 1994, 116 10, 4497–4498; b) E.-l. Kim, S. Paliwal, C. S. Wilcox, J. Am. Chem. Soc. 1998, 120, 11192–11193.
- [10] A. C. N. Kwamen, J. Jenniches, I. Oppel, M. Albrecht, Chem. Eur. J. 2020, 26, 10550–10554.
- [11] D. Van Craen, W. H. Rath, M. Huth, L. Kemp, C. Räuber, J. Wollschläger, C. A. Schalley, A. Valkonen, K. Rissanen, M. Albrecht, J. Am. Chem. Soc. 2017, 139, 16959–16966.
- [12] K. Müller-Dethlefs, P. Hobza, Chem. Rev. 2000, 100, 143–167.
- [13] P. W. N. M. van Leeuwen, M. Raynal, Supramolecular Catalysis: New Directions and Developments, Wiley VCH, Weinheim, 2021.
- [14] a) D. Van Craen, M. Albrecht, G. Raabe, F. Pan, K. Rissanen, *Chem. Eur. J.* 2016, *22*, 3255–3258; b) D. Van Craen, J. Begall, J. Großkurth, L. Himmel, O. Linnenberg, E. Isaak, M. Albrecht, *Beilstein J. Org. Chem.* 2020, *16*, 2338–2345; c) W. Wang, L. Sturm, D. Sommer, I. Oppel, M. Albrecht, *Eur. J. Inorg. Chem.* 2023, *26*, e20230007.
- [15] M. Albrecht, M. Baumert, H. D. F. Winkler, C. A. Schalley, R. Fröhlich, Dalton Trans. 2010, 7220–7222.
- [16] X. Chen, T. M. Gerger, C. Räuber, G. Raabe, C. Göb, I. M. Oppel, M. Albrecht, Angew. Chem. Int. Ed. Engl. 2018, 57, 11817–11820.
- [17] a) K. Miwa, Y. Furusho, E. Yashima, *Nat. Chem.* 2010, *2*, 444–449; b) K. Harada, R. Sekiya, T. Haino, *Chem. Eur. J.* 2020, *26*, 5810–5817.
- [18] B. L. Feringa, W. R. Browne, *Molecular Switches*, Wiley-VCH, Weinheim, 2011.
- [19] a) C. Kwamen, M. Schlottmann, D. VanCraen, E. Isaak, J. Baums, L. Shen, A. Massomi, C. Räuber, B. Joseph, G. Raabe, C. Göb, I. Oppel, R. Puttreddy, J. Ward, K. Rissanen, R. Fröhlich, M. Albrecht, *Chem. Eur. J.* **2020**, *26*, 1396–1405; b) A. C. N. Kwamen, G. S. de Macedo, C. Wiederhold, I. Oppel, M. Albrecht, *Chem. Eur. J.* **2020**, *26*, 3829–3833.
- [20] D. Van Craen, M. Schlottmann, W. Stahl, C. Räuber, M. Albrecht, *Dalton Trans.* 2019, 48, 10574–10580.
- [21] a) H. Günther, D. Moskau, P. Bast, D. Schmalz, Angew. Chem. Int. Ed. 1987, 26, 1212–1220; b) L. B. Krivdin, MRC 2022, 61, 138–161.
- [22] M. Schlottmann, T. Krückel, M. Albrecht, Chem. Commun. 2022, 58, 6104–6107.
- [23] C. Jäger, J. Magn. Reson. 1992, 99, 353-362.
- [24] E. g. M. Albrecht, E. Isaak, V. Moha, G. Raabe, R. Fröhlich, *Chem. Eur. J.* 2014, 20, 6650–6658.

Manuscript received: January 29, 2024 Accepted manuscript online: March 7, 2024 Version of record online: ■■, ■

^{© 2024} The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH

RESEARCH ARTICLE

compression of molecular switches is followed. Thus, ⁷Li NMR helps to understand phenomena far beyond the simple observation of a heteroatom resonance in solution or in the solid. T. Krückel, S. Schauerte, J. Ke, Dr. M. Schlottmann, S. Bausch, Dr. X. Chen, Dr. C. Räuber, Dr. I. d'A. Almeida Silva, Prof. Dr. T. Wiegand, Prof. M. Albrecht*

⁷Li NMR Spectroscopy: a Tool for Determining Dimerization Constants and Averaged Dimerization Constants of the Monomer/Dimer Equilibrium of Hierarchical Helicates

⁷Li NMR is a perfect tool for the evaluation of supramolecular aggregates. In case of titanium(IV) based hierarchical helicates dimerization as well as averaged dimerization constants are determined and the expansion and