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Abstract: The energy bound-state solutions of the spinless
Salpeter equation (SSE) have been obtained under a spin-depen-
dent Cornell potential function via the Wentzel–Kramers–
Brillouin approximation. The energy levels were applied to pre-
dict the mass spectra for the charmonium, bottomonium, and
bottom-charmed mesons. The relativistic corrections for the
angular momentum quantum number >l 0, total angular
momentum quantum numbers = = ±j l j l, 1, and the radial
quantum numbers n = 1–4 improve the mass spectra. The
results agree fairly with experimental data and theoretic results
reported in existing works, where the authors utilized different
forms of the inter-quark potentials and methods. The deviation
of the obtained masses for the charmonium and bottomonium
from the observed data yields a total percentage error of 3.32
and 1.11%, respectively. The results indicate that the accuracy
of the masses is correlated with the magnitude of masses for
the charm and bottom quarks. The SSE together with the phe-
nomenological spin-dependent Cornell potential provides an
adequate account of the mass spectroscopy for the heavy

mesons and may be used to predict other spectroscopic
parameters.

Keywords: meson spectroscopy, spin–orbit coupling, Cornell
potential, Salpeter equation

1 Introduction

The discovery of the electron by Thomson [1] in 1897 and
the nucleus by Rutherford [2] in 1911 gave a fairly complete
picture of the atomic structure. However, decades after
these discoveries, several other elementary particles have
been discovered with the aid of modern equipment such as
particle colliders, detectors, and accelerators. These ele-
mentary particles that are the composite of much smaller
particles are referred to as quarks. Quarks form the building
blocks of matter, and their dynamical existence has been
confirmed via experimental works on deep inelastic scat-
tering of electrons and neutrons [3]. The standard model of
elementary particles forms the basis for the understanding of
particle physics, where the quarks have six flavors, namely,
the up (u), down (d), top (t), bottom (b), strange (s), and charm
(c) quarks; six leptons such as the electron (e), muon (μ), tau
(τ), and their respective neutrinos (νe, νμ, ντ); the gauge; and
theHiggs bosons. The quarks and leptons interact via the unified
electroweak forces and the strong quantum chromo-dynamics
(QCD) force. The strong QCD force is responsible for the binding
of quarks into protons and neutrons, while the interaction
between the leptons is mediated by the electromagnetic force.
The weak nuclear force is associated with particle decay.

The bound states of three quarks give rise to the baryons,
while the quark–antiquark pairs constitute themesons. Both the
baryons and mesons are grouped into hadrons. The hadrons
with ½ integer spin are fermions and obey the Fermi-Dirac
statistics, while bosons possess spin 0, 1 and obey the
Bose–Einstein statistics. The properties of these elementary par-
ticles have garnered research interest among particle physicists
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in recent years. These properties have been observed using
heavy machinery [4], and some were predicted theoretically
before their experimental discovery. In this regard, the bound-
state solutions of the wave equations under the inter-quark
potentials have been utilized to predict the mass spectroscopy
and decay properties of the elementary particles. The most uti-
lized potential energy is the Cornell potential, which is the com-
bination of the Coulomb’s energy and a linear function. The
Coulomb’s energy is responsible for the short-range gluon
exchange interaction between a quark and its antiquark, while
the linear function is in charge of quark confinement. The addi-
tion of spin components to the Cornell potential allows for rela-
tivistic corrections and results in the hyperfine splitting between
the s-wave singlet and triplet states. Themultiple triplet splitting
occurs for any angular momentum quantum number >l 0.

Li et al. [5] predicted the charmonium (cc̅) mass spectra
using the coupled-channel model and the screened potential
model in the mass region below 4 GeV. Their results agreed
with the masses of the cc̅ meson obtained with a quenched
potential model and literature data [6]. Mutuk [7] investigated
the mass spectra and decay constants of vector and pseudos-
calar heavy-light mesons within the framework of the QCD
sum rule and the quark model. The numerical results were in
good agreement compared to observed data and other theo-
retical works. The charmonia spectra have been investigated
using the non-relativistic quark model and matrix-Numerov
method [8,9]. Chaturvedi and Rai [10], in a recent work, inves-
tigated the electromagnetic transitions, mass spectroscopy,
and decay rates of the bottom-charm (bc̅) meson within the
context of the non-relativistic QCD. Several authors [11–28]
have carried out extensive studies on the mesons bound-state
solutions and applied them to obtain their spectroscopic para-
meters. The results in the references therein were compared to
experimental data of the particle data group [29–31], and the
results were predicted using different QCD-inspired potentials,
phenomenological potentials, and theoretical methods.

In this work, we investigate the hyperfine mass spectra
splitting of the heavy mesons within the framework of the
semi-relativistic spinless Salpeter equation (SSE). Previously,
the mass spectra of the heavy mesons have been obtained in
previous studies [32,33] using the SSE without considering the
spin components and relativistic corrections for the inter-quark
potentials. The results in the references therein revealed that the
semi-relativistic equation provides a satisfying account for the
mesonmass spectroscopy. Motivated by these facts, we report
for the first time the approximate analytical and numerical
mass spectra splitting of the heavy mesons under the SSE
with a phenomenological spin-dependent Cornell potential
via the Wentzel–Kramers–Brillouin (WKB) approximation.

In this study, we considered the interactions potential
function given by

( ) ( ) ( ) ( ) ( )= + + +V r V r V r V r V r ,c SS LS T (1)

where ( )V rc is the Cornell potential. The functions ( ) ( )V r V r, ,SS LS

and ( )V rT are the spin–spin, spin–orbit, and tensor channels,
respectively. The respective potential functions are repre-
sented as [22,24]
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where αs, b, m ,q and mq̅ are the coupling constant, linear
confinement parameter, the mass of quark, and its anti-
quark, respectively. In (3), the Dirac delta function has
been used as a Gaussian function ( ( ) ( )= −δ r σ π e̅ /σ

σ r3
2 2

).
The operators in Eqs. (3)–(5) are diagonal in | 〉j l s, , with
the respective spin–spin (( ·S S̅ ̅ )) spin–orbit ( ·L S̅ ̅ ) and tensor
(T̅ ) matrix elements given by refs [22,24]
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The notations s, l, and = +j l s denote the spin number,
orbital quantum number, and the total angular momentum
quantum number, respectively. The spin–spin coupling gives
rise to the s-wave ( =l 0) hyperfine splitting between the triplet
( =s 1) and singlet ( =s 0) states. For >l 0, and = ± =j l j l1, ,
we have the multiplets splitting for the p d f g, , , , and h triplets
quantum states. The n represents the principal quantum number.
The spin-dependent potentials in (4) and (5) give themass shifts and
are obtained from leading-order perturbation theory [14,24]. The
operator〈 〉T̅ canbedescribedby thenon-vanishingdiagonalmatrix
element for >l 0 and correspond to the spin triplet states [21].

2 Energy spectrum of the SSE with
spin-dependent Cornell potential
via the WKB approximation

To obtain an approximate analytical solution, we truncate
the Gaussian function to a harmonic function for ≪r 1 fm

via a Taylor series expansion around =r 0. The Gaussian
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function can be expressed as ∼ −−e σ r1σ r 2 2
2 2

. In the femto-
meter scale, this approximation is important for quark
interactions [28].

Using this approximation, the potential in (1) can be
simplified as
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The spinless SSE equation for describing a two-body
system is given as [34,35]
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where

( ) ( ) ( )=ξ r θ φ ψ r Y θ φ, , , .
nl lm (15)

The notations ∇2, ( )V r , E ,nl and ( )ξ r θ φ, , represent the
Laplacian, the potential function, total energy, and the total
wave function, respectively.

For interaction between particles, the summation in Eq.
(14) can further be expanded via Taylor series to order two:
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Eq. (14) can further be reduced to a Schrödinger-like
equation [35]
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Eq. (17) can bewritten as amomentum eigenvalue equation

(( ) ( )) ( )+ =P p r ψ rˆ 0,
μ nl

2 2 (18)

where P̂ is the radial momentum operator and ( )p r
μ

is the
meson momentum eigenvalue given as
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To obtain the energy equation for the modeled potential,
we employed theWKB energy quantization condition for two
real turning points r1 and r2 via the integral equation:
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It is worth stating that we have added a Langer’s cor-
rection [36] to the centrifugal potential using the transfor-
mation ( ) ( )+ → +l l l1 1/2 2. This correction in the WKB
approximation admits the exact energy eigenvalues for
soluble potentials and ensures that the wave function is
well behaved near the origin.

Inserting the momentum into the WKB quantization
integral in (20) with the potential energy given by (1), we
obtained
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Using coordinate transformation =q r1/ , Eq. (21)
reduces to
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To solve Eq. (22) analytically, the multiple turning
points need to be reduced to two via a Pekeris-type approx-
imation around =q 0. Let = +q y δ with ( )δ q1/ assumed to
be the characteristic distance between the quark and anti-
quark pairs. The inverse power terms can be obtained
using the Taylor series expansion to the second order:
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Table 1: Calculated parameters of interaction potential function

Parameters Potential free parameters

Charmonium Bottomonium Bc Meson

Mass (( ))GeV = =m m 1.530c c̅
a = =m m 5.250b b̅

a = =m m1.530, 5.25c b 0
αs 30.1602 27.7862 41.1745

(( ))δ GeV 0.05846 0.0796 0.0796

(( ))b GeV2 0.1416 0.1702 0.2710

(( ))σ GeV ‒0.1294 0.1356 0.1356

Note: aWe choose the bottom and charm masses from the obtained range [29] < <m1.2 1.8 GeVc and < <m4.5 5.4 GeVb .

Table 2: S and P-states mass spectrum of charmonium meson in GeV

State Present [24] [18] [16] [11] [22] Expt. [30]

++n Ls
j

2 1 J PC

( )J ψ/ 1 S3
1

1‒‒ 3.520 3.094 3.0413 3.096 3.126 3.0851 ( )± ×3.097 6 10‒6

( )η 1 S
c

1
0

+0‒ 3.293 2.989 3.1404 2.981 3.033 2.9904 ±2.984 0.0004

( )ψ 2 S3
1

1‒‒ 3.902 3.681 3.7017 3.685 3.701 3.6821 ( )± ×3.686 6 10‒5

( )η 2 S *
c

1
0

+0‒ 3.638 3.602 3.6610 3.635 3.666 3.6465 ( )± ×3.638 1.1 10‒3

( )ψ 3 S3
1

1‒‒ 4.194 4.129 4.0502 4.039 4.055 4.1002 ±4.039 10‒3

( )η 3 S
c

1
0

+0‒ 3.895 4.058 4.1347 3.989 4.158 4.0719

( )ψ 4 S *
3

1
1‒‒ 4.421 4.514 4.4185 4.427 4.415 4.4394 ( )± ×4.421 4 10‒3

( )η 4 S
c

1
0

+0‒ 4.091 4.448 4.4136 4.401 4.415 4.4209

( )ψ 5 S3
1

1‒‒ 4.600 4.863 4.6591 4.837 4.585 ( )± ×4.63 6 10‒3

( )η 5 S
c

1
0

+0‒ 4.242 4.799 4.6618 4.811 4.607

( )ψ 6 S3
1

1‒‒ 5.804 5.185 4.8801 5.167 4.733

( )η 6 S
c

1
0

+0‒ 5.175 5.124 4.8825 5.155 4.754

( )χ 1 P *
c

3
1

1

++1 3.511 3.468 3.5036 3.511 3.487 3.5004 ( )± ×3.511 5 10‒5

( )χ 1 P
c

3
2

2

++2 3.545 3.480 3.4888 3.555 3.522 3.5514 ± ×3.556 7 10‒5

( )χ 1 P
c

3
0

0

++0 3.466 3.428 3.4137 3.413 3.407 3.3519 ± ×3.415 3 10‒4

( )h 1 Pc
1

1
+1 ‒ 3.298 3.470 3.5180 3.525 3.502 3.5146 ( )± ×3.525 1.1 10‒4

( )χ 2 P
c

3
1

1

++1 3.895 3.938 3.8072 3.906 3.786 3.9335 ( )± ×3.872 6 10‒5

( )χ 2 P *
c

3
2

2

++2 3.923 3.955 3.9151 3.949 3.905 3.9798 ± ×3.923 1 10‒3

( )χ 2 P
c

3
0

0

++0 3.856 3.897 3.7646 3.870 3.899 3.8357 ± ×3.922 1.8 10‒3

( )h 2 Pc
1

1
+1 ‒ 3.642 3.943 3.8239 3.926 3.8210 3.9446

( )χ 3 P
c

3
1

1

++1 4.188 4.338 4.1210 4.319 4.1230 4.3179 ( )± ×4.147 3 10‒3

( )χ 3 P
c

3
2

2

++2 4.212 4.358 4.1514 4.354 4.144 4.3834

( )χ 3 P
c

3
0

0

++0 4.155 4.296 4.0804 4.301 4.120 4.2167

( )h 3 Pc
1

1
+1 ‒ 3.899 4.344 4.1368 4.337 4.1640 4.3339

( )χ 4 P
c

3
1

1

++1 4.416 4.696 4.4005 4.728 4.3730 4.6203

( )χ 4 P
c

3
2

2

++2 4.436 4.718 4.4298 4.763 4.411 4.7367

( )χ 4 P
c

3
0

0

++0 4.388 4.653 4.3621 4.698 4.362 4.5518

( )h 4 Pc
1

1
+1 ‒ 4.094 4.704 4.1455 4.744 4.4200 4.6395
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Inserting the terms −q k(k = 1–8)) into (22) with alge-
braic simplifications gives
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The turning points (q q,
1 2

) in (24) are obtained by sol-

ving the − + ℵ − =q Tq 02 , which is a requirement in the
WKB approximation for the momentum to vanish at the
classical turning points:

Table 3: D, F, and G-states mass spectrum of charmonium meson in GeV

State Present [24] [18] [16] [11] [22] Expt. [30]

++n Ls
j

2 1 J PC

( )ψ 1 D
2

3
2

2‒‒ 3.520 3.772 3.46047 3.795 3.3480 3.8077

( )ψ 1 D
3

3
3

3‒‒ 3.575 3.755 3.51402 3.813 3.307 3.8146

( )ψ 1 D
1

3
1

1‒‒ 3.461 3.775 3.40228 3.783 3.374 3.7853 ± ×3.774 4 10‒4

( )η 1 D
c

1
2

2

+2‒ 3.306 3.765 3.47795 3.807 3.3760 3.8073

( )ψ 2 D
2

3
2

2‒‒ 3.902 4.188 3.81161 4.190 3.8010 4.1737 ( )± ×3.824 5 10‒4

( )ψ 2 D
3

3
3

3‒‒ 3.949 4.176 3.86300 4.220 3.797 4.1829

( )ψ 2 D
1

3
1

1‒‒ 3.852 4.188 3.75606 4.150 3.800 4.1504

( )η 2 D
c

1
2

2

+2‒ 3.649 4.182 3.82825 4.196 3.8360 4.1737

( )ψ 3 D
2

3
2

2‒‒ 4.195 4.557 4.12502 4.544 4.1350 4.5588

( )ψ 3 D
3

3
3

3‒‒ 4.234 4.549 4.17431 4.574 4.163 4.5725

( )ψ 3 D
1

3
1

1‒‒ 4.152 4.555 4.07208 4.507 4.113 4.5258

( )η 3 D
c

1
2

2

+2‒ 3.905 4.553 4.14085 4.549 4.176 4.5597

( )χ 1 F
c

3
3

3

++3 3.532 4.012 3.46746 4.068 3.375 4.0440

( )χ 1 F
c

3
4

4

++4 3.609 4.036 3.54185 4.093 3.315 4.0374

( )χ 1 F
c

3
2

2

++2 3.454 3.990 3.38961 4.041 3.403 4.0424

( )η 1 F
c

1
3

3

+3 ‒ 3.319 4.017 3.48494 4.071 3.403 4.0411

( )χ 2 F
c

3
3

3

++3 3.913 4.396 3.81815 4.400 3.823 4.3744

( )χ 2 F
c

3
4

4

++4 3.978 4.415 3.88949 4.434 3.814 4.3711

( )χ 2 F
c

3
2

2

++2 3.846 4.378 3.74376 4.361 3.812 4.3699

( )η 2 F
c

1
3

3

+3 ‒ 3.660 4.400 3.83479 4.406 3.858 4.3723

( )ψ 1 G
c

3
4

4

4‒‒ 3.549 4.343 4.2506

( )ψ 1 G
c

3
5

5
5‒‒ 3.647 4.357 4.2369

( )ψ 1 G
c

3
3

3
3‒‒ 3.450 4.321 4.2582

( )η 1 G
c

1
4

4

+4‒ 3.336 4.345 4.2471

Total error (χ ) 3.32% 1.98% 1.64% 1.30% 1.33% 1.53%
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=
ℵ

− ℵ −q T
2

1

2
4 ,

1

2 (28)

=
ℵ

+ ℵ −q T
2

1

2
4 .

2

2 (29)

Solving (24), we obtained

( )( ) ( )∫ − − = −q q q q q
π

q qd
8

.

q

q

2 1 1 2

2

2

1

(30)

Comparing Eqs. (24) and (30), the condition for the
energy-level equation is obtained as

ℵ
− = ⎛

⎝ + ⎞
⎠T

μW
n

4

2 1

2
.

2

(31)

Themass spectra are obtained from the relation between
the quark masses and the energy eigenvalue:

= + +M m m E .nl q q nl̅ (32)

3 Numerical results and discussion

The energy bound-state solution of the SSE under a spin-
dependent Cornell potential has been obtained via the semi-
classical WKB approximation method. The potential para-
meters (α δ σ, b, ,s ) were obtained by fitting the obtained

Table 4: S and P-states mass spectrum of bottomonium meson in GeV

State Present [17] [16] [18] [11] [14] [24] Expt. [30]

++n Ls
j

2 1 J PC

( )Υ 1 S3
1

1‒‒ 9.906 9.465 9.460 9.49081 9.525 9.4600 9.4600 ( )± ×9.460 2.6 10‒4

( )η 1 S
b

1
0

+0‒ 9.916 9.402 9.398 9.43601 9.472 9.3900 9.4280 ( )± ×9.399 2 10‒3

( )Υ 2 S3
1

1‒‒ 10.240 10.003 10.023 10.01257 10.049 10.0150 9.9790 10.023 ( )± ×3.1 10‒4

( )η 2 S
b

1
0

+0‒ 10.251 9.976 9.990 9.99146 10.028 9.9900 9.9550

( )Υ 3 S3
1

1‒‒ 10.504 10.354 10.355 10.32775 10.371 10.3430 10.3590 10.355 ( )± ×5 10‒4

( )η 3 S
b

1
0

+0‒ 10.517 10.336 10.329 10.1386 10.360 10.3260 10.3380

( )Υ 4 S3
1

1‒‒ 10.715 10.635 10.586 10.5461 10.598 10.5970 10.6830 10.579 ( )± ×1.2 10‒3

( )η 4 S
b

1
0

+0‒ 10.729 10.623 10.573 10.3236 10.592 10.5840 10.6630

( )Υ 5 S3
1

1‒‒ 10.883 10.878 10.851 10.82628 10.870 10.8110 10.9750 10.885 ± (2.6 × 10‒3) ± (1.6 × 10‒3)

( )η 5 S
b

1
0

+0‒ 10.899 10.869 10.869 10.4977 10.790 10.8000 10.9560

( )Υ 6 S *
3

1
1‒‒ 11.020 11.102 11.061 10.97061 11.022 10.9970 11.2430 ( )± ×11.020 4 10‒3

( )η 6 S
b

1
0

+0‒ 11.036 11.097 11.088 10.6615 10.961 10.9880 11.2260 11.014 [17]

( )χ 1 P
b

3
1

1

++1 9.906 9.876 9.892 9.87371 9.875 9.9030 9.8190 9.893 ( ) ( )± × ± ×2.6 10 3.1 10‒4 ‒4

( )χ 1 P *
b

3
2

2

++2 9.912 9.897 9.912 9.89083 9.903 9.921 9.825 9.912 ( ) ( )± × ± ×2.6 10 3.1 10‒4 ‒4

( )χ 1 P
b

3
0

0

++0 9.898 9.847 9.859 9.8432 9.840 9.864 9.806 9.859 ( ) ( )± × ± ×4.2 10 3.1 10‒4 ‒4

( )h 1 Pb
1

1
+1 ‒ 9.918 9.882 9.900 9.87919 9.884 9.9090 9.8210 9.899 ( )± ×8 10‒4

( )χ 2 P
b

3
1

1

++1 10.240 10.246 10.255 10.21695 10.229 10.249 10.2170 10.255 ( ) ( )± × ± ×2.2 10 5 10‒4 ‒4

( )χ 2 P
b

3
2

2

++2 10.245 10.261 10.268 10.22961 10.254 10.246 10.224 10.269 ( ) ( )± × ± ×2.2 10 5 10‒4 ‒4

( )χ 2 P *
b

3
0

0

++0 10.233 10.226 10.233 10.19625 10.202 10.220 10.205 10.233 ( ) ( )± × ± ×4 10 5 10‒4 ‒4

( )h 2 Pb
1

1
+1 ‒ 10.254 10.250 10.260 10.22153 10.237 10.254 10.220 10.260 ( )± ×1.2 10‒3

( )χ 3 P
b

3
1

1

++1 10.504 10.538 10.541 10.1378 10.339 10.515 10.553 ( )± ×10.514 7 10‒4

( )χ 3 P
b

3
2

2

++2 10.509 10.550 10.550 10.1405 10.406 10.528 10.560 ( )± ×10.524 8 10‒4

( )χ 3 P
b

3
0

0

++0 10.498 10.522 10.521 10.1342 10.299 10.490 10.540 10.500 [17]

( )h 3 P *b
1

1
+1 ‒ 10.519 10.541 10.544 4.14695 10.362 10.5190 10.556 10.519 [17]

( )χ 4 P
b

3
1

1

++1 10.715 10.788 10.802 10.3229 10.571 10.853

( )χ 4 P
b

3
2

2

++2 10.719 10.798 10.812 10.3255 10.637 10.860

( )χ 4 P
b

3
0

0

++0 10.710 10.775 10.781 10.3193 10.532 10.840

( )h 4 Pb
1

1
+1 ‒ 10.731 10.790 10.804 10.3242 10.594 10.855
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mass spectra with the corresponding experimental masses of
the particle data group in Tables 2–5. We present the para-
meters in Table 1. The quantum states in the asterisk corre-
spond to the points where the potential parameters are fitted
using (32). To check for accuracy, the potential parameters
were obtained for random quantum numbers for the s-wave
singlet and triplet states and also the hyperfine triplet states
( > ≥l j0, 0) where we choose the parameters that reproduce
minimum total errors. Also, to obtain potential parameters
for the bottom-charmed meson, we assumed a constant
characteristic distance (δ) and spin-dependent constant (σ )
due to the limited availability of experimental data. For the
bottomonium and charmoniummesons, we solved four poly-
nomial equations simultaneously with the help of Maple
software, while two non-linear equations were solved for
the bottom-charmed meson to obtain the parameters αs

and b. The variation of the potential function with distance
for the heavy mesons is plotted in Figure 1(a–c). The potential
curves for the triplet and singlet states account for linear
confinement and short-range gluon exchange between the

quark–antiquark pairs. The Coulomb part of the potential
in the absence of tensor and spin orbit components domi-
nates at short distances, whereas the linear component is
prominent at large distances.

The total errors are obtained using the following for-
mula:

∑=
−

=
χ

Z

M M

M

100
,

i

Z

nl nl

nl1

exp theo

exp
(33)

where Z , M ,nl

exp and Mnl
theo are the respective number of

experimental data points, experimental masses, and theo-
retically obtained masses. In Table 2, the mass spectra of
charmonium for the s-wave increase as the quantum
number increases with the singlet states bounded below
the triplet states. The ( )J ψ/ 1 S3

1 and ( )η 1 S
c

1
0 are higher than

the experimentally determined values. However, the other
s-wave masses are in agreement with the experimental
masses [30] and the masses obtained using other inter-
quark potential functions and methods reported in the
existing literature [11,16,18,22,24]. In comparison with

Table 5: D, F, and G-states mass spectrum of bottomonium meson in GeV

++n Ls
j

2 1 J PC Present [17] [16] [18] [11] [14] [24] Expt. [30]

( )Υ 1 D2
3

2
2‒‒ 9.911 10.147 10.161 10.1126 10.096 10.153 10.075 10.164 ( )± ×1.4 10‒3

( )Υ 1 D3
3

3
3‒‒ 9.921 10.155 10.166 9.73855 9.849 10.157 10.073 10.172 [17]

( )Υ 1 D1
3

1
1‒‒ 9.900 10.138 10.154 9.72905 9.666 10.146 10.074 10.155 [17]

( )η 1 D
b

1
2

2

+2‒ 9.923 10.148 10.163 9.7355 9.767 10.153 10.074 10.165 [17]

( )Υ 2 D2
3

2
2‒‒ 10.244 10.449 10.443 9.94259 10.071 10.432 10.424

( )Υ 2 D3
3

3
3‒‒ 10.253 10.455 10.449 9.94704 10.175 10.436 10.423

( )Υ 2 D1
3

1
1‒‒ 10.235 10.441 10.435 9.93775 9.996 10.425 10.423

( )η 2 D
b

1
2

2

+2‒ 10.258 10.450 10.445 9.94405 10.093 10.432 10.424

( )Υ 3 D2
3

2
2‒‒ 10.508 10.705 10.711 10.1391 10.345 10.733

( )Υ 3 D3
3

3
3‒‒ 10.516 10.711 10.717 10.1435 10.446 10.733

( )Υ 3 D1
3

1
1‒‒ 10.501 10.698 10.704 10.1344 10.272 10.731

( )η 3 D
b

1
2

2

+2‒ 10.523 10.706 10.713 10.1405 10.368 10.733

( )χ 1 F
b

3
3

3

++3 9.918 10.355 10.346 9.7361 9.754 10.340 10.287

( )χ 1 F
b

3
4

4

++4 9.932 10.358 10.349 9.74242 9.896 10.340 10.291

( )χ 1 F
b

3
2

2

++2 9.904 10.350 10.343 9.72948 9.642 10.338 10.283

( )η 1 F
b

1
3

3

+3 ‒ 9.931 10.355 10.347 9.73759 9.778 10.339 10.288

( )χ 2 F
b

3
3

3

++3 10.251 10.619 10.614 9.94462 10.081 10.607

( )χ 2 F
b

3
4

4

++4 10.263 10.622 10.617 9.9508 10.219 10.609

( )χ 2 F
b

3
2

2

++2 10.239 10.615 10.610 9.93815 9.971 10.604

( )η 2 F
b

1
3

3

+3 ‒ 10.265 10.619 10.615 9.94608 10.104 10.607

( )Υ 1 G4
3

4
4‒‒ 9.929 10.531 10.512

( )Υ 1 G5
3

5
5‒‒ 9.946 10.532 10.514

( )Υ 1 G3
3

3
3‒‒ 9.911 10.529 10.511

( )η 1 G
b

1
4

4

+4‒ 9.941 10.530 10.513

Total error (χ ) 1.11% 0.20% 0.11% 3.85% 0.96% 0.13% 0.66%
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experimental data, the masses ( )χ 1 P
c

3
2

2
, ( )χ 1 P

c
3

0
0

, ( )ψ 1 D ,
1

3
1

and ( )ψ 2 D
2

3
2 with hyperfine splitting and relativistic cor-

rections >l 0, = = ±j l j l, 1 and =s 1 as shown in Tables 2
and 3 were found to be more accurate compared to the
masses ( ( )h 1 Pc

1
1 , ( )η 1 D

c
1

2
2

, and ( )η 2 D
c

1
2

2
for the quantum

states ( >l 0, =s 0, =j l). The charmonium masses for the
s, p, d, and f states increase with the increase in the radial
quantum number and were found to deviate from the
experimental masses by a total error of 3.32%.

In Table 4, the bottomonium masses for the s and
p-quantum states are presented. The low-lying quantum
states masses are higher than the observed values. As the
quantum number increases, the masses ( )Υ 5 S3

1 and
( )η 6 S

b
1

0 were found to be in good agreement compared
to other works in the existing literature [11,14,16–18] and

the masses of the particle data group [30]. The p-states
masses were found to agree with the ones obtained earlier.
However, the masses for d quantum states presented in
Table 5 fairly compare with the observed masses [30]. Gen-
erally, the masses increase with the increase in the radial
quantum number. Using Eq. (33), the bottomonium mass
spectra deviation from experimental data yields a total
percentage error of approximately 1.11%, which indicates
an improvement over the results in the study by Mansour
and Gamal [18] and comparable to the total percentage
error of 0.96% in the study by Mansour and Gamal [11]
and 0.66% in the study by Soni et al. [24]. It can be seen
that the percentage error is higher for the charmonium
meson due to its light reduced mass. In Tables 6 and 7,
the masses obtained for the bottom-charmed mesons

Figure 1: (a–c) Variation of potential function with distance: (a) charmonium, (b) bottomonium, and (c) bottom-charm mesons for spin numbers =s 0

and =s 1.
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increases with the increase in the radial quantum number
and were found to be in good agreement with the results in
previous studies [11,16,24]. It is important to state that the
accuracy of the mass spectra is dependent on obtaining a
good fit for the phenomenological potential function. This
allows for the adjustment of the potential parameters such
that the predictions correspond as good as possible to other
theoretic works and observed data.

4 Conclusions

The energy bound-state solution of the SSE has been
obtained under a spin-dependent Cornell potential energy
function using the WKB approximation approach. The

energy equation was then used to obtain the mass spectra
for the heavy mesons. The mass spectra were found to be
in good agreement with the ones obtained by other
methods. The charmonium masses deviated from the
experimental values with a total percentage error of
3.32%. Also, the bottomonium masses deviated by 1.11%,
which indicates an improvement compared to the results
in the study by Mansour Gamal [18] and comparable to the
works reported in the existing literature [11,24]. The errors
were found to reduce significantly for the bottomonium
meson due to its heavier mass. The points at which the
fitting was carried out may be responsible for the low
accuracy of the masses for the low-lying quantum states.
However, the SSE together with the phenomenological
spin-dependent Cornell potential provides an adequate
account of the mass spectroscopy for the heavy mesons
and may be used to predict other spectroscopic parameters
if the wave function can be obtained.

Funding information: The authors state no funding
involved.

Table 6: S and P states mass spectrum of bottom-charmed meson
in GeV

State Present [16] [11] [24] Expt. [31]

++n Ls
j

2 1 J PC

1 S3
1

1‒‒ 6.225 6.333 6.313 6.321

( )1 S *
1

0
+0‒ 6.275 6.272 6.276 6.272 6.275

2 S3
1

1‒‒ 6.783 6.882 6.867 6.900

( )2 S *
1

0
+0‒ 6.842 6.842 6.841 6.864 6.842

3 S3
1

1‒‒ 7.216 7.258 7.308 7.338

3 S1
0

+0‒ 7.283 7.226 7.281 7.306

4 S3
1

1‒‒ 7.556 7.609 7.660 7.714

4 S1
0

+0‒ 7.631 7.585 7.634 7.684

5 S3
1

1‒‒ 7.826 7.947 7.941 8.054

5 S1
0

+0‒ 7.907 7.928 7.917 8.025

6 S3
1

1‒‒ 8.042 8.168 8.368

6 S1
0

+0‒ 8.130 8.144 8.340

1 P3
1

++1 6.218 6.743 6.281 6.705

1 P3
2

++2 6.248 6.761 6.366 6.712

1 P3
0

++0 6.178 6.699 6.223 6.686

1 P1
1

+1 ‒ 6.280 6.750 6.290 6.706

2 P3
1

++1 6.777 7.134 6.836 7.165

2 P3
2

++2 6.803 7.157 6.917 7.173

2 P3
0

++0 6.743 7.146 6.782 7.146

2 P1
1

+1 ‒ 6.847 7.147 6.846 7.168

3 P3
1

++1 7.211 7.500 7.278 7.555

3 P3
2

++2 7.233 7.524 7.355 7.565

3 P3
0

++0 7.182 7.474 7.227 7.536

3 P1
1

+1 ‒ 7.287 7.510 7.287 7.559

4 P3
1

++1 7.552 7.844 7.631 7.905

4 P3
2

++2 7.571 7.867 7.704 7.915

4 P3
0

++0 7.527 7.817 7.583 7.885

4 P1
1

+1 ‒ 7.634 7.853 7.640 7.908

Table 7: D, F, and G-states mass spectrum of bottom-charmed meson
in GeV

++n Ls
j

2 1 J PC Present [16] [11] [24]

1 D3
2

2‒‒ 6.228 7.025 6.299 6.997

1 D3
3

3‒‒ 6.278 7.029 6.429 6.990

1 D3
1

1‒‒ 6.177 7.021 6.200 6.998

1 D1
2

+2‒ 6.291 7.026 6.308 6.994

2 D3
2

2‒‒ 6.787 7.399 6.852 7.403

2 D3
3

3‒‒ 6.829 7.405 6.975 7.399

2 D3
1

1‒‒ 6.742 7.392 6.759 7.403

2 D1
2

+2‒ 6.856 7.400 6.861 7.401

3 D3
2

2‒‒ 7.220 7.741 7.29 7.764

3 D3
3

3‒‒ 7.256 7.750 7.409 7.764

3 D3
1

1‒‒ 7.181 7.732 7.205 7.762

3 D1
2

+2‒ 7.296 7.743 7.302 7.762

1 F3
3

++3 6.244 7.269 6.326 7.242

1 F3
4

++4 6.312 7.277 6.501 7.244

1 F3
2

++2 6.175 7.273 6.182 7.234

1 F1
3

+3 ‒ 6.307 7.268 6.335 7.241

2 F3
3

++3 6.801 7.616 6.876 7.615

2 F3
4

++4 6.859 7.617 7.041 7.617

2 F3
2

++2 6.740 7.618 6.741 7.607

2 F1
3

+3 ‒ 6.870 7.615 6.885 7.614

1 G3
4

4‒‒ 6.265 7.489

1 G3
5

5‒‒ 6.353 7.482

1 G3
3

3‒‒ 6.178 7.497

1 G1
4

+4‒ 6.328 7.487
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