Skip to main content

Advertisement

Log in

A benchmark study on reactive two-phase flow in porous media: Part II - results and discussion

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper presents and discusses the results obtained by the participants to the benchmark described in de Hoop et al, Comput. Geosci. (2024). The benchmark uses a model for CO2 geological storage and focuses on the coupling between two-phase flow and geochemistry. Several test cases of various levels of difficulty are proposed, both in one and two spatial dimensions. Six teams participated in the benchmark, each with their own simulation code, though not all teams attempted all the cases. The codes used by the participants are described, and the results obtained on the various test cases are compared, as well as the performance of the codes. It is shown that the results obtained are widely consistent, giving a good level of confidence in the outcome of the benchmark. The general complexity of two-phase flow coupled with chemical reactions altering porous media means that some differences between the codes remain. Besides, from the convergence study, it is clear that the two-dimensional problem has a relatively high sensitivity to a spatial resolution which adds to the complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The results obtained by the participants in this benchmark study can be found on the website: https://github.com/eahusbor/Reactive-Multiphase-Benchmark. Furthermore, the DARTS model scripts needed to reproduce the results for the test cases using the basic chemical model can be found at https://gitlab.com/open-darts/darts-models.

References

  1. de Hoop, S., Voskov, D., Ahusborde, E., Amaziane, B., Kern, M.: A benchmark study on reactive two-phase flow in porous media: Part I - model description. Comput. Geosci. (2024). https://doi.org/10.1007/s10596-024-10268-z

  2. Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., Seitz, G., Stadler, L., Utz, M., Weinhardt, F., Flemisch, B.: DuMu\(^X\) 3 - an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Comput. Math. Appl. 81, 423–443 (2021). https://doi.org/10.1016/j.camwa.2020.02.012

    Article  MathSciNet  Google Scholar 

  3. Bastian, P., Blatt, M., Dedner, A., Dreier, N.A., Engwer, C., Fritze, R., Gräser, C., Grüninger, C., Kempf, D., Klöfkorn, R., Ohlberger, M., Sander, O.: The DUNE framework: Basic concepts and recent developments. Comput. Math. Appl. 81, 75–112 (2021). https://doi.org/10.1016/j.camwa.2020.06.007

    Article  MathSciNet  Google Scholar 

  4. Ahusborde, E., Kern, M., Vostrikov, V.: Numerical simulation of two-phase multicomponent flow with reactive transport in porous media: application to geological sequestration of CO\(_2\). ESAIM: Proc. 50, 21–39 (2015). https://doi.org/10.1051/proc/201550002

  5. Ahusborde, E., El Ossmani, M.: A sequential approach for numerical simulation of two-phase multicomponent flow with reactive transport in porous media. Math. Comput. Simul. 137, 71–89 (2017). https://doi.org/10.1016/j.matcom.2016.11.007

    Article  MathSciNet  Google Scholar 

  6. Ahusborde, E., Amaziane, B., El Ossmani, M.: Improvement of numerical approximation of coupled two-phase multicomponent flow with reactive geochemical transport in porous media. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles 73 (2018). https://doi.org/10.2516/ogst/2018033

  7. Ahusborde, E., Amaziane, B., El Ossmani, M., Id Moulay, M.: Numerical modeling and simulation of fully coupled processes of reactive multiphase flow in porous media. J. Math. Study 52, 359–377 (2019). https://doi.org/10.4208/jms.v52n4.19.01

    Article  MathSciNet  Google Scholar 

  8. Ahusborde, E., Amaziane, B., Id Moulay, M.: High performance computing of 3D reactive multiphase flow in porous media: Application to geological storage of CO\(_2\). Comput. Geosci. 25, 2131–2147 (2021). https://doi.org/10.1007/s10596-021-10082-x

    Article  MathSciNet  Google Scholar 

  9. Voskov, D., Saifullin, I., Wapperom, M., Tian, X., Palha, A., Orozco, L., Novikov, A.: open Delft Advanced Research Terra Simulator (open-DARTS). https://doi.org/10.5281/zenodo.8116928

  10. Novikov, A., Voskov, D., Khait, M., Hajibeygi, H., Jansen, J.D.: A scalable collocated finite volume scheme for simulation of induced fault slip. J. Comput. Phys. 469 (2022). https://doi.org/10.1016/j.jcp.2022.111598

  11. Voskov, D.V.: Operator-based linearization approach for modeling of multiphase multi-component flow in porous media. J. Comput. Phys. 337, 275–288 (2017). https://doi.org/10.1016/j.jcp.2017.02.041

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Wapperom, M., Lyu, X., Voskov, D.: Accurate modeling of near-wellbore effects induced by supercritical CO\(_2\) injection. In: ECMOR 2022 - European Conference on the Mathematics of Geological Reservoirs, pp. 1–13 (2022). https://doi.org/10.3997/2214-4609.202244092

  13. Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993). https://doi.org/10.1137/0914028

    Article  MathSciNet  Google Scholar 

  14. Wallis, J.R., Kendall, R., Little, T.: Constrained residual acceleration of conjugate residual methods. In: SPE Reservoir Simulation Symposium (1985). https://doi.org/10.2118/13536-MS. Society of Petroleum Engineers

  15. Tian, X., Blinovs, A., Khait, M., Voskov, D.: Discrete well affinity data-driven proxy model for production forecast. SPE J. 26(4), 1876–1892 (2021). https://doi.org/10.2118/205489-PA

    Article  Google Scholar 

  16. Tian, X., Voskov, D.: Efficient application of stochastic discrete well affinity (DiWA) proxy model with adjoint gradients for production forecast. J. Pet. Sci. Eng. 210 (2022). https://doi.org/10.1016/j.petrol.2021.109911

  17. Khait, M., Voskov, D.: Adaptive parameterization for solving of thermal/compositional nonlinear flow and transport with buoyancy. SPE J. 23(2), 522–534 (2018). https://doi.org/10.2118/182685-PA

    Article  CAS  Google Scholar 

  18. Lyu, X., Khait, M., Voskov, D.: Operator-based linearization approach for modeling of multiphase flow with buoyancy and capillarity. SPE J. 26(4), 1858–1878 (2021). https://doi.org/10.2118/205378-PA

    Article  Google Scholar 

  19. Khait, M., Voskov, D.: Operator-based linearization for efficient modeling of geothermal processes. Geothermics 74, 7–18 (2018). https://doi.org/10.1016/j.geothermics.2018.01.012

    Article  ADS  Google Scholar 

  20. Wang, Y., Voskov, D., Khait, M., Bruhn, D.: An efficient numerical simulator for geothermal simulation: A benchmark study. Applied Energy 264 (2020). https://doi.org/10.1016/j.apenergy.2020.114693

  21. Kala, K., Voskov, D.: Element balance formulation in reactive compositional flow and transport with parameterization technique. Comput. Geosci. 24(2), 609–624 (2020). https://doi.org/10.1007/s10596-019-9828-y

    Article  MathSciNet  Google Scholar 

  22. Lyu, X., Voskov, D., Rossen, W.R.: Numerical investigations of foam-assisted CO\(_2\) storage in saline aquifers. Int. J. Greenhouse Gas Control 108 (2021). https://doi.org/10.1016/j.ijggc.2021.103314

  23. Khait, M., Voskov, D.: GPU-offloaded general purpose simulator for multiphase flow in porous media. SPE Reservoir Simulation Conference, pp. 011–003006 (2017). https://doi.org/10.2118/182663-MS. SPE paper SPE-182663-MS

  24. Khait, M., Voskov, D., Zaydullin, R.: High performance framework for modelling of complex subsurface flow and transport applications. In: 17th European Conference on the Mathematics of Oil Recovery (2020). https://doi.org/10.3997/2214-4609.202035188

  25. Chen, Y., Voskov, D.: Optimization of CO\(_2\) injection using multi-scale reconstruction of composition transport. Comput. Geosci. 24, 819–835 (2020). https://doi.org/10.1007/s10596-019-09841-8

    Article  MathSciNet  Google Scholar 

  26. Hoop, S.d., Jones, E., Voskov, D.: Accurate geothermal and chemical dissolution simulation using adaptive mesh refinement on generic unstructured grids. Adv. Water Resour. 154 (2021). https://doi.org/10.1016/j.advwatres.2021.103977

  27. de Hoop, S., Voskov, D.V., Bertotti, G., Barnhoorn, A.: An advanced discrete fracture methodology for fast, robust, and accurate simulation of energy production from complex fracture networks. Water Resour. Res. 58(5) (2022). https://doi.org/10.1029/2021WR030743

  28. Novikov, A., Voskov, D.V., Khait, M., Hajibeygi, H., Jansen, J.D.: A collocated finite volume scheme for high-performance simulation of induced seismicity in geo-energy applications. SPE (2021). https://doi.org/10.2118/203903-MS

    Article  Google Scholar 

  29. Grospellier, G., Lelandais, B.: The arcane development framework. POOSC ’09: Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing (2009)

  30. Havé, P.: Arcane/ArcGeoSim, a Software Framework for Geosciences Simulation. In: http://orap.irisa.fr/wp-content/uploads/2015/11/ORAP-2015-Have.pdf (2015)

  31. Coats, K.H.: An equation of state compositional model. SPE J. (1979). https://doi.org/10.2118/8284-PA

    Article  Google Scholar 

  32. Moutte, J., Michel, A., Battaia, G., Parra, T., Garcia, D., Wolf, S.: Arxim, a Library for Thermodynamic Modeling of Reactive Heterogeneous Systems, with Applications to the Simulation of Fluid-rock System. In: 21st Congress of IUPAC. Conference on Chemical Thermodynamic, Tsukuba, Japan (2010)

  33. Trenty, L., Michel, A., Tillier, E., Le Gallo, Y.: A sequential splitting strategy for CO\(_2\) storage modelling. In: ECMOR X - 10th European Conference on the Mathematics of Oil Recovery (2006). https://doi.org/10.3997/2214-4609.201402512

  34. Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE). Kybernetika 46(2), 294–315 (2010)

    MathSciNet  Google Scholar 

  35. Sander, O.: DUNE - The Distributed and Unified Numerics Environment. Springer Cham, Springer Nature Switzerland AG (2020)

    Book  Google Scholar 

  36. Piatkowski, M., Müthing, S., Bastian, P.: A stable and high-order accurate discontinuous Galerkin based splitting method for the incompressible Navier-Stokes equations. J. Comput. Phys. 356, 220–239 (2018). https://doi.org/10.1016/j.jcp.2017.11.035

    Article  ADS  MathSciNet  Google Scholar 

  37. Bastian, P.: A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure. Comput. Geosci. 18 (2014). https://doi.org/10.1007/s10596-014-9426-y

  38. Kempf, D., Heß, R., Müthing, S., Bastian, P.: Automatic Code Generation for High-Performance Discontinuous Galerkin Methods on Modern Architectures. ACM Trans. Math. Softw. 47 (2020). https://doi.org/10.1145/3424144

  39. Hintermüller, M., Ito, K., Kunish, M.: The primal-dual active set strategy as a semismooth newton method. SIAM J. Optim. 13 (2002). https://doi.org/10.1137/S1052623401383558

  40. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res., 38–9121 (2002). https://doi.org/10.1029/2001WR000862

  41. Seigneur, N., Vriens, B., Beckie, R., zhang, K.: Reactive transport modelling to investigate multi-scale waste rock weathering processes. J. Contam. Hydro. 236, 103752 (2020). https://doi.org/10.1016/j.jconhyd.2020.103752

  42. Mayer, K.U., Amos, R.T., Molins, S., Gérard, F.: Reactive Transport Modeling in Variably Saturated Media with MIN3P: Basic Model Formulation and Model Enhancements. In: Zhang, F., Yeh, G.T., Parker, J.C. (eds.) Groundwater Reactive Transport Models. Bentham Publishers, United Arab Emirates (2012)

    Google Scholar 

  43. Molins, S., Mayer, K.U., Amos, R.T., Bekins, B.A.: Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport. J. Contam. Hydrol. 112, 15–29 (2010). https://doi.org/10.1016/j.jconhyd.2009.09.002

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Bea, S.A., Wilson, S.A., Mayer, K.U., Dipple, G.M., Power, I.M., Gamazo, P.: Reactive transport modeling of natural carbon sequestration in ultramafic mine tailings. Vadoze Zone J. 11(2) (2012). https://doi.org/10.2136/vzj2011.0053

  45. Forde, O.N., Mayer, K.U., Cahill, A.G., Mayer, B., Cherry, J.A., Parker, B.L.: Vadose zone gas migration and surface effluxes after a controlled natural gas release into an unconfined shallow aquifer. Vadose Zone J. 17(1), 180033 (2018). https://doi.org/10.2136/vzj2018.02.0033

    Article  CAS  Google Scholar 

  46. Henderson, T.H., Mayer, K.U., Parker, B.L., Al, T.A.: Three-dimensional density-dependent flow and multicomponent reactive transport modeling of chlorinated solvent oxidation by potassium permanganate. J. Contam. Hydro. 106(3), 195–211 (2009). https://doi.org/10.1016/j.jconhyd.2009.02.009

    Article  ADS  CAS  Google Scholar 

  47. Poonoosamy, J., Wanner, C., Alt Epping, P., Àguila, J.F., Samper, J., Montenegro, L., Xie, M., Mayer, K.U., Mäder, U., Van Loon, L.R., Kosakowski, G.: Benchmarking of reactive transport codes for 2D simulations with mineral dissolution-precipitation reactions and feedback on transport parameters. Comput. Geosci., 1337–1358 (2021). https://doi.org/10.1007/s10596-018-9793-x

  48. Su, D., Mayer, K.U., MacQuarrie, K.T.B.: MIN3P-HPC: A high-performance unstructured grid code for subsurface flow and reactive transport simulation. Math. Geosci. 53, 517–550 (2021). https://doi.org/10.1007/s11004-020-09898-7

    Article  MathSciNet  Google Scholar 

  49. Ben Gharbia, I., Flauraud, E.: Study of compositional multiphase flow formulation using complementarity conditions. Oil & Gas Science and Technology - Rev. IFP Energies nouvelles. 74(43) (2019). https://doi.org/10.2516/ogst/2019012

  50. GEOS. www.geosx.org. [Online; accessed 2023-02-03] (2023)

  51. Borio, A., Hamon, F.P., Castelletto, N., White, J.A., Settgast, R.R.: Hybrid mimetic finite-difference and virtual element formulation for coupled poromechanics. Comput. Methods Appl. Mech. Eng. 383, 113917 (2021). https://doi.org/10.1016/j.cma.2021.113917

    Article  ADS  MathSciNet  Google Scholar 

  52. Cusini, M., White, J.A., Castelletto, N., Settgast, R.R.: Simulation of coupled multiphase flow and geomechanics in porous media with embedded discrete fractures. Int. J. Numer. Anal. Methods Geomech. 45, 563–584 (2021). https://doi.org/10.1002/nag.3168

    Article  Google Scholar 

  53. Bui, Q.M., Hamon, F.P., Castelletto, N., Osei-Kuffuor, D., Settgast, R.R., White, J.A.: Multigrid reduction preconditioning framework for coupled processes in porous and fractured media. Comput. Methods Appl. Mech. Eng. 387, 114111 (2021). https://doi.org/10.1016/j.cma.2021.114111

    Article  ADS  MathSciNet  Google Scholar 

  54. Bui, Q.M., Osei-Kuffuor, D., Castelletto, N., White, J.A.: A scalable multigrid reduction framework for multiphase poromechanics of heterogeneous media. SIAM J. Sci. Comput. 42(2), 379–396 (2020). https://doi.org/10.1137/19M1256117

    Article  MathSciNet  Google Scholar 

  55. Cusini, M., Franceschini, A., Gazzola, L., Gazzola, T., Huang, J., Hamon, F.P., Settgast, R.R., Castelletto, N., White, J.A.: Field-scale simulation of geologic carbon sequestration in faulted and fractured natural formations. Technical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States) (2022)

  56. Camargo, J., Hamon, F.P., Mazuyer, A., Meckel, T., Castelletto, N., White, J.A.: Deformation monitoring feasibility for offshore carbon storage in the Gulf-of-Mexico. In: Proceedings of the 16th Greenhouse Gas Control Technologies Conference (GHGT-16) (2022). https://doi.org/10.2139/ssrn.4296637

  57. Tang, H., Fu, P., Sherman, C.S., Zhang, J., Ju, X., Hamon, F., Azzolina, N.A., Burton-Kelly, M., Morris, J.P.: A deep learning-accelerated data assimilation and forecasting workflow for commercial-scale geologic carbon storage. Int. J. Greenhouse Gas Control 112, 103488 (2021). https://doi.org/10.1016/j.ijggc.2021.103488

    Article  CAS  Google Scholar 

  58. Huang, J., Hao, Y., Settgast, R.R., White, J.A., Mateen, K., Gross, H.: Validation and application of a three-dimensional model for simulating proppant transport and fracture conductivity. Rock Mech. Rock Eng., 1–23 (2022). https://doi.org/10.1016/j.ijggc.2021.103488

  59. Costa, A., Cusini, M., Jin, T., Settgast, R.R., Dolbow, J.E.: A multi-resolution approach to hydraulic fracture simulation. Int. J. of Fracture 237(1), 165–188 (2022). https://doi.org/10.1007/s10704-022-00662-y

    Article  Google Scholar 

  60. Orr, F.: Theory of Gas Injection Processes. Tie-Line Publications, Holte (2007)

    Google Scholar 

  61. Carrayrou, J., Hoffmann, J., Knabner, P., Kräutle, S., de Dieuleveult, C., Erhel, J., van der Lee, J., Lagneau, V., Mayer, K.U., MacQuarrie, K.T.B.: Comparison of numerical methods for simulating strongly nonlinear and heterogeneous reactive transport problems-the MoMaS benchmark case. Comput. Geosci. 14, 483–502 (2010). https://doi.org/10.1007/s10596-010-9178-2

    Article  Google Scholar 

  62. Barker, J.W., Fayers, F.J.: Transport coefficients for compositional simulation with coarse grids in heterogeneous media. SPE Advanced Technology Series 2(2), 103–112 (1994). https://doi.org/10.2118/22591-PA

    Article  Google Scholar 

  63. Iranshahr, A., Chen, Y., Voskov, D.V.: A coarse-scale compositional model. Comput. Geosci. 18(5), 797–815 (2014). https://doi.org/10.1007/s10596-014-9427-x

    Article  MathSciNet  Google Scholar 

Download references

Funding

The work of E. Ahusborde, B. Amaziane and M. El Ossmani has been partly supported by the Carnot ISIFoR Institute, and “la Région Nouvelle-Aquitaine”, France. These supports are gratefully acknowledged. A. Socié and D. Su were supported by the Government of Canada through a Natural Sciences and Engineering Research Council of Canada - Strategic Partnership Grant for Networks (NETGP 479708-15). F. Hamon was supported by TotalEnergies through the FC-Maelstrom project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Kern.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1670 KB)

Appendix A

Appendix A

1.1 Convergence analysis for Test 2.1

In this section, we briefly investigate the sensitivity of the reported results with respect to the mesh discretization for the 2D Test case 2.1 (section 3.1.1 contains a similar study for the 1D Test 1.1). The computations were carried out with the code DARTS, but the authors believe that the same conclusions would have been reached with the other codes.

Figure 16 represents the gas saturation computed by DARTS for several meshes composed of \(60 \times 24\), \(120 \times 48\), \(240 \times 96\) and \(480 \times 192\) elements.

One can see that the results obtained on the coarsest grid (Fig. 16-a) lack several features that can be seen at finer resolutions. Differences can still be seen on all four meshes; however, the main qualitative features have mainly stabilized from mesh (b)-onwards. Mesh (b) (with \(120\times 48\) elements) was chosen as an acceptable compromise between sufficient accuracy and a reasonable computation time for the numerical experiments.

Fig. 16
figure 16

Comparison of gas saturation at \(t=1000\) days for the Test 2.1 with gravity using different meshes (computed with DARTS)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahusborde, E., Amaziane, B., de Hoop, S. et al. A benchmark study on reactive two-phase flow in porous media: Part II - results and discussion. Comput Geosci (2024). https://doi.org/10.1007/s10596-024-10269-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10596-024-10269-y

Keywords

Navigation