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Abstract

Protocols tolerating Byzantine faults allow a service to maintain correctness even if some
of its parts misbehave. However, they significantly increase the overhead for processing
client requests. Especially for geo-replicated systems, response times can grow to several
hundred milliseconds. As the communication latency between remote locations is limited
by the speed of light, minimizing these delays requires optimized protocols. This thesis
investigates different approaches to reduce the response times of strongly consistent
Byzantine fault-tolerant state-machine replication protocols that only require a low
number of replicas in a geo-replicated setting. It first reviews the steps necessary to
process client requests with strong consistency and derives approaches to minimize the
delay introduced by the client communication, the agreement and the execution.
To minimize the latency for submitting a client request to the system, each replica

is enabled to immediately initiate the ordering for a request, thus allowing a client to
communicate with the nearest replica. The proposed Byzantine fault-tolerant egalitarian
protocol, which only uses the minimum number of 3f + 1 replicas to tolerate f faults,
accordingly removes the need for a central leader replica by instead agreeing on conflicts
between requests. The agreement can complete on a fast path if the involved replicas
propose matching conflicts. Before execution, requests are sorted according to their
conflicts to ensure a consistent order across replicas.

To minimize the latency of the agreement protocol, this thesis introduces an approach
based on the architecture of modern clouds. The replicas are split into a central agree-
ment group, which determines the execution order for all client requests, with at least
3f + 1 replicas and multiple execution groups with only 2f + 1 replicas. Each group of
replicas is located in one region, with its replicas distributed across multiple availability
zones to minimize the risk of correlated failures. Thus, replicas in a group can commu-
nicate with each other with low latency, thereby allowing the agreement to work with
low latency. The groups use an abstraction called inter-regional message channel, which
allows them to exchange client requests and the agreement results reliably.

To minimize the execution latency, this thesis reduces response-time spikes caused by
the periodic creation of checkpoints during which the request execution must be paused.
Instead, it introduces a concurrent state-capture phase, which starts before reaching the
point at which to create the checkpoint. The resulting fuzzy snapshot together with a
list of state modifications made by requests executed in the meantime, can be combined
into a regular checkpoint that is identical on all replicas. The application interface offers
two variants providing different trade-offs regarding simplicity and efficiency.
These approaches successfully reduce the client-perceived response times while also

reducing the performance variation caused by different configurations and periodic tasks.
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Kurzzusammenfassung

Protokolle, die byzantinische Fehler tolerieren, ermöglichen es einem Dienst sich korrekt
zu verhalten, selbst wenn Teile von ihm Fehlverhalten zeigen. Allerdings erhöht dies den
Aufwand zur Verarbeitung von Nutzeranfragen deutlich. Insbesondere bei georeplizierten
Systemen, können die Antwortzeiten auf mehrere hundert Millisekunden steigen. Da
die Kommunikationslatenz zwischen entfernten Orten durch die Lichtgeschwindigkeit
beschränkt wird, sind optimierte Protokolle nötig, um diese Verzögerungen zu minimieren.
Diese Dissertation untersucht Ansätze, um die Antwortzeiten von stark konsistenten,
byzantinisch fehlertoleranten Zustandsmaschinenreplikationsprotokollen im Kontext von
Georeplikation zu reduzieren, die nur eine geringe Anzahl an Replikaten benötigen.
Dazu werden zuerst die für die stark konsistente Verarbeitung von Nutzeranfragen
nötigen Schritte betrachtet und daraus Ansätze abgeleitet, die Verzögerungen durch die
Kommunikation mit dem Nutzer, die Einigung und die Ausführung minimieren.

Zum Minimieren der Latenz für den Versand einer Nutzeranfrage an das System wird
jedem Replikat ermöglicht, die Einigung einer Anfrage sofort zu starten, sodass der
Nutzer mit dem nächstgelegenen Replikat kommunizieren kann. Das vorgeschlagene by-
zantinisch fehlertolerante egalitäre Protokoll, das nur das Minimum von 3f +1 Replikaten
zum Tolerieren vom f Fehlern benötigt, ermöglicht es dementsprechend ohne ein zentra-
les Anführerreplikat auszukommen, indem sich auf Abhängigkeiten zwischen Anfragen
geeinigt wird. Falls die beteiligten Replikate die gleichen Abhängigkeiten vorschlagen,
kann die Einigung im Schnelldurchlauf abgeschlossen werden. Vor der Ausführung wer-
den Anfragen dann entsprechend ihrer Abhängigkeiten sortiert, um eine konsistente
Ausführungsreihenfolge über alle Replikate zu garantieren.

Zum Minimieren der Latenz des Einigungsprotokolls stellt diese Dissertation einen
Ansatz vor, der die Architektur moderner Cloud-Plattformen ausnutzt. Die Replikate
werden in eine zentrale Einigungsgruppe, die die Ausführungsreihenfolge der Nutzeran-
fragen festlegt und aus 3f + 1 Replikaten besteht, und mehrere Ausführungsgruppen
mit jeweils nur 2f + 1 Replikaten aufgeteilt. Jede Gruppe läuft innerhalb einer Region,
wobei die einzelnen Replikate auf verschiedene Verfügbarkeitszonen verteilt sind, um
das Risiko gleichzeitiger Ausfälle zu minimieren. Dadurch können Replikate einer Grup-
pe miteinander mit niedriger Latenz kommunizieren, was wiederum die Einigung mit
niedriger Latenz ermöglicht. Die Gruppen nutzen eine als interregionaler Nachrichtenka-
nal bezeichnete Abstraktion, die den zuverlässigen Austausch von Nutzeranfragen und
Einigungsergebnissen ermöglicht.
Zum Minimieren der Ausführungslatenz reduziert diese Dissertation Antwortzeitspit-

zen, die durch das periodische Erstellen von Sicherungspunkten hervorgerufen werden,
währenddessen die Anfrageausführung pausiert werden muss. Stattdessen wird eine ne-
benläufige Zustandssicherungsphase eingeführt, die bereits startet, bevor der nächste
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Sicherungspunkt erstellt werden muss. Der hierbei entstehende unscharfe Sicherungspunkt
kann zusammen mit einer Liste von in der Zwischenzeit erfolgten Zustandsmodifikationen
wieder in einen normalen Sicherungspunkt umgewandelt werden, der auf allen Replikaten
übereinstimmt. Die Anwendungsschnittstelle bietet dabei zwei Varianten an, die sich
hinsichtlich Einfachheit und Effizienz unterscheiden.
Diese Ansätze ermöglichen es die Antwortzeiten aus Sicht des Nutzers zu optimieren,

sowie auch Leistungsschwankungen durch unterschiedliche Systemkonfigurationen oder
periodische Aufgaben zu reduzieren.
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1
Introduction

1.1. Motivation
Our world increasingly relies on computers to function, as more and more of our everyday
life interacts with some online service. And correspondingly each year the number of
people world-wide having access to the internet increases [200]. Be it communicating
with others, shopping online, managing your finances or maybe filing taxes, nearly every
part of our life has an online component.

As a consequence, we are becoming more and more dependent on these systems, which
must offer their services reliably. However, at the same time as their importance increases,
the incentives for attacks increase too. By now, nearly every day there are reports of
another successful attack on yet another company [23]. Despite decades of efforts to
secure computer systems, the increasing complexity has led to more and more chances
for bugs to sneak in and thus a continuous stream of new security issues1. Some recent
attempts to combat this problem rely on reducing the trust assumptions between different
parts of a system, by requiring every participant to authenticate itself to the others and
thereby allowing for checks whether a client or some service of the system is allowed to
perform a certain action or not [205].
Actually, it is possible to reduce the necessary trust in a service even further by only

allowing actions if multiple instances of a service support them. That is, an action initiated
only by an individual, possibly faulty service instance is ignored until a sufficient number
of other instances vouch for it. Such a service can then tolerate arbitrary (mis-)behavior of
a limited subset of its replicas and is said to be Byzantine fault-tolerant [138]. Thereby, a
service can continue to work despite intrusions that affect some of its instances. However,
this level of fault tolerance comes at a cost: all requests to a service have to be replicated
to at least 3f +1 servers to tolerate up to f faults. To ensure that the replication protocol
works in all cases, it also requires multiple rounds of communication between all replicas.

1https://www.cvedetails.com/browse-by-date.php
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Before we take a closer look at these communication costs, we first present additional
fault scenarios that should be tolerated.

Hardware Faults In rare cases, hardware faults can lead to wrong computation results
due to bit flips in memory or the processor. The possible consequences range
from program crashes [91, 107, 166, 172], data corruption [54, 77, 119, 168] to
far-reaching outages where a single flipped bit propagates and causes the failure
of a whole datacenter [11]. If a system stores cryptographically secured data like
an audit log, a bit-flip could even permanently corrupt the data structures and
require the system to be replaced [25]. While such hardware faults are usually rare,
reports [77, 119, 168] from companies operating very large datacenters indicate
that “Memory corruption is common at scale” [168]. Although the problem can be
partially mitigated in hardware or software, Byzantine fault tolerance offers a more
comprehensive solution as it is general enough to also handle these faults.

Datacenter Failures Faults at the level of individual components are not the only problem
that threatens the availability of a service. Assume for a moment that all components
of a service run in a single datacenter. Then the failure of that single datacenter,
for example due to infrastructure issues like failed power supplies or damaged
network connections, natural disasters like flooding or thunderstorms [35], or a fire
in a datacenter [176], can render the whole service inaccessible. The solution is to
replicate a service geographically so that it is replicated across multiple datacenters
that are located sufficiently far apart to not be affected by the same disaster. That
way, a local disaster only affects one of the datacenters and allows the service to
continue working.

Response-Time Expectations
For services whose users are distributed across the whole globe, there is another reason
to geographically distribute the service. Instead of requiring users to communicate with
a service running somewhere far away, which consequently results in high latency, it
would be preferable to bring the service instances closer to the users by distributing the
instances. That way, users can contact the service instance offering the lowest latency,
which is likely one that is also geographically located nearby.

Such response time improvements of services are considered as important especially in
the context of e-commerce. Large companies, for example Amazon, have observed that
a 100 millisecond increase in page load time, can lead to a 1% decrease of sales [104].
Similar observations were made in a more recent report by Akamai [197] that indicates
even higher losses or by Google where a half second increase in the load time of the
search results lost 20% visitors [105]. Especially in the wide-area context these response
time constraints become problematic as individual requests to a service can already take
a few hundred milliseconds which adds up in case multiple requests become necessary. As
Byzantine fault-tolerant services typically even require multiple communication rounds,
this poses the challenge of improving the response time for requests.
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Network Capacity
With the rise of cloud computing it became relatively easy to run a service with instances
spread across the globe by renting virtual machines [19, 101, 159]. The cloud providers
take care of managing the hardware and in particular the underlying network infrastruc-
ture which connects the datacenters in the different regions. The underlying network
connections are increasingly owned or rented by the providers themselves [8, 100], which
gives them control over the communication backbone and enables them to optimize the
communication between regions [120, 124]. This helps with satisfying the ever-increasing
demand for more bandwidth between the datacenters [120]. In respect to Byzantine
fault-tolerance and its larger amount of necessary communication, the growth of the
available bandwidth partially mitigates the higher communication overhead.
In contrast, the communication latency presents a much harder challenge as it is

fundamentally limited by the speed of light, which sets a strict lower bound for how
fast information can be transferred between two locations [186]. Making matters worse,
inefficiencies in hardware, software and protocols increase the gap between the physical
lower limit and the actual latency. On the hardware level there is still room left for the
providers to optimize latency by adding more direct connections between datacenters,
by using fiber links with better cables that allow light to travel slightly faster and by
optimizing every hop the data has to pass through [106, 186]. But unlike network
throughput bottlenecks, which can be solved by the cloud providers by adding more
capacity, latency remains ultimately bounded by the distance data has to travel. Thus,
further improvements of the protocols managing the data replication are necessary by
optimizing the overall system structure or the used message patterns.

1.2. Purpose of this Thesis

As previously discussed, users expect services to react quickly, which requires protocols
that can process requests with low response times. The goal of this thesis is to investigate
different approaches to reduce the response times for strongly consistent Byzantine fault-
tolerant replication protocols that run in a geo-replicated setting while also using low
numbers of replicas. The latter is beneficial, as using more replicas directly translates to
higher costs for running the service in the cloud. Firstly, increasing the number of servers
increases the costs for those. And secondly, more servers also mean a higher amount
of replication traffic, as all requests and state changes have to be shared with every
replica. Thus, we want to keep the number of replicas close to the required minimum.
Additionally, the service should provide strong consistency, such that from the client
perspective it behaves like a single central server.
To keep the replicas of a service in sync, we use a state-machine replication protocol,

which is a generic approach to replicate applications. A state machine has a state which
is modified by processing requests [179]. The protocol roughly speaking proceeds in
three main steps: the client communication over which the clients’ requests arrive at the
replicas, then the core of the replication protocol, which distributes the requests among
the replicas ensuring that all requests arrive at all correct replicas in the same order, and
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finally the actual request execution using the state machine. Each of these steps can
significantly contribute to the overall latency.

Client Communication
State-machine replication protocols often choose one of the participating replicas as
leader [22, 24, 39, 43, 47, 57, 62, 73, 110, 122, 130, 141, 189, 210, 211]. That replica
plays a central role in the protocol as all client requests are sent to the leader, which is
then responsible for suggesting a request order that must be confirmed by the follower
replicas in multiple rounds of communication. Consequently, the geographical location
of the leader has a major influence on the latency until the client request arrives at the
leader and on the duration of the actual replication. A leader with high communication
latency to each client will impact latency even if it can quickly order a request. And
conversely a leader with low communication latency to the clients might be unsuitable
to quickly order requests when this would result in high communication latencies with
the other replicas. Besides the leader location, latency is also determined based on the
individual clients’ location in relation to the leader. That means different clients might
benefit from different leader replicas [82].
Several protocols try to decrease the time it takes for a client request to reach the

leader by rotating the leader replica across different locations [161, 201, 202]. This allows
a client to submit its request to a nearby leader replica. However, sharing the leader role
requires the replicas to coordinate and wait for each other. This can result in higher
latencies than a carefully selected leader replica [189].

Agreement Latency
A large part of the response time is determined by the communication steps between
replicas to agree on a request order. Many protocols sketch this message flow with evenly
spaced protocol phases [22, 39, 47, 57, 73, 130, 141, 189], which works well for local-area
networks as these provide largely uniform latencies between replicas. However, as shown
by Archer [82] and WHEAT [189] this does not match wide-area environments with their
highly non-uniform latencies between different regions, which can vary between a few
milliseconds to hundreds of milliseconds [6]. Several approaches try to take advantage of
this latency structure to reduce the latency for the ordering step by determining an optimal
leader location either statically [189] or dynamically [43, 82] based on feedback provided
by clients or the measured latency between replicas. Other protocol structures go one
step further and place groups of replicas at each location [20, 24], allowing communication
over low-latency links within a group. However, these still require multiple wide-area
communication steps and thereby leave room for further optimizations.

Execution without Latency Spikes
After ordering requests they have to be executed. This is often done sequentially, that
means, one request is executed after the other, but it is also possible to speed up the
process by parallelizing the execution [60, 131, 142]. In any case the depiction of a
replication protocol often does not present an extra phase to execute requests [22, 43, 47,
57, 73, 130, 141, 189]. For most requests this is a good approximation, as the request
execution usually only takes very little time, but this is not always the case. Each
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protocol has to create checkpoints periodically, which allow the replicas to forget all
earlier requests [46, 57, 59, 62] and can be used by lagging replicas to catch up. While
creating a checkpoint, the request execution must be paused to allow the replica to
capture a consistent snapshot of the application state. Depending on the size of the
application state, this can result in significant delays during request processing and thus
drastically increase the amount of time a client has to wait for a reply. Although it is
possible to reduce the amount of work done during snapshot creation by only copying
changed data [57, 59], this can still lead to significant delays.

Approach of this Thesis
In this thesis we propose to optimize the response time of a service by individually reducing
the latency of each one of the three basic protocol steps, that is client communication,
agreement and execution as close as possible to zero. Depending on the optimized step
the resulting protocols offer drastically different trade-offs. This general idea leads to the
three following approaches.

• Replication protocols often involve the usage of a leader replica, which is responsible
for proposing a request order that has to be confirmed by the other replicas. For
clients that are not located at the leader’s location the request submission requires
wide-area communication resulting in increased latency. We propose to design
a protocol that allows each replica to independently initiate the ordering of new
requests. By relying on commutativity between non-conflicting requests, replicas
can propose an order without requiring coordination with all other replicas. This
enables clients to submit the request to a nearby replica and thereby avoid the
wide-area communication costs.

• Determining an order for requests usually requires three communication steps for
Byzantine-fault tolerant protocols like PBFT [57]. For a geo-distributed system with
replicas spread across the globe this results in a high latency due to the necessary
wide-area communication. We propose to use a feature commonly offered by modern
cloud infrastructures: availability zones [14, 101, 159], which are designed to be
as fault independent of each other as much as possible. Each region consists of
multiple availability zones, therefore allowing the ordering step to run in a single
region without compromising the availability of the service. Thus, the system is
able to avoid wide-area communication while ordering requests.

• A replication protocol has to periodically discard already executed requests to
limit the size of its state. This is commonly done by creating a checkpoint which
can be used to continue executing at the corresponding point in time. For larger
application states this checkpoint creation can lead to significant delays during
request processing. We propose to capture the application snapshot concurrently
while the application is actively processing requests to reduce execution stalls. As
a consequence we need a mechanism to handle such a fuzzy checkpoint and convert
it into a consistent one. In total, this reduces the processing delays incurred by
creating a checkpoint.
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1.3. Structure of this Thesis
The remainder of this thesis is structured as follows:

Chapter 2 introduces the system model used throughout this thesis, along with the
special characteristics of wide-area networks and the necessary background on
distributed state-machine replication that serve as a basis for the remainder of this
thesis. It then reviews the state of the art relevant for our approach.

Chapter 3 analyzes existing approaches and highlights their problems with providing
services with low latency. Afterwards it presents our suggested approach in further
detail and formulates the associated central questions and design goals guiding the
system design.

Chapter 4 introduces Isos, which allows all clients to submit their requests to the nearest
replica. Each replica can propose requests concurrently, which are ordered based
on conflicts between requests. Non-conflicting requests can use a fast path resulting
in response times similar to submitting the request to a local leader replica.

Chapter 5 shows how to use the structure of modern cloud infrastructures to maintain
resilience while providing low response times. The Spider architecture consists
of multiple loosely coupled replica groups which can consistently execute requests.
It also allows clients to bypass the replication protocol to read slightly outdated
data from nearby replica groups in exchange for much lower latency. We describe
an abstraction that is used to transmit requests between the replica groups and
enhance the approach with several optimizations.

Chapter 6 presents Deterministic Fuzzy Checkpointing (DFC), a mechanism which
collects a fuzzy application snapshot without having to pause request execution
and thereby prevents latency spikes. It presents the required application interface
and details how a collected fuzzy checkpoint is made deterministic again. This is
complemented by a method to reduce the amount of data that has to be copied to
collect a checkpoint.

Chapter 7 summarizes this thesis and discusses possible directions for future work.

1.4. Related Publications
Parts of the results of this thesis are based on the following publications:

[81] Michael Eischer, Markus Büttner, and Tobias Distler. “Deterministic Fuzzy
Checkpoints.” In: Proceedings of the 38th International Symposium on Reliable
Distributed Systems. SRDS ’19. 2019, pages 153–162. doi: 10.1109/SRDS47363.
2019.00026.
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[82] Michael Eischer and Tobias Distler. “Latency-Aware Leader Selection for Geo-
Replicated Byzantine Fault-Tolerant Systems.” In: Proceedings of the 1st Workshop
on Byzantine Consensus and Resilient Blockchains. BCRB ’18. 2018, pages 140–145.
doi: 10.1109/DSN-W.2018.00053.

[83] Michael Eischer and Tobias Distler. “Efficient Checkpointing in Byzantine Fault-
Tolerant Systems.” In: Tagungsband des FB-SYS Herbsttreffens 2019. 2019. doi:
10.18420/fbsys2019-01.

[85] Michael Eischer and Tobias Distler. “Resilient Cloud-Based Replication with
Low Latency.” In: Proceedings of the 21st International Middleware Conference.
Middleware ’20. 2020, pages 14–28. doi: 10 . 1145 / 3423211 . 3425689. (Best
student paper).

[86] Michael Eischer and Tobias Distler. Resilient Cloud-based Replication with Low
Latency (Extended Version). arXiv. 2020. doi: 10.48550/ARXIV.2009.10043.

[87] Michael Eischer and Tobias Distler. “Egalitarian Byzantine Fault Tolerance.” In:
Proceedings of the 26th Pacific Rim International Symposium on Dependable
Computing. PRDC ’21. 2021, pages 1–10. doi: 10.1109/PRDC53464.2021.00019.

[88] Michael Eischer and Tobias Distler. Egalitarian Byzantine Fault Tolerance
(Extended Version). arXiv. 2021. doi: 10.48550/arXiv.2109.06811.

[89] Michael Eischer, Benedikt Straßner, and Tobias Distler. “Low-Latency Geo-
Replicated State Machines with Guaranteed Writes.” In: Proceedings of the 7th
Workshop on Principles and Practice of Consistency for Distributed Data. PaPoC
’20. 2020. doi: 10.1145/3380787.3393686.

Chapter 4 is in parts based on [87] of which I was the leading author, developed the
main ideas and was the major contributor to its implementation, evaluation and writing.
Appendix A presents a partially revised version of the proof included in the extended
version [88] whose author I was.

Chapter 5 is in parts based on [85] which I was the leading author of, and the major
contributor to its design, implementation and evaluation. Its proof, which was presented
in the extended version [86], of which I was the main author, is included in partially
revised form in Appendix B.

Chapter 6 is based on the results of [81, 83] whose leading author I was and the major
contributor to its design, implementation and evaluation.

Ideas from [82, 89] have influenced various parts of this thesis in particular Sections 2.4.1,
4.7.5 and 5.7.4. I was the major contributor to the design, implementation and evaluation
of [82]. And I was one of the two main authors contributing to the writing in [89] and
developed the main ideas along with their implementation and evaluation.
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2
System Model, Background

and State of the Art

Clients expect a service to work reliably. To tolerate faults of the servers that provide
the service, it has to be replicated. For clients ideally the service appears to behave just
like a central implementation running on a single server would. The resulting system is
based on the following basic design. The service is replicated onto multiple replicas with
which clients interact via network by sending a request and waiting for replies from a
sufficient number of replicas. Then the replicas use a replication protocol to distribute
and agree on an order for all client requests. Finally, all replicas deterministically execute
the requests in the agreed order to provide the clients with a consistent reply [179].
We start with providing more details on the expected environment in Section 2.1

and on the characteristics of wide-area networks in Section 2.2. Afterwards Section 2.3
presents a slightly simplified variant of such a replication protocol. Section 2.4 reviews
relevant state of the art and Section 2.5 concludes the chapter.

2.1. System Model

In the following we introduce the basic assumptions used throughout this thesis regarding
the behavior of replicas and clients in Section 2.1.1. These are connected via the
internet for which we discuss the expected behavior in Section 2.1.2. Afterwards we
review the system properties in Section 2.1.3 and the possible types of faults along with
their theoretical limits in Section 2.1.4. Next, Section 2.1.5 presents the cryptographic
primitives used for this thesis. Section 2.1.6 concludes with the application model.

2.1.1. Nodes

The service is replicated onto multiple servers, the so-called replicas, which are hosted at
one or multiple locations either as virtual or physical machines. We also refer to locations
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as sites; both terms are used interchangeably. The set R = {r1, r2, ..., rN } contains all
replicas with N being the total number of replicas. All replicas know their identities and
can communicate with each other via a local network or the internet.
The clients, which issue requests to the service, are typically collocated at the same

sites as the replicas or somewhere nearby. Each client must be able to communicate with
every replica. When referring to both clients and servers, we call them nodes.

Nodes that properly follow the protocol are correct, whereas those that deviate or crash
are called faulty. We review the expected fault types in more detail in Section 2.1.4.

To allow all replicas to keep up with each other, the processing speed of replicas should
only differ by a small factor. The timeouts used in the replication protocols also expect the
clocks of correct replicas to advance at similar rates. Modern cloud infrastructures offer
time servers in each location that use atomic clocks and the globally synchronized time
signal from global positioning system (GPS) satellites to provide accurate timestamps [13,
103, 156]. Replicas can synchronize their clocks using those servers and thereby fulfill
the previous requirement. We only rely on synchronized clock speeds for performance,
but not for correctness.

2.1.2. Network

The communication between all nodes runs over the internet, which can be modelled using
partial synchrony [57, 80]. In that model the network alternates between synchronous and
asynchronous phases. During synchronous phases messages sent by a node arrive at the
destination node within a bounded amount of time ∆. In contrast, during asynchronous
phases there is no upper limit for the transmission delay. The network can switch between
these phases at arbitrary points in time that are not known to the nodes. This is a
good match for the behavior of the internet, which normally delivers packets after a
short delay except in case of network interruptions, which either get repaired or routed
around after a short time [57]. We assume that the replicas know an approximation of
the maximum one-way communication delay ∆. It can be used to derive appropriate
protocol timeouts. To allow the protocols to make progress, the network must provide
sufficiently long synchronous phases.

Message Loss
The network may also drop, delay, reorder or damage messages with the restriction that
a message that is sent repeatedly must eventually arrive at the receiver. To transparently
compensate for these transmission problems, reliable communication channels are used
between nodes. These channels automatically retransmit lost messages until they arrive. A
commonly used protocol to handle the majority of retransmissions is transmission control
protocol (TCP) [78], which provides a reliable first-in-first-out (FIFO) communication
channel between nodes. Only in case the TCP connection is interrupted, for example due
to a too long period of message loss, then it becomes necessary to explicitly retransmit
potentially lost messages over a new connection. Section 5.6.2 describes a possible
approach to handle these retransmissions.
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2.1.3. Safety and Liveness
A replicated service should provide the safety and liveness properties. The following
definitions are based on those used by PBFT [56].

Safety For a correct client the service behavior must be indistinguishable from a central
service implementation that executes requests one after another.

Liveness A correct client will eventually receive a reply to its request once the system is
in a sufficiently long synchronous phase.

The safety property requires the service to be strongly consistent, or more formally
to guarantee linearizability [118], with the modification that this guarantee can only be
provided for correct clients, as faulty clients can deviate arbitrarily from the protocol.
From the client perspective, this property provides the guarantee that like a centralized
service implementation once it has received a reply to a request, all later requests will
work on an application state that includes the effects of that previous request. This
guarantee also extends to processed requests from all other clients.

The liveness property ensures that the service stays available while the system is in a
synchronous phase. Fischer et al. [93] have shown that if at least one replica can fail, then
any deterministic agreement protocol can only guarantee progress during sufficiently long
synchronous phases. That is, a deterministic protocol can only provide both properties
while the network is synchronous, otherwise we temporarily give up liveness in favor of
safety [97]. We do not consider randomized algorithms in this thesis, as for these an
ordering step only completes with a certain probability and thus can require multiple
retries resulting in an increased latency.

2.1.4. Fault Assumptions
Clients and replicas may be subject to Byzantine faults. This class of faults, defined
by Lamport et al. [138], allows clients and replicas to arbitrarily deviate from a given
protocol or even behave maliciously. In the simplest case a node just crashes and stops
reacting to messages and no longer sends anything. But it is also possible for a Byzantine
node to send invalid messages, manipulated ones, or to be duplicitous and send different,
contradictory messages to different replicas. Other possible misbehavior includes sending
specific messages only to some replicas or omitting them altogether. A faulty node
can also adhere correctly to the protocol most of the time and only deviate from it at
specific points in time, for example, when the node could reap some benefit from doing so
without being detected [147]. Faulty replicas can collude with each other allowing them
to coordinate their attacks. This resembles an attacker that has compromised multiple
nodes. Therefore, nodes cannot trust each other and instead have to verify information
using messages from a sufficient number of nodes.

Limits on Faults
A fault-tolerant agreement protocol enables the replicas to reliably agree on a totally
ordered log of requests. That is, the result at each replica contains the same requests
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in the same order. However, such a protocol is only able to mask the misbehavior of a
limited number f of faulty replicas. As shown by Bracha et al. [49], at least 3f +1 replicas
are required to tolerate f Byzantine faults. The systems we consider in this thesis are
focused on tolerating a small number of faults, typically at most 3. To prevent conflicting
ordering decisions, a replica proposing a request ordering has to receive confirmations
from a quorum of replicas Q that is large enough to intersect with any another quorum
of replicas Q′ that could be used to order other messages [57, 148]. Disseminating
quorums [148] require this intersection to always contain at least one correct replica, such
that this replica can prevent conflicting decisions. That is, the size of two quorums must
be at least as large as the number of replicas plus the intersection: 2 · |Q| ≥ N + (f + 1).
To be able to guarantee liveness, a quorum must also not require the participation of
faulty replicas, that is, |Q| ≤ N − f . Combined these conditions result in a minimum
quorum size of |Q| = dN+f+1

2 e using N ≥ 3f + 1 replicas.

Faulty Clients
Different from the replicas we assume no limit on the number of faulty clients. Nevertheless,
the service must guarantee that correct clients receive correct replies. That is, it must be
impossible for a faulty client to prevent correct clients from using the service or to cause
them to receive a wrong result.
Note that the replication protocol cannot prevent a faulty client from issuing syn-

tactically valid requests, which misuse the application semantics, for example to delete
data. Such requests must be handled by application-specific means like access control
mechanisms, which can limit operations based on the client’s identity [57].

Causes of Faults
In order to guarantee limits on faults, replicas must fail independently. Hardware
problems causing various kinds of data corruption [77, 119, 168] can in rare cases result
in individual replicas becoming faulty, consequently it is even less likely that multiple
replicas are affected at the same time.

Another source of faults are bugs in the replica implementation or the operating system
which allow an attacker to gain control of the replica. Several approaches have been
suggested to address this problem which include n-version programming [33] to create
multiple independent implementations that are expected to fail in different ways, the
usage of diverse commercial of-the-shelf (COTS) software at the replicas like different
database implementations or operating systems [59, 95, 96], automatically generating
variants of a software [140] or using a verified implementation [115, 208]. Thus, we
consider this problem orthogonal to this thesis.
For simplicity, we assume that a faulty replica stays faulty permanently. In order

to allow the service to tolerate a higher number of failures during the lifetime of the
system, it would be necessary to recover faulty replicas such that the fault threshold is
never exceeded at any point in time. We expect faults to be rare, thus giving a recovery
mechanism sufficient time. Existing approaches like proactive recovery [58, 190], which
periodically rebuilds replicas, could be used for this task.
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Fault Detection
While we usually talk about a specific replica being faulty when discussing fault scenarios,
there is generally no externally visible indicator available that other replicas can use.
Another replica ra might in some cases learn that a replica rb is faulty by examining
messages received from that replica. But even then, it might not be possible to convince
another replica rc that this is the case. After all, from the perspective of replica rc it
could just as well be replica ra that is faulty and tries to spread rumors. If a replica ra

does not react to a message, it is impossible to determine whether the message already
arrived and was just ignored by the replica ra, or whether the message was delayed or
lost on the network. Thus, Byzantine faults of a specific replica cannot be detected
reliably [111, 112, 129]. This must be kept in mind when designing the subprotocols to
recover from faults.

2.1.5. Cryptography

Messages exchanged between nodes must be authenticated to allow the receiving node
to verify that the message content has not been tampered with and that it was sent by
a certain node. A node may only make permanent changes based on a message after
verifying that it is correctly authenticated, otherwise the message must be discarded.
For a message 〈. . .〉auth we use the suffix auth to indicate how it is authenticated. The
authentication data also includes the sender’s identity. Clients and replicas must be
provided with the necessary keys to create and verify authenticated messages either
during setup or have the means to retrieve them using a key exchange mechanism [44,
58]. In this thesis we use the following authentication types:

MAC A message 〈. . .〉µi,j is authenticated using a message authentication code (MAC)
from replica ri for replica rj . Computing and verifying a MAC for a message uses
a symmetric key that is only known to sender and receiver.

MAC Authenticator 〈. . .〉αi,A indicates a MAC authenticator [57] containing a list of
MACs from replica ri for each replica rk ∈ A that allows them to verify the message.

Signature 〈. . .〉σi is a signature from replica ri, which all other replicas can verify using
the public key of replica ri.

Each authentication type offers different guarantees and has different computational
costs. MACs can be computed much faster than signatures [57]. However, unlike the
latter they cannot provide non-repudiation, that is, a receiver rb cannot prove to some
other replica rc that a certain message was created by sender ra, as creating and verifying
MACs requires a symmetric key. Being able to verify a MAC also allows computing it;
therefore, the symmetric key must only be known to sender and receiver, which prevents
any third party from verifying the correctness of a MAC.
In contrast, signatures use keys consisting of a public and a private key [152]. The

private key is only known to the sender, which ensures that only this node can create
the signature. The corresponding public key can be distributed to all other nodes and
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allows them to verify the correctness of the signature. Therefore, signatures provide
non-repudiation, as a replica ra that receives a valid, signed message m from replica rb can
forward it in order to prove to another replica rc that message m was sent by replica rb.
Additionally, we require a cryptographic hash function h(m) that for a message m

computes a digest d [153] to which we also refer to as hash. It must provide collision
resistance, that is, it must be virtually impossible to find two arbitrary messages m
and m′ with identical digest [153]. This allows referring to a message m using only its
hash h(m), as an attacker cannot create a fake replacement message m′, which is useful
to reduce the size of some messages.

Furthermore, we make the standard assumption that an adversary is computationally
bounded and cannot break the used cryptographic primitives.

2.1.6. Application

Like other replication protocols we expect the application to behave like a deterministic
state machine [179], which processes requests, modifies its state accordingly and generates
a reply. The execution of each request must be deterministic. This ensures that executing
the same totally ordered list of requests, on all replicas results in the same changes to
the application state and provides the same replies to all clients. The model is generic
enough to represent most applications.
The application state consists of a set O = {o1, o2, ..., on} of small state objects which

each are uniquely identifiable using an arbitrary object identifier. Each object must be
readable and writable by the replication protocol. For example, for a key-value store
each entry could be represented by an individual object using the key as object identifier.
The set of objects is dynamic and can change over time.

We differentiate between read requests, which do not modify anything, and write
requests, which do. This can allow read requests to be executed without prior coordination
between replicas. To prevent faulty clients from issuing write requests marked as read
requests, the application must offer a method to check whether a request is guaranteed
to only read data.

2.2. Wide-Area Environment
Compared to a system consisting only of replicas running in the same local network, the
geo-replicated systems considered in this thesis are affected by the special properties of
wide-area networks. In the following we discuss properties of modern cloud networks in
Section 2.2.1, trade-offs like differing latencies between pairs of replicas in Section 2.2.2
and considerations for geo-distribution in Section 2.2.3. We conclude by reviewing attacks
at the network level in Section 2.2.4.

2.2.1. Cloud Networks

With the rise of cloud computing, several providers became large enough to provide
datacenters in dozens of regions in which users can rent resources like virtual machines [19,
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101]. The providers not only manage the servers in the datacenters, but also the network
between the regions [8, 50, 92, 100]. Data transmissions across the internet are often
routed via transit networks [28] with all the effects of changing communication links,
unstable performance and congestion. In contrast, the cloud networks are optimized for
data transmission between datacenters [120, 124], and offer the chance for more reliable
communication and lower latency than transmissions routed via the public internet.

With control over the network, the providers can adequately scale the available wide-
area capacity to meet the demand. As shown by Lai et al. [136], the network bandwidth
available to customers is rather determined by limits enforced for each virtual machine
instance than by limitations of the cloud provider’s wide-area network.
This level of control also helps to reduce the amount of packet loss. The latter is

particularly important for wide-area communication as connections with high round-trip
times are more sensitive to packet loss, because it takes much more time until the receiver
notices the problem and can inform the sender. Although transmission protocols like TCP
optimize for this case by only selectively retransmitting lost packets [78], packet loss could
still significantly delay network transmissions. Measurements of cloud networks have
shown a much lower amount of packet loss than normal connections over the internet [114],
which drastically reduces the impact of packet loss on wide-area communication within
the cloud. Link failures between cloud regions are typically also rare and tend to be
resolved within minutes [90, 145].

That is, the cloud providers offer reliable network connections between virtual machines
with high network bandwidth. However, this leaves the problem of communication latency
for which there is only limited room for optimization by the providers.

2.2.2. Trade-Offs

The most obvious trait of wide-area networks is that communication can take a long time.
Round-trip times between servers at distant geographic regions now range from dozens
to hundreds of milliseconds as opposed to sub-millisecond latencies within a datacenter.
Due to the much higher latency than in a local-area setting several trade-offs change. We
briefly discuss the three most influential effects of the higher latency.
For local use cases, cryptographic operations that take several hundred microseconds

may be prohibitively expensive, but compared to the communication latency in wide-area
networks such operations are barely noticeable. That is, more expensive but also more
powerful cryptographic operations like signatures instead of the cheaper MACs have a
much smaller relative impact on response times.

The other way around, in a local-area network it might be enough to process requests
one after another to keep the whole system busy, whereas in wide-area networks when
the communication latency far exceeds the per-request computation, latency hiding by
concurrently processing multiple requests becomes necessary.

Another differentiating factor is that the round-trip times between various regions are
no longer uniform, as shown in Figure 2.1, but can differ by more than one hundred
milliseconds. In contrast, in a local environment all replicas might be connected to the
same switch, providing uniform communication latencies. But for wide-area networks
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Figure 2.1: Round-trip communication latency in milliseconds between replicas in selected
Amazon EC2 regions

the communication latency is partially dictated by the distance between replicas. In
particular, this make it essentially impossible to provide uniform latencies between four
or more replicas1. Depending on the latency structure, these non-uniform round-trip
times result in varying progress among replicas. A replica may be lagging behind the
other replicas by several requests or always be the first one to process a request. Thus, a
replication protocol has to take the non-uniform round-trip times into consideration.

2.2.3. Geo-Distribution

We expect clients to be either located at or near the regions in which the replicas are
hosted, thus the clients are also distributed worldwide. This can result in workload
changes over time due to changing activity, for example, during the course of a day.

If a service just ran at a central datacenter, then all clients would have to direct their
requests there, essentially resulting in the datacenter becoming a bottleneck. The main
benefit of this approach is that the centrally located replicas are able to communicate
with each other with very low latency. However, this comes at the price that a failure of
the central datacenter will make the service unavailable. Power failures, software failures
or natural disaster like thunderstorms, flooding or fires are just a few of the reasons why
a datacenter can fail [12, 15, 35, 70, 176]. Such disasters are usually limited to a single
datacenter or in rare cases an entire region, but (normally) do not affect whole continents

1With four replicas, it would be necessary for them to form a tetrahedron, which essentially requires
one of the replicas to reside at the North or South Pole. Five or more equidistant replicas cannot be
represented in three-dimensional space.
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at once. Consequently, a system replicated across multiple regions has the potential to
tolerate datacenter failures.

A geo-distributed variant of the service would place replicas in a set of datacenters that
roughly matches the clients’ distribution. This can significantly reduce the maximum
communication latency to the client by providing the clients with a nearby datacenter
they can use to access the service. Especially for service operations that only require
interaction with a single nearby region, this can drastically improve latency. However,
there is a trade-off: moving the replicas closer to the clients inevitably increases the costs
of keeping the replicas synchronized, which now have to communicate over wide-area
links with high latency, resulting in an increase of the overall latency. Thus, it becomes
necessary to balance these competing requirements.
We assume that all replicas contain a full copy of the data and do not consider a

setting where regulations require data to reside in specific geographic regions.

2.2.4. Network Attacks

We do not consider denial-of-service (DoS) attacks, which flood the system with useless
requests. The world-wide connectivity of cloud providers provides a first line of defense to
mitigate large floods of unsolicited traffic. On the replica side, filtering out faulty messages
as fast as possible by applying cheaper checks first before running more expensive ones
like signature verifications [63] can help to partially mitigate such attacks. The network
communication must also differentiate between replicas and clients, which through
appropriate scheduling can get a fair share of the processing time [63].

Network Trustworthiness
The network within a cloud datacenter is fully controlled by the cloud provider, whereas
the communication between datacenters can run over provider-owned fibers or use rented
fiber connections [92]. To protect this inter-datacenter communication all traffic between
cloud regions is encrypted [19, 99], thus as long as the provider can be trusted we can
assume that no tampering with network communication between replicas takes place.
Therefore, we assume that no targeted manipulation takes place during transmission.
Messages between nodes must nevertheless be authenticated to verify their senders’
identity. As additional protection, the replicas could set up reliable and authenticated
channels between each other, for example, by using transport layer security (TLS) [174],
to reduce the trust required in the cloud provider.

2.3. State-Machine Replication

In the following we introduce the architecture of an exemplary Byzantine fault-tolerant
state-machine replication protocol and its components. It serves as a starting point for
our approaches to optimize the client communication, agreement, or execution, which
each redesign different parts of the state-machine replication protocol. The description
here presents a derivative version of the PBFT protocol using signatures [57] and serves
as a basic structure for the later chapters.
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Figure 2.2: High-level overview of the replica components involved in replicating and executing
client requests.

We first give an overview in Section 2.3.1, before describing the client in more detail in
Section 2.3.2 and the replicas in Section 2.3.3.

2.3.1. Overview

A state-machine replication protocol generally consists of at least the components shown
in Figure 2.2. The main idea is to establish an order on the client requests by assigning
them to sequence numbers and then to execute the requests in this exact order.

The client first sends its request 1 to the replica that is responsible for initiating the
agreement protocol. This replica then proposes to assign the request to the next unused
sequence number 2 . After several communication steps between the replicas, three in
case of PBFT, that sequence number assignment becomes permanent, which guarantees
that it will not change in the future, even in case of faults. The resulting log of requests
is then passed on to the execution 3 , which processes the request in the order given by
the sequence numbers. The application executes the request, updates its own state and
also generates a reply message 4 , which is then sent back to the client 5 . As a single
reply could also originate from a faulty replica, the client has to wait until it receives
f + 1 matching replies to ensure that at least one of them is from a correct replica and
thereby correct. Each replica also includes a checkpointing component 6 , which allows
the replicas to periodically garbage collect old requests to bound the size of its state.

Certificates
Due to the Byzantine fault model, replicas and clients cannot simply accept messages at
face value, as their communication partner might be faulty. Even with cryptographically
authenticated messages for which a node can accurately determine the sender, there is
still the problem that a node can issue false claims. To handle those, nodes assemble
so-called certificates [56] that consist of a certain number of matching claims from different
replicas. Depending on the number of supporting claims, a certificate can be used to
either prove the correctness of a value or that a quorum of replicas supports it. Once
a node has collected a certificate with sufficient valid and matching messages, we say
that the certificate is stable. The check whether messages are matching, unless specified
otherwise, covers all fields of a message including the message type but excludes the
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sender-specific message authentication data. The latter includes the sender identity,
which is used to ensure that a certificate only includes a single message per sender.

To verify the correctness of a reply, a client has to collect a weak certificate consisting
of f + 1 matching replies from different replicas. This set of messages then includes one
reply which was sent by a correct replica and hence must be correct.
In order to prevent conflicting decisions in the agreement, a replica has to collect a

quorum certificate consisting of dN+f+1
2 e matching message from different replicas. For

the typical N = 3f + 1 this requires 2f + 1 messages. The size of this quorum ensures
that it overlaps with any other quorum in at least one correct replica which will then be
able to transfer information between quorums. As the quorum size is at most N − f ,
it is possible to reach the quorum using only correct replicas. This ensures that faulty
replicas cannot prevent the quorum formation.

2.3.2. Client

In order to send a request with command w to the service, a client c proceeds as follows.
It constructs a signed message 〈Request, w, tc〉σc and sends it to the leader replica, that
is, the replica that is currently responsible for ordering new requests. If the selected
replica is no longer the leader, then it has to forward the request accordingly. The
counter value tc represents a client-specific counter that must increase for each new
request, for example by using a sequential counter. The replicas guarantee that a request
is only executed once by using the counter value to determine whether a request is a
retransmission of a previous one or a new one which should be ordered and executed.
Client requests use a signature to allow the replicas to unambiguously check the

correctness of the request and provide the application with the client’s identity. This
prevents the creation of fake requests and avoids complex corner cases that can occur
when using MAC authenticators [56].

After the request was processed, all replicas send a reply to the client, who has to
collect a (weak) reply certificate consisting of f +1 matching 〈Reply, uc, tc〉µri,c messages.
The reply contains the execution result uc and the client’s counter value tc that has
to match the request. It is authenticated using a MAC instead of the more expensive
signatures, as the replies are only verified by the client.

In case the client does not receive a reply within a predefined timeout, then it broadcasts
its request to all agreement replicas. This allows the other replicas to monitor the progress
of the leader replica and to replace it if necessary. The client must continue resending its
request until it collects a stable reply certificate.

A correct client only issues a new request after receiving a reply to the previous one. If
a client does not adhere to this requirement, then some requests may be skipped during
execution in case the requests are not ordered according to the client counter values.

2.3.3. Replica

A replica consists of multiple loosely coupled components. We now follow the path of a
request through the replica as sketched in Figure 2.2.
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Figure 2.3: Protocol steps necessary to process a client request using PBFT.

2.3.3.1. Client Communication

After receiving a client request, a replica uses the counter value to check whether the
request is old, a retransmission or new. For this purpose, replicas contain a reply cache
which keeps track of the latest received request per client and the corresponding reply.

An old request is dropped silently. A retransmission of the latest request causes the
replica to resend the reply if it is already available. A new request is passed on to the
agreement component for ordering. The client communication component also monitors
the agreement progress; we will discuss later on how a too slow leader replica is replaced.

2.3.3.2. Agreement

The agreement protocol is responsible for generating a totally ordered log of requests.
For this the protocol manages a large number of slots that are identified and ordered by
their sequence number and to which requests can be assigned.
The replicas use a view number v to determine the current system configuration. In

particular, the leader replica l, which is responsible for proposing request assignments to
slots, is calculated based on the current view v using a deterministic function such as
l = v mod N . In case enough replicas suspect the leader to be faulty, they can initiate
a view change to increase the view number v and thereby replace the leader.

To order requests, the leader repeatedly proposes a request batch [94] (i.e., a bundle of
requests) for the next unused agreement slot to construct an infinite log of requests. The
other replicas then confirm the leader’s proposal and exchange sufficient information to
ensure that the request assignment cannot be lost, even in case of faults.

Batching
The request batch is commonly assembled by collecting requests that arrive within a short
timeout, but only up to a certain size limit either in terms of the number of requests, their
size in bytes or both. This amortizes the per-slot overhead of the agreement protocol
over multiple requests, while also keeping the delay introduced by batching bounded.
Large delays or batch sizes yield diminishing returns as the per-slot protocol overhead is
already spread over several messages.
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Request Assignment
As shown in Figure 2.3, the request assignment starts with a 〈PrePrepare, v, s, r〉σl

message sent by the leader l and contains the current view v, the assigned sequence
number s and the proposed request batch r. Once the other replicas - the followers -
receive the PrePrepare, they process it only if the message is for their current view v.
A replica locks on to the assignment from the leader replica by only storing it if it is the
first one received for sequence number s in the current view. Additionally, only sequence
numbers within a certain range, the agreement window, are processed to prevent a faulty
leader from proposing requests for arbitrarily high sequence numbers. This window is
discussed later on together with the checkpointing component.

After accepting a PrePrepare, each follower fi broadcasts a 〈Prepare, v, s, h(r)〉σfi

message, where h(r) is the hash of the request contained in the PrePrepare. Each
replica then waits until it collects a quorum certificate of matching Prepares plus the
PrePrepare. The PrePrepare also counts as one message in the certificate, thus
reducing the number of required Prepares by one. A replica only accepts the first
Prepare per agreement slot that it receives from each replica for the current view v.
After the certificate at a replica is stable, we say that the request has locally prepared at
the replica. As correct replicas only accept the first PrePrepare per sequence number in
each view and thus send only one Prepare, this Prepare quorum certificate guarantees
that only a single request batch can prepare in view v.

Once a replica ri has prepared a request, it broadcasts a 〈Commit, v, s, h(r)〉σri
message

to all replicas. After collecting a stable quorum certificate of matching Commits, a
replica has locally committed the slot and forwards the request to the execution.

The protocol now guarantees the following central invariant: as soon as any correct
replica has committed a slot, the request assignment for the slot is permanent
and will never change in the future.

2.3.3.3. View Change

To prevent a faulty leader from disrupting the agreement process, the other replicas
closely monitor the leader. After a replica receives a request from client c with counter
value tc, its client communication component starts a timer that will expire when it takes
too long for the request to be executed. The timer is stopped once the request or a later
one from the same client is executed. If the timer expires for the first time, the request is
forwarded to the current leader to ensure that the leader has actually received it and the
timer is restarted. This guarantees that a correct leader learns about a request, even if a
faulty client only sent a request to some replicas but not the leader, and it protects a
correct leader from being accused of censoring a request.
If the timer expires a second time, then the replica suspects that the leader is faulty

and initiates a view change to replace it; that is, the replica switches to the next
view v′ = v + 1 and stops processing messages from earlier views. Before restarting the
request processing, it is necessary to reconcile the replica state for which the replica
broadcasts a 〈ViewChange, v′, P〉σri

message containing the latest stable prepare cer-
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tificates P for all slots inside the replica’s agreement window. If a slot has only prepared
in an earlier view than view v, then the replica includes its latest prepare certificate.

View Synchronization
As soon as f + 1 replicas, that is, at least one correct replica, have suspected the leader
and moved to a new view, the old view is no longer guaranteed to make progress and has
to be abandoned. For this replicas keep track of the highest view they have received from
each replica. Once the f + 1-highest received view ṽ is higher than the current view v at
a replica, then the replica switches to view ṽ and sends a corresponding ViewChange.
Once the request processing in a view no longer makes progress, eventually f + 1 correct
replicas will send a ViewChange. This causes all remaining correct replicas to at least
switch to the same view. The requirement for f + 1 ViewChanges ensures that faulty
replicas cannot replace the leader on their own.

State Reconciliation
Once enough replicas have moved to the new view, the state reconciliation during a view
change works by letting the leader l′ for the new view v′ determine the global system
state based on reports from a quorum of replicas.
The leader l′ collects a quorum certificate of ViewChange messages for view v′ and

processes it as follows. The messages only have to contain matching view numbers v′,
whereas the list of prepare certificates P may diverge. For each sequence number s, the
leader extracts the valid prepare certificates included in the ViewChange messages and
picks the certificate with the latest view. If there is no such certificate or there is a gap
between sequence numbers, then these are filled with a no-op request, which is skipped
during execution.
Then the new leader l′ broadcasts a 〈NewView, v′, ~V C, C〉σl′ message to all replicas,

where ~V C is the list of used ViewChange messages and C contains the selected prepare
certificates. The leader also sends a new PrePrepare for each sequence number, which
has to match the corresponding prepare certificate or proposes a no-op. Each replica
verifies that the NewView includes valid ViewChange messages for view v′ and that
C was calculated correctly. Afterwards the replica enters the new view and resumes
the agreement protocol’s normal case for all slots. For agreement slots covered by the
NewView, it only accepts a PrePrepare matching the certificate.

The other replicas have to monitor that the new leader completes the view change within
a given timeout. Each replica starts a timer after receiving a quorum of ViewChange
messages and stops the timer once it receives a valid NewView or switches to a higher
view. If the timer expires, then the replica switches into the next view. Once a replica
collects a quorum of ViewChange messages, the view synchronization ensures that the
new leader will eventually also receive enough ViewChanges to be able to complete the
view change.

Correctness
For the view change to maintain correctness, it has to guarantee that each committed slot
keeps its value. A slot can only possibly commit if a quorum of replicas has previously
prepared the slot. Thus, collecting ViewChange messages from a quorum of replicas
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will include at least one correct replica which prepared the slot. Therefore, one of these
ViewChange messages always includes a prepare certificate that the new leader has
to include in its NewView message. In case a slot has only prepared at a few replicas
but not committed, then depending on the used ViewChange messages the prepare
certificate may be included or not. This is not a problem, as only committed request are
guaranteed to be kept by the view change.

2.3.3.4. Execution

After the agreement the requests are assembled into an ordered log based on their
sequence number. They are then executed in this order. In case there are gaps between
sequence numbers, the execution has to wait until the corresponding slots are committed.
The application processes each request, modifies its state accordingly and returns a

reply. Requests in a batch are passed one by one to the application. To prevent duplicate
request executions, a request is only executed if it is a new request, that is, its request
counter value tc must be higher than that of the last executed request for the client.
Otherwise, the request is skipped. The reply is then stored in the reply cache and sent
back to the client.

2.3.3.5. Checkpoints

With the replica construction described so far, we end up with an infinite request log
requiring unbounded amounts of memory, which is not practical. To limit the memory
usage, a replica periodically creates a checkpoint containing a snapshot of the replica and
application state, which allows the garbage collection of older data. A checkpoint also
enables other replicas to update themselves without having to execute all intermediate
requests and thereby allows replicas to catch up.

As the memory usage also depends a lot on the used application, we assume that the
application is implemented such that it only uses a bounded amount of memory. This is
necessary to prevent faulty clients from causing the replicas to run out of memory.

Checkpoint Creation
After the replica has executed a request with a sequence number divisible by the checkpoint
interval k, it creates a checkpoint consisting of a snapshot of the application state, the
corresponding cached replies and the vector ~tc of their counter values [72]. Similar to the
request execution, the snapshot must be deterministic, that is, all replicas must collect
the exact same snapshot. This is necessary to allow replicas to verify the correctness
of a snapshot. A checkpoint is only created after every kth request, as it can be very
expensive to snapshot the state of an application.
Before a checkpoint can be used to update other replicas, a replica first has to

collect a checkpoint certificate proving its correctness. For this, replicas exchange signed
〈Checkpoint, s, h(cp)〉σri

messages containing the last sequence number s executed
before creating the checkpoint and its hash h(cp). Once a replica has collected a
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certificate of 2f + 1 Checkpoint messages2, the checkpoint becomes stable and allows
the replica to forget all checkpoints and requests with lower sequence numbers.

As the application state consists of many small objects, their data has to be concatenated
for the hash calculation. For a more efficient calculation of the checkpoint hash, a Merkle
tree [154] or incrementally updatable hashes [56] can be used. Either way, every replica
must use the same order for state objects when calculating the hash, for example by
sorting the objects according to their identifier.

Checkpoint Transfer
Once a replica has collected a stable checkpoint certificate, it broadcasts the certificate
to all replicas to inform them about the checkpoint. As the Checkpoint messages only
contain the checkpoint hash, this step only results in a small amount of network traffic.

If a replica learns that it has fallen behind, for example, by collecting a certificate for
a newer checkpoint, it can request the full checkpoint from another replica. Afterwards
it has to verify that the received data matches the hash in the certificate.

Bounded State
To bound the agreement’s memory usage, the number of slots that can be in use at a
time must be limited. This is done by only processing slots for sequence numbers inside
the agreement window. The lower bound of the window is set to the sequence number
after the latest stable checkpoint. And the upper bound is given by the lower bound plus
the window size. The latter is a small multiple of the checkpoint interval k to allow the
request ordering to continue while the next checkpoint is not yet stable.
The view change also requires a small modification: each ViewChange message

must additionally contain the latest stable checkpoint certificate known to the replica.
The leader of the new view then selects the latest stable checkpoint and includes it
in the NewView. Only prepare certificates with a sequence number newer than that
of the checkpoint are included in the NewView message. When a replica receives a
NewView containing a newer checkpoint certificate, then the replica first has to retrieve
the checkpoint and update its state accordingly.
When a replica receives agreement messages for sequence numbers after the window,

that is, with a higher sequence number than the upper bound, then the replica discards
these messages. This ensures that a replica does not run out of memory if a faulty leader
assigns requests to slots with very high sequence numbers. If a dropped message becomes
necessary later on, the replica has to request a retransmission [56]. As an optimization, a
replica can keep a limited number of such future messages [201].

2.4. State of the Art

A significant body of work has been dedicated to improving the performance of Byzantine
fault-tolerant protocols. In the following we review approaches that explore different

2Due to the additional checkpoint-certificate broadcast described in the following, which is not included
in PBFT [57], it is also possible to create checkpoints based on f + 1 signed Checkpoint messages.
This also allows running the application at only 2f + 1 replicas [210].
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ways of reducing the response times for clients. We group them based on the protocol
phase an approach optimizes: either the communication with the clients (Section 2.4.1),
the agreement on a request order (Section 2.4.2) or the request execution and checkpoint-
ing (Section 2.4.3).

2.4.1. Reducing the Client Communication Latency

The first step in ordering a request is for a client to send it to the replicas. This section
starts with approaches to select a system configuration offering optimal response times
for clients, then discusses optimizations related to returning a reply to a client. Finally,
we review approaches to optimize the transfer of client requests to the leader replicas.

Improving Client-Perceived Response Times
To check whether a different system configuration could lower the response time ex-
perienced by clients, the replicas need a way to determine the latency for alternate
configurations. Our approach called Archer [82] lets clients issue probe requests that
retrace the protocol phases and allow exploring which response time a different leader
could provide. To prevent faulty replicas from skipping protocol steps to gain an advan-
tage, the replicas compute a hash chain based on the protocol execution, which allows
the client to verify the correct behavior of the replicas. When entering a new protocol
phase, the resulting message sent by a replica includes a hash computed from the received
messages and the secret the replica shares with the client to authenticate messages. This
ensures that a faulty replica cannot fake another replica’s message. The client then
verifies that the hash value included in the replica’s replies is consistent with a correct
protocol execution. If a faulty replica skips an execution step, this will result in a wrong
hash, which the client can detect.
The clients then send their latency measurements for each received reply message to

the replicas. These run a special system application that analyses these measurements
and can trigger a reconfiguration of the agreement protocol to optimize its latency. As
shown by our experiments conducted using Archer, the location of the leader replica in
relation to the client has a major influence on the response times experienced by clients
at a certain location. A change of the current leader replica will also result in changes of
the response time. Depending on the replica’s locations, there is also no single leader
location that offers the optimal latency for all clients such that for a shifting client load
the leader replica has to be adapted to remain optimal.

Telling the Client
Returning a reply to the client also contributes to the overall response time. By differ-
entiating between read requests, which do not modify the application state, and write
requests, which do, it becomes possible to optimize them separately. PBFT [57] proposes
a read optimization that works in a single message round-trip: a client queries all replicas,
which directly execute the request without ordering it first and reply to the client. Once
a client has collected matching replies from a quorum of replicas, it can accept the result.
Otherwise, it has to resend its query as a regular request. This optimization comes at the
cost of requiring the client to also wait for a quorum of replies to write requests, which
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can increase their latency by about 10% [189]. In the presence of faulty replicas, PBFT
additionally has to exchange the agreement results for already committed slots between
replicas to ensure that a client can always get a reply [42].
SBFT [108] includes an additional protocol phase during which the replicas collect a

threshold-signed reply that is sufficient to prove to the client that f + 1 replicas have
confirmed the correctness of the reply. A threshold signature scheme ensures that a valid
signature can only be created if a sufficient number of signers contribute a signature share,
which are then combined into the final signature. Thus, it is sufficient to send a single
reply containing the combined signature to the client. While this reduces communication,
in terms of latency it is overcompensated by the additional protocol phase required to
assemble the threshold signature.
By using client-side speculation [207], it becomes possible for a client to predict the

outcome of a request based on the first reply it receives or sometimes even a cached result.
The client can then continue executing without waiting for the full reply. However, as
the result is still speculative at that point, the client cannot perform any actions that
would externalize speculative state which limits the usability of this approach.

Rotating the Leader
Protocols with a rotating leader can allow clients to submit their requests to the nearest
replica (in terms of latency), and thereby avoid communication with far away replicas.
However, in existing protocols this usually has the result of requiring the replica to wait
for its turn or to wait until the other replicas complete their requests. For example,
BFT-Mencius [161] partitions the agreement slots in round-robin manner across replicas,
such that each replica can propose received requests for its own agreement slots. To still
end up with a global order, the replicas have to wait with executing a request until all
slots with lower sequence number have been committed. This may require additional
steps to fill these gaps and can delay the request processing. Essentially, the slowest
leader replica can end up limiting the performance.

Spinning [201] continuously changes the leader replica in an attempt to limit the effect
a faulty leader can have on the request processing. The protocol is not optimized for
latency, as the leader changes occur consecutively, which requires a request sent only to
the local leader to wait for its turn.

Protocols from the HotStuff [211] family do not follow the classical design of assigning
requests to sequence numbers, but instead build a chain of request batches by including a
hash of the previous batch in each agreement slot. This allows the protocol to continuously
switch leaders without incurring an expensive view change protocol, but also limits the
leader replicas to only propose requests one after another. As the communication
pattern primarily consists of one-to-all communication and back, which avoids all-to-all
communication as for example used in PBFT, this requires additional communication
steps compared to PBFT-like protocols, thereby resulting in higher response times.

Leaders Everywhere
For protocols tolerating only crash faults, that is nodes either behave correctly or crash,
Generalized Paxos [137] has shown that multiple replicas can concurrently propose non-
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conflicting or commutative requests. Such requests can be executed in an arbitrary order,
as they for example access independent parts of the application state. MDCC [132],
which hosts replicas at multiple sites, uses this approach to allow clients to contact a
local replica, which then orders the request concurrently to other requests within two
wide-area communication steps. Only in case of conflicts, it becomes necessary to fall
back to a single leader, which has to determine an order for the conflicting requests,
before switching back to the concurrent request ordering.
Egalitarian Paxos [162] is able to even resolve conflicts in a distributed manner. To

order a request, all replicas have to agree on a set of possibly conflicting requests. Using
these sets, the replicas can then determine the order in which requests should be executed.
If the conflict sets determined by the leader and a quorum of followers are identical,
then the protocol can follow the fast path and commit the request within two wide-area
communication steps. Otherwise, a fallback to the slow path is necessary in which
the replicas reconcile the proposed conflict sets by merging them. For the execution,
requests are sorted such that all conflicts of a request are executed first. In case of cyclic
dependencies, all requests on such a cycle are sorted deterministically and are executed
in this order. Overall, this ensures that conflicting requests execute in the same order on
all replicas. As each replica is able to propose requests, clients can send their requests to
the nearest replica which immediately starts ordering them.

However, the just described protocols only tolerate crash faults. Byzantine Generalized
Paxos [171] extends Generalized Paxos to also tolerate Byzantine faults. It adds another
protocol phase such that the agreement consists of the usual three communication steps
required for many Byzantine fault-tolerant protocols. Each replica can propose an order
for requests that has to be confirmed by a quorum and only succeeds if the request orders
proposed by different replicas do not conflict with each other. In particular, this requires
that differences in request ordering only concern commutative requests such that each
order still yields the same result. In case of conflicts, the protocol has to fall back to
a single leader replica that resolves the conflict by proposing a canonical order for the
pending requests. Only afterwards the concurrent request processing continues.

Conclusion
The response times for client requests can in some cases be reduced by lowering the
communication latency between a client and the replica that proposes it for ordering.
However, care must be taken that a lower client communication latency does not result
in replicas having to wait for each other and thereby increase response times again.

2.4.2. Reducing the Agreement Latency

In this section we shift our focus to optimizing the agreement on a request order. We
start with discussing several protocols using additional replicas or speculative request
execution. Afterwards we review approaches to assign different weights for replicas in
order to prefer those replicas that provide the best performance, followed by hierarchical
replication protocols and weaker consistency guarantees.
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Figure 2.4: Protocol structure of different Byzantine fault-tolerant protocols drawn with uniform
latencies. We distinguish between the client (C), the leader (L) and followers (F).
The leader is additionally indicated by an inverted label. Communication between
replicas at the same site in Steward is not drawn to scale. The vertical lines mark
the point at which a replica enters the next protocol phase.

More Replicas
The most obvious way to reduce the response time of a state-machine replication protocol
is by reducing the number of protocol phases, which in exchange requires an increased
number of replicas. The three protocol phases of the well-known PBFT protocol [57],
which was presented in Section 2.3, are shown in Figure 2.4a. Here, PBFT serves as
starting point which requires 3f + 1 replicas and takes three communication steps in the
agreement protocol between a request reaching the leader replica to successfully ordering
the request. Along with the client communication, it takes at total of five communication
steps between the client submitting a request and receiving a reply.

Using at least 5f +1 replicas as in the protocol FaB [150], which is shown in Figure 2.4b,
allows for agreement in two communication steps. Compared to PBFT the protocol skips
the prepare phase by using a larger quorum size of 4f + 1 replicas, which guarantees an
overlap of at least 2f + 1 correct replicas. During a view change, therefore a majority
of replicas in the quorum will vote for the correct value. FaB can be further optimized
to require only 5f − 1 replicas [79, 135]. Especially when tolerating more than a single
fault, this still requires more replicas in the agreement process.
While using additional replicas could reduce latency, the network traffic necessary to

distribute requests to each of them increases [1], which can result in the leader becoming
a bottleneck. To ensure fault independence, the higher number of replicas requires
additional different versions of the protocol implementation.
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Weighted Communication Phases
As discovered by WHEAT [189], which is sketched in Figure 2.4c, the selection of replicas
used to complete the agreement can have a major influence on the latency. In a wide-area
environment the communication latency between different pairs of replicas can vary
significantly. Consequently, certain subsets of the replicas are more suitable for fast
protocol executions than others. WHEAT uses additional replicas which allow it to prefer
a set of well-connected replicas to handle the agreement process. However, the size of a
Byzantine majority quorum normally increases when adding more agreement replicas. To
avoid this WHEAT assigns weights to replicas such that votes from the (small) preferred
replica quorum are sufficient to collect a Byzantine majority of votes. As a follow-up
AWARE [43] automatically calculates and adjusts these replica weights. Whether it is
possible to actually improve the response time or not depends on the location of the
additional replica(s). The higher number of replicas also requires a leader to distribute a
request to more replicas.

Speculation
Reducing the number of communication steps to a total of three is possible by speculatively
executing a request and providing the client with the reply, even though the request is
not yet committed. This approach is used by Zyzzyva [130], shown in Figure 2.4d. The
costs for this reduction are that a client has to wait for replies from all 3f + 1 replicas
instead of only f + 1. In the wide-area setting this means waiting for a reply from the
replica that is the farthest away from the client in terms of latency, which can negate
any the latency improvements. The speculative execution also comes at a cost. If the
leader replica misbehaves, it can become necessary to roll back the application to an
earlier state, which requires an efficient method to revert to a prior state.

The quorum-based replication protocol Q/U [1] goes even further and allows updates
to happen in just two phases, that is, replicas directly reply to client requests. However,
this comes at the cost of requiring 5f + 1 replicas and only supporting operations where
a client can read or conditionally update an existing object. If conflicts between updates
from clients occur, it even becomes necessary to back off exponentially.
As a middle ground, HQ [68] primarily relies on client to replica communication, but

requires four communication steps to process write requests. In case of conflicts, it falls
back to ordering the affected requests using PBFT, which further increases the protocol
latency. Quorum-based protocols like Q/U and HQ do not rely on a leader replica, which
precludes them from using batching and thereby limits their throughput [68]. In addition,
clients and replicas have to exchange large amounts of certificates to prove the correctness
of messages, resulting in a high network traffic overhead [68].
PBFT [58] supports a more conservative approach called tentative execution, which

overlaps the commit and reply phase. As a trade-off a client has to wait for a quorum of
replies instead of just f + 1 replies, which ensures that the request survives a view change
and has a similar effect as a commit quorum. Like the previous approaches, it may
become necessary to roll back the application state. Additionally, tentative execution is
only possible if the previous request has already committed, making it less effective in
wide-area networks when multiple slots are ordered concurrently.
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The main drawback of protocols using speculation is their complexity. All system
components must be able to roll back misspeculated requests, which can be very complex
depending on the application or impossible if the request execution has already triggered
external communication. This complexity is also showcased by the fact that Clement et
al. [63] pointed out that the prototypes for HQ and Zyzzyva did not implement the full
view change. In addition, nearly a decade after its initial publication, the view change
protocol for Zyzzyva was shown to be subtly flawed [2, 3].

Hierarchical Replication
It is possible to make use of the low latency of local-area communication – even in a
wide-area setting – by using a hierarchical protocol design. Protocols like Steward [24],
shown in Figure 2.4e, or CustFT [20] use multiple sites spread across the world, which
each contain a group of replicas. Every group is able to locally process read requests and
to execute a part of the overall agreement protocol, reducing the amount of wide-area
communication necessary. As the replicas in a group are located at the same site, they
can communicate with each other with low latency and thus improve the response time.
GeoBFT [110] follows another approach by partitioning the agreement slots to different
sites, which each can locally order requests for their slots. This allows each replica site to
order its requests independently of the other replica sites. However, the request execution
still has to wait until every site has filled all earlier slots, such that a single slow site can
delay all other sites.
For crash-fault tolerance several protocols [7, 65, 165, 170] designate small sets of

replicas to be primarily responsible for managing specific objects. By selecting replicas
located close to the clients that frequently access these objects, it becomes possible
for those clients to only communicate with nearby replicas when accessing objects and
therefore optimize for the normal case. Interactions with far away replicas are only
necessary for rare accesses to non-local objects or to update the replica sets after replica
failures have occurred.

Weaker Consistency Guarantees
Another way to reduce latency especially for read requests is to offer different consistency
guarantees for them [65, 89, 196]. Weaker consistencies than linearizability allow clients
to temporarily see an outdated state, which usually translates to faster response times,
as they can allow replicas to process a request locally without requiring wide-area
communication. In some protocols the choice of consistency is left to the client [24, 89,
122], Pileus [196] even allows a client to specify preferences for different consistency
guarantees based on how long it would take to process the request.

Hierarchical replication protocols like Steward [24] are also well suited for this approach.
Each replica group has sufficient members to process read requests with weak consistency
locally and only requires wide-area communication to guarantee strong consistency. If
a weaker level of consistency is sufficient for clients, then the read requests of clients
that are located near a group can be processed locally at the group and therefore with
response times comparable to a local-area setting.
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Conclusion
As shown by several of the presented systems, reducing the number of protocol phases
requires other trade-offs. Either in the form of additional required replicas, which
increase the overall resources necessary, or additional complexity at the protocol level
and the application in case of speculative execution. However, it is also possible to
add protocol phases to reduce the response time. Hierarchical replication protocols,
which differentiate between local- and wide-area communication, can use additional local,
low-latency communication steps to reduce the overall latency.

2.4.3. Reducing the Execution Latency

Besides latency induced by the communication between clients and replicas, executing a
request can also require a significant amount of time. We first discuss how requests can
be handled which take a long time to execute and afterwards discuss delays caused by
the periodic creation of checkpoints.

Execution Slowdowns
Delays during processing can lead to spikes in the response time for individual requests,
the so-called tail latency [71]. Different from random transmission delays, which likely
only affect some replicas, delays during the request execution can affect all replicas at once.
If some requests take a long time to execute, this delay will become visible to the clients.
It can be partially alleviated by executing non-conflicting requests concurrently [60,
131, 142]. But ultimately it remains the responsibility of the application to ensure that
operations can be executed sufficiently fast.
Hyperledger Fabric [26] and EVE [128] turn the request processing on its head by

first executing requests without explicit coordination and afterwards agreeing on the
execution results. In Fabric [26] a client submits its request to the execution replicas and
collects a certified execution result. This result is then sent to the agreement for ordering.
If conflicts arise, the execution result is dropped, and the client has to retry its request.
As this approach is not tightly coupled with the agreement protocol, it can be integrated
into other systems. EVE [128] lets replicas execute requests in parallel and verify that
they arrived at the same results later on. In case of a mismatch, the execution is rolled
back followed by executing the problematic requests sequentially.

Checkpointing
After executing requests, replicas periodically take an application snapshot to create a
new checkpoint. For applications with a large state, taking a snapshot can require a
significant amount of time and thus lead to service interruptions which are visible to
users. If these reach the order of several hundred milliseconds, they stand out even when
considering the wide-area communication latency.
The straw-man approach of copying the full application state also has the downside

of requiring a replica to keep multiple copies of the full application state. PBFT [57]
and BASE [59] therefore store differential snapshots, which only contain the parts of
the application state that are different from the next snapshot. When the application is
about to modify a state object, it then has to notify the replication library. If necessary,
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the library backs up the old object version and stores it in the latest snapshot. That
way, snapshots only store copies of the state objects which were modified by requests
after creating the snapshot. Together with the current application state, it is possible to
reconstruct the state that existed when one of the snapshots was taken. The approach
also removes the need to copy the application state when creating a checkpoint. However,
the checkpoint hash still has to be calculated immediately after creating the application
snapshot and thus still blocks the request execution.

BASE [59] introduces an abstraction layer enabling the replicas to use different service
implementations by on-demand translating the concrete state into an abstract state
that is identical across implementations. This allows implementing a form of N-version
programming, for example, by using different COTS databases. When backing up state
parts that are about to change or when calculating the checkpoint hash, this approach
adds a translation step. Depending on the size of the state part or the conversion process,
this can introduce significant further delays.

With the standard checkpointing approach, all replicas take their snapshot at the same
logical point in time, that is, after processing the same sequence number, which can result
in service disruptions. Dura-SMaRt [46] staggers the checkpoint creation across replicas
such that it does not overlap in time. However, to apply a checkpoint, it is necessary
that multiple replicas confirm its correctness. Therefore, replicas that have created their
last checkpoint at a different point in time additionally provide a list of requests that
were executed in the meantime. A replica requiring a checkpoint then requests multiple
checkpoints and installs the f + 1-newest checkpoint cp it has received. To verify the
checkpoint, it then executes requests until reaching the f -newest checkpoint, verifies that
its own state matches that checkpoint, proceeds to the f − 1-newest checkpoint and so
on until it has verified the newest checkpoint. This approach has the huge drawback
that an application has to apply a checkpoint containing unverified state. Thus, faulty
replicas could try to compromise other replicas by sending a manipulated checkpoint to
exploit vulnerabilities in the procedure to apply a checkpoint.
Upright [62] proposes multiple approaches to create checkpoints. The simplest one

reduces the checkpointing frequency using so-called hybrid checkpoints, which consist of
an application snapshot and an incremental list of ordered requests to execute afterwards.
A lower checkpoint frequency requires more requests to be replayed after applying a
checkpoint, slowing down the recovery of a replica. Another approach runs a second copy
of the application process that is paused for checkpointing. However, this doubles the
resource usage. An application can also be modified to use copy-on-write data structures,
however, this can require significant code changes. Finally, usage of the fork syscall,
which creates a copy of the current process whose memory is shared in a copy-on-write
fashion, is limited to single-threaded applications, which in particular rules out programs
written in Java and is also incompatible with executing requests in parallel.

Conclusion
Even though the reviewed approaches can reduce the service interruptions caused by
creating checkpoints, they still can experience significant delays when creating checkpoints
or require applying unverified application state.
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2.5. Summary
In this chapter we have presented the system model used throughout this thesis and
discussed special characteristics of wide-area networks. Afterwards we have introduced
the structure of a state-machine replication protocol and its main components. We have
reviewed the state of the art relevant for optimizing the latency of the client to replica
communication, different agreement protocol structures requiring varying numbers of
protocol phases and replicas and the possible causes of delays in the request execution in
particular when creating checkpoints. In the following chapter, based on the wide-area
characteristics and the state of the art, we analyze the potential for lower response times
by optimizing the client communication and request ordering latency. In addition, we
examine how checkpointing approaches can avoid processing delays.
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3
Problem Analysis and Suggested Approach

Based on the state of the art presented in Section 2.4, we first analyze in Section 3.1 for
wide-area environments which problems arise from different approaches to reduce the
latency for different steps of the state-machine replication protocols. After the analysis
we present in Section 3.2 three approaches that each reduce the latency for one of the
protocol steps as far as possible. We define our central questions in Section 3.3 and
sketch the design goals guiding the development of our protocols. Finally, Section 3.4
concludes the chapter.

3.1. Problem Analysis

For the purpose of this analysis, we divide the request processing steps in a state-machine
replication protocol into client communication-, agreement- and execution-specific steps.
Figure 3.1 shows this division using the PBFT [57] protocol as example. In the following

Client

Leader

Follower

Follower

Follower

Exec | CP

Exec | CP

Exec | CP

Exec | CP

Client Agreement Execution Client

Figure 3.1: Protocol steps that are necessary to process a client request grouped into client
communication-, agreement- and execution-specific steps at the example of PBFT.
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Figure 3.2: PBFT protocol progress for uniform latencies and for real wide-area latencies from
Amazon EC2. For uniform latencies, we only distinguish between leader (L) and
followers (F). For the wide-area setting the replicas are located in Ireland (I),
Northern Virginia (NV), Oregon (O) and Tokyo (T). The client (C) is always
located in Ireland. Depending on the location of the leader replica (inverted label)
the response time can vary significantly.

we analyze for each of the protocol steps whether it is possible to reduce its latency
nearly down to zero and review drawbacks of existing approaches.

Client Communication
The usual way of drawing protocols with uniform network latencies, which is shown in
Figure 3.2a for PBFT [57], suggests that each replica is equally suitable for tasks like
the leader role. While this works well in a local-area network where the communication
latency is roughly uniform, the situation is less clear when it comes to wide-area networks,
where the communication latency can be very different. Communication between replicas
in the same region takes only a few milliseconds, whereas communication between replicas
located at distant regions can require hundreds of milliseconds.

For example, the response time improves from 287 ms for a leader in Tokyo (Figure 3.2c),
to which the request submission already takes 105 ms, down to 195 ms with the leader
in Ireland (Figure 3.2b), which is also the region the client is located in. This shows
that depending on the location of a leader replica in relation to a client, the initial
request submission can already add a significant amount of latency to the overall request
processing. For protocols using a single leader replica, the response time experienced by
a client strongly depends on the current location of the leader replica [43, 82, 189]. If a
protocol changes the current leader replica, this consequently leads to large changes in
the response times for clients.

Protocols that use a rotating leader [161, 201] reduce the time it takes for a request to
initially reach a leader by allowing clients to submit their requests to the nearest replica.
However, as new requests are proposed in a round-robin manner, the replicas have to
wait for each other to finish their turns. This can lead to situations in which the slowest
replica determines the overall performance, as all other replicas have to wait for it to
complete its turn.

In contrast, in an egalitarian protocol, such as EPaxos [162], only requests that conflict
with each other must be coordinated across replicas. However, EPaxos is only crash-fault
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Figure 3.3: Protocol structure of different Byzantine fault-tolerant protocols. The client, marked
as C, is located in Ireland, the replicas are in Ireland (I), Northern Virginia (NV),
Oregon (O), Tokyo (T), São Paulo (SP) and Sydney (SY). The leader is indicated
by an inverted label. Grey arrows ( ) represent local communication (not to
scale), whereas black arrows ( ) are used for wide-area communication. Equivalent
protocol phases are marked in the same color.

tolerant, making it unsuitable for our system model. Byzantine Generalized Paxos [171]
also tolerates Byzantine faults, but has to alternate between a fast path allowing all
replicas to propose requests without further coordination and a slow path using a central
leader in case of conflicting requests. To avoid the costs associated with a central leader
a protocol should not use a slow path with a central leader.

Agreement
Judging from a protocol drawn with uniform network latencies as in Figure 3.2a, it
seems obvious that fewer protocol phases translate to lower latency. However, as shown
in Figure 3.3 this depends on the actual communication latency and the location of
additional replicas. For example, when comparing PBFT [57] in Figure 3.3a with
FaB [150] in Figure 3.3b, the result can even be a higher response time if the additional
replicas increase the time to collect a quorum. The efficacy of weighted voting used by
WHEAT [189] is also limited by the available replicas. Figure 3.3c shows that, if the
existing replicas are well-connected, additional replicas do not reduce response times.
Even a reduction to a single communication step as in the speculative agreement protocol
Zyzzyva [130], shown in Figure 2.4d, does not automatically improve response times.
Now, a client has to wait for replies from all 3f + 1 replicas instead of f + 1. This means
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waiting for a reply from the replica that is the farthest away from the client in terms of
latency, which can negate any latency improvements.
Thus, counting protocol phases is not sufficient to accurately judge the

performance of a protocol. Instead, it is necessary to decrease the number of high
latency communication steps as opposed to just the overall number of steps. Especially
when taking local communication into account, this can mean that introducing new
low-latency communication steps reduces the overall latency.
In general, the previous approaches can only reduce the response time by a limited

amount. To reduce the agreement latency nearly down to zero, a more drastic change
is necessary. All replicas involved in the agreement should be located at the same site
to allow for local area communication. This is partially the case for the hierarchical
agreement protocol Steward [24], shown in Figure 3.3e, which however also has to run
an agreement protocol between sites that reintroduces wide-area communication into
the agreement protocol and thus increases the latency before a request can be executed.
Thus, to reduce the agreement latency to nearly zero, we need a protocol which places the
replicas responsible for the agreement close to each other without introducing additional
wide-area communication and without compromising the system’s availability.

Execution
Checkpointing the application state after executing a certain number of requests, is
necessary to ensure that the system has a bounded state size. As opposed to the
execution of a request which is completely handled by the application, a replication
library typically provides supporting infrastructure for checkpointing [46, 47, 57, 59, 62].
To create a checkpoint the application either has to completely dump its current state [47,
62] or continuously notify the library about changes to parts of its application state.
However, even collecting just these changes can lead to long pauses of the execution [46,
81] that are noticeable for the user as tail latency [71]. These delays can reach multiple
seconds, which lets them stand out even in wide-area networks. This is ultimately caused
by a common property of the checkpointing support in the replication libraries, namely
that a replica has to stop the request execution while collecting a copy of the application
state. Removing the need for such a pause could prevent these latency spikes.

Challenges
In addition to the above problems, which we want to solve for each protocol phase, we
have identified several common properties a protocol should provide:

Byzantine Fault Tolerance A system must remain correct despite a limited number of
Byzantine-faulty replicas and an arbitrary number of faulty clients. In particular,
faulty clients must not be able to prevent correct clients from receiving a reply.

Low Latency The system should reduce the latency for either the client communication,
agreement or execution-specific steps as far as possible.

Strong Consistency All write requests must be processed with strong consistency. For
read requests, a client must be able to read with strong consistency, but may be
offered to read with a weaker consistency level.
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Resource Efficiency The protocol should only use as few replicas as possible. That is,
the agreement parts of a protocol should only require 3f + 1 replicas.

Bounded State An implementation should only require a bounded amount of state to
process requests. In particular, this requires a protocol to support checkpointing
and limiting the number of concurrently processed requests.

3.2. Suggested Approach
Our goal is to reduce the response times for client requests in a geo-replicated Byzantine
fault-tolerant system. To achieve this, we propose to structure the system such that
it reduces the latency for one of the processing steps, ideally yielding a latency close
to zero. For this we present three approaches that each focus on a different processing
step. Note that not all approaches can be combined with each other: lowering the client
communication or agreement latency are opposite ends of a trade-off, minimizing both at
the same time is not possible. Somewhat counterintuitively the approach to minimize
the client communication latency primarily focuses on how to adapt the agreement
accordingly and vice versa.

Low-Latency Client Communication
The longer it takes for a client request to reach a replica that is able to start the
agreement process for the request, the more time passes for just transmitting the request.
To minimize this latency, a client should be able to directly submit its request to the
nearest replica. This replica then must be able to independently propose the request
without waiting for other replicas. As approaches that rely on partitioning the sequence
numbers between replicas can introduce such an interdependency, a system should instead
only rely on dependencies between requests. To consistently order requests, the replicas
have to agree on the dependencies for each request. For non-conflicting requests it should
be possible to do so using a fast path requiring just three protocol phases like for PBFT,
but with the difference that each replica can propose requests for ordering.

Low-Latency Agreement
Based on the insight that the latency of a communication step strongly depends on which
replicas take part and their relative location to each other, we can structure the system
such that it minimizes the time necessary to complete the agreement process. We achieve
this by placing the (agreement) replicas close to each other, ideally in the same region. In
order to ensure that this nevertheless does not compromise the availability of the system,
we rely on the structure of modern cloud infrastructures, which offer availability zones [19,
101, 159] that are designed to fail independently but are still located in proximity of
each other. That way, the replicas can communicate with each other over short-distance
communication links, which only adds little latency to the agreement process. Only
a few cloud regions offer sufficient replicas to host all 3f + 1 agreement replicas in
different availability zones. To offer even lower latency to clients in exchange for weaker
consistency guarantees, we move the execution closer to the clients by adding execution
groups consisting of 2f + 1 replicas located in regions near the clients. This smaller
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number of replicas can then be distributed to the three availability zones commonly
available in a region [19].

Low-Latency Execution
Capturing all data required to create a checkpoint can lead to significant service interrup-
tions. Instead of collecting the checkpoint data after executing a certain sequence number,
we propose to run the checkpoint collection concurrently to the normal request execution.
Ideally, this can drastically reduce the pause time necessary to capture the application
state. However, this yields a fuzzy checkpoint of the application state, containing state
parts captured at different points in time. The application has to provide an interface
allowing the replication library to efficiently track changes of the application state while
collecting the checkpoint data. In order to reach a consistent checkpoint that is also
comparable across replicas, a post-processing phase should use the tracked changes to
make the snapshot deterministic again.

3.3. Central Questions
In the course of this thesis, we investigate the three approaches presented in Section 3.2
in regard to the following two central questions.

Improving Client-Perceived Response Times Can our approaches be used to reduce
the response times experienced by clients, and what are the implications for the
overall system performance and throughput?

Reducing Performance Variation Can our approaches be used to reduce the performance
variation that is caused by different system configurations like the current location
of the leader replica or periodic tasks like checkpointing the replica state?

For each of the approaches further questions and design goals arise which must be solved
during the development of the systems.

Low-Latency Client Communication
Our protocol Isos is described in Chapter 4 and allows clients to submit their request
to the nearest replica which can immediately start the agreement process. This poses
the problem of integrating dependencies between requests into a Byzantine fault-tolerant
protocol that must ensure that only valid dependencies can be proposed and that all
replicas eventually learn about them. Similarly, the fault handling must be able to
maintain the correctness of dependencies between requests. Based on these dependencies,
the replicas require a way to determine an execution order for the requests. In line with
the challenges identified earlier on, the replicas also have to coordinate the checkpoint
creation across all replicas. Finally, we will analyze the performance provided by the
protocol along with the effects of having multiple leader replicas at the same time.

Low-Latency Agreement
In Chapter 5 we present Spider, which follows the approach of reducing the agreement
latency as far as possible. The use of cloud availability zones raises the question of how to
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structure the system to benefit the most from this common cloud architecture. Splitting
replicas into agreement and execution groups requires them to exchange information
about requests and in which order they should be executed. We will investigate how
to couple these groups and how to do so in a modular way to lower the complexity of
the system while remaining efficient. Having an execution group located near clients
allows providing faster replies to clients in exchange for relaxed consistency guarantees.
In addition to the question which response times can be achieved by the system and how
stable these are across leader changes, we want to research which additional consistency
semantics the system can offer and their influence on the response times. To provide
optimal latency for all clients, this also requires the system to be able to adapt its set of
execution groups.

Low-Latency Execution
In Chapter 6 we design a mechanism called Deterministic Fuzzy Checkpointing, which
allows a replica to collect a fuzzy checkpoint while executing requests and to convert the
checkpoint into a deterministic one that is identical across all replicas. We investigate
which information is necessary to make a checkpoint deterministic again and how the
application interface has to be structured to support this mechanism. As the amount of
data that must be copied influences how much work is necessary, we analyze different
ways to reduce the amount of copying necessary. To collect a checkpoint for the same
sequence number, all replicas have to finish their data collection at that sequence number.
For this the replicas need a mechanism to determine a suitable starting point that is
early enough to copy all data without having to pause the execution, but late enough to
only copy as little data as necessary. The data collection for a checkpoint still requires
resources, therefore we will analyze how far our approach can reduce the execution
interruptions, its run time costs and the effect on the response times.

3.4. Summary
Our analysis has shown that protocols forgo a lot of potential to reduce response times by
not differentiating between the costs for different protocol steps and by not considering
costs that only occur periodically. We have suggested three approaches each focused on
reducing the costs for one basic protocol step as far as possible. Chapter 4 enables all
replicas to immediately propose new requests, which allows clients to submit their request
to the closest replica and thus reduce the response time. In Chapter 5 we use availability
zones provided by modern cloud infrastructures to place all agreement replicas in close
proximity to minimize the agreement costs. Afterwards Chapter 6 runs the checkpoint
data collection in parallel to the request execution, which yields a fuzzy checkpoint and
can spread the cost of periodically creating a checkpoint over a longer timespan.
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4
Egalitarian Byzantine Fault Tolerance

Before a client request can be ordered by the replicas running the state-machine replication
protocol, it has to arrive at them first. Often, agreement protocols require the request
to be sent to a leader replica, which can add a significant amount of latency before the
actual agreement starts if it is located far away from the client. Instead, our approach
Isos allows each replica to immediately propose an order for requests and thereby clients
can submit their requests to the nearest replica, for example, one running in the same
region. Isos is based on only ordering conflicting requests in respect to each other, that
is, those which access the same parts of the application state. If the replicas agree on
the dependencies between such requests, then ordering is possible via a fast path that
requires only three communication steps between the replicas. Otherwise, the replicas
have to reconcile the dependencies via a single additional communication step.

Section 4.1 discusses the problems with existing approaches in regard to reducing the
request submission latency. Afterwards Section 4.2 gives an overview of Isos, which
only explicitly orders requests that conflict with each other. How replicas agree on
dependencies between the requests is presented in Section 4.3. Then Section 4.4 derives
a valid execution order based on the dependencies. Support for checkpointing, which is
necessary to bound the state of a replica, is added in Section 4.5. We present a correctness
proof in Section 4.6. Afterwards we introduce several optimizations in Section 4.7 to
allow the protocol take the fast path more often, optimize its efficiency and improve
its resilience to faulty replicas. Section 4.8 evaluates the request processing latency of
Isos in comparison to two other systems. In Section 4.9 related work is discussed and
Section 4.10 summarizes the chapter.

4.1. Problem Statement
In this chapter we focus on reducing the latency of the client communication to lower
the overall request processing latency. More precisely, each replica that receives a client
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request should be able to immediately initiate the agreement process. That way, a client
can submit its request to the nearest replica to minimize the communication latency for
the request submission.

We follow the approach of only establishing a partial order between conflicting requests
to reduce the amount of coordination required between replicas. Two requests conflict
with each other if executing them in a different order leads to diverging application states
or replies, for example, when both requests modify the same state object. Requests that
do not conflict with each other are also said to be commutative. As long as all conflicting
requests are ordered in regard to one another, then the state of the replicas remains
consistent [137, 169]. That is, the overall execution order may differ between replicas as
long as conflicting requests are always executed in the same order. This allows lowering
the processing latency for commutative requests.

In the following we present challenges regarding the agreement latency in Section 4.1.1
and avoiding a fallback to a single leader which can become a bottleneck in Section 4.1.2.
Afterwards we discuss problems with resource efficiency in Section 4.1.3 and unbounded
replica state in Section 4.1.4.

4.1.1. Reducing the Agreement Latency

The appeal of letting clients send their request to the - in latency terms - nearest replica
is that it reduces the time between sending the request and the start of the agreement
protocol. This leads to the challenge of ensuring that the replica is able to immediately
propose newly arrived requests without increasing the agreement latency.

This rules out protocols like Aardvark [63] or Spinning [201], which rotate the leader,
but at each point in time only have a single active leader. For minimal latency, clients
would have to broadcast their request to every replica such that it reaches the next leader
as soon as possible. However, this results in a high network overhead for the client and is
affected by varying request processing latencies depending on the location of the current
leader [82, 189] or may even be slower than a single well-placed leader replica [189] if a
slow replica slows down the whole system.

Instead, a protocol should not rely on just a single leader replica, but allow for multiple
replicas to process requests at the same time. One way for this is to decouple the request
distribution and ordering. DBFT [69] and PRIME [22] first execute a broadcast phase
in which each replica can independently distribute requests. The replicas then run an
agreement phase to decide which requests to use and in which order. However, this
separation increases the latency to 4 and 6 wide-area communication steps, respectively,
not counting the client communication.

Protocols like EPaxos [162], CAESAR [29] or ATLAS [90] are more promising in regard
to latency, as they allow each replica to start ordering requests without a central leader.
The replicas agree on dependencies for a request and if a quorum of replicas agrees, then
the request can be ordered via a fast path. Afterwards the dependencies are used to
determine the final execution order and to ensure that conflicting requests are executed
in a consistent order. The fast path requires only as many communication steps as a
central leader replica would, but in contrast every replica is able to directly initiate the
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agreement and does not first have to forward a request to the central leader replica. For
optimal performance, ATLAS also includes an optimization allowing it to take the fast
path more often, even if a dependency is proposed by only f replicas and not a full
quorum. However, the just mentioned protocols can only tolerate crash faults and are
therefore not suitable for us, as we target the Byzantine fault model.
We do not discuss ezBFT [30] in further detail even though it targets the Byzantine

fault model, as it was shown to be incorrect [184] such that it is neither able to provide
safety nor liveness.

Approach of this Thesis
Our approach Isos is like EPaxos based on the idea of letting replicas only explicitly
order conflicting requests. If the replicas agree on the dependencies for a request, then it
can be ordered via a fast path that only requires three communication steps. This is the
same number of steps as for requests proposed by the leader replica in PBFT. Compared
to EPaxos, Isos adds a third protocol phase allowing it to tolerate Byzantine faults and
to consistently agree on the request together with its dependency set, which contains all
conflicting requests that must be executed first. The requests are then executed in an
order that conforms to the agreed upon dependencies.
To order as many requests as possible via the fast path, Isos uses an optimization,

inspired by ATLAS, allowing the protocol to take the fast path, even if some dependencies
are only proposed by f + 1 replicas instead of a full quorum.
As protection against malicious replicas, the replicas only accept dependencies for

which they know that the referenced requests actually exist. This ensures that faulty
replicas cannot introduce dependencies which are not satisfiable.

4.1.2. Always Using Multiple Leaders

In order to prevent a single replica from becoming the bottleneck, a protocol should not
require a central leader replica neither for a fast path nor for a fallback mechanism.
The quorum-based HQ [68] lets a client issue its requests directly to a quorum of

3f + 1 replicas, thus avoiding a central leader on the fast path. If enough replicas have
the same state for the accessed objects, this allows the client to receive a reply in two
round trips, that is, four wide-area communication delays. However, if the same objects
are modified by multiple requests, then the protocol has to fall back to PBFT with its
single leader replica to resolve conflicts. In addition to the possible leader bottleneck,
this significantly increases the latency for ordering a request.
Byzantine Generalized Paxos [171] belongs to the family of generalized consensus

protocols [137]. These allow multiple, selected replicas to concurrently propose new
requests, as long as those do not conflict with each other. Each replica independently
assembles a sequence of requests whose correctness has to be confirmed by a quorum
of replicas. As long as only the order of non-conflicting requests differs, the concurrent
ordering can proceed. However, in case of conflicts the agreement protocol has to fall
back to a single leader replica, which then coordinates the decision on the correct order.
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That way, the leader replica can become a bottleneck in addition to the protocol having
to temporarily switch between modes.

Approach of this Thesis
In our protocol Isos, the replicas agree on dependencies for each request and sort the
requests accordingly before execution. Cases in which two replicas propose different
dependencies for conflicting requests, like in EPaxos, can only result in circular depen-
dencies between the requests, but do not require a fallback to a central leader replica.
Before request execution, all requests on a dependency cycle are sorted deterministically
to guarantee a consistent execution order. Thereby, Isos can avoid falling back to a
central leader replica if the replicas disagree on the dependencies of conflicting requests.

4.1.3. Being Resource Efficient

Without special trusted components [40, 203] the minimum number of replicas to tolerate
Byzantine faults in a partially synchronous system is 3f + 1 [49]. In order to make
efficient use of its resources, a system should only require this number of replicas.

Q/U [1] lets clients optimistically issue its requests to a quorum of replicas. If enough
replicas have the same state for the accessed objects, then the request can complete in
a single round trip. Otherwise, it becomes the client’s job to synchronize the state of
the replicas. However, in order to guarantee correctness, Q/U requires a large quorum
of 5f + 1 replicas. Additionally, for conflicting requests clients have to perform an
exponential back off, which can lead to significant delays.
Byblos [38] orders requests by assigning them non-skipping timestamps to define the

execution order. The requests for a certain timestamp are executed once it is guaranteed
that all new requests will use a higher timestamp. To further optimize the protocol,
requests can be executed prematurely, if based on the request semantics it is clear that
no more conflicts can arise with earlier requests that are still being ordered. As the
timestamp assignment works by querying a quorum of servers for their latest timestamp,
this allows the protocol to work without relying on a leader replica. However, it comes
at the price of requiring at least 4f + 1 replicas to guarantee the correct assignment of
timestamps. Faulty clients can also make it necessary for the replicas to fall back to an
agreement protocol to resolve diverging views between replicas.

Both systems require more than the minimum of 3f +1 replicas which has the drawback
of an increased resource consumption.

Approach of this Thesis
Isos’s third protocol phase allows the replicas to verify the requests together with their
dependencies before committing them and thus enables Isos to tolerate Byzantine faults
while only using the minimum number of 3f + 1 replicas.

4.1.4. Guaranteeing a Bounded State

For an agreement protocol to be practical, it must be able to work with a bounded
state. In particular, this requires the protocol to garbage collect old state from time
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to time. The traditional approach (cf. Section 2.3.3.5) is to let all replicas create a
checkpoint after processing every k-th sequence number, which once confirmed by a
quorum of replicas allows garbage collecting all earlier state. This requires all replicas to
capture the application state after executing the exact same set of requests. However,
with a generalized consensus protocol there is no longer a single order in which requests
are executed. This makes it impossible to use the traditional approach of creating a
checkpoint after executing a specific sequence number, such that replicas need a different
way to coordinate the checkpoint creation.

Although necessary for a practical system, checkpointing is often neglected. For
example, both EPaxos [162] and ATLAS [90] do not describe a checkpointing mechanism
and to the best of our knowledge do not contain a proper checkpointing implementation.
While it is possible in crash-fault tolerant systems to just request the full state from any
of the replicas, this does not work when considering Byzantine fault tolerance.
Byzantine Generalized Paxos (BGP) [171] introduces a special command C* that is

used to cut off the command sequence at that request. It must be proposed by the central
leader replica and also requires a fallback to the slow path. However, no mechanism is
described to force the leader to issue the special command in regular intervals.
Another problem for checkpointing in EPaxos-like protocols is that dependencies are

contributed by multiple replicas such that a request can gather a dependency on a future
request, which in turn can depend on an even newer one [175]. The requests in such a
dependency chain can only be executed once it stops growing. These potentially endless
chains can form spontaneously [162, 175] or faulty replicas can also try to generate such
messages patterns intentionally. Both cases can therefore require unbounded amounts of
memory and delay the request execution.

Approach of this Thesis
In order to allow garbage collection in Isos, we introduce so-called checkpoint requests
whose execution causes a replica to create a new checkpoint. By conflicting with all other
requests, they separate other requests into two groups of requests: before and after the
checkpoint. Thereby, when processing a checkpoint request, all replicas are in the same
state and consequently create identical checkpoints. These requests must be periodically
proposed by each replica. As an infinite dependency chain could delay the execution
of requests, it would also affect the checkpoint creation. To prevent this problem, we
introduce a mechanism to limit the size of these dependency chains by deterministically
splitting too long chains into smaller parts.

4.2. Isos - Egalitarian Byzantine Fault Tolerance

Isos is based on ordering requests concurrently if they do not conflict. This allows every
replica to propose requests without first sending them to a central leader replica and
thereby avoids one wide-area communication step. We start with an overview of how
Isos processes requests in Section 4.2.1 and afterwards discuss how conflicts between
requests are determined in Section 4.2.2.
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Figure 4.1: Basic system structure of Isos. Clients submit their requests to the nearest replica,
which can immediately start the agreement process for the request.

4.2.1. Request Processing

In Isos each of the 3f + 1 replicas, which are located in different cloud regions, as
shown in Figure 4.1, can independently propose new requests. This allows each client to
submit its requests to the nearest replica such that this communication step is nearly
for free, especially for collocated clients. To establish an order between conflicting
requests, the replicas collect and agree on dependency sets that contain all previously
proposed conflicting requests. If all involved replicas propose the same dependencies for
a request, then the agreement can proceed on the fast path, allowing it to complete in
three communication steps. Based on these dependencies, the execution component then
sorts the requests such that all of their dependencies are executed first. For conflicting
requests, at least one of them will depend on the other one, which ensures a consistent
execution order across all replicas.

Sequence Numbers
The replica to which a client sends its request becomes responsible for ordering it and
is called request coordinator, all other replicas are referred to as followers. This role
distribution is determined individually on a per-request basis.
Each replica controls its own sequence number space for which it can propose new

requests. A sequence number si = 〈ri, sci〉 consists of the replica identifier ri and a
replica-specific counter sci. These sequence numbers are used to identify slots for which
the corresponding replica can propose requests. Each replica stores the slots of all replicas
as these are necessary to participate in the agreement for them.
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Figure 4.2: Replicas ri agree on dependencies between conflicting requests submitted by clients ci

and use those to determine an execution order. Replicas can execute requests in
different orders, as long as the dependencies are satisfied.

Agreement
To order a request, as shown in Figure 4.2a, a client submits its request to the latency-wise
nearest replica, for example, the replica collocated in the same region as the client. This
replica then becomes request coordinator for the request, assigns the request to its next
unused slot and calculates a dependency set containing all conflicting requests known
to the replica. This limits the ordering between requests to the necessary extent. The
proposal is then sent to a fast-path quorum consisting of 2f followers, which verify the
assignment and also report dependencies. If all replicas report matching dependencies,
then after an additional protocol phase, the request commits on the fast path, resulting
in a total of three protocol phases. As the dependencies are determined as part of the
agreement process, this ensures that all replicas learn the same dependencies.

Once a replica calculates and broadcasts a dependency set for a request, it promises to
consider the request in all further dependency set calculations. Together with collecting
dependencies from a quorum of replicas, this mechanism ensures that all conflicting
requests are ordered by at least one dependency between them.

If the replicas propose different dependency sets for a request, which for example occurs
if conflicting requests are ordered concurrently, then the request has to pass through the
reconciliation path. The latter consists of two protocol phases to combine the dependency
sets and to finally commit them. Together with the two initial phases of the agreement
protocol, which are shared with the fast path, this results in a total of four phases.
Conflicting requests that are ordered after each other, can nevertheless commit via the
fast path as shown for request B in Figure 4.2a. Either way, once the agreement for a
slot is complete, then all correct replicas use the same request and dependency set.

Execution
The ordered requests have to be sorted such that the dependencies of each request are
executed first, as shown in Figure 4.2b. As conflicting requests are guaranteed to be
connected by a dependency, this ensures that all replicas execute those requests in the
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Figure 4.3: Conflicts between requests depending on the accessed state objects and operations.

same order. After executing a request, the result is sent to the client, which has to wait
for f + 1 matching replies. This ensures that the result was sent by a correct replica.
Non-conflicting requests can execute in a different order on each replica. As these

requests are commutative, they nevertheless yield the same results on all replicas. In
addition, replicas are more likely able to execute a request without having to wait for
other requests. The safety property discussed in Section 2.1.3 still holds, as it is sufficient
if the clients cannot tell the execution order apart from a single total order [137, 169].

Bounded State
In order to bound the state required by the protocol, Isos periodically garbage collects
old slots. This requires the replicas to create and collect a stable checkpoint. As Isos no
longer has a single sequence number that can be used to periodically trigger the creation
of a checkpoint, each replica instead injects checkpoint-request messages into the ordering
process in regular intervals. These checkpoint requests conflict with every other request
and thus establish a barrier that divides requests into before and after. The snapshot of
the application data is created when executing the checkpoint request, which ensures
that each replica is in the same state as it has executed the exact same set of requests.
Once a replica collects a certificate for the checkpoint, it becomes stable and the replica
can garbage collect all requests before the checkpoint barrier.

4.2.2. Conflicts between Requests

In order to allow a replica to check for conflicts between requests, the application must
provide a predicate conflict(a, b), which for two requests a and b determines prior to
execution whether the requests could conflict with each other or are commutative. That
is, requests commute if the application state or replies are independent of the execution
order of both requests.

It is often feasible to provide such a predicate [38, 74, 90, 131, 162]. In general, requests
accessing disjunct sets of state object are commutative. For example, for the conflict
calculation of a key-value store it is possible to rely on the operation and the accessed
key, which both are part of the request and are thus known before execution. This is
illustrated in Figure 4.3, which we discuss from left to right. Requests accessing different
objects do not conflict with each other. Writes of an object conflict with all other writes
and reads for that object, whereas reading the object does not conflict with other reads of
the object. In doubt the predicate must be conservative and report a (possible) conflict;
it may overestimate conflicts but must not underestimate them. That is, it would be
safe, but inefficient, to always report a conflict.
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Like EPaxos [162] we target use cases with low conflict rates of less than 5%. These
match systems like lock services such as Chubby [52] where more than 90% of the requests
access client-specific data structures and less than 1% are write requests that can conflict
with each other, or services with a high read to write ratio like Google’s advertising
backend F1 where less than 0.3% are write requests [67].

Batches
To determine the conflicts for a request batch, the predicate has to check each individual
message within a batch for conflicts. Dependencies nevertheless apply to the batch as a
whole. As a special case, messages within the same batch cannot conflict with each other.
For those the relative execution order is already fixed, thus making it unnecessary to add
further dependencies.

Requests from the Same Client
In addition to conflicts that stem from the application semantics, it is also required to
establish an order between the individual requests of a single client. Requests in Isos
include a client-specific counter value, which is used to skip old and duplicate requests
during the execution. This makes it necessary that all replicas execute the requests
of a specific client in exactly the same order, as otherwise some replicas could skip a
request whereas it would be executed on other replicas. That is, the conflict predicate
must also report conflicts between all requests of the same client. Thereby, faulty clients
that propose two different requests with the same counter value cannot cause replicas to
execute diverging requests. As both requests conflict with each other, the replicas will
agree on a consistent order in which to execute those requests.

4.3. Request Ordering
In the following we describe in detail how requests are ordered. In Section 4.3.1 we first
present how the client interaction in Isos works. Afterwards in Section 4.3.2 we discuss
the fast and reconciliation path, which are used to order requests in the normal case. We
describe in Section 4.3.3, how the replicas perform a view change to selectively recover
failed slots. And finally in Section 4.3.4, we conclude with the mechanisms used by Isos
to guarantee liveness. The protocol’s pseudocode is available in Appendix A.

4.3.1. Client Handling
In order to submit a command w for execution, a client c has to send its signed request r =
〈Request, w, tc〉σc to the nearest replica. The client counter value tc must increase
monotonically for each new request and is used to filter out old or duplicate requests.
The Request is signed to ensure that all replicas can verify its validity.

The client then waits until it receives a certificate of f + 1 matching authenticated
replies 〈Reply, uc, tc〉µri

, which confirms the correctness of the result uc. If the client
does not collect a stable result within a certain timeout, then it broadcasts its request to
all replicas. In case the nearest replica to a client repeatedly fails to order requests in
time, then the client switches to another replica to submit its requests.
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Figure 4.4: A request can be ordered on the fast path if all proposed dependencies match, or
has to take the reconciliation path to agree on the final dependency set.

4.3.2. Fast Path and Reconciliation Path

Ordering a request proceeds in multiple phases to ensure that all correct replicas agree
on the request as well as its dependencies. As first step, the replicas collect dependencies
in a DepPropose and DepVerify phase. Depending on whether the involved replicas
propose matching dependencies or not, the protocol then has to follow the fast or
reconciliation path, respectively.

Request Proposal
Once a new request r arrives at a replica, it acts as request coordinator co. As shown
in Figure 4.4a, the replica picks its first own unused agreement slot with the sequence
number si and assigns the request to it. For brevity, we refer to it as slot si. Old requests,
that is those with a counter value tc that was already processed for the client c, are either
ignored or result in sending back the reply again. In general, if a message is not signed
correctly, then it is silently dropped by the replicas.

As next step, the coordinator calculates the dependency set D for the request, which
includes all conflicting requests known to the request coordinator. In particular, this also
includes all prior requests of client c. Afterwards the request has to be considered for
all future dependency calculations. The coordinator also selects a fast-path quorum F
containing 2f followers. By default, the replicas with the lowest communication delay
to the request coordinator are selected. The request is then broadcasted in a signed
〈〈DepPropose, si, h(r), D, F 〉σco , r〉 message to all followers, where h(r) is the hash of
the client request.
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Figure 4.5: Compact dependency encoding, which only stores the dependency with the latest
sequence number for each replica.

Compact Dependency Encoding
For each slot, the replicas determine dependency sets, such as those depicted on the
left side of Figure 4.5. However, with many conflicting messages, the dependency sets
could grow very large. To prevent this, similar to the approach used by EPaxos [162], a
dependency set for each request coordinator only explicitly stores the dependency on the
slot with the highest sequence number. All earlier slots of each request coordinator are
then implicitly included as dependencies, as shown on the right side of Figure 4.5. This
results in a compact dependency encoding that only has to store one sequence number for
each replica. That is, the encoding has a fixed size, which prevents faulty replicas from
generating huge dependency sets to flood the other replicas. The additional dependencies
do not affect correctness, as the conflict(a, b) predicate is allowed to overestimate conflicts
between requests.
Another major benefit of the compact encoding is that it allows for a significantly

simplified calculation of conflicts. Instead of checking all known requests, for example
for a key-value store, the conflict calculation has to remember for each state object per
request coordinator the latest read and write request that accessed the state object. The
conflict calculation for a request then only has to look up for each request coordinator
the latest request that accessed the same object; all older conflicting requests are then
also implicitly covered. This both speeds up the dependency calculation and at the same
time limits the state necessary to efficiently determine conflicts between requests.

Dependency Verification
Once a follower fi receives a correctly signed DepPropose from the request coordinator,
it starts to verify the message. The accompanying request r must match the hash h(r)
included in the DepPropose message, the slot si must belong to the request coordinator
and not yet contain a different message, and the fast-path quorum must contain a valid
selection of 2f different followers. If any of these conditions is not satisfied, then the
follower discards the message. In addition, a follower strictly processes DepPropose
messages from a coordinator in sequence number order. This guarantees that a faulty
request coordinator cannot skip sequence numbers. Otherwise, missing slots would
eventually block the request execution, as a dependency on a later slot also results in
implicit dependencies on all earlier slots potentially including the missing ones.
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A follower then waits until it learns that the ordering process has been started for all
dependencies included in the DepPropose. This ensures that a faulty leader cannot
include dependencies to nonexistent requests and thereby try to prevent the request
from being executed. A dependency on a slot is known once the follower has either
completed the dependency calculation for a corresponding DepPropose, has received
f + 1 matching DepVerify messages or has started a view change for the slot. Each
case guarantees that the slot will eventually commit and thus will allow dependent slots
to execute. We describe these progress guarantees in further detail in Section 4.3.4.
Each follower then calculates a dependency set Dfi

and remembers the request for
future conflict calculations. Only the followers included in the fast-path quorum F
broadcast a signed 〈DepVerify, si, h(dp), Dfi

〉σfi
to all replicas where h(dp) is the hash

of the DepPropose message. The latter allows checking that all replicas belonging to
the fast-path quorum have received the same DepPropose.

Fast-Path Commit
A replica ri accepts a DepVerify only if it matches the received DepPropose, the
sender is part of the fast-path quorum F and after all dependencies included in the
message are known. After collecting a quorum certificate consisting of a DepPropose
and 2f matching DepVerify messages, the replica checks whether the slot can commit
on the fast path. DepVerify messages are considered matching if they refer to the same
sequence number si and contain the correct hash h(dp) for the DepPropose.
To commit on the fast path, the fp-verified predicate must hold, which requires the

DepPropose and the corresponding 2f DepVerifys to contain identical dependency
sets. Once the slot is fp-verified, the replica broadcasts a 〈DepCommit, si, h( ~dv)〉σri

message where h( ~dv) is the hash of all used DepVerify messages. If the request
coordinator and the replicas in the fast-path quorum are correct, then all replicas will
use the same DepVerify messages and thereby calculate the same hash.

Once a replica has collected 2f + 1 matching DepCommit messages, the slot becomes
fp-committed, which ensures that the request and its dependency set can no longer change
even in case of failures. As the DepCommit contains the hash of all used DepVerifys
and indirectly the DepPropose, this guarantees that all replicas have processed the
same messages. The request and its dependency set is then passed to the execution.

Reconciliation Path
If the fp-verified predicate cannot be satisfied due to mismatching dependency sets
contained in the DepPropose and DepVerifys, the replica switches to the reconciliation
path as shown in Figure 4.4b. The replica then no longer processes messages which
belong to the fast path. This ensures that completing the fast and reconciliation path is
mutually exclusive.
In order to ensure agreement on the dependency sets, each replica broadcasts a

〈Prepare, si, vsi , h( ~dv)〉σri
message. The slot-specific view number vsi , which we discuss

in the next section, is initialized to −1. After a replica has collected a quorum certificate
of matching Prepare messages for the current view, the slot becomes rp-prepared. This
ensures that all replicas are aware of the same dependency sets.
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Each replica then broadcasts a 〈Commit, si, vsi , h( ~dv)〉σri
message. After collecting a

quorum certificate of matching Commits, the slot becomes rp-committed and the replica
forwards the request together with the union of all dependency sets to the execution.

Invariant
For correctness, a slot must only commit either via the fast path or the reconciliation path
(unless there is a view change). The protocol guarantees that only either fp-committed or
rp-prepared can be satisfied at any replica. Sending a DepCommit or a Prepare are
mutually exclusive, as a correct replica will not enter the reconciliation path (without
a view change) after reaching fp-verified and vice versa. As both fp-committed and
rp-prepared require matching messages from a Byzantine majority quorum, these would
overlap in at least one correct replica that, however, will only send the message required
for either the fast path or the reconciliation path.

4.3.3. View Change

If the agreement process for a slot does not complete within a certain timeout, a replica
initiates a view change. We discuss how to select the timeout in Section 4.3.4.
In contrast to other protocols like PBFT [57], in Isos the view change works on a

per-slot basis which means that each slot si has its own view vsi and starts in view −1.
The per-slot view change allows the replicas to selectively recover slots and avoids the
overhead of reprocessing all slots since the latest checkpoint.
The view change has to ensure that a committed slot keeps its value along with its

dependencies and that the value selected by the view change has correct dependencies.
Therefore, for a slot it either selects the request which might have committed on the
fast or reconciliation path together with its dependencies, or fills the slot with a no-op
message. That is, the slot either contains the request that was initially proposed and used
in the dependency calculations, or a no-op, which by construction does not conflict with
any requests and consequently does not require any dependencies. Substituting a not yet
committed request with a no-op is possible, as the dependency encoding references slots
instead of requests.
Once a replica initiates a view change, it stops processing messages from the old

view for that slot. The replica then broadcasts a 〈ViewChange, si, v′
si

, cert〉σri
message,

which contains the new view number v′
si

and a certificate cert proving that a request
with the given dependencies was prepared. The certificate has one of the following types:

Fast-Path Certificate (FPC) A fast-path certificate (FPC) consists of a DepPropose
and 2f matching DepVerify messages from different followers that all contain
identical dependencies. These messages prove that the slot was fp-verified.

Reconciliation-Path Certificate (RPC) A reconciliation-path certificate (RPC) consists
of a DepPropose, 2f matching DepVerifys and 2f +1 matching Prepares from
different followers. All Prepare messages must be from the same view. Together,
these messages prove that the slot was rp-prepared.
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A replica includes its latest, that is, from the highest view, reconciliation-path certificate
in the ViewChange message, or as a fallback a fast-path certificate. If neither exists,
then cert is set to a placeholder ⊥.

View Synchronization
Once a replica receives f + 1 valid ViewChange messages from different replicas for
slot si that contain a higher view number than the replica is in, it switches to the
f + 1-highest received view number and sends a corresponding ViewChange message.

NewView Calculation
The request coordinator responsible for the new view v′

si
of this specific slot si is calculated

using co =
(
si.ri + max(0, v′

si
)
)

mod N , where si.ri is the replica identifier part of the
sequence number si. This calculation gives the original request coordinator a second
chance to complete the agreement if a replica in the fast-path quorum F was faulty.
Once the new request coordinator has received 2f + 1 valid ViewChange messages

for the same view, it starts to reconstruct the agreement state. It either selects the latest
included certificate, which is a proof that some request with certain dependencies was
prepared, or if no certificate exists, then a no-op message, which will be skipped during
execution. The certificate selection prioritizes the RPC with the highest view and uses an
FPC only as fallback. If both a valid RPC and FPC exist, then the RPC was generated
as the result of a view change and is therefore newer than the FPC.

The request coordinator broadcasts the result of the certificate selection in the form of a
〈NewView, si, vsi , dp, ~dv, V CS〉σco message, where dp and ~dv are the DepPropose and
DepVerifys belonging to the selected certificate, or in case a no-op was selected, both
values are filled with placeholders. V CS is the set of the 2f + 1 ViewChange messages
used to create the NewView. When a follower receives the NewView, it repeats the
certificate selection process to verify its correctness. If successful, the agreement continues
in the reconciliation path using the selected dp and ~dv.
In case a request was replaced with a no-op, the original request coordinator has to

retry ordering the request in a new slot.

4.3.4. Progress Guarantees

In the following we describe how Isos ensures liveness during synchronous phases of
the network by using timeouts, agreement result forwarding and the fast-path quorum
selection. During asynchronous periods, the protocol’s progress may stall until the
network becomes synchronous again.

Propose Timeout
With the protocol described so far, a faulty coordinator co could create a DepPropose
for slot sco containing a conflicting request A and only send it to replica ri, which then
has to include the request as a dependency in the future. As just a single replica has
received that request, the agreement for the corresponding slot of the faulty coordinator
will not complete. However, this would also prevent new proposals issued by the correct
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replica ri that include a dependency on request A from making progress, as these would
be blocked until the other replicas know about slot sco.

To prevent such an attack, after receiving a DepPropose, a follower starts a propose
timer with a timeout of 2∆, where ∆ is the maximum one-way communication delay
between replicas during synchronous phases (cf. Section 2.1.2). The timer is stopped once
the follower receives 2f matching DepVerifys with known dependencies, which ensures
that all replicas will know about the slot. If the timer expires or a view change is triggered
for the slot before that, then the replica broadcasts the signed part of the DepPropose
message (i.e., without the actual request) to all replicas. This reduces the network traffic
required to ensure a reliable distribution of the DepPropose and also prevents a faulty
coordinator from forcing other replicas to distribute the requests for its message slots. As
the DepPropose is signed, it proves that the request coordinator initiated the agreement
process for that slot. Thus, if a correct replica includes a dependency to that slot, then
all replicas will eventually know the slot.

The timeout is chosen to not expire in the normal case. If a correct replica broadcasts
a DepPropose to all replicas, it reaches them after at most ∆ and the resulting Dep-
Verifys arrive at all replicas after 2∆, which is within the propose timeout. While the
network is in a synchronous phase, longer delays only arise due to faulty replicas.

Commit Timeout
To force a slot to commit eventually, as soon as a replica learns that the agreement
process for a slot was initiated, it starts a commit timer with a timeout of 8∆. Once
the timer expires, the replica triggers a view change for the slot. A replica considers the
agreement process for a slot as started after broadcasting the DepPropose as request
coordinator, completing the dependency verification for a DepPropose, or receiving
f +1 DepVerify messages for the slot. The latter proves that at least one correct replica
has learned about the slot’s existence. Together the propose and commit timeout ensure
that eventually every correct replica will learn about the existence of a slot and either
commit it or request a view change. The timer must be used by the request coordinator
to monitor its own slots to detect problems within the fast-path quorum.
A DepPropose or DepVerify message x sent by a correct replica will be accepted

after 3∆ by other correct replicas. The message x itself is delivered within ∆; however,
the receiving replica may have to wait until it can verify the dependencies. A correct
replica only includes dependencies in x for which it has already seen the DepPropose.
That is, the propose timer, which expires after 2∆, is already active for them, such that
after an additional ∆ all replicas either already know the dependencies or receive the
corresponding DepPropose. Thus, after 3∆ each replica has learned about every direct
dependency and will accept message x. The same argument also recursively applies to all
dependencies included in the DepPropose, whose propose timers must already expire
earlier on.

In total, the DepPropose and DepVerify phases each take at most 3∆. The Dep-
Commit phase to finish the fast path completes in ∆, whereas the reconciliation path
requires up to 2∆ for the Prepare and Commit phase. As a replica either completes
the fast or reconciliation path, the maximum delay required is 8∆.
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Figure 4.6: Blocked request execution caused by the faulty request coordinator r3, which
selectively excludes up to f correct replicas from the agreement process. The
f excluded replicas per slot cannot trigger a view change.

View Change Timeout
Similar to PBFT, the new request coordinator has to complete the view change within a
certain timeout. For Isos, once a replica has received 2f + 1 ViewChange messages, it
starts a view-change timer set to 3∆. If the timer expires before the replica receives a
valid NewView, then the replica switches to a new view. Once 2f + 1 replicas, which
include at least f + 1 correct replicas, have sent a ViewChange, it is guaranteed that
after ∆ all other correct replicas will also send their ViewChange. Therefore, the request
coordinator receives 2f + 1 ViewChange messages after 2∆ allowing it to complete the
NewView. The latter arrives at all replicas after at most 3∆.

Afterwards the reconciliation path has to complete within another 3∆ that are necessary
to distribute the NewView and to complete the Prepare and Commit phases.

Agreement Result Forwarding
A faulty request coordinator can exclude up to f correct replicas from the agreement
process [42, 109] by not sending them the initial message of the agreement protocol,
in case of Isos the DepPropose message. This prevents the selected replicas from
completing the agreement for the affected slots. As only f correct replicas are affected,
these are unable to initiate a view change on their own, because the other replicas cannot
distinguish whether they are correct or faulty. This is not a problem for a protocol with
a single leader replica, as the latter gets replaced if the protocol becomes stuck.
However, this approach is not always possible with independent view changes for

different slots. A faulty leader replica can prevent overall progress by omitting messages
to different sets of correct replicas [109]. For each individual slot only up to f correct
replicas are affected, which prevents a view change from occurring. However, the remaining
correct replicas can get stuck in their execution at different slots thus preventing any
progress. As shown in Figure 4.6, for the requests A, B and C, where C depends on B
and B on A, f different correct replicas are excluded for each request. Thus, no correct
replica can execute request C and a client would never receive f + 1 replies. At the same
time no view change would be possible, causing the protocol to lose liveness.
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In Isos the f omitted replicas will learn about the slot and eventually initiate a view
change. However, the latter cannot complete, as explained previously. In order to resolve
this situation, once a replica detects that a view change does not make progress, it
starts to query all replicas for their agreement result for slot si using 〈QueryExec, si〉σri

messages. After collecting a certificate of f + 1 matching 〈Execute, si, r, D〉σri
messages

containing the agreed-upon request r and the corresponding dependency set D, it updates
its state accordingly.

Crashed Replicas
A crashed replica has only limited impact on the system. Once all slots of this replica
that were getting ordered have completed and the other replicas have adapted their
fast-path quorums, a crashed replica has no longer an impact on the system. As it cannot
propose new requests, other replicas only add dependencies to already ordered slots of
the crashed replica, which thereby cannot delay the ordering of newer requests.

Fast-Path Quorum Selection
The request coordinator initially selects the fast-path quorum F to contain the replicas
to which it has the lowest round-trip times. A replica can either use data provided by an
administrator or for example measure the time between sending a DepPropose and
receiving the corresponding DepVerify from a replica.
If the fast-path quorum contains faulty replicas, these can prevent the slot from

committing. In this case, the request coordinator has to replace replicas in the fast-path
quorum and restart the agreement for the request until it completes. This ensures that
eventually all replicas in F are correct, allowing the request to commit. In the worst case
a request coordinator has to try out all possible variants of the fast-path quorum, which
is nevertheless still feasible for a small number of faulty replicas. In Section 4.7.5, we
describe how to optimize this quorum selection process.

4.4. Request Execution
After the replicas have agreed on the request and dependencies assigned to a slot, the next
step is to determine the execution order. We first discuss in Section 4.4.1 how requests
are executed in general and then describe in Section 4.4.2 how Isos bounds the state
required for the request execution despite the possibility of infinite dependency chains
between slots. Executing such slots also requires a special treatment that is presented in
Section 4.4.3. Section 4.4.4 concludes with discussing how to efficiently manage the data
necessary for the dependency calculations.

4.4.1. Standard Execution Approach
The execution has to ensure that all conflicting requests are executed in the same order
on every replica. To do so, their order is determined based on the dependencies between
requests. If a request B depends on request A, then A should be executed before B, as
illustrated in Figure 4.7. The dependencies for a slot are collected from multiple replicas
such that it is possible for cyclic dependencies to exist, which require special handling.
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Figure 4.7: Calculation of the dependency graph and the contained strongly connected compo-
nents for slot 〈2, 3〉 to determine the execution order.
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Figure 4.8: Dependency collection for the conflicting requests B and C from Figure 4.7. For
clarity, only the DepPropose and DepVerify messages from and to replica r2
and r3 are shown. The cyclic dependency results from the fact that replicas r0 and
r1 process both requests in a different order.

For example, as shown in Figure 4.8 the requests B and C conflict with each other, which
can result in both requests collecting the other one as a dependency if they are ordered
concurrently. Thus, in Figure 4.7 both B and C depend on each other and therefore are
blocked by waiting until the other one is executed. As shown by EPaxos [162], after all
slots of a cycle have committed, the cycle contains the same slots on all replicas, such
that it is possible to collect all slots of a cycle, deterministically sort and execute them.
This ensures a consistent execution order on all replicas. Requests that do not conflict
with each other can be executed independently and in a different order on each replica.

The execution proceeds as follows. Once a slot has committed, a replica builds
the dependency graph for the slot by recursively expanding its dependencies and the
dependent slot’s dependencies and so on, as illustrated in Figure 4.7 for slot 〈2, 3〉. Slots
correspond to graph nodes and the dependencies form directed edges between the nodes.
A slot can have one of the following states. It can be missing if it has not committed
yet, waiting for missing dependencies, executable or executed. Already executed slots
are skipped while building the graph. If some slot in the dependency graph is missing,
then the expansion has to wait until it is committed. After the dependency graph is
complete and all slots are executable, the execution calculates the strongly connected
components1. These are the largest possible subsets such that each slot in a component

1The calculation can, for example, use Tarjan’s strongly connected components algorithm [195] which
also returns the components in inverse topological order.
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Figure 4.9: Dependency chain blocking the execution of slot 〈2, 3〉 for an expansion limit with a
window size of kx = 3. The dependency chain is marked using a yellow arrow .

depends on every other one in that component. As shown in Figure 4.7 each component
either contains a single slot or multiple slots forming a cycle. These components are then
processed in inverse topological order, which ensures that the dependencies of a slot are
executed first. To ensure a consistent execution order, the slots within each strongly
connected component are additionally sorted according to their sequence number before
executing the corresponding requests.

Client requests are only executed if their counter value tc is larger than the latest value
stored for the client. Afterwards the execution result uc is sent to the client using a
〈Reply, uc, tc〉µr message.

4.4.2. Limiting Dependency Chains

As the dependencies for a slot are collected from multiple replicas, which know about
different slots, it is possible for nearly infinite dependency chains to form in which a slot
depends on one with a higher sequence number, which in turn depends on a slot with even
higher sequence number and so on [162, 175]. An example of such a chain is sketched in
Figure 4.9. It can arise during standard request processing and theoretically get extended
as long as new requests are proposed. A faulty replica could also intentionally introduce
additional dependencies to enforce the creation of such a dependency chain.

To prevent infinite dependency chains from exhausting the available memory and from
blocking the request execution for too long, the execution component only considers
requests within a bounded execution window for each request coordinator. It contains
kx slots per request coordinator and starts at the slot with the lowest sequence number
that is not yet executed. We say that the upper bounds of the execution windows of the
request coordinators form an expansion limit. All requests for slots after the expansion
limit are enqueued and not executed until the window has advanced sufficiently.

This adds a new slot state called future, which means that the slot is after the expansion
limit. When expanding the dependency graph, future slots also count as missing and
thereby prevent the request from executing. While this ensures that the replicas maintain
a consistent request execution order, it can prevent slots from being executed if a
dependency cycle or chain does not fit within the execution window.

In Figure 4.9 only the first kx = 3 requests are currently considered for execution which
prevents slot 〈2, 3〉 from executing due to a dependency on a future slot.
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Figure 4.10: Unblocking the execution by ignoring dependencies across the expansion limit with
a window size of kx = 3.

4.4.3. Unblocking the Execution

In order to unblock the execution, the replicas have to deterministically ignore depen-
dencies on slots beyond the expansion limit to allow the request execution to continue.
For correctness, we must ensure that all replicas ignore the same dependencies while
processing the same dependency graph.

The modified execution procedure works as follows. A replica first normally executes all
requests within the execution window until no further requests are executable. Afterwards
for the first slot in the execution window of each request coordinator, the so-called root
nodes, the execution checks whether these would be executable when ignoring dependencies
to future slots. In Figure 4.10 this is the case for root nodes 〈0, 3〉 and 〈2, 3〉. If this
special case applies, then the execution temporarily removes these future dependencies
and starts executing the root node’s dependency graph. For Figure 4.10, this affects the
dependency to slot 〈2, 6〉. After the first strongly connected component is processed, the
execution procedure switches back to the standard execution method. This is repeated
until no further requests can be executed.
With the compact dependency encoding, a dependency on a slot also implicitly

adds dependencies on all earlier slots of the same request coordinator. When ignoring
dependencies to future slots, these implicit dependencies to slots before the expansion
limit still have to be considered as shown in Figure 4.10, that is, the dependency to 〈2, 5〉
and earlier slots is still relevant.

We give an intuition why this approach ignores the same dependencies on all replicas
when executing requests via the special case, a detailed proof can be found in Ap-
pendix A.3.2. Due to the compact dependency encoding, a dependency on a future slot
also implicitly results in a dependency on the root node for the same replica. The root
node in turn must also directly or indirectly depend on some future slot, as otherwise it
would already have been executed2. This results in a dependency cycle encompassing
the full execution window of one or more request coordinators, which causes all replicas
to deterministically block at the same root nodes. A root node can then be part of this
cycle or depend on it in which case the cycle is executed first. Consequently, this cycle is
the strongly connected component that will be executed by the special case. The size of

2If the root node or one of its dependencies were missing, this would prevent the execution in every case.
Thus, we have to assume that the whole dependency graph of the root node is already committed.
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this component is defined by the execution window size, which is identical on all replica,
and therefore guarantees that the same dependencies are ignored. For a given root node
this results in identical dependency graph modifications on all replicas and therefore a
consistent execution order.

4.4.4. Graph Management

The dependency graphs constructed for different slots usually overlap in parts. Thus,
instead of constructing a full dependency graph for each request, it is more efficient to
construct a single graph containing all slots within the execution window. The dependency
graph for a slot x is then the subgraph containing all slots reachable from the slot x. In
order to avoid building a separate graph to unblock the execution, we modify the search
for strongly connected components such that it dynamically ignores dependencies to slots
after the expansion limit in this case.

To efficiently execute requests out of order, for each slot the graph must also store a set
containing all slots which depend on the given slot. After executing a slot, all dependent
slots have to be checked for whether these can also be executed. This has to be repeated
until no new slots become executable.
Taken together these mechanisms allow Isos to efficiently execute slots within the

execution window as soon as they become executable.

4.5. Checkpointing
The replicas have to create checkpoints and run the garbage collection in regular intervals
in order to bound the size of the agreement and execution state. The content of a
checkpoint must be confirmed by at least 2f + 1 replicas to guarantee its correctness.
This in turn requires checkpoints from different replicas to be comparable, that is, they
have to capture the state at the same logical point in time. However, with Isos each
replica can execute commutative requests in a different order, such that no natural point
exists at which the replica’s progress is guaranteed to be identical. In Section 4.5.1,
we first introduce checkpoint requests, which are ordered similar to normal requests in
order to act as a barrier and consistently split requests into those before and after the
checkpoint. Afterwards Section 4.5.2 details how checkpoints are created when executing
these requests.

4.5.1. Checkpoint Requests

In Isos, each replica must propose a checkpoint request 〈CheckpointReq〉 when
reaching a slot for which the replica-specific counter sci in sequence number si = 〈ri, sci〉
is a multiple of the checkpoint interval k, that is, sci mod k ≡ 0. Such a slot must not
be used for any other request. A checkpoint request conflicts with every other request,
even reads or no-ops, and thereby acts as a barrier separating slots in before and after
the checkpoint as shown in Figure 4.11. By processing the request via the agreement
protocol, the checkpoint request and all other requests are ordered relative to each other,
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Figure 4.11: A checkpoint request acts as a barrier separating normal requests into before and
after the checkpoint.

ensuring that the checkpoint request acts as a barrier. The dependency set created while
ordering the checkpoint request then describes which requests will be covered by the
corresponding checkpoint.
To limit the state of the agreement protocol, for each request coordinator, a replica

only processes slots within a bounded window containing at least 2k slots3. The window
starts after the barrier of the latest stable checkpoint and bounds the state the agreement
has to keep. Similar to protocols like PBFT [57], slots before the barrier are garbage
collected. Messages for slots after the window are dropped to bound the state and have
to be retransmitted later on once the window has advanced sufficiently.

View Change
The view change requires an extension to properly handle checkpoint requests, as it is
otherwise possible that a checkpoint request is replaced with a no-op. This would result
in not creating a new checkpoint, which can cause the agreement to run out of unused
slots such that the replicas become stuck. In addition, checkpoint requests and no-ops
created by the view change have to be ordered in respect to each other.

As the checkpoint requests are tied to slots with fixed sequence numbers, each replica
already knows the request for this slot, allowing Isos to provide a fallback for this case.
Similarly, it is known that for all other slots the fallback is a no-op request. We refer to
these fallback requests as default request. During the view change, each replica ri extends
its ViewChange message with a synthetic 〈DepVerify, si, h(dr), Dri〉σri

unless it has
a valid fast or reconciliation path certificate. The DepVerify contains the hash of a
default request dr instead of a normal DepPropose. If the replica has already calculated
a dependency set Dri for a checkpoint request, then it reuses that or otherwise calculates
a new dependency set. The set is only recomputed if necessary, as this can only result
in additional dependencies, which could slow down the execution. In case of a no-op
request, the dependency set is chosen to include all known checkpoint requests. Before
accepting a ViewChange message, a replica now has to wait until all dependencies
included in the synthetic DepVerify are known. The NewView calculation falls back
to a default-request certificate (DRC) consisting of 2f + 1 valid synthetic DepVerifys,
if neither a fast-path nor reconciliation-path certificate exists. This guarantees that

3A limited number of agreement slots technically also prevents infinite dependency chains. However,
these could encompass the full agreement window, which can contain thousands of requests, and
therefore could significantly delay the request execution.
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checkpoint requests are committed in regular intervals and are also ordered in regard to
no-op requests. The timeout to complete a view change increases to 5∆ to account for
the delay until a replica knows about all dependencies.

4.5.2. Checkpoint Creation
Once a checkpoint request is executed, the replica creates a checkpoint by taking a snap-
shot of the application state and broadcasts a 〈Checkpoint, cp.seq, barrier, h(cp)〉σri

message. cp.seq is a counter which is incremented for each new checkpoint. As a check-
point request acts as a barrier, by dividing requests into before and after the checkpoint,
they are totally ordered and consequently each replica will assign the same counter value
to a certain checkpoint. barrier states which slots were executed before creating the
checkpoint and is set to the checkpoint request’s dependency set plus its own slot. And
h(cp) is the hash of the checkpoint. Once a replica has collected a quorum certificate of
matching checkpoint messages, the checkpoint becomes stable and allows the replica to
garbage collect all older slots included in barrier. As a substitute for the garbage-collected
requests, the dependency calculation adds dependencies on all slots covered by barrier.
This ensures that future requests are ordered after the garbage-collected ones.

Dependency Cycles and Checkpoint Requests
As a checkpoint request conflicts with all other concurrently proposed requests, it can
be part of a dependency cycle. In this case, the checkpoint barrier is used to partition
the corresponding strongly connected component into before and after the checkpoint. If
multiple checkpoint requests are part of the same strongly connected component, then
their barriers are merged and extended to include the checkpoint requests themselves.
The merged barrier is also extended to cover all already executed slots and bounded to
slots within the expansion limit. Both situations can arise when unblocking the execution,
however, as the unblock case makes the same modifications on all replicas and slots after
a checkpoint request have to wait for that request to be executed, this results in the same
barrier modifications on all replicas.
Afterwards all requests before the barrier are executed, followed by creating the

checkpoint. Finally, the execution is restarted for the remaining slots of the dependency
cycle. This ensures that a replica continues the request execution in the same way as a
replica does after applying the checkpoint.

4.6. Correctness
In the following we present a proof sketch showing that replicas agree on the request and
its dependencies for a slot. Additionally, we sketch that Isos guarantees a consistent
execution order for conflicting requests. Finally, we show that the replicas only require
bounded state. Please refer to Appendix A for the full proof.

Agreement
All correct replicas that commit a certain slot, will commit the same request and dependency
set. A request can only commit in a slot if a replica collects a quorum certificate of
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matching DepCommit or Commit messages. As shown in Section 4.3.2, a correct
replica only sends one of these messages in each view, such that at most one of these
certificates can exist. The messages include a hash that binds them to a specific request
and dependency set, therefore only this specific combination can commit.

To show that the property also holds across view changes, we show that once a correct
replica has committed a slot, all future view changes will select the committed value. Once
a slot has committed, at least f + 1 correct replicas have collected a corresponding fast
or reconciliation path certificate. As the view change requires ViewChange messages
from 2f + 1 replicas, at least one of them will include the certificate. We now show that
the correct certificate is selected during the view change. If the most recent commit was
via the fast path, that is, the slot was fp-committed, then no RPC can exist, as both
certificates are mutually exclusive. Otherwise, if the slot was rp-committed, then the
RPC is selected and if multiple RPCs exist, then the latest one is selected. In each case,
if the slot committed, the corresponding value will be selected in all future view changes.
Alternatively, a replica can query other replicas for their agreement result (cf. Sec-

tion 4.3.4). As this requires f + 1 matching Execute messages, including one from a
correct replica reporting the correct result, the learned result is also correct.

Execution Order
For the execution we show a property also used by EPaxos [162]: Two conflicting requests
A and B, will be executed in the same order on all correct replicas once committed.
We start by proving that two conflicting requests A and B are always connected by a
dependency between them if no view change occurs. Taken together the DepPropose and
DepVerify contain dependencies reported by a quorum of replicas. Once a correct replica
has accepted the DepPropose for a slot, it will include the request as a dependency for
all later conflicting requests. The quorums for the two requests overlap in at least one
correct replica, therefore at least request A or B will collect a dependency on the other,
or possibly both. As shown before, all correct replicas commit the same dependencies for
a slot. Thus, at least one of the requests depends on the other.
Together with sorting slots according to their dependencies, this ensures that one

request is consistently executed before the other. The special case to unblock the
execution, which is discussed in Section 4.4.3, results in identical dependency graph
modifications on all replicas, such that the execution order remains consistent.
We now extend the proof to also cover view changes. These will only either select a

request which was fp-verified, rp-prepared or fall back to a default request instead. For a
slot only a single DepPropose can ever collect the necessary 2f matching DepVerifys,
this protocol phase is not repeated after a view change. Without them the slot can only
commit the default request for which the replicas collect dependencies during the view
change. As the default request does not require other slots to add new conflicts, it can
be safely used as fallback value.
Thus, the view change either selects the request together with its dependency set

as discussed in the previous paragraph or the default request. A reconciliation-path
certificate contains 2f+1 matching Prepares which implicitly also confirm the correctness
of the included dependencies. A fast-path certificate consists of a DepPropose and
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2f matching DepVerifys from all replicas in the fast-path quorum. The DepVerifys
prove the correctness of the request and that the fast-path quorum agreed with the
initial dependency set. The verification of a fast-path certificate additionally has to
verify that the DepVerifys do not include additional dependencies, such that the
requirements for fp-verified are fulfilled. This prevents faulty replicas from tampering
with the dependencies included in a fast-path certificate.

As fallback a default request certificate for the checkpoint request or a no-op is
dynamically assembled during the view change. The replicas already know the default
request for a slot, which allows them to calculate an appropriate dependency set. The
certificate contains dependency sets from a quorum of replicas, such that the above
correctness discussion applies. The default request afterwards still has to complete
ordering via the reconciliation path to ensure that the replicas agree on the request and
its dependencies.

A faulty request coordinator that proposes conflicting DepPropose cannot introduce
broken dependencies. As the DepVerifys are bound to a specific DepPropose, the
proposal can only commit if all replicas in the fast-path quorum received a matching
DepPropose. Correct replicas only vote for one proposal for each slot, such that only
one DepPropose can commit. Otherwise, it will be replaced by the default request
during the view change, which does not introduce new conflicts. Thus, in the worst case,
other slots have unnecessary dependencies if the request was replaced by a no-op.

Bounded State
The order window contains at least 2k slots from each replica, resulting in a total of
O(k · N) slots. For each slot, a replica has to store the request r and the corresponding
messages sent by each replica. In addition, the messages can contain a dependency set with
N explicit entries. Their verification only requires tracking the latest dependency for each
replica, that is, only up to N dependencies per message. As a slot is only accepted if its im-
mediately preceding slot already is, this is sufficient to ensure that all earlier slots also were
accepted. That is, the required state is in O (k · N · (|r| + N · signature_size + N · N)),
where |r| is the request size and signature_size is the size of the signature used to sign
messages exchanged between replicas. The term N · N corresponds to the dependency
sets from each replica.

As discussed in Section 4.3.2, the compact dependency encoding allows the application
to implement the dependency set calculation such that for each state object per replica
only the latest slot that read or wrote it has to be stored. Thus, the state required to
calculate dependencies is in O(N · |O|) where O is the set of all state objects.

The execution component only expands up to kx · N slots at the same time. Tracking
dependencies between slots can result in edges between every slot in the graph, that is,
up to (kx · N)2 edges. Implicit dependencies on future slots only have to be converted
into edges once the corresponding slots are inside the execution window. The calculation
of strongly connected components also requires space linear in the number of slots. Thus,
the state required to manage the dependency graph is in O((kx · N)2). The requests
themselves are not counted here, as the execution only stores requests that are still within
the agreement window. Thus, Isos only requires a bounded state.
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4.7. Optimizations

The performance of Isos can be further improved by allowing the replicas to take the
fast path even if certain dependencies are only proposed by f + 1 replicas as described
in Section 4.7.1. Additionally, Section 4.7.2 discusses how the request batches could
be optimized to reduce the conflict rate. We also present how to reduce the number
of signature computations in Section 4.7.3 and encode the view change messages more
efficiently in Section 4.7.4. Finally, Section 4.7.5 discusses defenses against performance
attacks from malicious replicas.

4.7.1. Taking the Fast Path More Often

In order to improve the protocol throughput, Isos includes an optimization to increase
the amount of slots that can be ordered via the fast path. We modify the predicate fp-
verified as follows. A slot is fp-verified if every dependency reported by the DepVerifys
is included in at least f + 1 of them; all dependencies included in the DepPropose
must be included in every DepVerify. This covers the previous definition, where the
DepPropose and DepVerify had to contain identical dependencies, but also allows
for example taking the fast path if f + 1 DepVerifys include the same additional
dependency. As the DepCommit or Commit messages include a hash that covers all
DepVerifys, this still guarantees that all replicas agree on the same dependency sets.
Faulty replicas cannot manipulate a fast-path certificate to add or remove new de-

pendencies, even if they replace their DepVerifys with manipulated messages. If a
faulty replica removes a dependency such that it is no longer included in at least f + 1
DepVerifys, then the certificate becomes invalid. As at least one of these DepVerifys
is from a correct replica, which will not issue a second different DepVerify, it is not
possible to remove the dependency without invalidating the certificate. Likewise, intro-
ducing a new dependency is not possible, as the faulty replicas can only generate f such
DepVerify. Consequently, faulty replicas can only replace their DepVerifys if this
does not change the value proven by the fast-path certificate.
A reconciliation-path certificate includes a quorum of Prepares. These contain the

hashes of the DepVerifys such that these cannot be manipulated without detection.
With the optimized fp-verified predicate, we have to revisit the correctness proof for

the view change. Assume that a slot was rp-committed with f correct replicas reporting
a dependency to request A and a faulty replica reporting dependencies on requests A and
B. The remaining replicas report an empty dependency set. Then the faulty replica can
replace its DepVerify with one that just includes request A and thereby assemble an
FPC with only dependency A. However, the result of the view change is still correct, as
an RPC has a higher priority than an FPC and at least one correct replica will submit
its RPC if the slot committed. In particular, the RPC proves that the slot rp-prepared,
which makes it impossible for the slot to be fp-committed in the same view. Thus, the
view change correctly ignores the faulty FPC.
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4.7.2. Optimized Batch Cutting

The grouping of requests into batches can have a significant influence on the number
of conflicts. If even a single request in a batch conflicts with some other slot, then the
resulting dependency applies to the whole batch. This makes it more likely that a slot
cannot be ordered on the fast path and instead has to take the reconciliation path.

Depending on the application scenario, certain requests may be more likely to conflict
than others. Thus, it can be beneficial to group conflicting and non-conflicting requests
into separate batches. For example, it may be possible to partition requests based on
the accessed key, such that requests for keys that are only used by a single client, which
therefore do not conflict, are separated from others. Similarly, it can be useful to group
by frequently and less frequently accessed keys.
If multiple requests that wait for being ordered are conflicting with each other, then

these should be added to a single request batch. Conflicts between requests within a
batch are ignored for ordering, as the requests in a batch are already ordered in regard
to each other.
Like with the standard batching optimization, the request coordinator should delay

proposing a request only by a short amount of time. Otherwise, the lower conflict rate is
overcompensated by the increased proposal delay.

4.7.3. Fewer Signatures

All messages exchanged between replicas rely on signatures for authentication. However,
for messages which are not relayed between replicas, a message authentication code (MAC)
would be sufficient, which also can be computed much faster than a signature [57]. Replicas
can use MACs for the DepCommit, Commit, NewView, QueryExec and Execute
messages. For these, either an individual MAC per recipient or a MAC authenticator [57]
can be used.

This reduces the number of signature computations necessary by half for the fast path
and by one third for the reconciliation path. Due to the use of batching, this reduction
does not directly translate into a similar improvement in throughput, as the signature
computation costs are already amortized over a whole request batch. However, especially
for small batch sizes this can still improve the performance.

4.7.4. View-Change Efficiency

The view change, as described in Section 4.3.3, uses a NewView message that contains
ViewChange messages from a quorum of replicas, which in turn each contain a certificate
with messages from a quorum, resulting in a large message size. To reduce this size,
we make use of an insight by Abspoel et al. [4], who have shown that the NewView
message created by the view change in a PBFT-like protocol has to prove two separate
statements. The NewView has to provide a proof of recency, showing that view ṽ is the
latest view up to v′ that might have committed, and a prepare certificate to prove that a
certain value prepared in view ṽ. By including only the message parts necessary for each
statement, we can reduce the size of the ViewChange and NewView message.
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The view change assembles a proof of recency stating that up to a view v′, which is
the view to enter after completing the view change, the latest possibly committed value
is from view ṽ. This proof consists of 2f + 1 confirmations from different replicas rj

that the latest view up to v′ in which the replica prepared a request was ṽj ≤ ṽ. At
least one of these confirmations must be for view ṽ. As shown in Section 4.6, once a slot
is committed, at least one correct replica which prepared it, will take part in the view
change and thus contributes at least this view to the proof of recency.
In addition, the ViewChange of a replica rj has to include a prepare certificate

for view ṽj , proving that a certain value was prepared in the reported view ṽj . This
requirement prevents faulty replicas from reporting too high views.

To integrate this optimization into Isos, we split the ViewChange message into two
parts, one for the proof of recency and one for the prepare certificate. Now, replicas
broadcast a 〈〈ViewChange, si, v′

si
, ṽsi , cert_type, h(cert)〉σri

, cert〉 message, where the
signed part only contains the hash of the prepare certificate h(cert). The last prepared
view ṽsi and cert_type match the values from the certificate, but are now also directly
included in the ViewChange message. If no certificate exists, their value is set to ⊥.
Together v′

si
, ṽsi and cert_type form a confirmation as required for the proof of recency.

The 〈NewView, si, v′
si

, V CS, cert〉σco message only contains the 2f +1 ViewChanges
without the certificate, which together form the proof of recency, and the prepare certificate
cert for the latest prepared view according to the proof of recency. Both dp and ~dv are
available as part of cert. For the verification, replicas additionally have to check that
the ViewChanges match the view v′

si
in the NewView and that the cert matches the

latest ṽsi and cert_type according to V CS.
Furthermore, for the view synchronization mechanism, the replicas only require the

signed ViewChange without the corresponding cert. Thus, when broadcasting the
ViewChange, a replica sends cert only to the view-change coordinator.

4.7.5. Defense Against Performance Attacks

Isos, as described so far, is able to maintain liveness despite faulty replicas; however,
these can still affect the performance by forcing the system to initiate view changes. In
the following we discuss mechanisms to limit the impact of faulty replicas.

Tampering with the Fast-Path Quorum
Correct replicas switch to different permutations of their fast-path quorum if a view
change was initiated for a slot, or a follower takes longer to create its DepVerify
than expected. This ensures that eventually the fast-path quorum only contains correct
replicas, which prevents faulty replicas from continuously interfering with slots proposed
by correct request coordinators.
To prevent faulty replicas from delaying the agreement for a slot by deliberately

selecting a non-working quorum, the other replicas have to monitor how many view
changes are triggered for the slots of each request coordinator within a certain timeframe.
For that, they differentiate whether a slot committed after the first view change for which
the original request coordinator acts as new-view coordinator, or after multiple ones.
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Committing after one view change is an indication, that the fast-path quorum likely
contained a faulty replica. These are less problematic as a correct replica will eventually
select a working fast-path quorum. However, if the quorum selection takes too long, the
replica must nevertheless be suspected to be faulty.
All replicas periodically issue status-update requests, which are ordered like normal

requests, and contain the above monitoring information. As each replica may make
different observations, ordering the monitoring information first allows for deterministic
computations. After creating a new checkpoint, each replica uses the ordered monitoring
information to deterministically check for performance issues and decide whether to
temporarily forbid up to f replicas from proposing new requests. As all replicas are in the
same state when creating a checkpoint, the calculation guarantees that all replicas reach
the same decision. For the suspected replicas, this prevents all proposals to sequence
numbers after the current ordering window. Once a replica receives a proposal for slots
inside the ordering window of suspected replicas, then it immediately triggers a view
change to at least view 1 for this slot. This ensures that faulty replicas cannot use these
slots to delay the agreement of other requests.

The selection of a working fast-path quorum can require many attempts. For a small
number of faults f , it is feasible to try out all

(3f
2f

)
possible quorums and use a working

one. However, the number of possible quorums quickly rises for an increasing number
of replicas. Following the approach from Jehl [125], it is possible to try out at most
O(n2) quorums by collecting suspicions between replicas and selecting a quorum in which
only replicas are included which do not suspect each other. The quorum calculation itself
is still NP-hard, but we expect it to be more efficient than iteratively trying out a much
larger number of quorums.

Unnecessary Dependencies
A faulty replica, in the following also called sender, could also try to slow down the
protocol by reporting unnecessary dependencies to requests, even though they do not
conflict. To detect such misbehavior, the other replicas, in the following called verifier,
can use the conflict(a, b) predicate to verify that the reported conflict actually exists. An
unnecessary dependency can only be used to suspect a sender as being faulty, but it is no
definite proof of misbehavior, as correct senders can also create apparently unnecessary
dependencies in the following two cases.

Firstly, if the request in the depended upon slot is replaced with a no-op during a view
change, then multiple correct replicas might report unnecessary dependencies such that
the check must be skipped in this case. As described in the previous paragraph, a replica
which causes too many slots to be replaced by no-ops will eventually be considered faulty.

Secondly, a faulty replica could propose multiple contradictory DepPropose for one
slot. Then different replicas reach different conclusions on the validity of a dependency.
To eventually detect this case, a replica which accepts a DepPropose dp, but also
receives f + 1 DepVerifys for different DepPropose messages, must broadcast the
DepPropose dp. Thus, another replica will receive both conflicting DepPropose
messages and then broadcasts them to all replicas. As DepPropose messages are signed,
this proves that the corresponding request coordinator is faulty. If a replica receives less
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than 2f matching DepVerifys, then it also broadcasts its DepPropose as described
in Section 4.3.4. Thus, in either case, by sending contradictory DepProposes a faulty
request coordinator provides the other replicas with a proof that it is faulty.
The garbage collection requires special handling, as all slots covered by the barrier

of a checkpoint are added as dependencies once a checkpoint becomes stable. That is,
dependencies to slots up to this checkpoint barrier must be considered as legitimate. To
allow the verifier to check the correct usage of a checkpoint barrier, a dependency set
must include the counter and hash of the checkpoint whose barrier was used during the
dependency set calculation. The verifier then has to delay the dependency verification
until that checkpoint is stable. If the checkpoint hash does not match, this provides
a proof that the sender is faulty. Dependencies that were already garbage collected
are skipped by a verifier. To prevent faulty replicas from bypassing the dependency
verification by adding a too high checkpoint counter to their dependency sets, the verifier
also performs the following check. If the dependency set is garbage collected due to a
checkpoint with a lower counter than stated in the dependency set, this also proves that
the sender included a manipulated checkpoint dependency.
To reduce the message size overhead, it is sufficient to include the first byte of the

checkpoint hash. A faulty replica that adds a fake dependency on a not yet existing
checkpoint has only a small chance of guessing correctly, that is, the replica can cause a
limited performance impact in exchange for a very high risk of being detected as faulty.

Flooding of Conflicting Requests
Conflict verification cannot prevent a faulty replica collaborating with a faulty client
from creating requests that conflict with as many other slots as possible. As this attack
relies on executing legitimate but latency-wise expensive requests, its impact can only be
limited by throttling the amount of expensive requests that each client can submit in a
certain timespan. If a replica does not adhere to these limits, then other replicas delay
the processing of new slots from that replica as well. It is sufficient for the replicas to have
clocks with approximately synchronized clock speeds (cf. Section 2.1.1), as a non-uniform
rate limit can only cause a certain amount of delay for the request processing.

4.8. Evaluation

In the following we evaluate the performance of Isos against two other protocols. We
run experiments on Amazon EC2 to first analyze the achieved response times and
throughput using a microbenchmark. For a more comprehensive picture we conduct
further experiments using the Yahoo! Cloud Serving Benchmark (YCSB) [66].

4.8.1. Setup

In our evaluation we compare the performance for three different protocol types with
each other. Firstly, PBFT represents the classical leader-based approach in which all
requests are sent to the central leader replica. Secondly, we created a protocol CSP which
like Byzantine Generalized Paxos (BGP) uses a centralized slow path, such that in case
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Oregon Ireland Mumbai Sydney
Oregon -
Ireland 118.139 -

Mumbai 222.515 119.872 -
Sydney 137.970 254.782 138.653 -

Table 4.1: Average round-trip times in milliseconds between replicas in the used Amazon EC2
regions as measured on April 22, 2021.

of conflicts between requests, a central leader replica has to explicitly initiate the slow
path. Unlike BGP, our variant does not have to exchange large sets of requests between
replicas which can be prohibitively expensive. Thus, we expect CSP to offer better
performance than BGP. And finally, Isos is our egalitarian protocol, which allows replicas
to concurrently propose requests and is able to agree on an order between conflicting
requests without falling back to a central leader replica.

Replicas
We configure the system to tolerate one fault f = 1 which requires four replicas N = 4.
To conduct our measurements in a wide-area environment, we use Amazon EC2 and
deploy the replicas in the regions Oregon, Ireland, Mumbai and Sydney. Each replica
runs in a small virtual machine of type t3.small (2 vCPU, 2 GiB RAM) and uses Ubuntu
18.04.5 LTS with OpenJDK 11. The slow-path leader for CSP is placed in Oregon.

We set the estimated one-way communication delay between replicas to ∆ = 200ms,
based on half the round-trip times in Table 4.1, which vary between 59 and 127 ms.

All protocols are implemented as part of the same codebase to allow for a meaningful
comparison. From the optimizations described in Section 4.7, our implementation of
Isos only uses the fast-path optimization from Section 4.7.1. Messages exchanged
between the replicas as well as the client requests are signed using 1024-bit RSA PKCS1
signatures [163]. The reply sent to the client is authenticated using hash-based message
authentication codes (HMACs) [133] with SHA256 [164]. The replicas use a checkpoint
interval of k = 2,000 and in case of Isos an expansion limit of kx = 20 for the execution.
Each request coordinator creates request batches with up to 5 requests, smaller batches
are only proposed if these cannot be filled within 5 ms.

Clients
The clients run in a separate virtual machine in each region and use the same setup as
the replicas. Requests are issued in a closed loop, that is, a client submits a new request
to the replica in its region once it receives a stable reply for the previous one.
The workload uses a key-value store as application to which clients send read and

write requests that access small amounts of data stored for the given key. Write requests
modifying the same key conflict with each other, whereas read requests for the same keys
only conflict with write requests but not with each other.
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Experiments
We run each measurement for 180 seconds of which a warm-up period of 30 seconds
and a shutdown time of 10 seconds is cut of. The timing of each request is recorded
individually and is used to derive the average and percentile values.
We want to answer the following questions with our evaluation:

1. How does the latency of Isos compare to that of the other systems?

2. Which influence does the conflict rate have?

3. Which throughput can Isos achieve for different request sizes?

4.8.2. Latency

In order to answer the first two questions, we start by analyzing the latency provided by
the different protocols. We first measure the latency using a microbenchmark followed
by additional measurements using YCSB.

4.8.2.1. Microbenchmark

In the microbenchmark, clients write data to a randomly selected key. Based on a conflict
rate p, like in EPaxos [162] and ATLAS [90], a client with probability p selects a fixed
key which can result in conflicts between the requests. All other requests are issued for a
unique, client-specific key ensuring that these requests do not conflict. As highlighted
by Tollman et al. [198], the conflict rate p controls the number of possible conflicts.
Depending on the request timing the number of conflicts with an effect on the protocol
execution may be lower.

Based on the targeted use cases, discussed in Section 4.2.2, we expect low conflict rates
of 0%, 2% and 5% to be the most realistic [52, 162]. However, to present a full picture
we also measure high conflict rates of 10% and 100%.

For PBFT, which is not influenced by the conflict rate, we instead measure the
performance for each possible leader location. At low conflict rates, the fast path of CSP
yields similar results as Isos, such that for clarity we only present measurements of CSP
for a conflict rate of 5% and above.
In our first experiment, we run 10 clients in each region which issue write requests

containing a 200 byte payload. Figure 4.12 shows the median and 90th percentile of the
response time experienced by clients located in each region.
When using PBFT, the response times depend significantly on the location of the

client and the leader in respect to each other. The leader is only able to provide the
lowest response time for clients located in the same region as the leader. Clients in other
regions first have to use wide-area communication to send their request to the leader
which consequently increases the response time. For example, for a client in Ireland, the
median response time increases from 264 ms when the leader is colocated in Ireland to
410 ms when the leader is located in Sydney, resulting in an up to 56% increase depending
on the current location of the leader replica.
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Figure 4.12: Median and 90th percentile of the response times for requests depending on
the client and leader location as well as the conflict rate.

At low conflict rates of up to 2%, Isos provides response times similar to the response
times of the best PBFT configuration in each region. Even at a higher conflict rate of 5%,
the response times are only up to 7% higher than those of the best PBFT configurations.
In contrast to PBFT, Isos is able to offer these low response times for clients in all regions
at the same time. This is a result of the egalitarian protocol structure of Isos which
allows every replica to directly initiate the ordering process for the request. Thereby,
there is no central leader whose location influences the response times.
At high conflict rates, the response times of both CSP and Isos rise. For CSP, at a

conflict rate of 100% the median and 90th percentile of the response time increase to up
to 517 ms. For Isos, the response times only rise up to 416 ms. Even though Isos is
designed for low conflict rates, it still offers median response times comparable to those
of PBFT when the leader is located in an unfavorable region. Compared to CSP, the
measurements show the benefit of Isos which does not rely on a central leader replica to
initiate its reconciliation path and therefore avoids the additional communication step
resulting in lower response times for Isos.

4.8.2.2. YCSB

We run additional experiments using the Yahoo! Cloud Serving Benchmark (YCSB) [66].
For the experiment we use a total of 200 clients, that are distributed equally across
all regions, which issue a mix of read and write requests to the service. The service
state consists of 1,000 entries containing 1 KiB of data each. The YCSB benchmark is
configured to use its standard Zipfian distribution, which skews requests to focus on a
few popular entries whereas most other entries are rarely accessed. The most popular
entry is accessed with a probability of nearly 3.9% and the ten most popular entries with
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Figure 4.13: Average throughput for different read-write workloads using YCSB.

about 13.1%, thus resulting in a significant chance of conflicts. Clients in each region
continuously issue requests for the full duration of the experiment.

We run the write-heavy (50% reads / 50% write), read-heavy (95% reads / 5% write)
and read-only (100% reads) workloads. The measurements for each workload are shown
in Figure 4.13.
For the write-heavy workload, Isos achieves a throughput of nearly 600 requests per

second, which is similar to the best PBFT configuration. Due to the high fraction of
write requests, a significant number of requests conflict with each other and thus limit
the throughput for Isos. This is also visible in the throughput for CSP, which is 14%
lower than that of Isos.

For the read-heavy and the read-only workload, Isos outperforms PBFT by 17% and
20%, respectively. As read requests do not conflict with each other, this results in a
low conflict rate for these workloads, which allows Isos to take full advantage of its
egalitarian system design.

4.8.3. Throughput

In our next experiment, we address the third question by measuring the throughput and
response times using our microbenchmark from Section 4.8.2.1 at different request loads
using up to 1,000 clients that are distributed equally across all regions. We first focus
on 200 byte requests and switch to larger ones afterwards. The results are shown in
Figure 4.14a and report the average over all requests issued during the experiment.
For PBFT using up to 400 clients the average response time remains stable below

369 ms and starts to rise afterwards. The throughput reaches a maximum of up to 1,875
requests per second. At this point the CPU of the leader replica saturates and prevents
a further throughput increase.
At low conflict rates up to 2%, Isos is able to maintain an average response time

below 304 ms for up to 400 clients. Afterwards the response time starts to increase. The
maximum throughput reaches up to 2,079 requests per second, at which point all replicas
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Figure 4.14: Average response time and throughput for increasing numbers of clients for two
different request sizes.

saturate their CPU. In total, this translates to up to 18% lower response times or an up
to 11% higher throughput compared to PBFT.

For a conflict rate of 5%, the performance of Isos is still roughly similar to that offered
by PBFT. However, compared to lower conflict rates, the response times start to grow at
a lower number of clients. We assume this to be a side effect caused by batching. By
grouping multiple requests into a batch, the chance that a batch contains at least one
conflicting request, increases to nearly 23% at a batch size of 5. A high load at the replicas
also increases the chance that the ordering is currently processing another conflicting
request which forces the replicas to enter the reconciliation path more often. We expect
that the batch cutting optimization described in Section 4.7.2 could significantly reduce
the conflict rate.

At even higher conflict rates, the latency of both CSP and Isos rise above that of PBFT.
This is not a problem, as we target use cases with low conflict rates. The measurements
also show that Isos consistently outperforms CSP. This is once again a result of the
additional communication step necessary for the slow path used by CSP.

Large requests
We repeat the experiment with a large request payload size of 16,384 bytes and up to
600 clients for which the results are shown in Figure 4.14b.
The maximum throughput of PBFT is now limited to between 632 and 764 requests

per second depending on the leader location. As the leader replica is responsible for
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distributing each request to every replica, at this point its network connection becomes
the bottleneck and prevents a further increase in throughput.
In contrast, Isos is able to process up to 1,328 requests per second, outperforming

PBFT by up to 110%. Isos maintains its higher throughput up to a conflict rate of 10%.
In addition, Isos provides lower response times for this workload than PBFT. The better
performance is a result of enabling every replica to concurrently propose requests, which
splits the work of distributing requests across all replicas.

4.9. Related Work

In the following we discuss related works regarding the overall agreement structure,
optimizations for the fast path and the request execution.

Partitioning the Agreement Slots
A large body of work has been dedicated to agreement protocols that involve multiple
leader replicas to spread the work of ordering requests. These are often built around
assigning each leader replica its own subset of the sequence numbers, similar to the
request coordinator-specific slots in Isos, to which the corresponding leader can then
propose requests [22, 69, 84, 109, 161, 191, 192, 193, 212]. The main differences lie in the
fault handling for these slots and how they are merged together. We start by discussing
protocols which use a deterministic merge step [72], that is, one in which the replicas
agree in advance on how to merge a certain range of slots into a total order.
Mir-BFT [192], which is based on PBFT, and the more generalized ISS [193], which

can employ different agreement protocols, proceed in epochs consisting of a limited
number of slots belonging to a selected subset of leader replicas. These slots are then
merged in a round-robin manner. The leader set is updated after every epoch to exclude
misbehaving replicas. As a related construction, RCC [109] proceeds in rounds in which
every replica is responsible for a single slot. To handle failures, the replicas use an
additional consensus protocol. These approaches allow multiple replicas to propose
requests in parallel, however, as a slot can only be executed once all previous ones have
been executed, this causes the leaders to depend on each other’s progress. Thus, in the
worst case, the response time is determined by the slowest leader replica involved. In
contrast, in Isos slots only depend on each other if their requests conflict with each other.

BFT-Mencius [161] allows correct replicas to abort slots of other slow replicas to bound
how far a replica can lag behind. Replicas can also voluntarily skip their slots if they learn
that another replica has proposed requests for a later slot. This ensures that slots which
could block the execution of other slots are filled and also allows a lagging replica to catch
up by proposing no-ops, which require fewer resources for processing. Nevertheless, this
results in unnecessary work when the request load is not balanced between replicas. In
Isos it is not necessary to fill slots of a lagging replica with no-ops, as the other replicas
only add dependencies to already proposed slots.

To better handle heterogeneous replicas, Omada [84] uses different limits for the size of
batches proposed by different leaders. More powerful replicas can propose larger batches,

78



4.9. Related Work

whereas weaker ones work with smaller batch sizes. With Isos each replica can propose
new slots at its own speed, as dependencies are only added to slots that are in use.

These different mechanisms for coordinating the ordering progress of the replicas are a
result of using a predetermined way to merge the slots from individual replicas into a
single total order. In contrast, Isos dynamically determines the request ordering based
on dependencies. Not yet used slots never show up as dependencies and thus have no
effect on the request execution.

Dynamically Merging Agreement Slots
Besides merging slots using a predetermined order, it is possible to use the slots of each
request coordinator to pre-order requests and only afterwards agree on how these slots
are merged together into a single total order. That approach is used by PRIME [22],
which offloads the request pre-ordering into three additional phases and lets the central
leader replica only propose how to merge these streams of pre-ordered requests. For this
the replicas exchange vectors containing the pre-ordering progress, which are then used
to agree on which requests to merge in which order. This design avoids a bottleneck at
the leader replica, but has the downside that the agreement itself now consists of six
communication steps which significantly increases the latency. This represents a major
latency increase compared to Isos which can order requests in three communication steps
on the fast path.

Leaderless Agreement
In an egalitarian agreement protocol each replica is responsible for its own slots and
coordinates the agreement process for them. If that replica fails, another one has to fill
in to complete the agreement after a view change. In contrast, a leaderless agreement
protocol does not rely on a specific replica to reach consensus. Instead, replicas exchange
opinions and iteratively converge to a single one if necessary.
When using DBFT [69], the replicas each first pre-order a request and then agree on

which of them should be used as consensus result. This last step can complete in a single
communication step if all replicas have the same initial opinion. The minimum number
of communication steps required are thus four steps. In case of different opinions, a
rotating coordinator is used to nudge the replicas towards a common decision. BFT-
Archipelago [27] is fully leaderless and instead proceeds in rounds consisting of three
message exchanges to either commit if only a single current proposal exists or to iteratively
converge on the maximum proposed value. Compared to Isos, these protocols are not
designed to agree on multiple requests concurrently, instead they decide on a single out
of multiple requests, which results in many proposals which are not used in the end.
The problem of unused proposals is addressed by Bullshark [191], which proceeds

in rounds where replicas propose and certify blocks of requests. Each block references
n − f blocks of the previous round and each reference also counts as a vote for a block.
These blocks then form a directed acyclic graph of certified blocks whose structure is used
to commit them. If the block of the leader replica for a round receives sufficient votes,
then the block and all preceding referenced blocks become committed. The constructed
graph is very different from that in Isos as it does not reflect conflicts between requests,
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but instead only serves to confirm older blocks. This also results in a higher latency as it
requires assembling and broadcasting at least two rounds of blocks, which takes at least
six communication steps.

Weaker Consistency
The eventually consistent PnyxDB [48] does not use a leader but instead only requires
each request to collect a quorum of endorsements in order to commit. These endorsements
represent a vote for the request that is valid as long as certain other conflicting requests
did not commit. Non-conflicting requests receive unconditional endorsements and thereby
can commit quickly. In case of conflicts, some involved requests may not collect enough
endorsements to commit and are dropped after a timeout by running a checkpointing
protocol. Similar to Isos, every replica in PnyxDB can propose new requests for ordering,
however, unlike Isos it only guarantees eventual consistency.

Fast-Path Optimizations
The performance of an egalitarian agreement protocol [90, 162] is sensitive to how many
requests can be ordered on the fast path, thus making it crucial for the protocol to take
that path as often as possible. In an improvement over EPaxos [162], ATLAS [90] lets a
request coordinator choose a specific fast-path quorum, which allows the fast path to be
taken as long as the dependency sets reported by the followers in the fast-path quorum
only diverge by a certain amount. More specifically, it is sufficient if each dependency is
proposed by at least f followers, which allows ATLAS to always take the fast path for
f = 1. Isos uses a similar optimization in which a dependency must be proposed by at
least f + 1 followers, this higher bound is necessary to tolerate malicious replicas.

Another way to reduce the actual conflict rate is to use synchronized clocks to coordinate
the request processing via timestamps. With Timestamp-Ordered Queuing [198] a request
coordinator attaches a timestamp to proposed requests that states the time at which a
replica should process the proposal. By synchronizing the time at which the replicas
calculate their dependency sets, this increases the chance that those are equal, making
it more likely that the request can be ordered on the fast path. In addition, the leader
replica sends its initial proposal without a dependency set and delays the dependency
computation until the same time as the other replicas. A similar optimization could
be applicable to Isos, however, it would require additional safeguards to prevent faulty
replicas from manipulating timestamps to introduce excessive delays.

Parallel Execution
For applications that require a non-trivial amount of computation to process a request,
it can be beneficial to parallelize the execution. By making use of the dependency
sets calculated by the agreement, PePaxos [60] is able to schedule independent strongly
connected components to multiple cores. Requests within a strongly connected component
have to be executed sequentially, whereas independent components can be executed in
parallel. This approach is also applicable to Isos.
In SAREK [142] the agreement and execution are each split into multiple partitions.

Each request is assigned to the partition responsible for the accessed data and is totally
ordered and executed within that partition. If a request concerns multiple partitions,
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then it is divided into sub-requests, whose execution must be coordinated between the
involved partitions. The execution has to wait until all sub-requests are the next ones to
execute in order to ensure a consistent result, and then executes the whole request once.
Sub-requests from different multi-partition requests can block each other by waiting
for the other request to execute first. When such a dependency cycle is detected, it is
resolved by deterministically reordering the involved requests. This mechanism is related
to unblocking the request execution in Isos for an expansion limit of kx = 1.

4.10. Summary
Submitting a request to a central leader replica can significantly delay the agreement
process if the client and the leader replica have to communicate via wide-area links.
Instead, Isos allows clients to submit their requests to a nearby replica, which is
immediately able to initiate the agreement process. The ordering between requests that
are proposed by different replicas is established by agreeing on dependencies between the
requests. This allows commutative requests to be ordered concurrently on the fast path.
The execution then uses these dependencies to execute conflicting requests in a consistent
order. To limit the necessary protocol state, replicas periodically propose checkpoint
requests, which enable the creation of consistent snapshots by dividing requests into
before and after the checkpoint.

Our evaluation shows that at low conflict rates, Isos is able to provide response times
matching those of the best PBFT configuration for each client region. But in contrast
to PBFT, Isos provides these response times for all regions at once. For large requests,
Isos outperforms PBFT by up to 110%, as Isos is able to spread the task of distributing
requests over all replicas instead of a single leader.
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Cloud-Based Hierarchical Replication

Agreeing on the order of client requests requires several communication steps between the
replicas. In the following we use a hierarchical system structure to reduce the latency for
ordering client requests. By using replica groups that are each located in a different region,
it becomes possible to differentiate between fast local-area communication within a region
and the slower wide-area communication between groups. This allows our approach called
Spider to trade additional, local communication steps for fewer wide-area communication
and consequently a lower latency. Key to this is an abstraction called Inter-Regional
Message Channel (IRMC) which allows for a modular implementation while also enabling
the system to adapt to new client locations.
Section 5.1 introduces the problems with reducing the request processing latency. In

Section 5.2 we give an overview of Spider, which uses a hierarchical system structure
to reduce the latency. We modularize Spider by introducing multiple building blocks
with well-defined interfaces in Section 5.3. Section 5.4 then combines these building
blocks into a full system to process client requests either with strong consistency or
optionally in case of read-only requests with weak consistency. Afterwards in Section 5.5
we discuss how Spider handles different kinds of client and replica misbehavior and
how it ensures that these cannot cause correctness issues. We provide in Section 5.6 two
different implementations for IRMCs along with further optimizations. Next, Section 5.7
describes optimizations to reduce the signature processing costs and to strengthen the
consistency guarantees offered for read-only requests. Section 5.8 evaluates the request
processing latency achieved by Spider in comparison to two other replication protocols.
Related work is discussed in Section 5.9 and Section 5.10 concludes the chapter.

5.1. Problem Statement
Reducing the client-perceived request processing latency, as analyzed in Section 3.1, is
either possible by designing a protocol to use fewer communication steps, by removing
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the need to wait for some communication steps or by converting expensive wide-area
communication to local-area communication. In this chapter we follow the third approach
by using a hierarchical agreement protocol.
Section 5.1.1 motivates the use of a hierarchical system structure to trade wide-area

communication for local-area communication and discusses the associated challenges.
We analyze read request optimizations in Section 5.1.2 and how weaker consistency
guarantees allow answering read requests without requiring wide-area communication. In
Section 5.1.3, we present the problem that a hierarchical system consists of more parts
than a plain agreement protocol and thus requires measures to limit its complexity. To
allow a system to react to changes of the clients needs, it must be able to adapt which
we will discuss in Section 5.1.4.

5.1.1. Reducing Client-Perceived Response Time

We want to minimize the time it takes to complete the agreement on a request order.
Ideally processing a request only takes the time necessary for a single wide-area network
round-trip to submit the request and receive the result from the service. For a replicated
service this makes maintaining consistency a challenge, as the agreement protocol now
has to work without adding (much) latency. To achieve this, the replicas have to be
located at the same site to allow for local-area communication with low latency. However,
running all replicas at the same site increases the risk of correlated failures.
Hierarchical replication protocols like Steward [24] group their replicas into sites and

first reach a decision within the sites using a Byzantine fault-tolerant protocol followed
by using a simpler protocol tolerating crash-faults to share that result across sites. The
decision of the Byzantine fault-tolerant protocol is secured using a computationally
expensive [24] threshold signature [182] that can only be created if a Byzantine majority
quorum of replicas agree. Combined with the assumption that at most f replicas within
each site can be malicious, a decision can be treated as originating from a replica group
that is guaranteed to be correct. And thereby it becomes possible to run a crash-fault
tolerant protocol between sites that only requires two communication steps. However,
for clients not located at the leader site, the full protocol still can require up to three
wide-area communication steps. In addition, this approach comes at the cost of a very
high complexity, which we discuss in more detail in Section 5.1.3.

Approach of this Thesis
Spider simplifies the wide-area communication to reduce the communication steps to the
minimum of two, by making use of the structure of modern cloud infrastructure. Platforms
such as Amazon EC2 [19], Google Compute Engine [101] or Microsoft Azure [157] operate
datacenters in multiple geographically distributed regions. Each region consists of
multiple availability zones, designed to reduce the risk of correlated failures [19, 101, 159].
Their availability zones are typically located within 100 kilometers of each other [19],
which reduces the risk that a problem affects multiple datacenters while still keeping the
communication latency between them low. Latency is typically below one millisecond
between servers within a single datacenter and below two milliseconds [157] between
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datacenters in the same region, in contrast to wide-area communication, which can take
dozens or even hundreds of milliseconds.
This architecture enables Spider to place its replicas running the agreement close

to each other without compromising the availability of the service. That way, complex
protocol parts exclusively run within regions and then use a simpler protocol to share
the resulting decisions between regions.

5.1.2. Reading with Relaxed Consistency

Read requests offer an opportunity for optimizations, as they do not modify the application
state and therefore do not have to be replicated to maintain a consistent application
state. Protocols like PBFT [42, 57, 189] include a read optimization, which lets clients
directly query a quorum of replicas for the result of a read request and thereby bypass
the agreement protocol. After receiving matching replies from a quorum of replicas, the
client can accept the reply. Only in case of too many differing replies, the client has to
submit its request to the agreement protocol.
However, for a hierarchical protocol this optimization only provides a limited benefit

compared to a write request, as a client now has to query at least one group that is likely
located in a different region or even all groups as would be required for Steward to receive
an up-to-date result1. This process requires the client to send a large number of requests
and depending on the location of the replica sites might even result in a higher latency
than a regular request. For example, the latter case can occur for clients located at the
leader site, where a read request would have to wait for replies from all sites, whereas a
write request only has to wait for a majority of sites.

If a client can work with a weaker consistency guarantee than strong consistency,
then a hierarchical system like Steward is able to offer a much lower latency [24]. As
each replica group maintains a copy of the application state, it is able to answer queries
without communication with other groups. By collecting replies from a subset of at least
f + 1 replicas within its group, a client is able to verify that the reply is guaranteed to
be correct; however, due to the weaker consistency guarantees the reply may be (slightly)
outdated. Only in case of diverging replies the client may have to retry the request by
issuing it as a regular, strongly consistent request.

Approach of this Thesis
Spider uses groups consisting of 2f + 1 replicas to execute client requests, which reduces
the number of replicas that have to store the application state. These are also sufficient
to process weakly consistent read requests. Compared to Steward which uses 3f + 1
replicas at each site, the lower number of replicas per group presents new trade-offs
regarding the consistency guarantees the system can provide.

1Steward [24] claims that it is sufficient to read from a majority of sites to receive a strongly consistent
(linearizable) result. This is incorrect, as for a write request clients in Steward only have to wait for
replies from the replicas at their local site. This forces the read optimization to query every single
replica at each site, then merge the replies of each site and select the latest reply. Only then it is
guaranteed that the quorums used for reading and writing overlap in regard to the replica sites, which
is necessary to receive a strongly consistent result.
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Spider also includes an optimization for strongly consistent reads that offers a similar
latency as for regular write requests but reduces network overhead.

5.1.3. Reducing Complexity through Modularity

A downside of a hierarchical protocol is that it adds more components and thus increases
complexity. Take Steward [24] as an example. It includes a Byzantine fault-tolerant
protocol to reach and certify a decision within a replica group. That decision is then
shared across groups using a crash fault-tolerant protocol. These two layers of protocols
are interwoven with each other to properly handle faults and, for example, require a
hierarchy of carefully balanced timeouts to work. The result is a protocol consisting of
15 pages of pseudocode in the appendix of the paper [24], even though parts like the
client-side behavior are not even described.

Amir et al. also recognized this level of complexity as a problem and created a modular,
hierarchical protocol where each site forms a logical state machine, which is then used
to let each site represent a replica of a state-machine replication protocol [20, 21]. The
communication between the logical state machines relies on an abstraction called BLink,
which is able to reliably transmit an ordered stream of messages from one site to another.
Together this allows building a modular protocol to which we refer as CustFT [20] in the
following. As all messages that are sent across BLinks have to be ordered first, CustFT
requires an additional mechanism dubbed CLink to transmit client requests. It either
optimistically directly forwards clients requests to the leader site and thereby bypasses
the BLink in the hope that the involved replicas are behaving correctly. Or as a fallback,
it wraps and orders the request locally to allow the request transmission to the leader
site using the BLink. This special-case handling partially offsets the performance costs
of modularity but comes at the price of introducing additional wide-area protocols.

Even with that optimization the increased modularity results in a higher communication
and cryptographic overhead than for Steward, thus providing worse performance and
higher latencies. Steward consistently performs as well as or better than CustFT such
that we only consider Steward for our evaluation.

Approach of this Thesis
Spider is structured as a modular, hierarchical protocol while providing similar or lower
latency than Steward. The agreement protocol is used as a black box, whereas the
connection to the groups executing the requests is decoupled using a channel abstraction
that is able to safely transfer decisions between groups. That way, we can avoid the
complexity of developing an agreement protocol from scratch and instead make use of an
already existing and proven agreement protocol. The channel abstraction is also generic
enough to transfer client requests without introducing further subprotocols.

5.1.4. Adapting the System Configuration

The clients that issue requests to the system can change over time. For example, clients
at a new location can start using the system and require it to adapt to offer the best
latency. Or new cloud regions become available that are better suited to serve existing
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clients. That is, the system has to add a new replica group near the clients to avoid
time-consuming wide-area communication. In the opposite direction, clients at an old
location can shut down and now the no longer necessary location should also be shut
down to save resources. Such changes to the system structure require mechanisms to
transfer the application state between groups and also the means to reconfigure the
system to add or remove certain replica groups. Existing hierarchical protocols like
Steward [24] or CustFT [24] to the best of our knowledge, do not offer such mechanisms.

Approach of this Thesis
Spider includes a mechanism to adapt to changes in client locations by establishing
new replica groups located in the same or a nearby datacenter or by shutting down old
replica groups. This also includes the means for clients to query the system for its current
composition including the location of each replica group.

5.2. Spider – Resilient Cloud-Based Replication with Low
Latency

In this section we present a high-level overview of Spider, how it is structured to tackle
the aforementioned problems and how it uses the structure of modern cloud infrastructures
to offer low latency for processing client requests. Afterwards we present the consistency
guarantees provided by weakly consistent read requests. We also discuss criteria to select
a suitable configuration in which to deploy Spider in a cloud.

System Structure
Spider organizes its replicas into groups that are distributed across different regions all
around the world. Complex protocol parts run within a region, whereas the interaction
across regions relies on a simpler protocol. We expect that the replicas run on a cloud
platform like those offered by Amazon EC2 [19], Google Compute Engine [101] or Microsoft
Azure [159]. These platforms consist of datacenters in various regions worldwide that
provide the infrastructure to run virtual machines that are then used to host the service’s
replicas. Each region usually consists of multiple so-called availability zones, which are
constructed to be as fault independent as possible from each other [19]. That is, each
availability zone consists of different datacenters with independent networking, power
supplies, cooling and so on. The datacenters of different availability zones are also
physically separated from each other to reduce the risk of disasters affecting multiple
availability zones at once, but remain close enough to each other to allow communication
between replicas in a region within two milliseconds [19, 157].

Spider leverages this structure to form multiple groups of replicas, where the replicas
of each group are distributed across the availability zones of a single region. This lets the
replicas in a group interact over short distance links, which offer latencies resembling
local-area communication, but have a reduced risk of correlated failures. Thus, protocol
steps in which only replicas of a single group interact with each other contribute little
overall request processing latency.
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Figure 5.1: Architecture of Spider, which consists of a single agreement group ordering requests
and multiple execution groups to process the client requests. The groups are coupled
using Inter-Regional Message Channels.

As shown in Figure 5.1, Spider totally orders client requests using a single agreement
group, which is hosted in a single region allowing the protocol to run with low latency. The
agreement group is loosely coupled with multiple execution groups, which interact with
the clients and execute the requests in the determined order. The groups communicate
with each other using an abstraction called Inter-Regional Message Channel (IRMC),
which forms a structure akin to a spider. To order requests, the agreement group uses an
agreement protocol as black box, which allows the use of different agreement protocols
depending on throughput or reliability requirements. Therefore, the number of replicas
required for the agreement group is determined by the agreement protocol. When
using PBFT [57], in order to tolerate fa faults, the agreement group has to consist of
Na = 3fa + 1 replicas.

In contrast, the execution groups each consist of only Ne = 2fe + 1 replicas to tolerate
fe faults, which also reduces the number of implementations required to ensure fault
independence. This lower number of replicas is sufficient as the consensus part is already
handled by the agreement group such that the execution replicas only have to execute
requests in the determined order and prove to the clients that their reply is correct [210].

Thus, a client only needs matching replies from fe +1 replicas to know that at least one
of the replies is from a correct replica and therefore must be correct. As up to fe replicas
may exhibit Byzantine faults, fe additional replicas are necessary to ensure that a client
can always receive enough replies. With its loosely coupled execution groups, Spider
is able to scale up or down by starting new execution groups near clients and stopping
groups which are no longer necessary, thereby making use of the cloud’s capabilities to
provide resources on demand.
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The number of faults fa and fe tolerated by the agreement and execution groups can
be selected independently. For example, it would be possible to use fa = 2 and fe = 1
to let the central agreement group, which is critical for the system to make progress,
tolerate more faults than the execution groups.

Execution Replica Registry
Before a client can submit a request, it first needs to discover a nearby execution group.
For this purpose, the agreement replicas provide a read-only view of the current system
configuration, which can be queried by clients. The configuration provides information
about the execution groups, their location and the addresses of each replica. Whenever
the system composition changes, after adding a new execution group, the replica registry
state is updated to reflect these changes. A client located in the same region as an
execution group selects the local execution group. In case the client is located elsewhere,
it can base its selection on ping times to the execution groups. We explain this case in
more detail in Section 5.4.1. This group selection should be considered a best practice;
requests from a correct client that otherwise correctly follows the protocol will still be
processed correctly, but they can result in a higher latency.

Request Execution
To interact with the service, a client sends the request to the replicas of its execution
group. These will then verify the request and if valid, forward it using the message
channel to the agreement group. The channel decouples the implementation of the groups,
making the execution group independent of the used agreement protocol. The agreement
group then hands the request over to the agreement protocol for ordering. Once the
request is totally ordered, then the agreement replicas send the ordering decision back
to the execution group, which executes the request and returns a reply to the client. In
order to maintain a consistent state on all execution groups, each ordered request is also
forwarded to all other execution groups. That is, all groups execute every totally ordered
request and thereby maintain a consistent state.

This protocol structure runs complex agreement protocol steps only within a group and
thus over intra-regional communication links. That way, the protocol execution benefits
from the low communication latency within a region while at the same time avoiding the
need to run a complex protocol across wide-area links. In total, the protocol requires two
wide-area communication steps allowing Spider to process requests with low latency.

Read Requests with Weak Consistency
In addition to strongly consistent read and write requests, Spider also offers clients the
possibility to issue read requests with weak consistency. These only require processing
by the execution replicas at a single site, which improves performance as no wide-area
communication is necessary.
To maintain safety, Spider always maintains strong consistency, or more formally

linearizability, for write requests and for read requests only considers consistency models
that relax the recency guarantees. That is, weakly consistent read requests return correct
but possibly outdated values within certain bounds. Spider allows clients to choose

89



5. Cloud-Based Hierarchical Replication

between the following two consistency models. For a more comprehensive explanation of
consistency models, please refer to Viotti et al. [204].

Prefix Consistency Write requests must be executed in a total order, but reading can
return a correct state that has existed at some arbitrary point in time. Combined
with eventual consistency which ensures that replicas eventually converge on the
current state, this ensures that clients eventually read up-to-date data.

Sequential Consistency Requests for each individual client are executed in the order
they were issued and are integrated into a single total order. However, this does
not require completed requests from one client to afterwards be immediately visible
to another client as long as this does not conflict with the single total order. For
example, it is possible for one client to finish writing some data and another client
afterwards to read an older version of it. However, once a client has seen the effect
of a request, then all later requests of that client continue to do so.

Reliability
For Spider to remain available, the agreement group must continue to work. When using
PBFT, this requires that at most fa out of 3fa + 1 replicas of the agreement group fail
at the same time. As the replicas run in the cloud, a necessary precondition is that the
underlying cloud systems running in the datacenters remain available and are not affected
by correlated failures. In addition, the agreement group must be able to communicate
with the execution groups.

Nowadays, cloud providers usually offer at least three availability zones for each
region [19, 101, 159]. These availability zones are constructed to be as fault-independent
as possible by having separate power supplies, cooling and also redundant network
connections [19]. The network offers redundant connections between availability zones
and also between regions. The datacenters of an availability zone are located up to 100
kilometers apart, but still remain close enough to each other to allow for low-latency
communication between them [19]. That physical separation reduces the risk of correlated
faults due to natural disasters like fires [176], flooding or thunderstorms. Besides the
physical safeguards, each availability zone forms a separate update domain for which
updates are scheduled such that they do not affect multiple availability zones at once [155].
Thus, if software updates by the cloud provider cause issues, these are likely limited to a
single availability zone. This assurance is also reflected in the Service Level Agreements
offered by the cloud providers, which promise a higher availability for services deployed
across multiple availability zones [16, 98, 160]. Despite these efforts there are rare
incidents which affect more than one availability zone at a time [15]. Nevertheless, the
cloud providers try to learn from these incidents and improve the availability over time,
for example, by engineering systems to limit the effect of outages to small parts of an
availability zone [51].

Deployment Choices
Cloud providers usually offer at least three availability zones for each region [19, 101,
159], making them a suitable choice to deploy an execution group for fe = 1.
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For example when using PBFT, the agreement group requires four replicas to tolerate
a single fault fa = 1. A number of regions offer at least four availability zones (Amazon
EC2: Northern Virginia (6), Oregon (4), Seoul (4), Tokyo (4) [19] and Google Compute
Engine: Iowa (4) [101]), making them suitable to host the agreement group. With an
ever-increasing number of regions provided by the cloud providers, an alternative can be
to use a multi-cloud approach [5, 45], thereby spreading the replicas across the regions
and availability zones of multiple providers. Well-connected regions are often served
by multiple providers such that several regions like Frankfurt, Ireland and Paris host
datacenters from multiple cloud providers [14, 101, 159], which in combination can also
offer enough independent availability zones to host the agreement group.
To tolerate two faults the agreement group requires a total of seven replicas. As

even the largest region of the previously mentioned cloud providers only offers up to
six availability zones, one possible deployment would be to place up to two replicas in
each zone. This would allow tolerating two independent Byzantine faults, however, the
failure of a single availability zone would cause two replicas to become unavailable. Thus,
despite the higher fault tolerance the system would still only be able to tolerate a single
failed availability zone. To avoid this, the replicas can be split onto multiple regions
that are located close enough to each other to still achieve communication roundtrip
times of a few milliseconds. This allows the agreement replicas to communicate with
each other, without causing a major increase in latency for the local protocol phases. In
this configuration, the system can stay available with up to two failed availability zones,
although the expectedly much rarer failure of a whole region would still cause the system
to become unavailable.
Out of these possible configurations a region has to be selected for the agreement

group. We expect that regions with a high number of availability zones are generally
well-connected to other regions. Therefore, one of the main selection criteria is the
latency to other regions hosting the execution replicas. Placing the agreement group at a
well-selected location can help with providing similar maximum latencies for different
execution groups. Another criteria to consider are the communication costs depending on
the region hosting the agreement group. For Amazon EC2, the costs for communication
between availability zones inside a region are fixed at one dollar cent per gigabyte [18].
However, for sending traffic between different regions the costs can vary between 2 and
15 dollar cent per gigabyte, which can have a major impact on the costs for running
the system. Traffic from the cloud regions to other cloud providers or somewhere else
on the internet is also generally more expensive than communication between or within
regions [18]. Thus, it can be cheaper to place replicas in nearby regions of the same cloud
provider than using availability zones from multiple cloud providers in the same region.

Failed or Outdated Execution Groups
Different from the agreement group, Spider is able to tolerate a configurable number of
slow or not-reachable execution groups. Such groups will then fall behind while the rest
of the system continues to make progress. Once a group recovers, it can retrieve missing
requests from the agreement group in some cases or download a current checkpoint of
the system state from another execution group.
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In case an execution group is temporarily unable to contact the agreement group, like
Steward [24] it can still reply to weakly consistent read requests. These replies may
return stale state but allow reading data while the agreement group is unavailable. This
is similar to systems such as ZooKeeper [122] where replicas answer read requests based
on their local state, which has the benefit of a much faster processing as no wide-area
communication is necessary.
If more than fe execution replicas in an execution group are unavailable or when the

group is unable to forward the client’s request to the agreement group, then a client also
has the option to temporarily fall back to a different execution group. The client then
submits its request to the execution group to which it has the next lowest communication
latency. Note that a client still has to rely on the assumption that at most fe Byzantine
faults occur within its execution group. In case that fault assumption is violated, then
the faulty replicas can provide any reply to a client.

5.3. Building Blocks
Spider consists of several components, which are used to construct the overall system.
In the following we present their interface and expected behavior. Section 5.3.1 describes
the agreement protocol, which from the perspective of Spider is used as a black box.
This makes it possible to pick a suitable protocol without affecting other parts of the
system. For the communication between agreement and execution groups, we introduce
our so-called Inter-Regional Message Channel (IRMC) abstraction, which is described
in Section 5.3.2 and allows us to loosely couple these groups. These IRMCs provide an
interface suitable for communication between groups, which is flexible enough to allow
for different implementations as we discuss later on in Section 5.6. Section 5.3.3 discusses
the application interface. Finally, the checkpoint transfer mechanism is presented in
Section 5.3.4 and is responsible for distributing checkpoints of the system or application
state between replicas of a region and if necessary also between regions.

5.3.1. Agreement Protocol Black Box
The task of the agreement protocol is to totally order requests by reaching consensus
between the agreement replicas on the requests and their order. Spider requires that
the protocol can tolerate up to fa Byzantine faults and satisfies the following properties.

Safety The protocol must guarantee that the request delivered for a sequence number is
the same at all correct replicas.

Liveness Requests submitted to all correct agreement replicas must be ordered eventually
and delivered on correct replicas unless the requests are garbage collected.

Validity Only correctly authenticated client requests or no-op requests may be ordered.

We assume that the agreement protocol implementation uses the interface presented
in Figure 5.2. There are several published agreement protocols that can be adapted to
satisfy this structure [22, 47, 57, 63, 130].
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1 interface Agreement {
2 // Blocks until the request is returned by the ordered callback on this replica
3 void order_request(ClientID c, ClientCtr tc, Request r)
4 // Return ordered requests one after another
5 callback ordered(SeqNr s, Request r)
6 void collect_garbage_before(SeqNr s, ClientCtr[] ts)
7 }

Figure 5.2: Interface of the agreement protocol black box

Request Ordering
To order a request r from client c with client counter value tc a replica passes it to
the order_request(c, tc, r) method. The client counter serves to detect duplicate
and old client requests and must be increased for each new request. A request with a
client counter value tc less than or equal to that of the last ordered request for client c
should be discarded. Once the ordering process has completed at a replica, then the
black box delivers the request r with its associated sequence number s to the caller using
the ordered(s, r) callback. For simplicity, we assume that the callback is triggered in
increasing order of the assigned sequence numbers and that the first delivered sequence
number is 1. An existing protocol can easily be adapted to that behavior. According to
the validity property, the black box must also only deliver requests containing a valid
client signature or no-op requests, which are skipped during execution.

Liveness
The liveness property requires that as soon as Na − f correct replicas have called
order_request() for a request, then the request must eventually be delivered by at least
fa + 1 correct replicas. This is commonly implemented by starting a timer tied to a client
counter value once a valid client request was received and by replacing a possibly faulty
leader replica if the timer expires before a corresponding request was delivered.

Garbage Collection
The collect_garbage_before(s, ts) method controls the garbage collection of old
requests. After it is called with a given sequence number s and an array containing the
latest client counters ts for all requests ordered before sequence number s, then all slots
with earlier sequence numbers can be garbage collected and may no longer be delivered
by ordered(). The garbage collection can cause sequence numbers to be skipped, for
example, when a replica applies a newer checkpoint.

The client counters are also used to stop timers for requests that were garbage collected.
Once any correct replica has garbage collected a request, then the protocol is no longer
required to guarantee the eventual delivery of the request.

Flow Control
Spider employs flow control to bound the state of a replica. To extend this to the
agreement protocol, it must be possible to limit the number of requests queued for
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Figure 5.3: Logical representation of an IRMC configured to provide two first-in-first-out (FIFO)
subchannels, which act as distributed queues connecting the sender endpoints S∗ to
the receiver endpoints R∗. Each subchannel has a fixed capacity of 10 messages M
whose flow is regulated using per subchannel flow-control windows at the senders
and receivers.

ordering and the number of requests waiting to be delivered must also be bounded. We
expect the agreement protocol black box to conform to the following behavior.
To bound the number of queued requests, order_request() must not return before

the request or a later one from the same client is ordered, however, concurrent calls of
this method must be possible. This can be easily implemented by first submitting a
request and then waiting for it to be delivered locally.
The ordered() callback is used to communicate back pressure to the agreement

protocol. As long as the callback is blocked no further requests can be delivered and
thus the protocol eventually has to pause ordering. Such a mechanism commonly exists
in agreement protocols, for example, PBFT [57] implements this by using high and
low watermarks to limit the number of currently active sequence numbers. Similarly,
BFT-SMaRt [47] processes sequence numbers one after another and combines this with a
bound on the number of requests waiting for execution.

5.3.2. Inter-Regional Message Channels

The Inter-Regional Message Channel (IRMC) abstraction is designed to handle the
communication between different groups and thereby decouples them from each other.
An IRMC enables a group of sender replicas S∗ to safely transmit messages or decisions to a
receiver group R∗. It is designed to handle up to fs sender replicas and fr receiver replicas
that exhibit Byzantine faults. Each IRMC consists of multiple subchannels, which behave
like message queues with numbered message slots that deliver a sequence of messages in
order. Thus, the message transmission works in a first-in-first-out (FIFO) fashion. Each
subchannel has a configurable, bounded capacity together with a per subchannel flow-
control mechanism to prevent the senders from overwhelming the receivers. Figure 5.3
shows an example of an IRMC that connects a group of three senders to a group of four
receivers and is configured to provide two subchannels. The participating replicas can
use their sender or receiver endpoints to send and receive messages, respectively. The
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1 // Sender endpoint
2 interface IRMC_Sender {
3 void send(Subchannel sc, Position p, Message m)
4 void move_window(Subchannel sc, Position p)
5 }

7 // Receiver endpoint
8 interface IRMC_Receiver {
9 Message receive(Subchannel sc, Position p)

10 void move_window(Subchannel sc, Position p)
11 }

Figure 5.4: Interface of the sender and receiver side endpoints of an Inter-Regional Message
Channel (IRMC)

message flow for each subchannel is controlled independently using flow-control windows
that are exchanged between sender and receiver endpoints.

BLinks [20] are a related type of Byzantine-fault tolerant message channels. However,
compared to an IRMC a BLink is only able to transmit totally ordered requests, which
either requires an additional ordering step beforehand that adds overhead or limits the
applicable use cases of a BLink. In addition, a BLink does not include a flow-control
mechanism that shapes the flow of messages between senders and receivers.

Authentication
An IRMC implementation must use authenticated messages for communication between
replicas. If a replica receives a message that is not correctly authenticated, then the
replica must discard the message without further processing. This is necessary to ensure
that replicas know the real identity of a message sender and thus prevents faulty replicas
from posing as another replica.

Endpoint Interface
To access an IRMC, all involved replicas instantiate a channel endpoint which serves as
access point to the channel and handles the interaction with the other involved replicas.
The channel endpoints of the senders and receivers together form the IRMC, with the
endpoint encapsulating the channel implementation at each participant. Its interface
is shown in Figure 5.4 and consists of four methods. To transfer a message m, the
sender replicas have to send() it via their endpoints on a sender-selected subchannel sc.
Afterwards the receiver replicas can use their endpoint to receive() the message m.
And finally both the sender and receiver endpoints provide a move_window() method,
which allows managing the flow-control window.

The central idea behind the fault tolerance of an IRMC is to always require support
from at least f + 1 replicas and therefore at least one correct replica before forwarding
information. Unlike a simple queue, transferring a message across an IRMC requires
that at least fs + 1 different sender replicas call send(sc, p, m) using the exact same
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subchannel sc, position p and message m. Only then will a receiver replica be able to
receive the message on subchannel sc and position p using receive(sc, p). This ensures
that at least one sender replica is correct and therefore vouches for the correctness of
the message. Thus, (faulty) messages that were only sent by the up to fs faulty sender
replicas are not transmitted over the channel. Thereby, the IRMC allows a sender group
to safely transmit decisions to a receiver group. In case correct sender replicas send
different messages on the same subchannel position, then each receiver may receive none
or any one of them. See Section 5.5 for a more detailed discussion of this behavior.

Flow Control
The limited subchannel capacity and the flow-control mechanism of an IRMC serve to
prevent the senders from overwhelming the receivers. It works by letting the receivers
decide how many messages the senders are allowed to transmit and thus limit the flow of
messages. Once a sender has reached the flow-control limit, its send() operations will
block. The mechanism manages each subchannel by maintaining an individual window
that limits the range of positions for which messages may be transmitted. Each window
is defined by its lower and upper bound; the lower bound controls the garbage collection
of old requests, whereas the upper bound determines the flow-control limit.

A message slot at a position that is lower than the lower bound of the window is said
to be before the window. Conversely, a message slot for a position higher than or equal
to the upper bound of the window is said to be after the window. All other positions
are in or inside the window. If there are no unused slots in a window, then it is full. In
respect to a subchannel we will use flow-control window or just window interchangeably.
A sender can use send() to queue messages for transmission. The method returns

immediately if there are remaining unused slots in the window. As a subchannel is
modeled after a distributed queue, the sender has to call it for increasing positions in a
subchannel. When trying to send a message at a position after the window, which means
that the window is full, then the send() call will block and only return after the window
has moved forward such that the position is now inside or before the window. From a
flow-control perspective, the blocking send() call in case of a full window is the main
ingredient, as it serves to propagate back pressure from the receivers to the senders and
thereby limits the throughput to a rate that can be handled by the receivers.

Note that an implementation of the sender endpoint is only allowed to send messages
to a receiver endpoint if the flow-control window reported by that individual endpoint
includes the corresponding position. This allows each receiver to further restrict the
influx of messages as necessary to maintain a bounded state. Messages that exceed an
individual window are dropped by a receiver, as these are only sent by faulty replicas.
The receive() method exhibits a similar behavior. For positions inside the window,

the call will return immediately if the corresponding message has already been received,
or it waits until this is the case. A request for a position after the window blocks until
the window moves to include the position and then the previous cases apply. Trying
to receive() a request that is no longer inside the window will result in an exception
informing the caller that the message for the request position is no longer available.
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Garbage Collection
The subchannel flow-control windows also serve a second purpose: garbage collection. As
just described, slots before the window cannot be retrieved and thus there is no need to
retain them, which allows these slots to be garbage collected. The receiver endpoints set
the lower bounds of their window for a subchannel by calling move_window() accordingly.
This will immediately unblock all receive() calls that are now before the window. Once
a sender endpoint learns about the updated window start, it will move its window start
to the fr + 1-highest position reported by the receiver group. Note that for a concrete
IRMC implementation due to the necessary wide-area communication, it will take some
time before the sender replicas learn of window movements. For example, in Figure 5.3
only sender S3 has already received the latest window updates for subchannel B and
updated its window to the fr + 1-highest position. With the call to move_window(), a
receiver replica guarantees that messages for earlier positions are no longer necessary
or can be skipped by applying a newer checkpoint. Using the fr + 1-highest position
ensures that there is at least one correct receiver replica that has requested the garbage
collection for that or a later position. Once a slot was garbage collected at a sender, this
cannot be undone and therefore the window is only allowed to move forwards. Thus, an
endpoint ignores calls to move_window() with a lower position than in a previous call.

Window Movement
The upper bound of the window, which serves as flow-control limit, is determined by
the lower bound of the subchannel window plus the subchannel capacity. Using a fixed
window size simplifies the implementation as it removes the necessity of maintaining
separate lower and upper bounds for the subchannel window.

Endpoints on the sender side also offer a move_window() method, which allows senders
to request moving the window start forward for cases when a receiver group has fallen
behind or the sender group wants to skip sequence number gaps. Each receiver endpoint
calculates the fs + 1-highest window start position requested by the senders and if
the position is after its window start, then the receiver endpoint calls move_window()
internally. Here it is again guaranteed, that at least one correct sender replica has
requested this or a later window start.

5.3.3. Application

An application must provide the interface shown in Figure 5.5, which is applicable for every
application that can be represented as a deterministic state machine. The application
must deterministically execute(m) a request m and always produce the same result
when executed for the same application state. For read requests, is_read_only(m)
must determine whether a request is actually read-only or not.

The application must also offer methods to create a snapshot() of the current appli-
cation state and to apply(st) that snapshot of the state later on. This is necessary for
garbage collection and to enable lagging replicas to catch up. To improve the efficiency
of taking a snapshot of the application state, it is for example possible to use the fuzzy
checkpointing approach as described in Chapter 6.
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1 interface Application {
2 // Execute request and return a result
3 Result execute(Request m)
4 // Verify that a request is readonly
5 boolean is_read_only(Request m)
6 // Create application snapshot
7 AppState snapshot()
8 // Apply application snapshot
9 void apply(AppState st)

10 }

Figure 5.5: Interface of the application component

1 interface Checkpoint {
2 // Create a checkpoint
3 void generate(SeqNr s, State st)
4 // Sequence numbers for returned checkpoints must increase
5 // Checkpoints may be skipped
6 callback stable(SeqNr s, State st)
7 // Explicitly request the retrieval of a checkpoint
8 void fetch(SeqNr s)
9 }

Figure 5.6: Interface of the checkpoint transfer component

5.3.4. Checkpoint Transfer Component

Checkpointing [46, 57, 59, 62, 81] is used in Spider to periodically garbage collect old
requests and slots in both agreement and execution groups to bound the size of the
replica state. A checkpoint for a sequence number s contains the state st a replica
has exactly after processing all messages up to and including sequence number s. If
a replica has fallen behind, then it can use a checkpoint to update its state. For the
checkpointing to be able to tolerate Byzantine faults, all replicas must reach the exact
same state after processing messages up to a certain sequence number. In the following
we describe the interface for a reusable component, that works for groups consisting of at
least 2f + 1 replicas and is employed by each group to agree on and transfer checkpoints
between replicas. By default, each instance of the checkpoint transfer component only
works locally within a group, that is, it only interacts with replicas from the same group.

The interface of the checkpoint transfer component is shown in Figure 5.6 and can
be implemented as described in Section 2.3.3.5. Once a replica has captured its current
state st, then it calls generate(s, st) with the sequence number s of the last processed
request and the corresponding state st. The checkpoint component then distributes a
signed checkpoint message containing only the hash of the checkpoint. A checkpoint
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Figure 5.7: Overview of how Spider processes read and write requests. Read requests can
choose between weak and strong consistency.

becomes stable at a replica, once it collects at least f + 1 matching checkpoint messages
from different replicas, that is, either fa + 1 in case of the agreement or fe + 1 for the
execution groups. These signed messages form a certificate that confirms the correctness
of the checkpoint, as it includes a message from at least one correct replica that vouches
for the correctness. As the checkpoint messages are signed, other replicas are later on
able to verify the certificate and therefore also the correctness of the checkpoint.

Once the checkpoint transfer component has learned that a checkpoint is stable, it issues
the stable(s, st) callback which informs the replica about the now stable checkpoint
for sequence number s with state st. The callback is triggered whenever the checkpoint
transfer component learns that a new checkpoint has become stable and the replica has
either already generated a checkpoint for the corresponding sequence number itself or has
received the corresponding checkpoint state from another replica. The stable() callback
is only called for newer checkpoints, that is, the sequence numbers passed to the callback
only increase over time. If a replica has learned about the existence of a newer checkpoint
for a certain sequence number s via other means, then it can use the fetch(s) method
to request a checkpoint to catch up. This method will also query other groups for the
checkpoint. Once retrieved, the checkpoint is returned via the stable(s, st) callback.
The checkpoint component also has to ensure that all replicas of a group eventually

learn about a checkpoint once it has become stable. This ensures that replicas that have
fallen behind, eventually learn that this is the case and enables them to catch up.

5.4. Request Processing

Spider consists of an agreement group and multiple execution groups, which are connected
using IRMCs. When using PBFT, the agreement group consists of 3fa + 1 replicas,

99



5. Cloud-Based Hierarchical Replication

whereas the execution groups only require 2fe + 1 replicas each. The agreement group is
connected to each execution group using two IRMCs as described below.
As shown in Figure 5.7, an execution group uses an IRMC instance called request

channel to transmit client requests to the agreement group for ordering. For that, the
execution group uses a client-specific subchannel to forward the requests of each client.

After ordering the requests at the agreement group, they are sent back to the execution
groups using an IRMC instance called commit channel. Here a single subchannel is used
to maintain the order decided by the agreement group. The replicas of an execution
group execute the totally ordered request after receiving it via the commit channel. The
execution group connected to the client also sends the execution result to the client.
The just described request processing flow is used to process write requests, that is,

requests that modify the application state. These requests must be replicated to and
executed at all execution groups to maintain a consistent application state. In contrast,
read requests do not modify the application state and thus allow several optimizations.
To speed up read requests that only require a weaker level of consistency, Spider offers a
shortcut that allows an execution group to answer the request locally without requiring
communication with the agreement group. A strongly consistent read request still passes
through the agreement group, but after ordering it, the full request is only sent back to
the execution group that will reply to the client. As a read request does not modify the
application state, the other execution groups can safely skip the request.

5.4.1. Replica Registry

Before a client can issue a read or write request to Spider it has to determine which
execution group to use. This is necessary as the execution groups can be reconfigured
over time, which we describe in Section 5.4.7 in more detail. The agreement replicas
provide a read-only registry that contains the contact information of all execution groups
for use by the clients. More specifically, the system configuration C consists of a list that
contains all execution groups used by the system, their replicas and all cryptographic
keys necessary to set up communication with the replicas. It must be signed by a trusted
admin client, which is responsible for making changes to the configuration of Spider.
The system configuration C stored in the registry also contains a version number that
increases every time the contact information changes.

Registry Querying
We assume that clients are configured with the addresses of the replicas in the agreement
group and with the necessary cryptographic keys to exchange authenticated messages with
them. A client then sends a 〈RegistryQuery, no〉µc,ri

request to all agreement replicas,
which contains a nonce no that must be included in a reply to the client. The client
authenticates the message individually for each replica ri using a MAC. The agreement
replicas only process correctly authenticated queries. The nonce must use a new value
for each query and serves to prevent replay attacks where an attacker would provide an
old reply to the client in response to later registry queries. The agreement replicas then
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reply with a 〈RegistryReply, no, C〉µri,c message, which contains the client’s nonce no
and the latest configuration C known to the replica.

A client waits until it has received 2fa + 1 correctly authenticated replies from different
replicas that contain the expected nonce and a valid configuration C signed by the admin
client. If the client does not receive enough valid replies within a timeout, then it resends
its query messages.

The client uses the version number included in the configuration to determine the latest
version. As the configuration is signed, faulty replicas cannot create fake configurations
with too new versions, but instead can only report the current or outdated registry
information. System configuration changes pass through the agreement like regular
requests and are thus kept consistent between agreement replicas, see Section 5.4.7 for
more details. Once a configuration change is agreed upon, then at least one of the replies
is from a correct agreement replica that has applied the current configuration. During a
configuration update, a faulty replica could return the new configuration before it has
been fully applied. This is not much of a problem, as the new configuration will become
active eventually.

Execution Group Selection
The system configuration contains the location of each group and a list of addresses and
public keys sufficient to set up communication with the execution group. Using this
information, the clients and execution group replicas exchange cryptographic keys to
authenticate messages; for example, by using a mechanism described by Castro et al. [58].
Alternatively a membership service can be used to set up the communication [26].

A client picks the execution group in the same region if one is available or falls back to
selecting a nearby one based on ping times. That is, the client measures the ping times
to the different execution groups and selects the one offering the lowest communication
latency. This allows a client to optimize for weakly consistent read requests which only
require communication with the execution group.

5.4.2. Write Requests

We now describe the necessary steps to process write requests. Messages exchanged
between the client and execution replicas must be authenticated using a MAC and in case
of a Write request, it must also contain a signature by the client wrapped with a MAC.
The signature allows the agreement replicas to verify the correctness of the client request.
As this is an expensive operation, the additional MAC allows the execution replicas to
quickly verify that a request was indeed sent by a client c [63]. If the verification fails,
then a replica can permanently ignore the faulty client. In general, messages that are
formatted incorrectly or that are not correctly authenticated are dropped immediately
by a replica without further processing.

In the following, line numbers refer to the pseudocode for the request processing shown
in Figures 5.8 and 5.9. Pseudocode for the client is available in Appendix B.2.
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1 sn := 0 // Sequence number for last executed request
2 t[c] := 0 // Counter of latest forwarded client request
3 u[c] := ∅ // Reply cache 〈Reply, uc, tc〉
4 app = application, cp = checkpoint transfer component
5 E := execution group with |E| = 2fe + 1
6 // Subchannel 0 is used as commit channel, any other subchannel could also be used
7 rE = request IRMC sender // Each subchannel has a capacity of 2
8 cE = commit IRMC receiver // Commit subchannel capacity must be ≥ ke

9 on receive(m = 〈Write, w, c, tc〉 from c):
10 if !valid_macc,E(m): return // Ignore invalid requests
11 if tc ≤ t[c]:
12 if u[c] = 〈Reply, ∗, t′

c〉 ∧ t′
c = tc: // Check if a reply is available for the request

13 send macre,c(u[c]) to c
14 return // Silently return on retry with no result yet
15 if !valid_sigc(unwrap_mac(m)): return
16 // Each execution replica must forward a request once, even already executed ones
17 t[c] := tc

18 rE.move_window(c, tc) // Notify agreement of new request
19 rE.send(c, tc, 〈Request, unwrap_mac(m), E〉)

21 main loop:
22 while true:
23 m := cE.receive(0, sn + 1)
24 if m = 〈TooOld, s′〉:
25 // Executor missed committed requests → fetch checkpoint
26 cp.fetch(s′) // Ask other groups if necessary
27 else: // m = 〈Execute, 〈Request, 〈Write, w, c, tc〉, E ′〉, sn + 1〉
28 sn := sn + 1
29 // Only execute new requests
30 if (u[c] = 〈Reply, ∗, t′

c〉 ∧ tc > t′
c) ∨ u[c] = ∅:

31 uc := app.execute(m)
32 u[c] := 〈Reply, uc, tc〉 // Store reply
33 if E = E ′: // Only the local execution group sends the reply to the client
34 send macre,c(u[c]) to c
35 if sn ≡ 0 mod ke: // Periodically create a checkpoint
36 cp.generate(sn, (u, app.snapshot()))

38 on cp.stable(s, st = (u′, app’)):
39 cE.move_window(0, s + 1) // Allow garbage collection of commit channel
40 if s ≥ sn:
41 sn := s; app.apply(app’); u := u′

Figure 5.8: Pseudocode for an execution replica re. This is a variant of [86].
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42 sn := 0 // Last ordered sequence number
43 win := [1,AG-WIN] // Range with [lower, upper] bound, both inclusive
44 AG-WIN ≥ ka // Size of agreement window
45 t[c] := 0 // Counter values of latest ordered request per client
46 t+[c] := 0 // Counter values for next expected request
47 ne := number of execution groups; z := limit on slow execution groups
48 hist := last |cE,0| Executes
49 ag = agreement protocol black box, cp = checkpoint transfer component
50 A := agreement group with |A| = 3fa + 1
51 for each execution group E:
52 rE = request IRMC receiver // Each subchannel has a capacity of 2
53 cE = commit IRMC sender // Commit subchannel capacity must be ≥ ke

54 parallel for each client c and execution group E:
55 while true:
56 m := rE.receive(c, t+[c])
57 if m = 〈TooOld, tc〉: t+[c] := tc

58 else: // m = 〈Request, 〈Write, w, c, tc〉, E〉
59 ag.order_request(c, tc, m) // Returns once request is ordered
60 t+[c] := tc + 1

62 // Delivered in-order, agreement must timeout if blocked for too long
63 on ag.ordered(s, r = 〈Request, 〈Write, w, c, tc〉, E〉):
64 sleep until s ≤ max(win) // Force agreement to periodically create a checkpoint
65 // Update state with new request
66 t[c] := tc; t+[c] := max(tc + 1, t+[c]); hist.add(〈Execute, r, s〉)
67 sn := s
68 parallel for each execution group E:
69 cE.send(0, s, 〈Execute, r, s〉)
70 sleep until completed for ne − z groups // Send calls continue in the background
71 if sn ≡ 0 mod ka: cp.generate(sn, (t, hist)) // Create checkpoint periodically

73 on cp.stable(s, st = (t′, hist′)):
74 parallel for each execution group E:
75 cE.move_window(0, s − |hist′| + 1) // Move commit window forward
76 ag.collect_garbage_before(s + 1, t′)
77 if s > sn:
78 tmp := sn; sn := s; t := t′; hist := hist′

79 parallel for each execution group E:
80 for x = 〈Execute, r, s′〉 ∈ hist, s′ ∈ [tmp + 1, s]:
81 cE.send(0, s′, x) // Add missing requests from hist to commit channel
82 sleep until completed for ne − z groups
83 win := [s+1, s+AG-WIN]

Figure 5.9: Pseudocode for an agreement replica ra. This is a variant of [86].
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Request Forwarding
A client c wanting to modify the application state sends a signed 〈〈Write, w, c, tc〉σc〉µc,ri

request to all replicas of its execution group E . The request contains the actual command w
to execute and a client-specific counter tc. The counter must be incremented by one
for each new request. After receiving the Write request (Line 9) an execution replica
uses the counter tc to check whether a request is new and should be forwarded to the
agreement group via the request channel (Line 15 - 19) or whether it is a retransmission
of an already received request (Line 11 - 14). For a retransmitted request that was
already executed, the replica sends the cached reply to the client (Line 13).

The check for a new request is only based on whether the replica has already forwarded
it previously or not (Line 11 and 17). Even if a request was already executed by the
execution replica, it will still be forwarded once. This guarantees that enough execution
replicas forward a request to the agreement group to ensure liveness.

Before forwarding the request, an execution replica adjusts the flow-control window of
the request channel to begin with position tc (Line 18). For a correct client this is usually
a no-op as the execution replica has already forwarded all previous requests. However,
explicitly moving the window allows execution replicas that have missed a request from
a correct client to skip the missing request(s) and catch up with the latest request. This
scenario also applies when a client switches execution groups.

Then the execution replica wraps the Write request m in a 〈Request, m, E〉 message
and sends it to the agreement group using the client’s subchannel c at position tc (Line 19).
If a client correctly distributes its request to all replicas within its execution group, then at
least fe + 1 correct execution replicas will forward the same request at the same position
along the client-specific subchannel c. This ensures that the request is successfully
transmitted to the agreement group.
If a faulty client distributes different requests for the same counter values or uses

different counter values for one request, then the request will become stuck and not arrive
at the agreement group. Note that this only affects the faulty client’s subchannel, but
not those of other clients. That is, a faulty client can only prevent that its own requests
are processed. We will discuss this attack in more detail in Section 5.5.

Request Ordering
Replicas in the agreement group wait for requests forwarded by the execution group
(Line 56). Once an agreement replica receives a request, it passes the request to the
agreement protocol (Line 59). After the request is ordered, the replica updates the client
request counter (Line 60) and waits for the next client request. In case a client skips a
counter value, the channel will eventually return an exception 〈TooOld, s〉 to inform
the replica about the next position s in the channel that can be received (Line 57).
Afterwards the replica updates the counter and waits for the next request.

Once a request has been ordered (Line 63), it is wrapped into an 〈Execute, r, s〉
message, containing the Request r and the assigned sequence number s. The replica then
updates the counters for the latest ordered request and the next request position (Line 66).
Afterwards the agreement replicas forward the request to all execution groups via the
commit channel at position s (Line 69) to update their state.
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Request Execution
Once at least fa + 1 correct replicas of the agreement group have finished ordering
and forwarded the request, this allows the execution replicas to receive the Execute
message (Line 23 and 27). The request’s counter value is used to detect and ignore old
or duplicate requests from a client (Line 30). Otherwise, an execution replica executes
the request and stores a 〈Reply, uc, tc〉 message containing the result uc and counter
value tc (Line 31 and 32) to allow request retransmissions to retrieve the result. If the
replica belongs to the execution group E contacted by the client, then it also sends the
authenticated reply to the client (Line 34). The client then accepts the result after
receiving fe + 1 replies from different replicas of its execution group with matching
result uc and the expected counter value tc. This ensures that at least one of the replies
is from a correct replica and therefore must be correct. If the client does not collect a
valid result within a timeout then it retransmits its request to its execution group. We
defer the explanation of checkpointing to Sections 5.4.5 and 5.4.6.

5.4.3. Read Requests

For read requests, Spider distinguishes between reads with strong or weak consistency.
For strong consistency the read request is ordered by the agreement group similar to a write
request, whereas for a read request with weak consistency the request is only processed
by the local execution group and thus does not require wide-area communication.

Strongly Consistent Read Requests
For a strongly consistent read request, a client c sends a signed 〈〈Read, w, c, tc〉σc〉µc,ri

request to its execution group with command w and counter value tc. The Read is then
processed similarly to a Write request. The main difference is that only the Execute
message sent to the client’s execution group includes the full request. All other execution
groups only receive a placeholder 〈Read, ⊥, c, tc〉 containing just the client c and its
counter value tc. As read requests do not modify the application state, they can be
safely skipped, which allows this optimization to reduce the processing and data transfer
overhead. The decision which group receives the full request and which only a placeholder
request, is made deterministically based on the execution group E that is included in
the Request message delivered by the agreement protocol. The placeholder request is
necessary as it allows the execution groups to update the reply cache entry for the client
and store a placeholder entry. That way, every execution group still learns the latest
executed client counter value.

Weakly Consistent Read Requests
For now we only describe how to guarantee prefix consistency for weakly consistent
read requests and defer sequential consistency to Section 5.7.4. In case a client only
requires correct but potentially outdated replies to its read requests, then it can send
a MAC-authenticated 〈ReadWeak, w, c, tc〉µc,ri

message to all replicas in its execution
group. The request is only authenticated, as it is not forwarded between replicas. The
replicas will then execute the request immediately and send a reply to the client. Once a
client receives fe + 1 identical replies, then it accepts the result as at least one reply must
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be from a correct replica. This allows a client to receive a reply with low latency as only
local communication is required. Note that the reply might be based on an outdated
state in case a correct execution replica has fallen behind. In this situation faulty replicas
could provide replies supporting the outdated result. However, a weak read request will
receive an up-to-date result once all correct execution replicas have updated their state.
If a client does not receive enough matching replies within a timeout, then it can

repeat its weakly consistent read request or fall back to a strongly consistent read request,
which is guaranteed to eventually succeed. Similar to read optimizations in PBFT [57] or
WHEAT [189], the former case may arise because the read processing is not coordinated
across replicas and thus the replies can be based on different application states.

5.4.4. Group Coordination

The flow of requests between execution and agreement group requires coordination to
prevent them from overwhelming each other. Spider uses the flow-control mechanism
offered by the IRMC to control the message flow between two individual groups and
thereby enables the agreement group to coordinate the global message flow by adjusting
the IRMCs’ flow-control windows as appropriate.

An execution group forwards client requests by sending them on their client’s subchannel
of the request channel. For that each execution replica first requests a move of the
subchannel window such that it begins with the position for the new request (Line 18).
As the window move has to be confirmed by the agreement group this throttles how many
new requests a client can forward. Each subchannel in the request channel has a capacity
of two to allow the execution replicas to forward a new request for its client, while the
window update is still pending and therefore avoids stalls during normal execution. On
the side of the agreement group, for each client subchannel a replica proposes one request
at a time for ordering (Line 59), which limits the influx of new requests at the agreement
replicas. If a (faulty) client sends new requests before previous requests were ordered,
then some older requests may be dropped.
For the communication via the commit channel, the agreement group has to wait for

enough execution groups to accept the Execute messages. The agreement group waits
until it has sent these messages to at least ne − z execution groups (Line 69) where ne is
the total number of execution groups and z is the number of execution groups that are
allowed to fall behind. z must be within 0 ≤ z < ne. This prevents up to z slow execution
groups from slowing down the whole system. The send() calls to slow execution groups
continue in the background, until the execution group either catches up far enough to
allow the calls to complete or the corresponding positions in the subchannel window are
garbage collected. To catch up with other groups, a slow group can request an execution
checkpoint as described in Section 5.4.6.

5.4.5. Agreement Checkpointing

Spider uses checkpointing to allow fallen-behind replicas to catch up quickly and also
to bound the size of the replica state. For this, each replica creates a checkpoint after
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processing the request associated with a certain sequence number. The state also includes
all requests which on the sender side of an IRMC are available inside the window of each
subchannel. This allows a different replica to reconstruct the internal state of its IRMC.

An agreement replica creates a checkpoint after processing every kath sequence number
(Line 71). The checkpoint consists of hist, containing the Executes that could still be
inside the commit channel window, and the vector t, which includes the latest executed
client counter values. The size of hist matches the commit channel capacity, which
ensures that all agreement replicas will create identical checkpoints.

Once the checkpoint component has collected fa+1 identical checkpoints, the checkpoint
becomes stable (Line 73). This allows the agreement group to adjust the commit channel
window to be at least as recent as the oldest message contained in hist (Line 75). Note
that this only has an effect on lagging execution groups or replicas. When trying to
receive an older message from the commit channel, these will receive an exception which
informs them to fetch a current checkpoint from the local or another execution group
to catch up (Line 26). The agreement protocol black box also garbage collects old slots
and timeouts for client requests (Line 76). If the stable checkpoint is newer than the
state of the agreement replica, then the replica also updates its state and fills in missing
messages from the hist variable into the commit channel.

An agreement replica also manages an additional agreement window win to limit the
active sequence numbers. Its size is defined by AG-WIN and must contain at least ka

sequence numbers. This window only moves forward when a checkpoint becomes stable
and thus forces the agreement group to create checkpoints in regular intervals, otherwise
the agreement protocol will block (Line 64). Without the agreement window, faulty
agreement replicas could create a situation where a single correct agreement replica
together with f faulty agreement replicas continues to forward Executes along the
commit channel without ever creating a new checkpoint. This would either result in
unlimited memory usage or prevent replicas from retrieving a checkpoint if necessary.

t+[c] is not part of the checkpoint as its content can differ between replicas. It is
updated immediately when receiving a new client request at which point the replicas
have not yet agreed on an order. However, as execution replicas explicitly request a move
of the flow-control window for a client subchannel (Line 18), each agreement replica will
eventually update the flow-control window accordingly and thereby also t+[c].

5.4.6. Execution Checkpointing

A checkpoint at an execution group consists of a snapshot of the application state and
the reply cache, which for each client contains the latest Reply. The reply cache must be
included in the checkpoint as in other protocols [72, 84, 210] that only use 2fe + 1 replicas
for their execution. Both parts of the replica state contained in the checkpoint are only
modified while processing messages received from the commit channel, which ensures
that all replicas of a group arrive at the same state. The replicas of each execution group
create a checkpoint every keth sequence number. For each execution group the checkpoint
component then exchanges messages only among the group’s replicas to stabilize the
checkpoint. That is, checkpoints are created on a per-group basis.
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Once an execution checkpoint is stable (Line 38), a replica moves its commit channel
window forward (Line 39), which allows the garbage collection of the channel as soon
as at least fe + 1 replicas of the execution group have done the same. If the checkpoint
contains a newer state, then the replica updates its state accordingly.

The capacity of the commit channel must be larger than the checkpoint interval ke and
should be large enough to shadow the time it takes for a checkpoint to become stable and
for the updated flow-control window to propagate to the agreement group. Depending
on ke a commit channel capacity of 2ke can be sufficient.
A replica or a group that has fallen behind might be unable to retrieve the next

Execute message from its commit channel. In this case, the replica queries its group and
other groups for the current checkpoint (Line 26). When processing strongly consistent
read requests it is possible for the reply cache to differ between execution groups as only
a single group has executed the read request. All other groups store a placeholder instead.
This allows the replicas in that case to inform the client that the reply is not available.
If a client does not receive sufficient replies to its read request, then it has to repeat the
request. This is unproblematic as read requests have no side effects and therefore can be
executed repeatedly.
An execution replica does not include the request channel’s state in its checkpoint.

Messages on the request channel are not totally ordered yet and thus can differ between
execution replicas. However, as a client has to resend its request until it has received
fe + 1 matching replies, a replica will eventually receive the client’s current request and
thereby synchronize the state of the client’s subchannel. As execution replicas move the
window of the request channel forward before sending a request (Line 18), this allows
replicas to skip missing requests and just send the client’s latest request.

5.4.7. Adaptability

Spider is able to adapt to changes in the workload at runtime by adding and removing
execution groups. To adapt the system configuration, for example in response to clients
started at a new location, a privileged admin client has to update the registry information
and adjust the running execution groups as well.

More specifically, in order to add a new execution group, the admin client ca first has
to start replicas at the new location. Then it sends a signed 〈Config, tca , C〉σca

message
to an execution group; the message is then ordered like a Write request. C is the system
configuration signed by the admin client and includes the new execution group E . Once
the request has been ordered by the agreement group, then its replicas update their
registry with the new, signed configuration C. The agreement group also establishes a
request and commit channel to the new execution group. The replicas in the execution
group then try to receive their first Execute via the commit channel, learn that they
have fallen behind and query other groups for a current execution checkpoint.
If the execution group has to retrieve a large application state, then one possible

solution is to add replicas to the system, which initially do not actively participate in
the system but only fetch the application state [167, 180]. Spider can support a similar
behavior with its global coordination mechanism described in Section 5.4.4 by temporarily
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increasing the limit on fallen behind execution groups z by one. Once the state transfer
has completed, then the admin client can reset z to its original value.
To remove an execution group E , the admin client first issues an updated Config

request, which no longer contains the execution group E . The agreement group shuts down
the request and commit channel once the configuration has been updated. Afterwards
the admin client can stop the replicas belonging to the old execution group.

5.5. Fault Handling

In the following we will discuss various ways in which faulty replicas may try to compromise
the correctness or liveness and how Spider prevents such attacks by relying on the IRMC
properties, which require a correct replica to vouch for data before forwarding it, and the
individual building blocks.

Faulty Clients
A faulty client can try to attack the system in different ways. It could send different valid
requests for the same client counter value to its execution group. As fe + 1 execution
replicas have to send the same value on the client’s IRMC subchannel, this simply causes
the subchannel to become stuck and prevents forwarding of the request to the agreement
group. This only affects the subchannel of the faulty client, which therefore just prevents
its own requests from being ordered, but does not affect other clients.

A faulty client collaborating with faulty execution replicas can send different requests
to different agreement replicas for the same subchannel position. The faulty client
sends a different request m1, . . . , mf+1 to each correct execution replica re1 , . . . , ref+1 ,
respectively, which then each forward the received request via the request channel. The
client also sends all requests to the faulty execution replicas which send each request
on the IRMC. Thereby, each of the requests m1, . . . , mf+1 was sent by fe + 1 replicas,
which allows any one of it to be received by the agreement replicas.

However, the agreement protocol must be prepared to handle this situation, as a faulty
client can also send diverging requests for the same client counter to the agreement
protocol if it is used standalone. Duplicate requests are typically either filtered out
during agreement or skipped during execution, such that the replicas only execute the
first request for each client counter value [57, 63, 84, 210].

Faulty Agreement Replicas
On the agreement side, a faulty replica could try to send the wrong requests or the right
requests in the wrong order to the execution groups. As sending a message across an
IRMC requires at least one correct replica to vouch for it, such a faulty message is never
delivered to the execution replicas. All correct replicas only send the correct result of the
ordering process via the IRMC and therefore send identical messages. Thus, only the
correct ordering result can be delivered to execution replicas.

A faulty leader in the agreement group could attempt to prevent a request from being
ordered. As a correct client repeats a request until it receives a reply, the request will
eventually arrive at all correct replicas of the client’s execution group. These adjust
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the window of the client’s subchannel and send the request via the IRMC such that
eventually all agreement replicas receive the request. This allows the agreement replicas
to monitor the agreement process and to initiate a view change to replace the leader
replica if it did not propose the client request within a timeout [22, 57, 63, 188].

A faulty agreement replica could attempt to erroneously skip a client request by calling
move_window on the client’s subchannel before the request was actually ordered. To
garbage collect messages from an IRMC at least fa + 1 replicas, that is, at least one
correct replica, have to request that operation. However, correct agreement replicas will
only do that after a request has been ordered and is included in a checkpoint.

Faulty Execution Replicas
A faulty execution replica could send a client’s request at the wrong position on the
client’s subchannel or request that the subchannel is moved to a too high position. Neither
attack has an effect, as at least fe + 1 replicas including one correct replica would have
to call the same IRMC methods.

Regarding the commit channel, an execution replica could prematurely request messages
to be garbage collected. As correct execution replicas only request garbage collection
after having created or obtained a checkpoint themselves, this ensures that messages are
only garbage collected after a stable checkpoint exists at a correct replica.

Similar to a standalone agreement protocol, it is possible for faulty replicas to provide
a client with faulty replies. However, as before a faulty reply is only sent by up to fe

faulty replicas and therefore does not reach the threshold of fe + 1 matching replies that
are necessary for a client to accept the result.

For weakly consistent read requests, the same constraint ensures that a client will only
accept a reply that is supported by at least one correct replica. If a correct replica has
fallen behind, then it is possible for the faulty replicas to support the reply provided by
the lagging replica. However, this does not affect correctness as weakly consistent reads
do not guarantee that a client receives the latest result.

Proof of Safety and Liveness
A detailed proof for the safety and liveness of write requests in Spider and their
interaction with checkpoints is available in Appendix B.

5.6. IRMC Implementations

In this section we first explain supporting infrastructure relevant for the different IRMC
implementations. This includes an event-based IRMC interface in Section 5.6.1 and the
outbox abstraction in Section 5.6.2, which helps with maintaining a bounded state.
The interface of an IRMC is abstract enough to allow for different implementations

with different trade-offs. One main decision is between the overhead for transmitting
a message compared to the complexity of the implementation and the required error
handling to properly tolerate malicious replicas. For example, a channel variant in which
each sender replica just forwards each message to every receiver replica does not require
special cases to handle the failure of any specific sender replica. In fact, it does not require
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1 // Sender endpoint
2 interface IRMC_Sender_Event {
3 event channel_send(SubChannel sc, Position p, Message m)
4 callback channel_window_moved(SubChannel sc, Position p, Number limit)
5 event channel_skip(SubChannel sc, Position p)
6 }

8 // Receiver endpoint
9 interface IRMC_Receiver_Event {

10 callback channel_received(SubChannel sc, Position p, Message m)
11 event channel_move_window(SubChannel sc, Position p, Number tokens)
12 callback channel_skipped(SubChannel sc, Position p)
13 }

Figure 5.10: Event-based interface of sender- and receiver-side endpoints of an Inter-Regional
Message Channel (IRMC)

any timing assumptions except that correct replicas are eventually able to communicate
with each other. Therefore, this variant can even work over an asynchronous network
which allows messages to be arbitrarily delayed as long as they arrive eventually. However,
the weak network assumptions come at the price of a considerable message transmission
overhead. The Inter-Regional Message Channel with Receiver-side Collection (IRMC-RC)
variant is based on this design and is described in Section 5.6.3.

By using the timing assumptions of partial synchrony [80] (cf. Section 2.1.2), we can
reduce the number of repeated message transmissions required. The partial synchrony
model assumes that the network alternates at arbitrary points in time between syn-
chronous and asynchronous phases, that is, with or without time bounds until messages
are delivered. To use this in an IRMC, a receiver replica can then select a sender replica
responsible for forwarding messages. If forwarded messages are invalid or are not for-
warded within a certain timeout, then the receiver switches to a different sender. The
corresponding Inter-Regional Message Channel with Sender-side Collection (IRMC-SC)
variant is described in Section 5.6.4.

5.6.1. Event-Based Interface

Directly implementing the synchronous interface for an IRMC, as presented in Figure 5.4,
requires one execution thread for each client and execution group. As our prototype
implementation is written in Java 11, which does not natively support user-level threads,
the interface would require the use of kernel-level threads whose overhead [41, 206]
becomes prohibitive for thousands of clients and multiple execution groups. Instead, our
implementation uses an event-based IRMC interface that is presented in Figure 5.10.
Handling an event requires a small amount of processing, but never blocks the current
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thread, such that a single thread can process events from many different subchannels to
avoid the overhead of using many kernel-level threads.
In the following we refer to the component of a replica that interacts with an IRMC

endpoint as caller. Each event method in the interface is triggered when the caller sends
the corresponding event to the endpoint or in the case of a callback the event is sent by
the endpoint to the caller. We will only discuss how the event-based interface relates to
the synchronous interface, refer to Section 5.3.2 for a general description. To distinguish
both interfaces, all methods of the event-based interface are prefixed with channel_.

Sender Endpoint
The send() method of the synchronous interface is equal to a combination of the event
channel_send(sc, p, m) and the callback channel_window_moved(sc, p, limit).
channel_send(sc, p, m) sends a message m at position p of subchannel sc and must be
called in-order for each position. A message m sent at a position p before the flow-control
window is silently discarded. Sending at a position p after the subchannel window is not
allowed. The channel_window_moved(sc, p, limit) callback informs the caller that
the window for subchannel s now starts at position p and ends before position p + limit.
It therefore replaces the blocking behavior of send() by instead explicitly propagating
the flow-control window to the caller of the sender endpoint. channel_skip(sc, p) is
directly equivalent to the move_window(sc, p) method of the sender endpoint, which
requests that the flow-control window for subchannel sc is moved forward to position p.

Receiver Endpoint
The receive() method of the synchronous interface returns either message m for
position p in subchannel sc, which maps to the channel_received(sc, p, m) callback,
or a TooOld message, which is replaced by the channel_skipped(sc, p) callback.

The caller can use the event channel_move_window(sc, p, tokens) to move the start
of the flow-control window for a subchannel sc to position p, which corresponds to
the move_window() method of the receiver endpoint in the synchronous interface. The
parameter tokens specifies that only messages at a position starting from p, up to and
excluding p + tokens may be forwarded to the caller. tokens is independent of the
flow-control window and instead enables the caller to regulate or even stop message
delivery by the receiver endpoint to ensure the replica is not overwhelmed. This has a
similar effect as not calling the receive() method of the synchronous interface.

5.6.2. Bounded State

The core idea to ensure a bounded state at the IRMC endpoints is to only store a fixed
number of messages by making use of the flow-control mechanism. Thus, endpoints
only keep messages (a) that belong to a bounded window of slots and discard all other
messages or (b) that are used to update a fixed amount of state. Forwarded message
slots fall into the former category, whereas auxiliary messages like those used to update
the flow-control windows, which can be stored in aggregate, fall into the latter.
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Figure 5.11: General interaction between an outbox and the network layer.

Outbox
We introduce an abstraction called outbox to encapsulate most of the implementation
complexity on the sender side. Although the description here is focused on IRMCs, we
expect the concept to also be applicable to other parts of a replica implementation.

An outbox buffers information to be sent to other replicas either in the form of already
assembled messages or as raw data in which case the outbox can generate messages on
demand. This is especially beneficial for summable data, like monotonic counters, as the
generated messages can contain an aggregation of the latest data right before sending
these messages. By delaying the transmission of new information for a short time, it can
be possible to increase the amount of data that can be combined into a single message.

The general interface of an outbox, shown in Figure 5.11, only defines the interaction
with the network layer, but not how messages or data are added to the outbox. That
way, outboxes can store different types of data without affecting the network layer. After
an outbox is marked as ready to transmit data 1 , it calls enqueue(m, r) to queue
messages m for transmission to replica r 2 . The network layer in our implementation
collects a small number of messages in a send queue to each replica, before passing them
on to the operating system to reduce the overhead of executing the syscalls [187]. If the
network layer does not have sufficient capacity in the send queue to a certain replica, then
the enqueued message is rejected. This resembles the interface of the non-blocking send
syscall [123], which only accepts some or no new bytes if the buffers within the operating
system have filled up. In case a message is rejected, once the connection has free space
available, the network layer notifies the outbox that the connection to a replica r is
writable(r) again 3 , causing the outbox to retry sending its messages.

An outbox must offer a flow-control mechanism to ensure that it only sends messages
if the receiving replica is ready to handle them in order to not overwhelm the receiver
and avoid wasted network traffic. This is either the case when the receiving replica has
sent a matching flow-control window or when the outbox is sending aggregate messages
which do not require additional state for storage.

Retransmissions
To ensure reliable message delivery, we use transmission control protocol (TCP) con-
nections between replicas, which handle most cases of packet loss. However, in case of
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Figure 5.12: A message outbox manages a queue of messages for each target replica. The outbox
allows queuing of new messages, garbage collecting old messages and configuring
the send limits for one or multiple replicas ~r.

interrupted TCP connections all messages currently queued in the TCP transmission
buffers are lost. To avoid the need to collect fine-grained feedback on which messages were
lost exactly, once the outbox receives a reconnected(r) notification that the connection
to a replica r is reestablished 4 , it must retransmit all messages that were not garbage
collected in the meantime.

PBFT approaches retransmissions from a different angle: it first broadcasts messages
to all replicas and then exchanges status messages in which replicas inform each other
about received messages to handle message loss [56]. Missing messages are then resent by
the corresponding replica. This approach relies on efficient multicast primitives; however,
these are either not available [102, 158] in today’s cloud environments or incur additional
costs [17]. Without multicast support messages would have to be sent to each replica
individually, making it costly to forward requests speculatively.

Message Outbox
The message outbox manages sending a sequence of messages. As shown in Figure 5.12, a
message can be sent using queue(m, p, ~r), which enqueues a message m at position p
for sending to the replicas in ~r. Internally, the outbox maintains a FIFO queue of
messages for each target replica. Messages in the queue are ordered by their position
number, which also determines the transmission order.

The capacity of the queues is fixed such that messages eventually have to be garbage
collected. The outbox allows garbage collecting all messages below a certain position p
using the garbage_collect(p, ~r) method. Depending on the list of replicas ~r it applies
to all or only individual replicas. For example, once a target replica has confirmed the
receipt of a message, this allows garbage collecting all earlier messages for this replica.
The flow control is managed using send_limit(p, ~r) to set per-receiver send limits

as shown in Figure 5.12. The outbox will for each replica only send messages up to the
individual limit, which must be set to the highest sequence number the receiver is ready
to handle. That way, individual slow receivers are not overwhelmed with messages.

For an IRMC, our implementation uses a separate message outbox for each subchannel
to manage the messages queued inside the subchannel window. The garbage collection at
the lower bound of the flow-control window of an IRMC subchannel is managed via the
garbage_collect() method. And send_limit() provides the mechanism to implement
the per-receiver flow control limits of an IRMC.
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Figure 5.13: An acknowledgement outbox tracks the acknowledged position p for each subchan-
nel sc. It tracks which replica has been informed about which acknowledgement
and constructs messages accordingly.

Acknowledgement Outbox
The acknowledgement outbox, which is shown in Figure 5.13, stores for each subchannel sc
one counter or position p whose value must increase monotonically and is set using the
ack(sc, p) method. As only a limited number of subchannels exists, this guarantees a
bounded state size for the outbox. The outbox can, for example, be used to communicate
the lower bound for a subchannel window after it was changed by a call to move_window.
An acknowledgement outbox generates messages on demand, that is, right before passing
the data to the network layer. It always sends all changed positions to each target replica
and thereby batches as many positions together as possible. For that the outbox also
tracks to which replicas it has already forwarded the current value of a position.

If a subchannel position increases multiple times before sending, then the outbox only
stores the latest position and thereby merges these updates. The sender can (slightly)
delay sending the acknowledgements to allow for further updates to accumulate.

In detail, the position transmission works as follows: The outbox at a replica ri sends
an authenticated message 〈Move, l, ~w〉µri,rj

to replica rj which contains a transmission
counter l that is increased by one for every Move message sent to rj to prevent message
replays or reordering. The receiver must ignore message with old transmission counter
values. A Move message is only authenticated for rj as it is constructed individually for
each receiver. The vector ~w consists of pending tuples (sc, p) for replica rj , where sc is a
subchannel and p the latest position. The outbox then records which tuples were sent.
This transmission process is repeated for every replica to which tuples are pending.

5.6.3. Inter-Regional Message Channel with Receiver-side Collection

An Inter-Regional Message Channel with Receiver-side Collection (IRMC-RC) has a
simple design. Each message passed to the IRMC is sent by every sender endpoint
to every receiver endpoint. The resulting message pattern is shown in Figure 5.14a;
for pseudocode, please refer to Appendix B.4.1. Each receiver endpoint then collects
a bundle of fs + 1 matching messages, hence the name. More precisely, for a mes-
sage m sent on subchannel sc at position p, each sender endpoint si creates a signed
message 〈Send, m, sc, p〉σsi

and adds it to its message outbox for delivery to the receiver
group R∗. The messages are signed to prevent tampering and to allow the receivers to
ascertain the identity of the sending endpoint. Once a receiver endpoint has received the
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Figure 5.14: Message patterns to transmit a message via two possible IRMC implementations.

exact same message m on the same subchannel sc and position p from at least fs + 1
different endpoints of the sender group S∗, then it delivers the message locally. A receiver
only delivers the first message m that arrives from fs + 1 senders for each subchannel
position, even if it receives another message m′ that is also supported by fs + 1 different
senders. As discussed in Section 5.5 different receivers are allowed to deliver different
messages in that case.

The movement of the flow-control windows is managed using acknowledgement outboxes
that transfer the lower bounds of the flow-control window of a subchannel. The sender
endpoints store the highest received acknowledgement for each subchannel and receiver
endpoint. For each subchannel, the fr + 1 highest value is then used as the new start
position for the flow-control window.
The same approach applies to move_window calls at the sender endpoints. However,

there a receiver endpoint computes the combined value based on the fs + 1-highest value
and automatically calls move_window internally every time the value changes. If the
combined value is lower than the current window start, then the move_window call ignores
the value. Otherwise, the window moves forward.
The IRMC-RC does not rely on timing assumptions, instead it will make progress if

sufficient Send messages are transmitted before the receiver side garbage collects them.
The implementation itself is still subject to timeouts in the communication protocol, in
our case in TCP. After network problems, progress is possible as soon as the connections
between a sufficient number of replicas have been reestablished. Therefore, the IRMC-RC
implementation removes the need for Spider to make timing assumptions for its wide-area
communication. However, this comes at the cost of requiring |S∗| · |R∗| transmissions of
the message forwarded via the IRMC.

5.6.4. Inter-Regional Message Channel with Sender-side Collection

The Inter-Regional Message Channel with Sender-side Collection (IRMC-SC) variant is
a more complex variant that transmits fewer data than an IRMC-RC. For pseudocode,
please refer to Appendix B.4.2. Even more network-efficient variants could be based on
the approach of BLink [20]. As shown in Figure 5.14b, an IRMC-SC adds a collection
step at the sender side, where the sender endpoints act as collectors [24, 108] and assemble
a certificate proving the correctness of the transmitted message. This certificate allows
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an individual sender endpoint to forward the certificate to the receiver endpoints. Those
can select the sender endpoint from which they want to receive the certificate.

Signature Exchange
In order to assemble a certificate, for each subchannel sc and position p, the sender
endpoints exchange 〈SharePart, sc, p, h(sm)〉σsi

messages with each other, containing
the hash h(sm) of the Send message sm that should be forwarded. The exchange
of the SharePart messages is handled using message outboxes that are configured
to only accept messages for positions within the current flow-control window of the
subchannel. As sender endpoints can learn about window movements at different times,
the sender endpoints use an additional acknowledgement outbox to inform each other
about the lowest position for which they still have to collect a certificate. The other
sender endpoints thereby learn which SharePart messages are still required by an
endpoint and whether it is ready to receive further SharePart messages. This serves as
a flow-control mechanism for SharePart messages between the sender endpoints.

Certificate Forwarding
As soon as a sender endpoint si has collected a vector ~v consisting of fs + 1 valid
signatures from different senders for the same message sm, then it assembles these into a
certificate 〈Certificate, sm,~v〉αsi,R∗ . The Certificate is authenticated using a MAC
authenticator [57] to prevent tampering during transmission. The vector ~v only includes
the signer identities and the signatures itself; the remaining parts of the SharePart
messages can be reconstructed from the message sm. To create the certificate, the sender
endpoint needs the full message content of the Send message sm and not just the hash.
This will be the case once the send() method of the specific sender endpoint has been
called with the corresponding message m for subchannel sc at position p. A sender
endpoint then forwards the certificate to one or more receivers, as selected by them. Each
receiver verifies the authenticator’s correctness, that each contained signature matches
message sm and that the signatures originate from fs + 1 different sender endpoints. If
these are valid, then the receiver has proof that at least one correct sender endpoint
confirmed the validity of message sm and is allowed to deliver sm.

Sender Selection
Each receiver endpoint selects the sender endpoint from which it wants to receive the
certificates for a subchannel. To communicate the selection, a receiver attaches its sender
selection for a subchannel to the messages sent by the acknowledgement outbox. For this,
it sends the identifier of the selected sender as the position value for a pseudo subchannel
−sc − 1. Contrary to values for regular subchannels, the value is not required to increase
monotonically, that is, the sender endpoints must accept a lower received value for a
pseudo subchannel. The sender endpoint now configures the per-receiver send limit for
the message outbox that transmits the Certificate messages accordingly.
A faulty receiver replica can use the selection mechanism to cause multiple sender

endpoints to each transmit the certificates. To detect such misbehavior, the amount of
data received by an endpoint can be compared with that of other endpoints of the same
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group. If it is much higher than that of the other replicas, then the replica should be
considered as possibly faulty and be replaced with a new one.

To prevent faulty senders from suppressing messages, each sender endpoint periodically
transmits 〈Progress, l, ~p〉µsi,rj

messages that contain a vector ~p to inform the receivers
about the highest position in each subchannel for which the sender has collected a
certificate. As the slots in an IRMC are filled sequentially and without gaps, this also
automatically means that the sender endpoint has a certificate for each slot up to and
including that position. The messages are generated by an acknowledgement outbox
modified to send Progress messages.
The receiver endpoints then calculate the fs + 1 highest received position for each

subchannel and use that to monitor the progress of the selected sender endpoint for that
subchannel. If the selected sender endpoint does not transmit a valid certificate for the
position within a timeout, then the receiver endpoint switches to another one of the
endpoints that according to their Progress message claim to have the certificate. While
the network stays in a synchronous phase, this ensures that a receiver endpoint only has
to switch between fs + 1 different sender endpoints to find one that is actually able to
supply the certificate, as only up to fs sender endpoints can be faulty.
As long as the selected sender replicas work correctly, the IRMC-SC variant only

requires |R∗| wide-area transmissions of the sent message.

5.7. Optimizations
As described so far, each IRMC variant requires creating and verifying multiple signa-
tures for each message and IRMC. In the following we start with an optimization in
Section 5.7.1 that allows reusing certificates at the agreement group, followed by two
further optimizations to amortize the signature creation and verification costs over many
messages in Section 5.7.2, and to offload the signature verification step from the agreement
group to the execution groups in Section 5.7.3. We finish this section with another two
optimizations to strengthen the consistency guarantees offered for weakly consistent read
requests in Section 5.7.4 and to ensure that these can be answered by execution groups
even if the agreement group is temporarily not reachable in Section 5.7.5.

5.7.1. Signature Sharing between IRMCs
The agreement group sends the exact same ordered requests to every execution group.
The only deviations are caused by the optimization for strongly consistent read requests
described in Section 5.4, which only sends the full request to the client’s execution group.
By structuring the message that is forwarded along the commit channel as described in
the following, the message always has the same message hash, even if a read request is
omitted for some groups. This allows the IRMC to reuse signatures for the Send messages
created by the agreement group’s sender endpoints. This also applies to the corresponding
SharePart messages used by the IRMC-SC variant, which are now also identical across
sender endpoints. Thus, the sender endpoints of the commit channels at a replica are
able to share these signed messages and perform all signature processing only once. Each

118



5.7. Optimizations

c0 tc0 E∗ w c1 tc1 E0 r1 c2 tc2 E2 h(r2)

c0 tc0 E∗ w c1 tc1 E0 h(r1) c2 tc2 E2 h(r2)

c0 tc0 E∗ w c1 tc1 E0 h(r1) c2 tc2 E2 r2

c0 tc0 E∗ h(w) c1 tc1 E0 h(r1) c2 tc2 E2 h(r2)

c0 tc0 E∗ h(w) c1 tc1 E0 h(r1) c2 tc2 E2 h(r2)

c0 tc0 E∗ h(w) c1 tc1 E0 h(r1) c2 tc2 E2 h(r2)

Group E0

Group E1

Group E2

Destination Client ID
Client counter Execution group

Request or hash Always use request hash

Transmitted Message Batch Data used for Hash Calculation

Figure 5.15: Format of a batch request m that allows omitting read requests to certain execution
groups without changing the message hash h(m), which is calculated using the
representation on the right. The write request w is sent to all groups, which is
indicated by E∗, read request r1 only to execution group E0 and r2 to E2.

agreement replica then only has to calculate a single signature for each forwarded message
independent of the number of execution groups.

Handling Strongly Consistent Read Requests

When computing the message hash over the complete content of an ordered request,
then replacing a strongly consistent read request with a placeholder would change the
message hash and thus require a different signature. As the agreement protocol typically
bundles together multiple requests into a batch [57], which is then ordered instead of
the individual messages, this can in the worst case require a different signature for each
execution group and prevent the signature sharing between IRMCs.

Spider therefore uses a modified batch structure that still allows sharing the signature
between IRMCs. As shown on the left side of Figure 5.15, the batch transmitted to a group
contains for each request the client identifier c, its counter value tc, the group identifier E
and the request or its hash. If the group identifier matches that of the destination group,
then the full request is included, otherwise only its hash. The identifier E∗ matches
every group. To ensure identical hashes for the batch message sent to each group, the
hash calculation only considers request hashes as shown on the right side of Figure 5.15,
independent of whether the full request or only its hash is transmitted. Thus, the hash
of the batch message sent to the different groups is always identical.

The modified hash calculation introduces the risk that a faulty replica could suppress a
certain request in the batch by only sending its hash. In order to prevent such tampering,
a receiver must verify that the batch message contains the full request if and only if the
group identifier is E∗ or matches the receiver’s own group identifier. This verification must
be implemented in the receiver endpoint to maintain the guarantee that the receiving
side only delivers messages vouched for by fs + 1 replicas. For example, in Figure 5.15
the batch message sent to group E0 must include the full messages w and r1, but only the
hash of request r2. This ensures that group E0 can correctly process the batch message
and only receives as much data as necessary.
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Figure 5.16: Structure of a Merkle tree used to verify six messages. The leaf nodes contain the
hash of the corresponding messages, whereas all inner nodes and the root node use
the hash of their child nodes as value. The highlighted nodes are considered when
verifying that m3 is part of the tree.

5.7.2. Signature Batching

Calculating a signature at each sender endpoint for every request transmission on an
IRMC is still expensive. For the commit channels, the costs can easily be amortized over
multiple requests by using the batching optimization typically available in agreement
protocols [22, 39, 47, 57, 108, 130], which packs multiple requests together and then
only agrees on the batch instead of individual requests. However, this does not work for
transmitting client requests on the request channel, where no total order exists in which
requests from different clients are handed over to the IRMC.

Merkle Tree
Instead, it is possible for each endpoint to individually group messages in a Merkle
tree [154] and only sign the tree root to amortize the signature costs over all messages in
the tree. The tree provides proof that a certain message is part of it and the root node
signature thereby indirectly proves the validity of each message contained in the tree.
This approach is used similarly to sign unordered responses in Basil [194].

A Merkle tree [154] is a binary tree whose leafs contain hashes of the contained messages,
whereas the value of an inner node is determined by the hash of its two child nodes. An
example of such a tree is shown in Figure 5.16. The use of a collision-resistant hash
function [153] is required to guarantee that an attacker cannot construct alternative tree
nodes with the same hash. By applying the hash function recursively, this results in a
root node containing the root hash of the tree. To create a proof, it is sufficient to sign
the root hash and include enough intermediate hashes to allow a verifier to confirm that
the tree contains a certain message. The verifier then starts with the hash of the message
it wants to verify and follows the path through the tree upwards to the root node. As
the value of each inner node is the hash of the left and right child node, the signer at
each level only has to include the child node that is not part of the path followed by the
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verifier. Note that the root hash is also not included, as it is calculated while verifying
the path through the tree. The final step is to verify that the signature matches the
computed root hash.
For example, to prove in Figure 5.16 that message m3 is part of the tree, the signer

would send message m3, h(m4), h3,1 and h2,2 together with a signature of the tree root
to the verifier. For the verification, it has to follow the path from m3 to the root node.
First h3,2 = h(h(m3)||h(m4)) is calculated, followed by h2,1 = h(h3,1||h3,2) and so on. As
last step, the verifier checks that the signature is for h1,1 and is valid.

Tree Signatures
An IRMC uses Merkle trees as follows: A sender endpoint collects multiple messages that
should be sent on any of the subchannels of the IRMC, assembles these into a Merkle
tree and then signs the root hash. The sender now attaches 〈mc, i,~h, sig〉 as signature to
each message, where mc is the number of messages included in the Merkle tree, i is the
message index, ~h the list of intermediate hashes necessary to verify the path from the
message to the tree root and sig is the signature of the root hash. We refer to this type
of signature as tree signature in the following. As each tree signature is independently
verifiable from the other messages in the same Merkle tree, the tree signature can be used
as a drop-in replacement for normal signatures. This also simplifies garbage collection of
old messages, as there are no dependencies across multiple requests.
To ensure that the combination of the message index i and the message count mc

uniquely defines the path from a message to the tree root, we define the shape of the tree
to only depend on the message count. As shown in Figure 5.16, the messages are included
in a complete binary tree, which means that all levels except the last are completely
filled, and the last level is filled from left to right. Each node is either a leaf node or has
two children. The messages are then assigned to leaf nodes of the tree.
The receiver side has to verify that the message is part of the Merkle tree and that

there is a valid signature for the tree root. The result of the signature check should
be cached to avoid multiple verifications of the same signature when different messages
belonging to the same Merkle tree arrive. The size of the signature-check cache for each
sender replica should be limited to the number of slots an IRMC can store at a time.
For optimal efficiency, it is necessary to apply tree signatures to a sufficiently large

number of messages. For this purpose, an IRMC should - like with request batching -
wait a short amount of time between creating two signatures unless enough messages
have arrived to reach a predefined size limit for the Merkle tree.

5.7.3. Client Request Verification Offloading

The agreement protocol has to verify that a client request is correctly authenticated
before allowing it to continue through the agreement process. Otherwise, a faulty client
or replica could issue requests pretending to originate from a different client and thereby
bypass access control mechanisms [57]. Spider uses signatures to authenticate client
requests, which prevents corner cases where a faulty client could create a request that is
only regarded as valid by some but not all replicas [57, 62, 63].
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Figure 5.17: Agreement group including the Verify phase necessary to offload the request
verification. Parts drawn in black are modified in comparison to an unoptimized
agreement group.

Signature verifications have a large computational overhead. For RSA-based signatures,
as we show in Section 5.8.6.1, the signature verification takes on average 14 µs (microsec-
onds) in our testbed. The performance impact is limited as the verification is more than
an order of magnitude faster than creating a signature. However, with modern elliptic
curve based signatures that ratio changes and verifying a signature can be slower than
creating it. For example, it takes on average 80 µs to create an ed25519 [139] signature
and 173 µs to verify it. That is, the verification costs can become a computational
bottleneck at a throughput of several thousand requests per seconds.
To avoid these costs at the agreement replicas, it is possible to use the fact that

execution groups already verify all requests before forwarding them via the request
channel. Instead of verifying the request signature a second time at the agreement group
it is therefore sufficient to verify that a request was transferred via the IRMC, which
guarantees that at least one correct execution replica has successfully verified the request.
Thereby, the agreement group can offload the request verification to the execution groups.

Proof of Transfer
This requires the agreement replicas to obtain a proof that a request was forwarded via
the request channel, in the following referred to as proof of transfer. It is constructed as
follows. We require that the agreement group consists of at least 3fa + 1 replicas. After
an agreement replica ri receives requests r = 〈Request, m, E〉 via the request channel,
instead of passing them directly to the agreement protocol using ag.order_request()
(Line 59 in Figure 5.9), it first runs a verification phase. For this the replica sends a
〈Verify, D〉µri,rj

message to each other agreement replica rj as shown in Figure 5.17.
D contains a set of message descriptors 〈c, tc, h(r)〉. Each descriptor states that the
replica knows a request from client c with counter value tc and hash h(r) that has arrived
via the request channel. For efficiency reasons, multiple descriptors for requests that
arrive in a short time interval are batched together. The verification nevertheless works
at the granularity of individual descriptors.
Once a replica has received fa + 1 matching descriptors from different replicas for

the same request, then it also sends a Verify message of its own. After a replica has
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received 2fa + 1 matching descriptors, these form a proof of transfer and thus allow the
request to be ordered. Each replica that has received the request via a request channel
then passes the request on to the agreement protocol.

The construction of a proof of transfer ensures that once a correct replica has obtained
it then eventually all other correct replicas will obtain one too. Collecting a proof of
transfer requires at least Verify messages from fa+1 correct replicas. Thus, every correct
replica will receive fa + 1 Verifys and send one of its own. As at least 2fa + 1 replicas
are correct, this allows every correct replica to obtain a proof of transfer.

The agreement protocol must only act on requests for which the replica has obtained a
proof of transfer. If the agreement protocol receives a request via the request channel or
a replica forwards a request to the current leader replica, then, as shown in Figure 5.17,
the agreement protocol at the leader must verify the request before proposing it. This
is necessary to ensure that the request can be verified by other correct replicas. When
a replica receives a request proposal (i.e., a PrePrepare message when using PBFT)
in the agreement protocol from the leader replica, then it has to verify the proposal
to prevent the ordering of unverified requests. If no proof of transfer is available, then
the agreement on the proposal is blocked, until the replicas obtain the proof. Both
cases require the agreement protocol to provide a hook to allow verifying that a proof of
transfer exists for the request in question.
If multiple descriptors with the same client c and counter value tc obtain a proof of

transfer, then this proves misbehavior on part of the client. The replicas could then agree
to ignore the faulty client.

Garbage Collecting Proofs
To keep the set of request descriptors from growing without bounds, it has to be garbage
collected from time to time. Whenever a checkpoint at the agreement replicas becomes
stable, all descriptors for each client c with a smaller client counter tc than the value in
the checkpoint (t[c] at Line 71 in Figure 5.9) can be garbage collected, as a replica is
able to update its state by applying the checkpoint and no longer needs the old proof of
transfer. To properly handle old requests proposed in the agreement protocol, a client
request with a timestamp that was garbage collected is always considered as valid.

Without this exception, the agreement protocol could become stuck. Assume that the
leader replica proposes a valid, but old request that was already garbage collected at
the other replicas. Then the agreement protocol would block while trying to verify the
request and would eventually replace the leader replica. In contrast, with the rule to
accept all garbage-collected requests, the agreement will be able to continue. Note that
this does not affect correctness as client requests with old counter values will be ignored
during execution (Line 30 in Figure 5.8).

Bounded State
The fields in a request descriptor 〈c, tc, h(r)〉 are not self-verifying, that is, based on a
single descriptor, it is not possible to tell whether their values are correct or not. To
prevent faulty replicas from flooding the system with invalid descriptors, we limit the
number of descriptors which a replica has to store.
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Each correct replica for each unique client request identifier (c, tc), with client c and
counter value tc, must only accept the first request it receives via the request channel. As a
faulty client that sends diverging requests to a sufficient number of execution groups could
cause each correct agreement replica to receive a different client request, Na − fa valid
descriptors can legitimately exist. That is, it is sufficient if an individual replica is able
to report Na − fa different descriptors for each client request identifier (c, tc). All further
descriptors from the replica for this client request identifier must be ignored.
The maximum number of request descriptors, which a replica may have to store is

calculated as follows. As a correct replica only sends a descriptor when receiving the
request itself or after observing that fa + 1 replicas support a descriptor, among which at
least one replica must be correct, this yields a limit of up to Na −fa valid descriptors that
can be sent by all correct agreement replicas together. As each of the f faulty replicas
can also report Na − fa different descriptors, this results in at most (fa + 1) · (Na − fa)
descriptors that have to be stored for a client request identifier.

To prevent an individual client c from flooding the system by continuously proposing
new requests, the agreement replicas only read a new request from a client’s request
subchannel after having completed the processing of the previous request. That is, the
call to ag.order_request() (Line 59 in Figure 5.9) must not return before the current
request or a newer one has been ordered. Additionally, only a limited number of requests
per client may be ordered between two agreement checkpoints. For each client only the
next ka positions in its subchannel may be processed, starting from the counter value t[c]
included in the last checkpoint, where ka is the checkpoint interval of the agreement
group. This is not a limitation for correct clients, as these only send a new request after
the previous one was ordered and executed.
Descriptors may only be exchanged between replicas if the sender knows that the

receiver is ready to accept them. For this, a replica that receives a request descriptor
〈c, tc, h(r)〉 interprets it as an implicit permit to send descriptors to this sender for this
client up to counter value t′

c < tc + kd, where kd is a small constant, which we set to 2.
This slows down flooding request descriptors without affecting correct clients.

If applying a checkpoint causes a replica to skip some counter values, then it has to
broadcast a special descriptor value 〈c, tc, ⊥〉 using the updated counter value tc. As this
special value only updates the flow-control limits, but does not result in a descriptor that
has to be stored, it is not subject to the normal limits for exchanging descriptors and
can always be sent immediately.

5.7.4. Reading with Sequential Consistency

Weakly consistent read requests as described in Section 5.4.3 only ensure prefix consistency.
Spider guarantees that the returned result is correct as a client waits for fe + 1 matching
replies and therefore at least one of the replies is from a correct execution replica. However,
there is no guarantee on how recent the state of the answering replicas is. In the worst
case, the fe + 1 replies consist of one reply from a correct but outdated replica and of
fe replies from faulty replicas supporting the old reply.
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All correct replicas answer a client’s read request based on their local state. However,
there are no checks on whether the state of a replica is up-to-date or not. Even though
all replicas in principle process the same sequence of write requests and thus proceed
through the same states, they may execute the read requests at different logical points in
time and therefore answer based on different states. This allows faulty replicas to provide
enough support for any of the replies provided by correct replicas to let the client accept
that reply. Regarding consistency this has the problem, that a client can alternatingly
receive replies based on an older or more recent application state.

The property that different correct replicas can execute a request at different points in
time and provide different replies is specific to weakly consistent read requests as these
are executed directly by the execution replicas and thereby bypass the agreement process.
In contrast, for write requests, which must be ordered prior to execution, a replica is only
able to execute the request after learning the agreement result and thus by construction
all correct replicas execute the request at the same sequence number.

Sequential Consistency
In the following we strengthen weakly consistent read requests to offer sequential con-
sistency. It guarantees that all operations appear to happen according to a single total
order, such that for an individual client’s operations these execute in the order they were
issued by the client [31, 204]. However, it is still possible for one client to complete a
write request but for another client to still read an older state afterwards. In comparison
to strong consistency, or more formally linearizability [118], sequential consistency only
requires the order of operations of each individual client to match the order in which the
operations were issued and does not require that order to hold across operations from
different clients.
As read requests, which by definition have no side effects, are only relevant for the

requesting client, it is sufficient to totally order only the write requests, as these define
the states through which the system progresses. The only restriction from the view point
of a client is that after reading a value, it must always see the same or a later state.
Write requests in Spider are already ordered with strong consistency, therefore we only
have to guarantee that for a client weakly consistent read requests are processed after all
earlier write requests of that client (read-my-writes) and that read requests access the
same or a newer state as the previous read request (monotonic reads) [204].

Part 1: Read my Writes
In order to solve the first requirement, similar to Weave [89], we add a minimum
sequence number a to 〈ReadWeak, w, c, tc, a〉µc,ri

, which specifies the sequence number
a replica must have executed before executing the read request. The reply to a write
request 〈Reply, uc, tc, sn〉µri,c is extended with the sequence number sn at which the
request was executed. A client now has to wait for fe + 1 replies to its Write containing
the same result uc and sequence number sn. As all correct replicas execute an operation
at the same sequence number, both their result and sequence number match, which
guarantees that a client will be able to receive fe + 1 matching replies. After accepting a
result for a write request, the client then updates its minimum sequence number a to sn.
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This guarantees that correct replicas will only reply after they have executed the write
request and therefore also prevents faulty replicas from injecting older replies.

Part 2: Monotonic Reads
The second requirement is harder to satisfy. For it a client has to include the sequence
number of the system state it has already read from in its later requests. As weakly
consistent read requests are not ordered, there is no fixed sequence number at which the
request will be executed, and consequently it is unclear which sequence number included
in the individual replies is correct and which not. Therefore, we modify the reply for
a ReadWeak request to include the sequence number of the latest state change that
had an influence on the reply. In the case of a key-value store this could be the sequence
number at which a key was last written. Similar to write requests, a client then waits for
fe + 1 matching replies with identical results and sequence numbers. The client then only
updates the minimum sequence number a if the received sequence number sn is larger. If
a client does not accept a reply within a timeout, then the client issues the request again
as a strongly consistent read request.

If the last change occurred at an older sequence number than the requested minimum
sequence number a specified by the client, then the replies prove that the result has
not changed at least up to sequence number a. Using the sequence number of the last
change has the benefit that it will very likely change much less frequently than the latest
sequence number that a replica has processed and thus increases the chance that all
correct replicas return the same sequence number.

5.7.5. Reading with Interrupted Wide-Area Communication

As long as the agreement group and an execution group can communicate with each other,
then the execution group will eventually receive every message that was forwarded to it
across an IRMC. And therefore all replicas in the execution group will eventually reach
the same state, which is necessary to guarantee that a client can get enough matching
replies to complete a weakly consistent read request. However, this is not the case if
the communication is interrupted. In that case, each execution replica remains in the
state it had when the communication was interrupted. Note that liveness in general only
guarantees progress during synchronous phases.

In order to ensure that clients receive enough matching replies to still complete weakly
consistent read requests even if the wide-area communication is interrupted, all execution
replicas have to execute the same set of write requests to reach the same state. To
guarantee this, we extend the receiver endpoints for the commit channel as follows.
The endpoints regularly exchange status messages about the highest position in each
subchannel up to which they have received valid certificates for this and all earlier
slots. These status messages are constructed using acknowledgement outboxes and are
exchanged between replicas of the same group. Another receiver endpoint that has already
received certificates for a newer slot can then forward the missing certificates. As the
certificates are signed, the receiver is able to verify them and therefore the certificate can
be shared between endpoints. To avoid duplicate message transfers, an endpoint will wait
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for a short timeout before forwarding the certificate. If the other endpoint has received
the certificate in the meantime and reports so in a status message, then no forwarding
takes place. In total, a receiver endpoint will eventually learn about certificates for all
slots delivered by any other correct receiver endpoint.

5.8. Evaluation

In the following we evaluate the performance of Spider’s architecture against that of
two other protocols. The experiments are conducted in parts on Amazon EC2 and in
parts using an emulated cloud testbed. We start by analyzing the response times for
write and read requests, followed by two microbenchmarks that focus on IRMCs. The
section concludes with an analysis of Spider’s adaptability to workload changes and an
analysis of two optimizations for Spider and the IRMCs.

5.8.1. Setup

For the evaluation we compare three protocols representing different system architectures.
Firstly, BFT represents the PBFT [57] protocol, which serves as a representative of
classical BFT protocols and is configured to use MACs for its protocol messages for
optimal performance. Secondly, HFT is an implementation of the hierarchical fault-
tolerant protocol Steward [24] and like it consists of two layers of protocols to coordinate
replicas within and across sites. And finally Spider is our protocol, which has been
described in the previous sections. It is configured to use PBFT with MACs to order
requests at the central agreement group. Spider uses the IRMC-SC variant together
with the signature sharing optimization described in Section 5.7.1.

Replicas
Unless stated otherwise the replicas are distributed world-wide and run in the Amazon
EC2 regions in Northern Virginia, Oregon, Ireland and Tokyo. Each replica of a group in
a region is located in a different availability zone. In general, the systems are configured
to make use of all four regions and to tolerate a single fault f = 1. Spider requires four
replicas for its agreement group, which is hosted in Northern Virginia, and an execution
group consisting of three replicas in each region, resulting in a total of 16 replicas. Note
that Northern Virginia contains both an execution group and the agreement group. For
HFT, each site consists of four replicas and the sites are mapped to regions, which also
results in a total of 16 replicas. As HFT requires four replicas at each site, whereas
most regions only provide three availability zones, we have placed the replicas such that
one availability zone contains two replicas. The setup for BFT consists of only a single
replica in each region. Using more replicas to tolerate more faults would increase the
amount of communication necessary between replicas and generally results in a lower
throughput [1, 121]. The agreement protocols are configured to build batches containing
up to 10 requests. The batching mechanism assembles a batch once it is full or after
2 ms depending on what happens first.
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All protocols are implemented as part of a single codebase written in Java to allow for
better comparability between protocols. The implementation uses HMACs [133] with
SHA256 [164] to authenticate messages, 1024-bit RSA PKCS1 signatures [163], to which
we will also refer as RSA-1024, for signing and for HFT the threshold signature scheme
described by Shoup [182] also using 1024-bit keys.

We use small virtual machines of type t3.small (2 vCPU, 2 GiB RAM) running Ubuntu
18.04.4 LTS and OpenJDK 11 to host our replicas. The, by default too small, TCP
buffer sizes in the Linux kernel are tuned to allow for maximum throughput instead of
being limited by the round-trip time between datacenters as shown by Lai et al. [136].
The buffers are adjusted to be large enough that the receiving side of the connection can
acknowledge the transmitted data before the buffer runs out of space.
Later experiments will use a local testbed that is described in Section 5.8.6.

Clients
The clients in a region run in a single separate virtual machine and by default send
their requests to replicas in the same region. We run 50 client instances at each location
running in an open loop such that the clients in a region submit up to 100 requests
per second. A client only issues a new request after receiving a response to a previous
request, however, the number of clients is high enough to ensure open loop behavior. The
request rate is limited via a token bucket to which tokens are added every 10 ms and
whose capacity is sufficient to allow bursts equivalent to sending half a second worth of
requests at the normal request rate. We use rate-limited clients, as otherwise the different
response times for clients in different regions result in a highly skewed workload between
regions. For example, for Spider Northern Virginia would contribute the vast majority
of requests.
The clients issue read or write requests for random entries in a key-value store and

either retrieve or set a 200 byte payload, similar to the request size used for Steward [24].
All client requests are signed to prevent tampering and to ensure that all replicas agree
on the validity of a request.

Experiments
Each measurement runs for 180 seconds of which a warm-up period of 50 seconds and a
shutdown time of 10 seconds is cut of. We record the timings of each individual request
and use these as the basis to calculate averages and percentiles.
We want to answer the following questions in our evaluation:

1. How does the performance for read and write requests of Spider compare to that
of the other systems?

2. What are the costs of modularity in Spider?

3. What are the performance characteristics of the IRMC variants?

4. Which benefits does adaptability offer?
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Figure 5.18: Median and 90th percentile of the response times for write requests depending
on the client and leader location. The locations are Northern Virginia (V), Oregon
(O), Ireland (I) and Tokyo (T). For Spider the suffix after the region name refers to
the availability zone ID which is identical across AWS accounts [14]. For example,
V-1 maps to the availability zone with ID 1 in Northern Virginia.

5.8.2. Latency

To answer the first question, we analyze the response times in wide-area networks of each
protocol. For this we separately measure write and read requests.

5.8.2.1. Write Requests

In our first experiment, we measure the response time for clients issuing write requests to
the system. We evaluate different leader locations, for BFT and HFT the leader is placed
into different regions, whereas for Spider the leader moves within the region of the
agreement group. For each system we report the median and 90th percentile depending
on the leader location and group the results by client location.
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Based on the results shown in Figure 5.18 we make the following observations: Firstly,
the response time for a client strongly depends on the client’s geographic location. For
example, with the leader replica located in Northern Virginia, the response times are
much lower for clients in Northern Virginia than for those in Tokyo. This is a result
of the client being located near the protocol’s leader replica or in case of Spider the
agreement group.
Secondly, the response times differ strongly between the different protocols. For the

best leader location the median response time, for example, for a client in Northern
Virginia ranges between 176ms using BFT, 100ms for HFT and 13ms for Spider. That
is, Spider provides 87% and 92% lower responses times for clients in Northern Virginia,
respectively. Even for less favorable client locations, Spider offers lower response times
of only 167ms for clients in Tokyo compared to 181ms using HFT and 234ms using BFT.
Similarly, Spider also provides the lowest response times for all other client locations.
The performance difference is a result of the communication patterns used by the

protocols. BFT and HFT use a wide-area communication pattern that first has to forward
a client request to the current leader, which then has to contact at least a majority of
regions before a client can get a reply. In contrast, in Spider only a single wide-area
roundtrip from the client’s execution group to the central agreement group is necessary
to process a write request. This also explains the especially low response times of the
execution group in Northern Virginia, which only has to communicate locally with the
agreement group. The execution groups at other locations update their state concurrently
but are not involved in providing a reply to the clients in Northern Virginia.

The response times in BFT and HFT are also highly dependent on the current location
of the leader replica or site. For example, for a client located in Ireland the median
response times can increase by up to 53% for BFT and 64% for HFT if the location
of the leader changes from Ireland to Tokyo. In general, the response times are lowest
for clients in the region of the current leader. This can lead to significant performance
variability if the location of the leader replica changes. Spider on the other hand provides
stable response times with only a small variability of a few milliseconds depending on the
current leader location, as its leader replica in the agreement group only moves between
the availability zones of a single region.

5.8.2.2. Read Requests

Our next experiment measures the response times for strongly and weakly consistent read
requests. We start with the results for clients issuing strongly consistent read requests,
shown in Figure 5.19a, which presents the response times for each protocol depending on
the client location. There is no distinction by leader location as BFT and HFT directly
query all replicas and Spider provides stable response times across leader locations.
Spider offers lower median (and 90th percentile) response times than BFT and HFT for
all client locations except for Tokyo. There the response time for clients is about 10%
higher for Spider than with BFT and HFT.
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(b) Weakly consistent read requests

Figure 5.19: Median and 90th percentile of the response times for read requests with strong
or weak consistency depending on the client and leader location.

Clients using the read optimization in BFT and HFT2 can directly query replicas
from a (Byzantine) majority of regions, which explains the response times. For Spider
in comparison the strongly consistent read request is processed similarly to a write
request and has to pass through the agreement, which leads to response times similar
to those of write request. The response time for a client in Tokyo is determined by the
latency to Northern Virginia for all protocols. BFT and HFT use replies from Tokyo,
Oregon, and Northern Virginia, which latency-wise is the farthest away region. A client
in Spider has to wait until the request is processed by the agreement group in Northern
Virginia resulting in the 16 ms higher response time. For all other client locations Spider
nevertheless provides the lowest response times.

Note that strongly consistent read requests in Spider always succeed whereas for BFT
and HFT it may become necessary to retry the request when too many replicas return
diverging replies.
To answer weakly consistent read requests, as presented in Figure 5.19b, HFT and

Spider only require less than 2 ms. This low response time is possible as both protocols
can answer the request locally, without requiring any wide-area communication. BFT on
the other hand takes 71 to 101 ms to answer weakly consistent read requests as a client
still has to query f + 1 replicas of which f are located in a different region.

5.8.3. Tolerating More Faults

For the following experiment, we investigate the effects of a higher fault tolerance level.
We configure the systems to tolerate f = 2 faults. This applies to both agreement and
execution groups of Spider, that is fa = 2 and fe = 2. The additional replicas for each
region are located in nearby EC2 regions in Ohio, California, London and Seoul. This
ensures that even if a complete availability zone becomes unavailable, the systems are
still able to tolerate another fault. As BFT only requires 3f + 1 = 7 replicas, it does not

2The evaluation follows the description for strongly consistent read requests in Steward [24], which
claims it is sufficient to query replicas at a majority of sites. However, as described in Section 5.1.2 a
correct result actually requires querying each site. Therefore, a correct implementation would incur
higher response times than those reported here.
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Figure 5.20: Median and 90th percentile of the response times for write requests with
f = 2 depending on the client and leader location.

use an additional replica in Seoul. Otherwise, the experiment matches the write request
setting from Section 5.8.2.1. Figure 5.20 shows the resulting response times.
The response times for BFT improve slightly for clients in Oregon or when using the

leader in Tokyo. As the additional replicas for BFT are located near Ireland, Northern
Virginia and Oregon, these replicas add further possibilities to gather messages from a
Byzantine majority quorum required to proceed through the protocol.

The other configurations either achieve the same or higher response times than before.
For HFT the response time increases in every configuration, this is especially clear when
the leader site is located in Tokyo, where clients in different regions see a response time
increase by 48 to 66 ms. For Spider, the median response time generally increases by 3
to 19 ms, except for two outliers where the response time for two of the leader replicas
increase by up to 46 ms for clients in Tokyo.
The results can be explained by the higher communication latency within a group,

which now has to communicate with replicas in the nearby region to order requests. In
HFT this applies to every site, whereas for Spider with its smaller execution groups, a
client can still receive enough replies just from the execution replicas in its region.
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Figure 5.21: Response time comparison of Spider running the execution directly at the agree-
ment (Spider-0E), using a single central execution group (Spider-1E) and the
standard Spider setup.

Despite the response time increase, Spider continues to offer lower response times at
each client location than both BFT and HFT.

5.8.4. Microbenchmarks
In the following we address our second and third question by first investigating the cost
of modularity and then the performance characteristics of IRMCs.

5.8.4.1. Modularity

Our next experiment analyzes the response time costs associated with modularizing
Spider into agreement and execution groups and coupling them loosely using IRMCs.
For this we compare the following three variants of Spider:

(a) A variant called Spider-0E that directly runs the execution within the agreement
replicas and thus does not use IRMCs and execution groups.

(b) A variant called Spider-1E that uses a single central execution group located in
the region of the agreement group.

(c) The standard Spider setup.

The workload is otherwise identical to the write requests experiment in Section 5.8.2.1
using the leader replica in V-4. Spider-0E shows the minimal costs for processing
requests, whereas Spider-1E measures the cost of adding an IRMC that does not require
wide-area communication.

The results in Figure 5.21 show the same structure of response times dependent on
the latency between a client’s and the agreement group’s location. The response time
provided by Spider-0E is about 11 to 14 ms lower than for Spider-1E, which can
be attributed to the small overhead introduced by using IRMCs to transmit requests
between the execution and agreement group. Spider-1E and Spider on the other hand
offer roughly equal response times. However, when using only a central execution group
as in the Spider-1E variant, then it is not possible to benefit from low response times
for weakly consistent read requests for which a nearby execution group is necessary.
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Figure 5.22: CPU, throughput and network usage of the IRMC variants.

5.8.4.2. IRMC Implementations

The following experiment focuses on the IRMC abstraction to analyze its throughput,
CPU usage and amount of transferred data depending on the message size and variant.
We use a configuration corresponding to that of a commit channel in Spider, that is,
a group of four replicas in Northern Virginia that resemble an agreement group sends
requests to a group of three replicas located in Tokyo that represent an execution group.
The agreement group sends a continuous stream of messages containing a payload of a
specific size to the execution group. The measurements evaluate both the IRMC-RC and
IRMC-SC variant.

The results are presented in Figures 5.22a to 5.22d. The CPU usage on the sender side
is shown for the first replica, which is used as sender by IRMC-SC, and on the receiver
side we show the replica that has processed the largest number of messages. This ensures
that we do not report values for a replica that has fallen behind. The data transfer figure
shows the aggregate amount of transmitted data. For the IRMC-SC variant, local and
wide-area traffic are reported separately.

For small message sizes, both IRMC-RC and IRMC-SC are CPU-bound at the sender
side while sending up to 3,400 and 2,479 requests per second, respectively. The lower
throughput of the IRMC-SC is caused by the additional signature verifications necessary
at the sender side to assemble the Certificate message. On the other hand, on the
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Figure 5.23: Average response time when adding a new region after 80 seconds.

receiver side the IRMC-RC requires more CPU than the IRMC-SC, the most probable
explanation is that this is a result of the higher number of received messages when using
the IRMC-RC variant.
The wide-area network traffic required for IRMC-SC is lower than for IRMC-RC, for

example, for 256 byte messages by a factor of 3.0. For IRMC-SC only one of the four
sender replicas forwards requests to the receivers, such that the traffic could reduce by
up to a factor four. However, the actual traffic reduction is lower, as the sender replica
forwards Certificate messages, which include fa + 1 signatures and thus are larger than
the individual Send messages used by IRMC-RC, which only contain a single signature.

For requests with 4,096 bytes or more, the IRMC-SC sends 5.7 times fewer data than
the IRMC-RC. This higher than expected traffic reduction can be explained by looking
at the transmission overhead, which falls to 10.6 and 2.4 for IRMC-RC and IRMC-SC,
respectively. As the IRMC only has to wait until fe + 1 = 2 receivers allow the garbage
collection of old messages, this can cause up to fe replicas to fall behind and therefore
lead to a lower overhead than when transmitting to all receivers.

In order to reduce the message transmission overhead, it is preferable to forward fewer,
large messages with a size of at least 1KiB instead of many small messages. By using
batching at the agreement group, Spider can combine multiple client requests into
messages with a size of a few kilobytes and thereby distribute requests to execution
groups with a moderate traffic overhead and thus reduce the costs for traffic.

5.8.5. Adaptability

To answer the fourth question, we now analyze the effect of adding a new client location
while the system is running. For this we start with our usual setting and add a new
region in São Paulo with 50 clients that submit requests and join after 80 seconds. For
Spider, which is able to adapt its configuration at runtime, we also start a new execution
group in São Paulo.

With five regions, it becomes possible to apply the weighted-voting approach used by
WHEAT [189], which we use to create a BFT variant called BFT-WV. A subgroup of
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well-connected replicas is assigned a higher weight, which allows the agreement to still
work with a quorum size of three if enough replicas of that subgroup are included and can
lead to reduced response times. We assign the higher weight to the replicas in Northern
Virginia and Oregon, which provide the lowest average response times. AWARE [43],
which enhances WHEAT with an automatic selection of the best system configuration,
would achieve similar results, as we have manually determined the optimal configuration.

The Figures 5.23a to 5.23c show the influence of starting clients in São Paulo on the
average response time across all clients for write requests and strongly consistent as well
as weakly consistent read requests. For clarity, for each protocol the graphs only show
the results for the leader location providing the lowest average response times.
We observe that the response times for writes and strongly consistent reads increase

for each system, once the new clients in São Paulo join. For example, for BFT these
clients experience a response time of 298 ms and 124 ms for Spider, which results in
an increase of the average response times. The benefit of BFT-WV is limited to clients
in São Paulo that issue write and weakly consistent read requests. There the weighted
voting approach allows reaching a quorum using replicas in Northern Virginia, Oregon
and São Paulo without having to wait for further regions. Clients in other locations do
not benefit significantly from the BFT-WV variant, which shows that the effectiveness
provided by weighted voting depends a lot on the overall system structure.

For weakly consistent read requests, shown in Figure 5.23c, the response times for all
protocols except for Spider increase. This is especially pronounced for HFT where the
new clients in São Paulo cannot benefit from low latency for their weakly consistent read
requests. HFT to our knowledge does not support reconfiguration and thus is not able
to start a new region at runtime to adapt to changes in the workload. Spider on the
other hand can activate a new region, which allows it to continue responding to weakly
consistent read requests with low latency.

5.8.6. Emulated Cloud Testbed

We conduct additional experiments to assess the optimizations that reduce the number
of signature computations required by Spider at the agreement group and to forward
messages over IRMCs in regard to the questions one to three. More specifically, we
analyze the effects of the signature batching optimization described in Section 5.7.2 and
the client request verification offloading described in Section 5.7.3.

Testbed Setup
For the following experiments, we use a local testbed in order to allow us to conduct
more extensive experiments with high message throughput. The testbed resembles the
cloud setup used in the previous experiments and consists of four servers, which each
emulate an Amazon EC2 region including the latency between the regions. Each server
runs all clients and replicas belonging to its region. The servers run Ubuntu 20.04.4 LTS
using OpenJDK 11, have an Intel Xeon E3-1275 v5 CPU with 4 physical cores with two
hyper-threads each and 16 GiB RAM. The servers use netem [117, 144] provided by the
Linux kernel to emulate the wide-area latencies between the cloud regions by delaying
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Northern Virginia Oregon Ireland Tokyo
Northern Virginia 0.74

Oregon 66.93 0.61
Ireland 66.48 122.38 0.51
Tokyo 143.76 96.85 200.08 1.40

Table 5.1: Average ping times in milliseconds between replicas in the used EC2 regions measured
on February 27, 2022.
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Figure 5.24: Time to run 1,000 sign or verify operations.

packets sent via Ethernet. We add a one-way communication latency between regions that
is set to half the ping times in Table 5.1, based on the assumption that communication
times between a pair of regions are symmetrical. For communication within a region, we
inject one-way delays of 0.2 ms, which results in ping times of approximately 0.56 ms.
The servers are attached to the same switch via 1 Gbit Ethernet interfaces.

System Configuration
The following experiments use an enhanced version of the prototype that includes the
additional protocol optimizations as well as improvements to efficiently handle a larger
number of clients. To account for the higher expected throughput, we instantiate 2,000
clients at each location, yielding a total of 8,000 clients, which is enough to saturate the
system. In addition, we increase the maximum agreement batch size to 128. The large
batch size amortizes the overhead of computing the expensive threshold signatures in
HFT and signatures in Spider over a larger number of messages. For HFT this has a
similar effect as using a Merkle tree as described by Amir et al. [20] to spread the cost
for the threshold signature computation, but is much simpler to implement.

5.8.6.1. Stronger Cryptography

Looking forward to 2030 and beyond, the RSA key size should increase to at least 3072
bits to remain secure [37]. However, this has a huge downside: the signature size grows
to 384 bytes thereby drastically increasing the overhead for each signed message. For
our requests with a 200 byte payload, this results in a signature that is larger than the
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payload itself. In addition, the sign and verify operations for larger keys are much slower.
Figure 5.24 shows the average time to sign and verify one thousand messages with empty
payload in our testbed. When switching from RSA-1024 to RSA-3072 the results show a
slowdown of a factor 17 for signing and 5.7 for verification. Creating a single RSA-3072
signature will then on average take 3,400 µs and 80 µs to verify it.
As a modern alternative, we use the elliptic curve based algorithm ed25519 [139]

implemented in pure Java3. It provides a similar security level as RSA-3072, but offers
signatures that are only 64 bytes in size. Compared to RSA, the algorithm has different
characteristics. As shown in Figure 5.24, verifying a signature in ed25519 takes 173 µs,
whereas creating a signature only takes 81 µs, such that verifying is roughly twice as slow
as signing. This is in contrast to the ratio between signing and verifying for RSA-1024,
which takes 203 µs to create a signature compared to 14 µs to verify it, resulting in 14.5
times lower costs for verification.
To analyze the effects of the algorithm’s different characteristics on the performance,

we will use both RSA-1024 and ed25519 for our following experiments.

5.8.6.2. Write Throughput

In this experiment, we compare the throughput and response time for BFT, HFT and
Spider. For Spider, we use a configuration corresponding to the previous experiments
as baseline. We measure the effect of adding the IRMC signature batching optimization,
the client request verification offloading and both optimizations together.

The experiment focuses on write requests, as read requests either only require MACs
for authentication and thus the optimizations are not relevant for them, or in case of the
strongly consistent read requests in Spider are expected to behave similarly to write
requests as shown in Section 5.8.2.2.

For the individual measurements, we gradually increase the client request rate in steps
of a few hundred to a few thousand requests until the system is saturated. We report as
maximum throughput the highest throughput up to and including the point at which
a system is no longer able to achieve the requested throughput. The results of the
measurements are shown in Figure 5.25a. The graph shows the average response time for
requests from all regions at a certain throughput. The goal is to reach a high throughput
while maintaining low response times.

For a throughput of 400 requests per second, the response time is slightly lower than
that presented in earlier experiments. We assume that this is a result of the network
latencies between regions being slightly lower than during the previous measurements and,
in addition, our local testbed emulates slightly lower latencies between some availability
zones within a region.

Throughput using RSA-1024
We first analyze the results for RSA-1024. BFT, HFT and Spider with both optimizations
achieve a maximum throughput of 19.0, 10.0 and 8.4 thousand requests per second,
respectively. BFT only has to verify client request signatures, whereas the agreement

3https://github.com/str4d/ed25519-java/releases/tag/v0.3.0
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Figure 5.25: Average response time and throughput under increasing request loads. Offload
refers to client request verification offloading and SigBatch to the IRMC signature
batching optimization.

process only relies on (much cheaper) MACs. Thus, the replicas only have to verify
signatures, which for RSA is much faster than creating signatures. In contrast, HFT and
Spider also have to create and verify signatures to process requests. However, they still
achieve a throughput of 53% and 44%, respectively, of that provided by BFT, showing
that both systems are able to amortize the costs of the signature computations over
multiple of requests.

Spider without optimizations, with the offload optimization, with signature batching
and both optimizations achieves a maximum throughput of 5.1, 6.0, 7.4 and 8.4 thousand
requests per second, respectively. As shown in Section 5.8.6.1, verifying signatures is
much cheaper than creating them when using RSA. Thus, the offload optimization only
offloads the relatively cheap signature verification for client requests from the agreement
group, which explains the limited increase in throughput. The request channel normally
has to verify fe + 1 = 2 signatures when receiving a request from the execution groups.
This overhead is reduced by the IRMC signature batching optimization which amortizes
the cost over many requests.

Response Time using RSA-1024
The response time of each system grows slowly until the throughput nears saturation, at
which point it drastically increases. The measurements show that Spider maintains its
lower response times than BFT and HFT until the system becomes saturated. Compared
to the base variant of Spider, each optimization adds a few milliseconds of latency, either
due to the additional protocol phase for the offload optimization or the IRMC batching
timeout of 10 ms used to batch signature calculations.
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Throughput and Response Time using ed25519
Using ed25519, HFT reaches a maximum throughput of 2.4 thousand requests per
second, compared to the throughput of 4.4 thousand requests per second for BFT. The
higher costs to verify the signature of a client request now drastically reduce the overall
throughput compared to using RSA-1024. Note that HFT benefits from still using
RSA-based threshold signatures, which only offer a lower security level than ed25519.
Without optimizations, Spider achieves a throughput of only up to 0.4 thousand

requests per second. Just using IRMC signature batching increases the throughput to 0.8
thousand requests per second, resulting in an increase by a factor 2. The client signature
verification offloading alone is more effective and increases the throughput to 1.1 thousand
requests per second. When combining both optimizations the throughput increases nearly
five-fold to 5.4 thousand requests per second. As shown in our next experiment, the
signature batching optimization allows forwarding more than 20 thousand requests per
second via an IRMC, however, the overall throughput is still limited as the agreement
group also has to verify the signature of each request. By offloading the signature
verification to the execution groups, the agreement group is no longer the computational
bottleneck. The high throughput comes with a high response time of 1.25 seconds, which
is a result of saturating the CPU of the server hosting the agreement group, which also
hosts an execution group and the clients of the region. Nevertheless, Spider is able to
outperform BFT in both response time and throughput for most throughput levels.
By combining both optimizations Spider reaches 64% of its throughput when using

RSA-1024, but also offers a much higher security level.

5.8.6.3. IRMC Microbenchmark

In our last experiment, we analyze the IRMC variants and the signature batching
optimization in isolation. For this, we run the microbenchmarks from Section 5.8.4.2
on our local testbed. As the batching optimization primarily focuses on reducing the
computational overhead, we only analyze the smaller message sizes of 256 and 1,024 bytes
as larger message sizes already saturate the network of the testbed without optimizations.
The results are presented in Figure 5.26. We first check whether the Amazon EC2

and the testbed achieve similar results. For this we compare the unoptimized variant
using RSA-1024 to the measurements run on Amazon EC2, which shows an up to 28%
higher throughput for the IRMC-RC and up to 37% for the IRMC-SC on the testbed.
The CPU usage and network overhead remain in a similar range. That is, the testbed
produces results which are roughly comparable to those using Amazon EC2.

Performance using RSA-1024
For both message sizes, using the unoptimized IRMC variants, the sender side saturates
its CPU, which limits the throughput. The signature-batching optimization increases
the throughput by up to a factor 5.1 for the IRMC-RC variant and by up to a factor
8.5 for the IRMC-SC variant depending on the message size. The CPU usage on the
sender side falls to 13% using an IRMC-RC and to 83% using an IRMC-SC such that the
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Figure 5.26: Throughput, CPU, network usage and network overhead of the IRMC variants.
single refers to the unoptimized variant, which computes signatures for each
message, whereas batched uses signature batching.
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benchmark is no longer CPU bounded. The IRMC-SC has a much higher CPU usage on
the sender side as it has to exchange and verify signatures while assembling certificates.
Using signature batching, the IRMC-SC now achieves a higher throughput than the

IRMC-RC variant. As neither variant is CPU bounded by the signature verifications,
this throughput is a result of the IRMC-RC variant incurring a higher data transmission
overhead that has to be transmitted between regions. The throughput of the IRMC-RC
for 1,024 byte messages is limited by the network, which according to iperf3 can transmit
at most 111MiB/s in total between regions in our testbed.

Performance using ed25519
We now analyze the influence of using ed25519 signatures on the IRMC performance.
The throughput of the unoptimized IRMC-RC is lower at about 2.6 thousand requests
per second and is 48% to 50% higher than that of the unoptimized IRMC-SC, resulting
in a larger performance difference than when using RSA signatures. In addition, the
CPU usage at the receiver side of an IRMC-RC drastically increases and becomes the
bottleneck. This is a result of ed25519 signatures being computationally more expensive
to verify than to create. For the IRMC-SC, the CPU usage at the receiver side increases
to around 70%. As the sender side also has to verify signatures while assembling a
Certificate message, it reaches its CPU limit before the receiver side.
Using signature batching, the throughput increases by up to a factor 8.8 for the

IRMC-RC and a factor 16.0 for the IRMC-SC. The CPU usage is no longer the bottleneck,
such that the throughput reaches a similar level as the RSA-1024 variant.

Compared to RSA-1024 without batching, the overhead for 256 byte requests shrinks
by approximately 25% when using ed25519 signatures as a result of the smaller signature
size. The usage of the signature batching optimization increases the overhead again,
which is especially visible for the IRMC-SC variant. There the local traffic overhead
using RSA-1024 and ed25519 increases by roughly a factor 2.5 and 3.2, respectively. The
reason for this is that the locally exchanged messages primarily consist of the signature,
whose size grows as tree signatures contain the path through the Merkle tree in addition
to the 64 bytes for the ed25519 signature itself. At the used batch limit of 128, this
results in adding up to seven SHA256 hashes, that are equivalent to 224 bytes.
The messages sent over the wide-area network also include the actual requests such

that the larger tree signatures only lead to a smaller relative increase of the message size.
In fact, when comparing the wide-area traffic between the unoptimized and the signature
batching variants, contrary to the previous explanations the overhead appears to shrink
in most cases. However, this is a result of one of the receiver replicas falling behind such
that it no longer receives messages, which results in a lower than expected overhead.

Transmitting the whole Merkle tree only once and referring to it later on would remove
most of this overhead in addition to only require transmitting the signature once. We leave
optimizing the transmission overhead of the tree signatures as future work. Nevertheless,
signature batching provides a large increase in throughput with potential for further
improvements by reducing the transmission overhead.
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5.9. Related Work

In the following we discuss related works in relation to different aspects of Spider.

Replica Discovery
In systems which support reconfiguration, clients need a way to discover the currently
active replicas to take part in a system. A common way is to enable the clients to query
all known replicas for the current configuration that was generated and signed by a
trusted administrator client [47, 149]. As a fallback, in case the client does not know any
of the currently active replicas, a name service such as a secure variant of the domain
name system (DNS) [34, 53] can be used to discover replicas that can be queried for the
current configuration [146, 149]. As Spider only reconfigures its execution replicas, it
uses the agreement group as a central configuration repository to provide the clients with
the current configuration.

Reconfiguration
In addition to the reconfiguration mechanism that is provided by Spider, orthogonal
approaches can be used to reconfigure the agreement protocol itself. Abstract [32] and
ADAPT [36] allow composing different protocols by providing a mechanism to abort a
protocol execution and transfer its state to a successor. Carvalho et al. [55] investigated
the performance of different reconfiguration mechanisms using BFT-SMaRt [47]. These
approaches could be used to reconfigure the agreement protocol used by Spider or even
to change the composition of the agreement group.

ReBFT [73] and CheapBFT [126] allow switching between a resource-efficient mode for
fault-free intervals in which only 2f + 1 replicas actively process request to save resources
and a fallback mode in which all replicas are active. ZZ [209] modifies the request
execution to use only 2f + 1 replicas of which f are paused during normal, fault-free
executions. In case of disagreement on the execution result, the additional replicas are
woken up. A similar reduction of the resource footprint can be achieved using passive
virtual machines as in SPARE [75]. These approaches are orthogonal to Spider and
could be used to improve the resource efficiency of the execution groups by pausing fe of
the only 2fe + 1 replicas in an execution group during fault-free executions.
To support the administrator with modifying the execution groups, an adaption

manager like FITCH [64] could be used. Reconfiguration mechanisms for systems like
MongoDB [180] and ZooKeeper [183] let new replicas first retrieve the current state
before adding them to the system. Spider provides a similar mechanism by allowing
new execution groups to fall behind without affecting the rest of the system.

Adaption
Besides changing the protocols and replicas themselves, it is possible to adapt system
parameters dynamically. To improve performance, the number of requests to combine
into a batch and their timeout can be adjusted at runtime [177]. For systems using
weighted voting, AWARE [43] measures latencies between replicas and uses those to
determine optimized weights for the replicas. As shown in our evaluation in Section 5.8.5
the potential for latency improvements depends on the actual system structure. By

143



5. Cloud-Based Hierarchical Replication

configuring a system to be more or less resilient, it is possible to trade resource usage with
resiliency based on the current threat level [185]. These approaches are orthogonal to the
reconfiguration mechanism in Spider. The batch size adaption could allow Spider to
automatically select optimal batch sizes to increase the performance of the agreement
group and the IRMCs.

Reducing Communication Costs
BLinks [20] offer the means to transmit an ordered sequence of requests between replica
sites. A BLink requires the sender side to submit ordered requests, which makes it
necessary to run an agreement protocol at each sender and adds overhead. Requests are
efficiently forwarded between sites using a single wide-area message that is afterwards
distributed within the receiver site. To forward client requests to the site hosting the
leader replica, Amir et al. describe an additional subprotocol called CLink, which is
able to forward the not yet ordered client requests. In contrast, an IRMC supports
multiple subchannels which can forward client requests without requiring prior ordering or
additional mechanisms. This also enables Spider to use fewer replicas for the execution
groups than for the agreement. The forwarding approach of BLinks can serve as a
blueprint for more network-efficient IRMC variants.
Other approaches to reduce the communication costs are the usage of erasure coding

to reduce the amount of redundancy between transmission from different replicas [116]
or separating the request ordering from fault handling by making use of an external
reconfiguration service [173]. In Spider the agreement group could host such a service.

Geo-Replication Architecture
GeoBFT [110] evenly partitions the agreement sequence numbers in round-robin manner
across different replica sites. Each site runs a full agreement protocol to locally order and
certify request assignments to sequence numbers. The leader replica of each site is then
responsible for distributing the agreement result to f + 1 replicas at each of the other
sites, which further distribute the result internally. These assignments are then combined
into a single total order and are executed at each site. To replace a faulty leader replica,
it can become necessary to trigger a view change across the wide-area communication
links. Compared to Spider, each site must contain 3f + 1 replicas to run an agreement
protocol instead of the 2fe + 1 replicas required by Spider for an execution group. For
GeoBFT it is also necessary that every site stays available to allow the protocol to make
progress, whereas Spider is able to tolerate individual slow execution groups. Due to
the round-robin assignment of sequence numbers in GeoBFT, it must fill gaps between
sequence numbers if necessary with a placeholder request such that the slowest group
can determine the overall response time.

Signature Offloading
Signature verification is considered a performance bottleneck in Byzantine fault-tolerant
protocols [57, 62, 130, 150]. However, not using signatures for client requests can result
in complex corner cases [63] or even allow clients to trigger the replacement of a correct
leader replica [56], which is the reason why Spider requires requests processed by the
agreement group to be signed. UpRight [62] introduces a separate layer of replicas which
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assemble MAC-based matrix signatures [9] to serve as a more efficient replacement for
signatures. The signature verification offloading in Spider serves a similar purpose but
minimizes the overhead by only exchanging the information that at least one correct
replica considers a request to be valid, which avoids the need to distribute a matrix of
authenticators. Mir-BFT [192] selects f + 1 replicas per request that during fault-free
executions are responsible for verifying the client signatures. In Spider when using
signature verification offloading, clients can achieve a similar result by initially sending
their requests only to fe + 1 replicas in the local execution group and waiting for a
timeout, before sending it to the remaining execution replicas.

Client Communication

Efficiently providing a client with a reply is important for the overall performance of a
protocol. Several approaches have been suggested besides the typical way of providing
f +1 matching replies from different replicas to a client as done by PBFT [57]. SBFT [108]
adds a protocol phase in which the replicas use threshold signatures to aggregate a certified
reply for the client, which enables a single replica to provide a reply with a corresponding
signature to the client. Troxy [141] uses replicas equipped with a trusted component
that proxies the client request and enables clients to access the system without knowing
details of the replication protocol. The trusted component to which a client is connected
submits the request, collects and verifies replies, and provides the client with a single
reply. In Spider clients are typically located in the same region as the execution replicas
and thus allow the replicas to efficiently communicate the response to the client over
low-latency links.

To prevent clients from flooding the system with requests, protocols like Aardvark [63]
only accept a new client request after processing the previous one has finished. Mir-
BFT [192] allows clients to issue a limited number of requests concurrently. The limit is
replenished after reaching the next checkpoint. Spider includes a mechanism to limit
the influx of client request by letting agreement replicas only read a new request from
the request channel after ordering the previous one of a client.

State Synchronization

Reliably sending data queued for submission at an IRMC to the receiver side requires
handling message loss. One possible solution is the use of a message store combined
with periodic status messages to resend missing messages as in PBFT [57]. However,
this essentially results in reimplementing the reliable transmission guarantees offered by
TCP [78]. The approach used by the IRMC distinguishes between faults already handled
by TCP (i.e., message loss) and those that are not (i.e., interrupted connections). Only
the latter require special handling. After reestablishing the connection, the sender and
receiver side essentially have to synchronize their message store. Currently, this works by
sending the full state to the receiver side, similar to synchronization in state-based conflict-
free replicated data types (CRDTs) [181]. However, a more efficient synchronization
would also be possible by only transferring the missing delta [10].
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5.10. Summary
The communication latency between the replicas running the agreement protocol con-
tributes a significant fraction of the overall response time for processing a request. Spider
groups its replicas into one agreement group and multiple execution groups. The replicas
in each group are typically located within a region, which allows local communication
with low latency, with replicas spread across multiple availability zones to reduce the
risk of correlated failures. The communication between groups is managed using the
IRMC abstraction, which only transfers messages supported by at least fs + 1 replicas
and thereby prevents faulty replicas from sending messages. This loose coupling also
enables Spider to only use 2fe + 1 replicas for each execution group, thus simplifying
the mapping of replicas to the three availability zones that are typically offered in a
region. To process a request, a client submits it to the local execution group, which
forwards the request over a client-specific subchannel to the agreement group, which in
turn orders the request and distributes it via the commit channel to all execution groups.
After executing the request, the client receives the result from its local execution group.
Additionally, Spider allows clients to issue weakly consistent read requests, which can
be processed locally and therefore offer low latency.
Our evaluation shows that Spider is able to provide significantly lower response

times for write requests than PBFT and HFT for each region. For strongly and weakly
consistent read requests, it also achieves similar or lower response times. When messages
are authenticated using ed25519 signatures, an optimized variant of Spider achieves a
similar maximum throughput as PBFT.
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For applications with a large state, creating checkpoints can take a long time. It requires
capturing a snapshot of the application state during which the request execution must
be paused, which can result in response-time spikes. Our approach Deterministic Fuzzy
Checkpointing (DFC) lets the replicas create the snapshot concurrently to processing
requests, thereby drastically reducing the pause duration. However, the resulting snapshot
is fuzzy. Together with additional information about the modifications made by requests
executed in the meantime, the snapshot is turned into a deterministic fuzzy checkpoint
that is again identical on all replicas.
Section 6.1 analyzes the shortcomings of existing approaches to create checkpoints

regarding the aspects efficiency, resilience and flexibility. Afterwards Section 6.2 presents
the different steps to create a deterministic fuzzy checkpoint on a conceptual level. The
mapping to two concrete application interfaces is given in Section 6.3. In Section 6.4
our checkpointing approach is extended to only capture data that has changed between
two checkpoints. Further optimizations are then described in Section 6.5. Section 6.6
investigates the impact on throughput and response time of DFC in comparison to
traditional checkpointing methods. Finally, we discuss related work in Section 6.7 and
conclude the chapter in Section 6.8.

6.1. Problem Statement
Replicas running a state-machine replication protocol have to create checkpoints in
regular intervals. This allows replicas that have fallen behind to catch up by retrieving
such a checkpoint and also enables the recovery [58] of replicas which after restarting the
replica require the current state. In addition, checkpoints enable the replicas to garbage
collect older requests to ensure that they do not run out of memory.
We start with a short repetition of the checkpointing component discussed in Sec-

tion 2.3.3.5. Replication protocols typically create a new checkpoint after executing a
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sequence number divisible by the checkpoint interval k. This ensures that the application
has executed the same requests on all replicas. A replica captures a snapshot consisting
of the application state and some replication-protocol–specific data, which it uses to
create a checkpoint. As described in Section 2.1.6, we assume that the application state
consists of several objects O = {o1, o2, ..., on}, which are uniquely identified by an object
identifier. The replicas then exchange signed Checkpoint messages containing the
hash of the checkpoint. Each replica tries to collect a checkpoint certificate consisting of
2f + 1 matching checkpoint messages, which requires that the replicas create identical
checkpoints and which proves the checkpoint’s correctness at which point the checkpoint
becomes stable. This triggers the garbage collection of old requests and allows other
replicas to retrieve and verify the checkpoint.
Section 6.1.1 discusses how to efficiently create checkpoints, followed by resiliency

considerations in Section 6.1.2. Afterwards we present in Section 6.1.3 the challenge of
providing flexibility regarding which data is captured by a checkpoint and the number of
required replicas.

6.1.1. Increasing the Efficiency

As checkpoints must be created periodically, it is important that their creation only has
a small performance impact. However, for applications with several gigabytes of state or
more, just capturing a snapshot of the application state can take multiple seconds [46],
which causes noticeable delays even in a wide-area environment. To create a consistent
snapshot that is identical on all correct replicas, during this time the request execution
at the replica has to be paused. Otherwise, concurrent modifications of the application
state could cause some replicas to capture a state object before a certain request was
executed and others to capture it afterwards, thus collecting different states.

The most basic approach is full checkpointing, which creates a checkpoint by capturing
a full snapshot of the application state, as shown in Figure 6.1a, that is, it contains a copy
of every object [46, 62]. The replication library pauses the request execution right after
executing the checkpoint sequence number and then instructs the application to export its
whole state. Once the export is complete, the request execution continues. As all replicas
pause at the same logical point in time and no requests are executed during the export,
this results in identical snapshots on all replicas. Thus, the corresponding checkpoints
are identical and can be compared across replicas. Full snapshots are relatively easy to
implement, as the application just has to export its whole state. However, this comes at
the price that creating a full snapshot can cause substantial delays of multiple seconds [46],
which are also confirmed by our evaluation in Section 6.6.2.

PBFT [57] uses differential checkpointing, shown in Figure 6.1b, which captures
differential snapshots containing only state objects that have changed since the previous
snapshot. This requires an application interface that allows the replication library to learn
about changed state objects and to selectively export those. By combining those with the
objects from the last checkpoint, the library can assemble an up-to-date checkpoint. In
more detail, PBFT uses a copy-on-write (COW)-like approach in which the application
notifies the library before modifying an object, which allows the library to back up the
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(b) Differential checkpointing [57, 59] only captures objects that have changed since the last checkpoint.
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(c) Hybrid checkpointing [62] alternates between creating full checkpoints and hybrid checkpoints, which
additionally contain the list of ordered requests since the last full checkpoint.
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r4 …

(d) Dura-SMaRt [46] sequentially schedules the creation of full checkpoints such that only up to f replicas
at a time pause their request execution to create checkpoints.

Figure 6.1: Schematic overview of different existing approaches to create checkpoints.

current state of the object and store it in the latest snapshot if necessary. Retrieving
an object from a snapshot then works by selecting the object copy in this snapshot, or
if no such copy exists, then iteratively checking all newer snapshots and finally falling
back to retrieving the object from the current application state. Taking a snapshot only
requires creating a new, initially empty, snapshot and resetting the tracking of changed
objects. However, to create the actual checkpoint, the library also has to calculate the
current checkpoint hash. This works by computing a hash combining the hashes of all
state objects. For objects which are unchanged since the last snapshot, the previously
calculated hash is reused, but for changed objects the calculation requires exporting
these objects. To guarantee a consistent state, this step cannot run concurrently to the
request execution and thus delays the resumption of the request execution. Differential
checkpointing processes fewer data than full checkpointing, however, as we show in our
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evaluation in Section 6.6.3, there can still be substantial delays when large numbers of
objects have changed, or the export of some objects takes a long time.
BASE [59] extends PBFT’s differential checkpointing by distinguishing between an

abstract state representation that is shared between replicas and a concrete variant at
each individual replica. This allows replicas to rely on different service implementations,
for example by using different databases, and thereby enables the usage of existing
commercial of-the-shelf (COTS) components to achieve fault independence between
replicas. However, this also requires a translation layer to convert between the abstract
and concrete representation. This conversion increases the costs of exporting data from
the application and thereby prolongs the pause of the request execution.

Clement et al. [62] suggest using a helper process that also processes all requests and
thus can be used to capture a full application snapshot without pausing the request
processing at a replica. This approach doubles the required resources to process requests
and requires that the request execution in the helper process can catch up to the replicas
before having to create the next checkpoint. If this cannot be guaranteed, then the request
execution at a replica may still have to pause in order to let the helper process catch up.
Another suggestion is to integrate COW directly into the application [62]. While this
approach may be effective to reduce delays, it can require significant modifications to
the application’s data structures. In addition, this requires applications to implement
the management of the snapshot data itself, which can no longer be offered in a generic
manner by the replication library.

Approach of this Thesis
Instead of creating a snapshot after the execution processed a certain sequence number,
our approach DFC starts capturing the application state a short time earlier on and
does so concurrently to the request execution. Thereby, DFC does not have to pause the
request execution, but this will result in a fuzzy snapshot. By additionally capturing
intermediate changes to the state objects, DFC has enough information to transform the
fuzzy snapshot into a regular checkpoint. This latter step also runs concurrently to the
request execution to avoid delays.

6.1.2. Maintaining Resilience

Replicas have to verify the content of a checkpoint before applying it in order to guarantee
that the application state has not been tampered with. This requirement is easily fulfilled
for checkpoints created by full and differential checkpointing, as a replica only retrieves
and applies a checkpoint after obtaining a certificate proving its correctness.
Clement et al. [62] propose an approach called hybrid checkpointing, shown in Fig-

ure 6.1c, which combines infrequent full snapshots with a list of requests that have been
ordered in the meantime to create a hybrid checkpoint. This reduces the number of full
snapshots necessary and thus also the checkpointing delays, but does not avoid them
completely. The verification of such a checkpoint then has to check that both the full
snapshot and the list of requests are supported by at least f + 1 replicas, that is, one
correct replica. Applying a hybrid checkpoint requires the application to first update its
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state using the snapshot and then to execute all attached requests. This can introduce a
substantial delay, as executing a request typically takes longer than only applying its
effects to the application state. Additionally, when a checkpoint is used to recover a
faulty replica [58], re-executing the requests can be a problem: if a request triggers a bug
in the replica implementation, then the recovered replica could fail again when executing
the problematic request, which consequently prevents replicas from recovering.
Dura-SMaRt [46] takes the idea of spreading the costs for creating checkpoints even

further: replicas create their full snapshots in turns at different sequence numbers, as
shown in Figure 6.1d, such that at most f replicas at a time are taking a full snapshot.
As the system has enough redundancy in the normal case to tolerate up to f faulty
replicas, the other replicas can fill in for the replicas that currently create their checkpoint
to avoid service interruptions. However, in wide-area networks with their non-uniform
latencies, as shown in the figures in Section 3.1, replies from different replicas arrive at
different times, such that pausing the execution at some replica can cause increased reply
times. With the replicas creating their full checkpoints at different points in time, the
resulting checkpoints also cannot be compared directly. Instead, a replica that wants
to apply a checkpoint has to retrieve the f + 1-newest full checkpoint and a log of the
requests that were ordered after the checkpoint, apply it and then iteratively update
the application state using the request log, until it reaches the next checkpoint and
compare that against its current application state. In total, the replica has to reproduce
f + 1 matching checkpoints (including the initial checkpoint) created by different replicas,
which ensures that the current state is correct. If the verification fails, the replica selects
a different full checkpoint as starting point and retries the verification procedure. A big
downside of this approach, in addition to having to re-execute large amounts of requests
and the already discussed associated problems, is that a replica has to apply an unverified
checkpoint. If a replica implementation contains bugs that can be triggered by applying
a manipulated checkpoint, this can allow an attacker to compromise a replica. As a
recovering replica always has to update itself using a checkpoint, a freshly recovered
replica may become faulty even before it restarts request processing.

Approach of this Thesis
After collecting a fuzzy snapshot, DFC runs an additional phase that deterministically
merges the fuzzy snapshot and the list of state changes into a normal checkpoint. The
latter can be used just like a traditional checkpoint and is identical across all replicas,
which allows the replicas to verify its correctness before applying it.

6.1.3. Providing Flexibility

Depending on the application, it might be sufficient to use full snapshots, which are
simpler to implement, or differential snapshots, which are more efficient as they only
capture the changed state objects but require a more complex application interface.
Thus, a checkpointing approach should be flexible enough to support both variants. Of
the already discussed approaches, only the COW snapshots used by PBFT [57] and
BASE [59] provide this choice, the other approaches only support full snapshots.
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Figure 6.2: Schematic overview of creating a fuzzy checkpoint including the state capture (SC)
and checkpoint completion (CC) phases.

Checkpointing should also be flexible enough to support both execution groups con-
taining 2f + 1 or 3f + 1 replicas. For example, Spider (cf. Chapter 5) and several
other approaches [40, 84, 130, 150, 203, 210] only use 2f + 1 execution replicas. In that
setting, it must be possible for a checkpoint to become stable once f + 1 replicas support
it, which means that a single correct replica must be able to prove the checkpoint’s
correctness on its own, as the other f replicas might be faulty. With identical checkpoints,
a checkpoint can become stable once a replica collects a certificate of f + 1 matching
Checkpoint messages as this constitutes such a proof. All discussed approaches except
for Dura-SMaRt create comparable checkpoints.

In contrast, with non-comparable checkpoints like in Dura-SMaRt a correct replica can
collect f + 1 Checkpoint messages, but is unable to verify whether they are matching,
without recreating the corresponding checkpoints itself1. Thus, up to f of the collected
Checkpoint messages may be faulty, which can prevent other replicas from verifying
the correctness of the checkpoint. With only 2f + 1 execution replicas it is not possible
to wait for more than f + 1 checkpoint messages while also guaranteeing liveness and
therefore Dura-SMaRt cannot be used when relying on only 2f + 1 execution replicas.

Approach of this Thesis
We present two variants of DFC that can either capture full or differential snapshots. The
latter is then combined with the previous checkpoint to create an up-to-date checkpoint.
This results in identical checkpoints on all replicas, such that DFC can also work with
2f + 1 execution replicas.

6.2. Deterministic Fuzzy Checkpointing

The central idea of our approach Deterministic Fuzzy Checkpointing (DFC) is to first
collect a fuzzy snapshot of the application state in a state-capture (SC) phase that runs
concurrently to the normal request execution as shown in Figure 6.2. As each replica

1However, when verifying every checkpoint immediately, Dura-SMaRt would degrade to full checkpointing,
which negates all its performance benefits.
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creates a new checkpoint every k-th slot, it starts the state-capture phase a bit earlier
such that it finishes the collection of the application state before reaching the sequence
number for the next checkpoint. Additionally, the effects of all requests executed between
the start of the state capture and the checkpoint’s sequence number are collected and
are combined with the snapshot during a checkpoint-completion (CC) phase to make the
checkpoint deterministic again, hence yielding a deterministic fuzzy checkpoint. Both
phases run concurrently to the request execution to minimize delays.

6.2.1. State Capture

In the following we describe how the application state is captured to create a checkpoint
for target sequence number s. To ensure that the state capture is complete before reaching
the target sequence number, each replica has to start the state-capture phase earlier on.
For this, each replica ri selects a sequence number pi at which the state capture starts.
This start sequence number is determined individually by each replica and does not
require coordination, as the final checkpoint will be identical on all replicas independent
of the start sequence number.

The library uses a separate thread to capture the application state O = {o1, o2, ..., on}
by copying the objects oi one after another. We assume that replication protocol-
specific data like the client counter values and cached replies are captured along with the
application state. In addition, once the state capture has started, all changes made to
the application state have to be tracked until the execution reaches the target sequence
number s. The details depend on the application interface for which we discuss two
variants in Section 6.3, including the necessary synchronization for a consistent result.

After the state-capture phase, this results in a fuzzy checkpoint F = (S[pi,s], Mpi,...,s).
The fuzzy snapshot S[pi,s] contains each object of the application state, which each
were copied at some point between pi and s, and the modifications list Mpi,...,s contains
information about each change of the application state during the state-capture phase.
Together these contain enough information to turn the fuzzy checkpoint into a regular
full checkpoint.

6.2.2. Checkpoint Completion

A just created fuzzy snapshot cannot be directly compared between replicas. As each
replica can choose the start sequence number independently, different fuzzy checkpoints
can be captured across different sequence number ranges, and consequently the fuzzy
snapshot S[pi,s] can cover different objects. In addition, the state capture and the request
execution can interleave differently at each replica, such that one replica copies an object
before executing a certain request and another one copies it afterwards. Both reasons
cause replicas to collect different fuzzy snapshots.

The modifications list Mpi,...,s for a snapshot at the different replicas varies in length if
different starting points pi are used. However, as each request execution results in the
same state changes on every replica, for any sequence number the replicas would still

153



6. Concurrent Checkpointing

r3 ……

r4 ……
SC

SC

SC

SC

CC

CC

CC

CC

Blocked execution Checkpoint

Too early Optimal (small) buffer

1

2 3

Figure 6.3: Replicas adapt the starting point of a state capture (SC) such that it completes a
short time before reaching the target sequence number. A too short or too long
time buffer ( ) can cause execution pauses or increase the overhead.

collect the same modifications. Thus, the modification lists at each replica are suffixes of
each other.
To make the checkpoints comparable, the checkpoint-completion phase applies the

modifications list Mpi,...,s in order onto the fuzzy snapshot. Once completed, this yields
the same checkpoint on all replicas. The latest version of each state object is either
contained in the fuzzy snapshot or if it was modified during the state capture, then
the modification list contains the corresponding change. Thus, after merging both, the
resulting checkpoint contains the application state at target sequence number s. Like the
state capture, the checkpoint completion runs in a separate thread and therefore allows
the request execution to continue in the meantime.

6.2.3. Capture Timing

Replicas in DFC periodically create a new checkpoint after executing a sequence number
divisible by k. The state capture for a checkpoint at target sequence number s has to
start earlier on, which requires each replica ri to determine a suitable start sequence
number pi. As shown in Figure 6.3, it should be selected such that it is early enough
to allow the state capture to complete before reaching the target sequence number. If
this is not the case 1 , then the execution must be paused to ensure that a consistent
snapshot can be created. In the opposite direction 2 , the state capture should start as
late as possible to reduce the overhead of collecting and applying a large modifications
list. Ideally, the state capture completes in time with only a small buffer left 3 .
To achieve a good balance, after capturing a snapshot, DFC dynamically selects the

next start sequence number pi based on the capture time of the last snapshot. It is
calculated as pi = max(s − λ · dsc − δ, s̃ + 1), where s is the next target sequence number,
s̃ the last target sequence number, δ and λ are parameters used to control the snapshot
timing by adding a constant and proportional amount of buffer time, respectively. The
duration dsc is the number of sequence numbers that were processed during the last state
capture. This dynamic capture-start reduces the overhead when compared to a static
offset, which would have to be early enough to cover all situations. The formula also
prevents the checkpoint intervals from overlapping, by ensuring that a new state-capture
phase starts after the previous checkpoint was captured. In the other extreme, when the
state capture does not start before reaching the target sequence number, that is, pi = s,
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1 // Application interface
2 interface CAW_Application {
3 // Request execution
4 Result invoke(Request r);

6 // Notify replication library
7 callback modified(ObjectID oid);

9 // Checkpointing
10 Byte[] object(ObjectID oid);
11 void apply(ObjectID[] oids, Byte[][] objects);
12 }

Figure 6.4: Application interface for the DFCcaw variant.

then DFC essentially behaves like full checkpointing. By using the previous state-capture
duration, the timing automatically adapts to heterogeneous replicas [84], which due to
different hardware or software can require more or less time to capture a snapshot. As
the start sequence number is selected independently for each replica, this allows DFC to
work with replicas having differing performance characteristics.

6.3. Application Interface

In the following we present two variants of the application interface that can be used to
implement deterministic fuzzy checkpointing. The copy-after-write variant DFCcaw works
at the granularity of whole objects, which allows the replication library to generically
manage the object handling and checkpoint completion. In contrast, the update-based
variant DFCupd uses application-specific updates to only capture the state parts that
actually have changed. This makes the state capture more efficient but also requires an
application-specific checkpoint capture and completion, and consequently results in a
higher implementation complexity.

6.3.1. DFCcaw: Copy-after-Write Variant

When using the copy-after-write variant DFCcaw, the state collection works at the
granularity of whole objects. We expect each object to have a size of at least a few
kilobytes to limit the overhead for managing individual state objects in relation to the
overall state size. For the replication library to know which objects have changed, the
application has to send a notification whenever it modifies an object. While the state-
capture phase is creating copies of every object in the application state, the library keeps
track of objects that are modified in the meantime. Afterwards the library copies all of
modified objects once the target sequence number s is reached. That is, modified objects
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are copied after they were written. The final copy step is limited to objects modified
during the state-capture phase and thus only results in a short delay.

Interface
The required application interface for DFCcaw is shown in Figure 6.4 and is similar to
that used by BASE [59]. The invoke(r) method is used to execute a client request r and
returns the execution result. If any of the state objects are modified while processing the
request, the application has to call the modified(oid) callback to inform the replication
library that an object with identifier oid has changed. The callback can be issued before
or after modifying an object, as long as it is reliably called for each modified object.
Note that it must always be called independent of whether the replica is currently in
the state-capture phase or not, as the library has to learn about the identifiers of all
existing objects. Using the object(oid) method, the replication library can retrieve
the application-specific serialization of the state of the object with identifier oid. For
non-existent objects, the method instead returns a special nil value ⊥. In order to restore
a checkpoint, the replication library calls apply(oids, objects) with a list of all objects
that have changed, along with their identifiers oids.

Object Identifier Tracking
To capture a full checkpoint, the library must know the identifiers of all existing objects.
Therefore, the library maintains a set I of existing object identifiers to which it adds all
new identifiers returned by the modified() callback. If object() returns the nil value ⊥,
the identifier is removed from the set. The state-capture phase then uses the set I to
collect a fuzzy snapshot S[pi,s] of all these objects. The replication library also collects
a set Isc of objects modified during the state-capture phase. After reaching the target
sequence number s, the library copies the current state of all objects in Isc. During this
step the request execution must be paused. The resulting modification list Mpi,...,s is
then used to update the set I with the identifiers of added and removed objects.

Checkpoint Completion
The checkpoint completion step finally merges the fuzzy snapshot S[pi,s] and the modifi-
cation list Mpi,...,s to create the checkpoint by replacing all modified objects with their
latest version. If an object has value ⊥, then it is removed from the checkpoint.

Correctness
The checkpoint is guaranteed to match the application state after executing sequence
number s. The fuzzy snapshot includes a copy of each object that was referenced by I
at sequence number pi or ⊥ if the object was removed in the meantime. If an object oj

was last modified before sequence number pi, then the fuzzy state already includes its
current state. Otherwise, the object’s identifier was added to Isc and thus the object is
copied when reaching s. Therefore, the modification list contains an up-to-date copy,
which is then merged into the final checkpoint. The above case also applies to newly
created objects. Objects that were deleted by a request, yield ⊥ when retrieving their
state using object() and are removed while completing the checkpoint.
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1 // Application interface
2 interface Upd_Application {
3 // Request execution
4 [Result, Update] invoke(Request r, boolean createUpdate);

6 // Checkpointing
7 Snapshot fuzzy();
8 Checkpoint complete(Snapshot S[pi,s], Update[] Mpi,...,s);
9 void apply(Checkpoint cp);

10 }

Figure 6.5: Application interface for the DFCupd variant.

Object Retrieval
Retrieving an object copy from the application must be possible even for objects that
are modified by a request that executes concurrently. For example, this can be achieved
by employing per-object locking, such that the object copy is based on a consistent
state before or after the object is modified. For legacy applications it is also possible to
interleave request execution and state capturing, which avoids concurrent accesses to
objects, but can slow down the request execution.

Comparison with BASE
Although the application interface is similar to that used by BASE [59], there are
significant differences in the provided properties. BASE requires the application to
always notify the replication library before modifying a state object, whereas DFCcaw is
more flexible and supports notifications before, during or after an object was modified,
giving developers the flexibility to choose the most suitable point in time to issue the
callback. For each modified object, BASE has to synchronously back up its state which
for large objects can lead to execution delays. In DFCcaw most objects can be captured
asynchronously during the state-capture phase and thus allow the request execution
to continue. The checkpoint completion in BASE has to happen synchronously when
reaching the checkpoint sequence number. During this phase it becomes necessary to
additionally export the current state of all modified objects for the hash calculation.
DFCcaw instead allows the checkpoint completion to proceed asynchronously and only
has to capture an object multiple times if it is modified during the state-capture phase.
In Section 6.4 we discuss how to extend DFCcaw with differential checkpointing, which is
also used by BASE, such that only objects that were modified since the last checkpoint
are captured.

6.3.2. DFCupd: Update Variant

The DFCupd variant uses an update-based application interface that delegates more
functionality to the application in exchange for a more efficient handling of state modi-
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fications. The application becomes responsible for managing the capture of the fuzzy
snapshot and has to generate application-specific updates that capture modifications of
the application state. This allows tailoring the updates to the application’s needs.

Interface
The interface of DFCupd is presented in Figure 6.5. The invoke(r, createUpdate)
method executes request r and offers the createUpdate option to enable or disable the
creation of an update that captures the effects on the application state. That is, the
update contains information on all modified objects. During the state-capture phase,
the replication library collects them in a modification list Mpi,...,s. For efficiency reasons,
update creation is only enabled between the start of the state capture and the target
sequence number s for the checkpoint. The replication library calls the fuzzy() method
from a separate thread during the state-capture phase, then the application is responsible
for creating a fuzzy snapshot S[pi,s]. Merging the fuzzy snapshot S[pi,s] and the modifica-
tion list Mpi,...,s is done using the complete(S[pi,s], Mpi,...,s) method, which combines
both into a deterministic fuzzy checkpoint. The application state can be updated by
passing a checkpoint cp to the apply(cp) method.

Checkpoint Completion
For the checkpoint to be correct, updates must be applicable to the fuzzy snapshot
independent of whether the affected objects were copied before or after creating the
update. More precisely, for an object oj applying all updates, which were created between
sequence number pi and s to the object state, which was captured at some point in the
same timespan, must update the object to its latest state. In the following we describe
two possible variants how updates can be structured to satisfy this requirement. As
capturing a fuzzy snapshot has to copy objects one by one, different objects are copied at
different points in time. Therefore, an update must always be applicable even if some of
the objects relevant for the update already contain a later state and others still have to be
updated. Consequently, an update should be a collection of modifications to individual
objects in which each modification must be applicable independently. The update for an
individual object can for example use one of the following constructions:

• Updates can be structured such that these are not applied when the state of an
object is newer than expected. This can be checked by including version numbers
into the objects and updates, and later on skipping old updates by comparing the
version numbers. For this variant, the state capture must consistently capture
objects at a state before or after these are modified by a request, to ensure that
the version number is accurate.

• Another variant is to create only updates that can be applied without reading from
the current state of the object in the fuzzy snapshot. For example, updates could
blindly (over-)write selected parts of an object or delete the object, and just ignore
errors if the object does not exist yet. These operations are then independent of the
object’s state. This behaves similarly to DFCcaw, but by being application-specific
it is possible to apply modifications at a much finer granularity.
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Figure 6.6: Schematic overview of creating a differential fuzzy checkpoint including the state
observation (SO), state capture (SC) and checkpoint completion (CC) phases.

Correctness
The properties of the fuzzy snapshot and the updates ensure that the resulting checkpoint
is correct. Objects that were last modified before sequence number pi are already captured
with their latest state by the fuzzy() method and the application by construction creates
no updates for them. We now consider objects that are modified between sequence
numbers pi and s. As updates must be applicable to individual objects, we focus on
an arbitrary but fixed object oj in the following. Starting from sequence number pi,
modifications of object oj result in the creation of an update. The fuzzy state-capture
phase also retrieves a state after this starting point. Thus, the captured object version
is either the version just before the first update, or some state in between or after the
updates. As applying all updates for an object must yield its latest state, the resulting
checkpoint contains the latest state of each object. Thus, the checkpoint is identical to a
full checkpoint captured right after sequence number s.

6.4. Differential Deterministic Fuzzy Checkpointing (DDFC)

For applications with large states usually only a fraction of all objects are modified
between two consecutive checkpoints. To create an up-to-date checkpoint, it is sufficient
to capture only these modifications and then update the previous checkpoint. This can
significantly reduce the number of state objects that have to be captured and thereby
speeds up the snapshot creation. We add a state observation phase, which is included
in Figure 6.6, and tracks which objects have changed between the last checkpoint and
the start of the state-capture phase. The replication library then only captures these
changed objects. Afterwards during the state-completion phase, this differential fuzzy
checkpoint is combined with the previous full checkpoint into an up-to-date deterministic
fuzzy checkpoint.

State Observation
The exact approach to collect a list of changed objects since the last checkpoint depends
on the used variant of deterministic differential fuzzy checkpointing. The differential
copy-after-write-based variant DDFCcaw maintains a set of identifiers Io that contains all
objects that were modified during the state-observation phase, that is, after the sequence
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number s̃ of the last checkpoint and before the new state-capture phase starts at pi. It
replaces the set I containing the identifiers of all application objects, as this information
is implicitly available by combining the objects in the last checkpoint and those in Io.
For the differential update-based variant DDFCupd, the replication library instructs

the application to create small meta updates when executing requests. The meta updates
only contain the information which objects were modified, but not the modifications
itself and thus are cheap to create. The library then collects these meta updates as a
list Us̃+1,...,pi−1. While it would be possible to always create full updates, this would lead
to redundantly capturing all changes to objects that change more than once between
checkpoints. Using meta updates during the state-observation phase, the generation of
full updates remains limited to the state-capture phase.

State Capture
To create a differential fuzzy checkpoint ∆F = (∆S[pi,s], Mpi,...,s), the state-capture phase
collects a differential fuzzy snapshot ∆S[pi,s], which only contains objects modified during
the state-observation phase. DDFCcaw now only copies the objects whose identifier
is part of Io. In contrast, when using DDFCupd, the replication library passes the
meta updates Us̃+1,...,pi−1 to the fuzzy() method to inform it that these objects should
be exported. Like with full checkpoints, the modifications list Mpi,...,s contains all
modifications made to objects during the state capture.

Checkpoint Completion
To create a normal checkpoint, the differential fuzzy snapshot ∆S[pi,s] from the differ-
ential fuzzy checkpoint ∆F is first combined with the previous checkpoint into a fuzzy
checkpoint F . Afterwards the modification list is applied to the fuzzy snapshot in the
same way as for full checkpoints.

Correctness
Combining the previous checkpoint with the differential fuzzy snapshot ∆S[pi,s] yields a
fuzzy snapshot with the following properties. An object oj that was not modified during
the state observation keeps its old state, thus its state is identical to the state the object
still had at sequence number pi. All other objects get the state that was captured as
part of ∆S[pi,s]. That is, the resulting fuzzy snapshot is indistinguishable from a full
fuzzy snapshot captured between pi and s. Then the correctness proofs for merging the
modification list still apply.

6.5. Optimizations

In the following we discuss several possible optimizations that can further increase the
efficiency of DFC or reduce its (performance) impact on the request execution.

Fine-Granular Modification Tracking
During the state-capture phase, the replication library tracks all modifications to any
object. This ensures that all objects can be updated to their latest state. However, the
modification tracking for an object is actually only necessary once the object has been
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copied, earlier modifications are not required to update the object. Thus, it is sufficient
to only collect modifications for objects which have already been copied.

Throttled State Capturing
Depending on the application, the state-capture phase and the request execution may
have to compete for shared resources like CPU time, disk access, or locks. In this case, it
can be beneficial to throttle the speed at which state objects are captured by introducing
a short delay between capturing two state objects. Selecting a specific delay has to make
a trade-off between an increased state-capture duration and a lower performance impact
on the request execution.

Lazy Checkpoint Completion
Creating a checkpoint message, which includes the checkpoint hash, can be expensive, as
it requires computing the hash of all changed objects. When using at least 3f +1 replicas,
it becomes possible to defer the calculation of the checkpoint hash until the checkpoint is
requested by another replica. Instead, at least f + 1 correct replicas provide a promise
that the checkpoint exists and can be retrieved if necessary. This requires a replica to
collect 2f + 1 promises such that f + 1 of them must originate from correct replicas.
These replicas can later on vouch for the correctness of the checkpoint if it becomes
necessary for a replica to retrieve it. The lazy checkpoint hash calculation also allows
replicas to lazily merge the captured fuzzy snapshot and the modification list.

Workload-Dependent Checkpoint Intervals
The amount of work to create a checkpoint can vary depending on the workload. For
a fixed number of requests, for example, the size of the objects that must be captured
can drastically differ depending on the size of the processed requests. To keep the delay
introduced by checkpointing below a certain threshold, the interval at which checkpoints
are created should adapt accordingly.
For this we first have to revisit the checkpoint interval k. As discussed in Section 4.5

for Isos, it is actually only necessary for all replicas to create checkpoints at the same
logical point in time, that is at the same sequence numbers, but it is not necessary to
use periodic intervals. Thus, the replicas can pick nearly arbitrary sequence numbers
at which to create checkpoint, as long as the replicas always agree. To bound the size
of the state that has to be kept, there should still be an upper limit for the number
of agreement slots processed between two consecutive checkpoints. We therefore allow
replicas to dynamically schedule the creation of a checkpoint for a sequence number s
while limiting the distance to the checkpoint interval k such that s ≤ s̃ + k where s̃ is
the sequence number of the last checkpoint.

By using a deterministic measure to calculate the target sequence number, it is possible
to do so without explicit communication between replicas. Possible criteria could be the
number of write requests executed or the summed up request size in bytes since the last
checkpoint. After reaching a certain threshold, the replicas schedule a checkpoint for
sequence number s = min(st + ρ · k, s̃ + k) where st is the sequence number at which the
threshold was reached and ρ specifies a fraction of the checkpoint interval k to reserve
time to run the state-capture phase. Additionally, the sequence number s is bounded to
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adhere to the maximum distance between two checkpoints. Like before, its precise start
is determined locally at each replica.

6.6. Evaluation

In the following we evaluate the performance impact of checkpointing using the classical
checkpointing methods and the different deterministic fuzzy checkpoint variants. We first
compare the different methods for creating full checkpoints, before switching to differential
checkpointing. The section concludes with a comparison of the copy-after-write and
update-based variants of DFC.

6.6.1. Setup

We compare three different checkpointing approaches in our evaluation. Firstly, BFTfull
serves as baseline and represents the classical approach of creating full checkpoints [47, 73,
84], which pauses the request execution while taking the application snapshot. Secondly,
DFCcaw is the copy-after-write variant of DFC, which captures the application state at
the granularity of objects concurrently to the request execution. Thirdly, DFCupd uses
application-specific updates to collect state updates more efficiently.
In addition, we separately evaluate the differential counterparts of each approach.

BFTdiff [57, 59] only captures the state parts that have changed since the previous
checkpoint in order to reduce the pause duration. It is compared with the differential
variants of DFC, that is DDFCcaw and DDFCupd.

Our evaluation does not include Dura-SMaRt [46] as it requires replicas to apply
unverified checkpoint state, which can be a security risk as discussed in Section 6.1.2.
In addition, it is also incompatible with protocols like Spider (see Chapter 5) that use
small execution groups consisting of only 2f + 1 replicas.
All checkpointing approaches are implemented in a single codebase to allow for a

meaningful comparison. The implementation is written in Java and uses PBFT [57]
as agreement protocol. It uses SHA256 [164] to calculate the checkpoint hash and
HMACs [133] with SHA256 to authenticate messages.

Our implementation of BFTfull and BFTdiff are optimized in comparison to the original
PBFT implementation in that they, when reaching the checkpoint sequence number,
only block to capture the application state for the checkpoint hash calculation, but run
the more expensive checkpoint hash calculation asynchronously. As our evaluation in
Section 6.6.1 shows, this significantly reduces the request execution delay as the hash
calculation takes more time than retrieving the application state.

Replicas and Clients
The system is configured to tolerate one fault f = 1 and consequently consists of four
replicas that each run on a server (Intel Xeon E3-1275 CPU, 3.6 GHz, 16 GiB RAM)
in our local testbed using Ubuntu 18.04.2 LTS and OpenJDK 11. We run 100 client
instances on a single server (Intel Xeon E5645 CPU, 2.4 GHz, 32 GiB RAM) using the
same software. All servers are connected using Gigabit Ethernet.
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The experiments run in our local testbed, as the focus is on the checkpoint creation and
in particular the state capture which does not require communication between replicas
and is therefore not affected by wide-area latencies. In addition, with the lower local area
latencies we get a clearer view on the processing delays caused by checkpointing.
The agreement protocol creates batches of up to five requests with a combined total

size of 10KiB. Unless mentioned otherwise, we use a checkpoint interval k = 100,000.

Application
As application for our experiments we use a key-value store that stores a large number
of key-value pairs with a value size of 4KiB. Each key-value pair corresponds to a
state object and is identified by its key. An object also contains metadata including a
last-accessed timestamp which is updated each time the key is queried or written.
The dataset is stored in an in-memory SQLite database2. By keeping the dataset

in-memory, this speeds up the data retrieval and thus benefits traditional approaches
which have to pause the request execution to capture the application state.

As workload, unless stated otherwise, the clients issue an equal mix of query and write
requests which return the state of an object and replace its data, respectively. The client
randomly selects which key to access for each request. With a large application state
typically only a part of all objects are actively used, thus we configure our clients to
access and modify only a fraction of the application state. Unless noted otherwise, only
half the objects in the application state are accessed.
In order to retrieve the state of a specific object when using BFTdiff or (D)DFCcaw,

the application loads the data from the database and serializes it into a byte buffer. For
(D)DFCupd the application creates updates only containing the object metadata or the
whole object depending on the data changed by the request. For example, for a query
request the update only includes the metadata change.

Experiments
All experiments run for 240 seconds, of which we remove a warm-up phase consisting of
the first 230,000 sequence numbers. With our standard checkpoint interval of 100,000
sequence numbers, this removes the first three checkpoints at sequence numbers 0, 100,000
and 200,000 to give the system time to warm up. The warm-up phase also includes a short
timespan after the third checkpoint to remove the corresponding checkpoint-completion
phase and checkpoint certificate collection. Depending on the system’s throughput, this
warm-up phase results in removing roughly the first 75 to 100 seconds. We report the
data measured during the 120 seconds immediately following the warm-up phase. The
clients measure the timing of each request individually, based on which we determine the
throughput and response time.
We want to answer the following questions in our evaluation:

1. What influence does BFTfull and the corresponding DFC variants have on the
throughput and response times of the system?

2. Which improvements do BFTdiff and the differential DFC variants offer?
2https://sqlite.org/releaselog/3_23_1.html
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Figure 6.7: Full checkpointing: impact of BFTfull, DFCcaw and DFCupd on the request process-
ing throughput for a state size of 1 and 3GiB.

3. How much influence does the number of changed objects have on the differential
checkpointing approaches?

4. How efficient are DDFCcaw and DDFCupd in comparison with each other?

6.6.2. Full Checkpointing
To answer the first question, we measure the impact of creating full checkpoints on the
request execution. For this, we run the application using two different state sizes: once
with 250,000 objects with 4KiB of data each, resulting in a state size of about 1GiB,
and with 750,000 objects, which correspond to 3GiB. We compare the BFTfull, DFCcaw
and DFCupd approaches with each other. Figure 6.7 shows the achieved throughput
after the warm-up phase of all three approaches. With the checkpoint interval of 100,000
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Figure 6.8: Response-time spikes caused by creating full checkpoints for a 3GiB state

sequence numbers and the used batching configuration, the replicas process roughly
350,000 requests between two checkpoints. Depending on the achieved throughput this
translates to creating a new checkpoint approximately every 33 to 38 seconds.

Response Time Increase due to Checkpointing
Our measurements show that creating a full checkpoint can lead to substantial delays
during request processing. The throughput drops in Figure 6.7 for BFTfull are caused by
delays of up to 1.3 seconds to snapshot a 1GiB application state and up to 4.7 seconds
for the 3GiB setting. The latter setting is also shown in more detail in Figure 6.8.
In contrast, DFCcaw and DFCupd capture the application state concurrently to the

request execution, which drastically reduces the response time impact. For DFCcaw,
the delay remains below 225 ms for the 1GiB setting and 670 ms for 3GiB. These
shorter delays are a result of DFCcaw pausing the request execution while capturing
the modification list, which only requires copying the state of all objects that have
changed during the state-capture phase. As we discuss in Section 6.7, to reduce this delay
further, it would be possible to repeatedly capture the modification list before reaching
the checkpoint’s target sequence number and thereby reduce the number of remaining
modifications to collect. The throughput graphs also show that the state-capture phase,
which runs before creating the checkpoint, only leads to a small decrease in throughput.
This is despite the fact that the concurrent state capture and request execution have to
coordinate with each other.
Using DFCupd further decreases the maximum delays to 154 ms for 1GiB of state

and 181 ms using 3GiB. DFCupd already captures all required information during the
state-capture phase such that there is no need to pause the request execution. A further
analysis of the measured delays shows that the garbage collection pauses of the Java
virtual machine are a significant contributor to them. The leader replica experiences such
pauses of up to 63 ms and 144 ms for the different state sizes. Pauses of the leader replica
directly translate into delayed request proposals and thereby are visible as increased
response times to the clients. Therefore, a further decrease of the maximum response
times requires reducing the garbage collection pauses.
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Impact of Checkpointing on Throughput
For the 1GiB setting, BFTfull and DFCcaw achieve a throughput of about 10.5 thousand
requests per seconds, and DFCupd reaches a slightly higher throughput of 10.7 thousand
requests per second. With the larger 3GiB setting, the throughput of BFTfull decreases
to 9.3 thousand requests per second, whereas both variants of DFC sustain a nearly 9%
higher throughput of 10.1 thousand requests per seconds. This confirms that deterministic
fuzzy checkpointing is effective in significantly reducing the maximum response times
while also achieving a throughput similar or higher than that of full checkpointing.

Asynchronous Checkpoint Hash Calculation
Different from PBFT, our implementation of full checkpointing first captures the whole
application state while the request execution is paused and afterwards asynchronously
computes the checkpoint hash instead of executing both steps during the execution pause.
As previously discussed, for BFTfull the state capture takes 1.3 and 4.7 seconds. The
duration until the corresponding checkpoint becomes stable is 2.7 and 8.9 seconds for a 1
and 3GiB state size, respectively. During this time, a replica computes the checkpoint
hash and exchanges the corresponding checkpoint messages with the other replicas to
collect a checkpoint certificate. As our experiments run in a local area setting, the latter
part only contributes a small amount of latency, such that the delay is nearly exclusively
caused by the hash computation. Thus, BFTfull significantly benefits from computing
the checkpoint hash asynchronously, as that takes longer than the state capture itself.
This shows that our implementation variant of PBFT indeed reduces the response-time
spikes while creating a checkpoint, resulting in a more competitive comparison.

6.6.3. Differential Checkpointing

To answer the second and third question, we investigate the performance impact of
differential checkpointing and experiment with different checkpoint intervals. For this,
we compare the differential checkpointing variants BFTdiff, DDFCcaw and DDFCupd.
As differential checkpointing is intended for large application states, we configure the
application to use 750,000 objects, resulting in a state size of 3GiB, and now use a
checkpoint interval of 50,000 and 100,000.

Comparison to Full Checkpointing
The resulting throughput is shown in Figure 6.9 and the maximum response time in
Figure 6.10. For a comparison with the full checkpointing experiments, we first focus
on the checkpoint interval k = 100,000. Compared to creating full checkpoints, using
BFTdiff only results in a maximum response time of slightly above 1.7 seconds. This shows
that differential checkpointing indeed reduces the work necessary to create a checkpoint
and thus is suitable for larger application states than full checkpointing. However, for
large numbers of changed objects - in our experiment more than 200,000 objects change
between two checkpoints - it still results in significant delays.
For DDFCcaw, the maximum delay visible to clients shrinks to 303 ms. As the state-

capture phase now has to copy fewer data, the list of objects changed in the meantime
shrinks as well and therefore the final step to create the modification list also has to
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Figure 6.9: Differential checkpointing: impact of BFTdiff, DDFCcaw and DDFCupd on the
request processing throughput for a checkpoint interval of 50,000 and 100,000.
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Figure 6.11: Maximum response times of differential checkpointing for a varying fraction of
modified objects.

capture fewer objects, which results in a shorter execution pause. The delay times for
DDFCupd remain nearly unchanged, as it does not pause the request execution.

The reduced work to capture the application snapshot also yields an increased through-
put. BFTdiff achieves a nearly 9% higher throughput than BFTfull, which is a result of the
much shorter execution pauses. Both DDFCcaw and DDFCupd increase the throughput
compared to their full checkpoint variants by about 4%. For them the throughput im-
provement has a different cause. During the concurrent state-capture phase, the request
processing throughput degrades slightly. With differential checkpointing that phase takes
less time to complete and therefore results in a smaller performance impact.

Varying the Checkpoint Interval
We now analyze the effect of cutting the checkpoint interval in half, that is, down to
50,000. For BFTdiff this reduces the maximum response time by 27%, down to slightly
below 1.3 seconds. This less than expected pause time reduction can be explained in
parts by the number of changed state objects which only decreases by approximately 40%.
For DDFCcaw and DDFCupd the maximum response times remain similar to those for
the larger checkpoint interval. Finally, the throughput for all variants is reduced by 2%
as a consequence of creating checkpoints more frequently.

Varying the Amount of Changed Objects
To answer the third question more thoroughly, we modify our previous experiment such
that clients only access a configurable fraction of the application state. This allows us to
control the number of changed objects between two checkpoints. As before, the size of
the application state is 3GiB and the checkpoint interval is k = 100,000.

As shown by Figure 6.11, the processing delay that is caused by checkpointing approxi-
mately scales with the number of changed objects. In addition, DDFCcaw and DDFCupd
consistently provide lower maximum response times that BFTdiff, confirming the results
of our previous experiments.
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Figure 6.12: Average duration of the state-capture phase and throughput for both DDFCcaw
and DDFCupd. Each bar shows the time to create the fuzzy snapshot and to
capture the modification list .

6.6.4. Comparing DDFCcaw and DDFCupd

In our final experiment, we investigate differences between DDFCcaw and DDFCupd
to answer question four. For this we compare two different workloads. The first one
only changes the object metadata and consists of requests that query some random key.
This results in an update of the last accessed timestamp in the corresponding object’s
metadata. In contrast, the second workload changes both metadata and data by issuing
requests that overwrite the data stored for a key and thus both the object’s data and
metadata change.
Figure 6.12 shows the throughput for both workloads. The higher throughput and

capture time of the metadata-only workload are largely a consequence of different batch
sizes. For the metadata-only workload due to its smaller request sizes, the batches contain
up to the maximum of five requests, whereas for the second workload with its larger
write requests only two requests can be batched together.

When only metadata is changed, then DDFCupd takes 35% less time than DDFCcaw
to capture the application state. For DDFCcaw, we also include the time to capture the
objects in the modification list. The improvement is twofold. The updates captured by
DDFCupd only contain the object metadata and thus are cheaper to create than copying
the full object. In contrast to DDFCcaw, there is also no need to later on copy each object
that was modified during the state-capture phase to build the modifications list. When
both metadata and data are modified, then the lead of DDFCupd shrinks to 11% as both
variants now have to capture the full object data.

6.6.5. Discussion

To put the checkpointing delays reported in Section 6.6.2 into perspective, for a 1GiB
state Bessani et al. [46] report that capturing the snapshot takes multiple seconds when
using full checkpointing. Our implementation compares favorably to that and only
requires 1.3 seconds to capture a 1GiB state. This benefits BFTfull and BFTdiff, which
pause the request execution while creating the snapshot. When storing the checkpoint
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on HDD or an SSD, the reported delay increases to more than ten seconds [46]. This
suggests that the performance benefits of DFC can be even larger in such a setting.

6.7. Related Work

This section discusses related approaches to DFC that are used in different contexts and
reviews methods to efficiently transfer checkpoints.

Databases
In the context of crash faults, the approach of creating fuzzy checkpoints was originally
developed for relational databases [113, 143, 178]. To limit the size of the database log,
which is required for crash recovery, these from time to time create a fuzzy snapshot
of the database. Together with a redo-log, the database can update the captured state
to be consistent. In order to handle long-running transactions, which start before the
snapshot creation, it may still be necessary to keep redo-log entries from before the start
of the checkpoint creation. Due to handling only crash faults, it is sufficient to create a
snapshot for an arbitrary point in time, whereas DFC has to guarantee that all replicas
create the exact same checkpoints. Additionally, in DFC there are no transactions across
multiple requests, thus the modification log begins with the state-capture phase.
The fuzzy checkpointing approach is also used in some replicated databases [213] or

key-value stores [122]. These create a fuzzy snapshot by iterating over the stored data
without locking and creating copies of all entries. This process can be triggered from
time to time [122] or whenever a snapshot is requested to update a replica [213]. By
reapplying the modification log since the start of the fuzzy checkpoint collection, the
database state will return to a consistent state.

With crash-tolerant databases each replica can start and complete the snapshot creation
at different times, as it is not necessary for the snapshots to be comparable. In fact, the
fuzziness of the snapshot is only resolved when using the snapshot to recover the current
state. To tolerate Byzantine faults, the snapshot creation must however adhere to more
stringent criteria. The replicas require a proof that the content of a snapshot is correct,
which in turn requires the creation of identical snapshots on all replicas. This forces the
replicas to coordinate the checkpointing process.

Disk-Based Copy-on-Write
VM-FIT [76] and ZZ [209] use disk-based copy-on-write snapshots to create checkpoints.
For this, the application has to persist all volatile state to disk and then request the
virtual machine platform or the filesystem to create a copy-on-write snapshot. Compared
to DFC, these approaches are only effective if most data is already stored on disk, as
otherwise significant pause times can arise from writing the application state to disk.
It is also impractical for applications that keep their state in memory. In addition, the
implementation becomes dependent on specific features of the underlying filesystem or
platform, which increases the amount of platform-specific code, hence requiring more
effort to port the library. This complicates using a diverse set of platforms to improve
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fault independence [96], as different platforms, for example, support different filesystem
features. In contrast, DFC only requires standard operating system interfaces.

Virtual Machine Migration
The snapshot creation for DFCcaw bears a certain resemblance with virtual-machine live
migration [61]. The latter allows moving virtual machines between hosts by copying their
memory pages while the virtual machine is running. The hypervisor starts by transferring
a copy of all memory pages of the virtual machine to the migration target while the
virtual machine is still running. In a second step all pages modified in the meantime are
transferred again. This is repeated until the remaining changes are small enough or a
certain number of steps has been reached. As final step, the virtual machine is paused
and the remaining pages are transferred. The iterative transmission reduces the amount
of data to copy in the final step and thereby the duration for which a virtual machine
is paused. A similar iterative approach would be possible for DFCcaw. Instead of just
creating a fuzzy snapshot as first step and copying the remaining objects in the final step,
it would be possible to also iteratively collect objects change in the meantime.

Checkpoint Transfer
For DFC we have focused on creating large checkpoints without causing large latency
spikes. In order to apply such a checkpoint at a recovering replica, it is nevertheless
important to be able to quickly transfer it. In the following we sketch approaches that
can be used for a high-performance transfer of the checkpoints created by DFC.
PBFT [56] optimizes the checkpoint transfer by letting a replica only request the

objects in a checkpoint for which the replica does not have the current state. To do so
efficiently, a replica first retrieves the hashes of the state objects and then only requests
the missing ones. By organizing the objects in a Merkle tree (cf. Section 5.7.2) this can
be optimized further to quickly skip identical tree parts. Using specialized tree variants,
the overhead for detecting missing objects can be further optimized [134].

To optimally adapt the object transfer to the available wide-area network throughput,
Kapitza et al. [127] propose a pipelined object-transfer mechanism. A replica always
requests objects in batches. Once the first object of a batch arrives, the replica requests
a new batch whose size is selected to saturate the available network throughput for the
duration of a round-trip time. That way, the network remains fully used while still being
able to quickly adapt to changes in available bandwidth.

Besides optimizing the time to transfer the replica state, the time to recover a replica
can also be optimized. For this the request execution can be modified to allow loading
the application state incrementally [151, 209]. Only the parts necessary to execute a
specific request have to be loaded, other parts of the application state can be recovered at
a later time. This allows a replica to start executing requests while it is still recovering.

6.8. Summary

The periodic creation of checkpoints can cause large delays for the request execution.
DFC aims to eliminate these delays by running the state-capture phase concurrently to
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the normal request execution. The resulting fuzzy checkpoint consists of the captured
fuzzy snapshot and a modification list containing all state changes that occurred in the
meantime. Together these are asynchronously combined by a state-completion phase into
a deterministic fuzzy checkpoint, which is identical on all replicas. We have presented a
copy-after-write and an update-based variant, which trade off implementation complexity
and efficiency. With the help of an optional state observation phase, DDFC only has to
capture the changed state parts. As our evaluation shows, this enables our approach to
reduce its execution delays even further compared to traditional checkpointing.
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7
Conclusion

This thesis has addressed the problem of reducing response times from different angles.
In the following, Section 7.1 summarizes the main results, Section 7.2 discusses directions
for further possible research before we conclude the thesis in Section 7.3.

7.1. Summary
In this section, we revisit the three approaches presented in the previous three chapters,
which each focus on one of the protocol phases shown in Figure 7.1. We discuss how
the approaches address our two central questions, namely which improvements of the
client-perceived response times as well as reduction of performance variations they achieve.

Egalitarian Fault Tolerance
The first step to process a client request is the transmission of the request from the
client to the responsible leader replica. If the client and the leader replica have a high
communication delay, then the request transmission alone can result in a significant

Client

Leader

Follower

Follower

Follower

Exec | CP

Exec | CP

Exec | CP

Exec | CP

Client Agreement Execution Client

Figure 7.1: Protocol steps that are necessary to process a client request, grouped into client
communication-, agreement- and execution-specific steps at the example of PBFT.
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increase of the response time. In addition, response times become sensitive to changes of
the leader location and have the potential for large performance variations.

Isos requires 3f + 1 replicas and allows clients to submit their request to the nearest
replica, which immediately initiates the agreement for the request. For this, each replica
has its own set of sequence numbers to which it can assign requests. The order across
different replicas is then established using dependencies between requests. This relies on
the fact, that for strong consistency it is sufficient to only order requests which conflict
with each other [169]. The dependencies for a request are determined by a quorum of
replicas, which were selected by the replica that received the request. If each dependency
is reported by at least f +1 of those replicas, then the agreement can complete on the fast
path. Otherwise, the protocol finishes processing the request via a reconciliation path for
which the replicas exchange their dependencies in an additional protocol phase before
completing the agreement. To ensure that faulty replicas cannot introduce non-existent
dependencies to prevent a request from executing, a replica only accepts dependencies
which are known to exist.

Before executing a request, the dependencies are used to order the requests accordingly
and thereby the execution ensures that conflicting requests are executed in the same
order on all replicas. In case of cyclic dependencies between requests, the whole cycle is
sorted deterministically and afterwards executed in this order. To bound the required
state, the execution only processes a limited number of requests at a time. If a request
cycle exceeds this limit, then it is deterministically cut into smaller parts.

In addition, replicas periodically create new checkpoints to garbage collect old requests.
As each replica can independently assign requests to its sequence numbers, replicas have
to coordinate at which point to create a new checkpoint. For this each replica periodically
proposes a checkpoint request, which divides all other requests into before and after,
therefore allowing the request execution to create a consistent checkpoint covering the
same requests on each replica.

Our evaluation on Amazon EC2 shows that Isos for low conflict rates is able to provide
response times similar to the best PBFT configuration for each region, but for all regions
at the same time. That is, the client-perceived response time improves for many clients.
In addition, the egalitarian design avoids performance variations due to changes of the
leader replica. For large requests, Isos is able to spread the work of distributing requests
across all replicas and thereby significantly outperform PBFT.

Cloud-Based Hierarchical Replication
The second major contributor to the response time for a request are the communication
steps necessary for the agreement between the replicas themselves. It is possible to
minimize their cost in terms of latency by placing all replicas at the same location, such
that they can communicate with very low latency. However, this increases the risk that
all replicas fail at the same time.

Spider makes use of the properties of modern cloud environments to resolve this
dilemma. We split the replicas into an agreement group and multiple execution groups,
which are each located in a cloud region. The replicas within a region can communicate
with each other with low latency but are placed in different availability zones, which are
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engineered by the cloud providers to minimize the risk of correlated failures. The size of
the agreement group depends on the used agreement protocol, whereas the execution
groups always consist of only 2f + 1 replicas each. This simplifies the deployment as most
cloud regions consist of only three availability zones [19, 101, 159]. The communication
between groups uses IRMCs which allow replicas to exchange messages, but prevent
faulty replicas from sending manipulated messages by requiring that at least f +1 replicas
vouch for the correctness of each message.

A client submits its request to its local execution group, which forwards it to the
agreement group using a client-specific subchannel. Requests that arrive at the agreement
group are then totally ordered by the agreement protocol. Afterwards the ordered
requests are distributed using the IRMCs to all execution groups, which execute the
requests and return the results if the client is in the same region. If a weakly consistent
reply to a read request is sufficient for the client, then the request can be processed
locally by an execution group. This provides very low response times by removing the
need for wide-area communication.

Spider periodically creates checkpoints to bound the state required at each replica.
This process is coordinated using the flow-control mechanism provided by the IRMCs,
which bounds the message queue in these channels, but also ensures that requests are
only garbage collected after they are no longer required for another group.
We present two different implementations of the IRMC abstraction with different

trade-offs regarding implementation complexity and message overhead.
Our evaluation shows that Spider offers lower response times to clients than PBFT

and HFT. Using batching in the agreement protocol and for the IRMCs, Spider can
provide a throughput of several thousand requests per second. As all replicas of the
agreement group are located in the same region, Spider provides similar response time
independent of the current leader replica and thereby reduces performance variations.

Concurrent Checkpointing
As third protocol step, the ordered requests have to be executed. In order to bound the
required state of the system, replicas have to periodically create checkpoints to garbage
collect old requests. To tolerate Byzantine faults, all replicas have to capture a consistent
snapshot of the application after processing the request for the same sequence number.
However, creating a consistent snapshot also requires pausing the request execution. For
applications with multiple gigabytes of application state, this can result in notable spikes
in the response time.
DFC minimizes these delays by starting the state capture earlier on and running it

concurrently to the request execution. This results in the creation of a fuzzy snapshot.
In addition, replicas collect a modification list with information about changes to the
application state that were made in the meantime. Together with the fuzzy snapshot
the list is combined into a regular checkpoint. The latter step runs concurrently to the
request execution to avoid delays. For efficiency, the start of the state capture is adjusted
dynamically based on the time required to capture the last checkpoint.
We present two variants of DFC. Firstly, a basic copy-after-write variant, which

tracks changed state objects and captures an updated copy of them when reaching the
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checkpoint sequence number. To make a fuzzy snapshot deterministic again, captured
objects are replaced with their latest version. Secondly, an update-based variant, which
uses application-specific methods to capture a fuzzy snapshot of the whole application
state and collect updates for each state modification to further reduce delays. The fuzzy
checkpoint is afterwards updated by applying the collected updates. Both variants can
be used to create differential checkpoints, which only capture state objects that have
changed since the last checkpoint, in order to minimize the amount of copied data.

The described variants reduce delays introduced by checkpointing, for example, a 3 GiB
application state from multiple seconds to less than a second. Capturing differential
checkpoints further decreases the delay. Overall, fewer execution pauses can slightly
improve the throughput and virtually eliminate client-visible response-time spikes.

7.2. Outlook

In the following we sketch possible directions for future research. In particular, we suggest
methods to scale Spider to large numbers of execution groups and how to combine DFC
and Isos.

7.2.1. Scaling Hierarchical Fault Tolerance

In Spider, to offer optimal response times for weakly consistent read requests to more
clients, it is necessary to add further execution groups. As the agreement group is
responsible for distributing the ordered requests to all execution groups, it can become a
bottleneck with a growing number of execution groups.

The IRMC-SC implementation already reduces the transmission overhead by collecting
a certificate for each message at the sender side and then forwarding each message only
once to each receiver. However, to minimize wide-area transmission costs between groups,
ideally only a single copy of the message is sent over a wide-area connection, followed by
locally distributing the message within the receiver group, similar to the approach used
by Amir et al. [20]. To apply this idea to Spider, the replicas have to agree on which pair
of replicas is responsible for forwarding the message between groups to be able to replace
a faulty pair if necessary. As the execution groups are too small to run a Byzantine
agreement protocol, the agreement group hosts an additional agreement protocol instance
that runs an application exclusively used to manage the IRMC configuration. That is,
for each IRMC instance, this application manages the information which replica pair
is currently responsible for forwarding messages. Once at least fr + 1 receiver replicas
report an issue with the message forwarding, then the application switches to the next
replica pair and informs all involved replicas that the configuration has changed. These
replicas then retrieve the updated configuration.

A central configuration application also provides opportunities for further optimization.
Using the global view of which agreement replica forwards requests to how many execution
groups, it can ensure that the work to distribute the ordered requests is equally spread
across multiple sender replicas to improve the throughput.

176



7.2. Outlook

…

…

SO

SO

SO

SO

SO

SO

r1

r4

SC CC

SC CC

SC CC

SC CC

Checkpoint Checkpoint
Request execution Request execution Request execution

Figure 7.2: Schematic overview of creating a differential fuzzy checkpoint with a rollback-based
approach. The checkpoint creation proceeds in the state observation (SO), state
capture (SC) and checkpoint completion (CC) phases.

With an increasing number of execution groups, it becomes more and more likely that
the transmission to one group is routed in proximity to another group. Thus, tasking the
latter group with forwarding the ordered requests to the former one, adds little extra
latency but reduces the work for the agreement group. In order to forward requests, the
corresponding groups have to set up IRMCs with each other to distribute the ordered
requests. The decision which execution groups forward messages to another one is made
centrally by the configuration application at the agreement group. A forwarding execution
group may only confirm that requests can be garbage collected, once all recipient groups
have done so too. To detect that a forwarding group has fallen behind, the recipient
groups additionally maintain an IRMC to the agreement group to learn about the current
protocol progress.

7.2.2. Fuzzy Checkpoints for Egalitarian Fault Tolerance

The state capture phase used by DFC has to start sufficiently early before reaching the
checkpoint sequence number. This works well for Spider, which uses a single global
sequence number space and thereby allows selecting a suitable starting point. In contrast,
in Isos each replica has its own sequence number space and the creation of checkpoints
is triggered via checkpoint requests. This complicates the selection of a suitable starting
point for the concurrent state capture phase.

Instead of collecting a fuzzy snapshot earlier on and updating it, we suggest collecting
the fuzzy snapshot afterwards and rolling it back as shown in Figure 7.2. The state
capture runs concurrently to the request execution and starts after reaching the checkpoint
sequence number. As a result, the modification list has to track information on how to
roll back the fuzzy snapshot to the state at the checkpoint sequence number. Similar to
DFC, the checkpoint completion phase which now rolls back the fuzzy snapshot, runs
concurrently to the request execution to avoid delays.

We propose two variants of the application interface. Firstly, using the copy-on-write
variant, the application has to inform the replication library about changed state objects
before modifying them in order to allow the library to immediately create a copy of the
state object. An object is only copied if this is the first modification since the checkpoint
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capture has started. The fuzzy snapshot is then rolled back by replacing modified state
objects with their unmodified copies.
Secondly, the undo variant collects application-specific undo objects, which can be

used to roll back state objects. While the state capture is active, the application has
to create these undo objects which afterwards are applied in reverse order to roll back
the fuzzy snapshot to the expected checkpoint state. Similar to updates in DFC, an
undo object must work at the granularity of individual objects as the fuzzy snapshot can
contain state objects captured at different points in time.
Differential checkpointing works by tracking changed objects during the state obser-

vation phase, which is active for the full duration between two checkpoints. The state
capture phase then only copies changed objects. As an optimization it is sufficient during
the state capture phase to only collect changes for these changed objects.

The main benefit of this approach is that it is no longer necessary to estimate a suitable
starting sequence number for the state capture phase. Instead, the state capture phase
just runs until it is complete. Only if the state capture does not complete before reaching
the next checkpoint sequence number, then the request execution still has to block.
The checkpoint requests in Isos can trigger the creation of checkpoints in quick

succession. To prevent the just described execution delays, checkpoint requests should
be ignored if less than k requests have been executed since creating the last checkpoint.
As the agreement window for each request coordinator contains at least 2k sequence
numbers, each request coordinator is still able to trigger the creation of a new checkpoint.

7.3. Concluding Remarks
The response time of a state-machine replication protocol is partially determined by the
number of protocol phases, which for a certain number of replicas and faults have to
adhere to certain theoretical lower bounds. But even then it is possible to reduce the
cost of these phases, for example, by differentiating between local-area and wide-area
communication. This allows reducing the latency for some protocol phases down to nearly
zero, by turning them into local-area communication as suggested by this thesis, which
in turn can also reduce the overall response time. Periodic operations at replicas such
as creating checkpoints for garbage collection have the potential to introduce significant
delays into these protocol phases. By running the checkpoint concurrently to the normal
request processing, protocols can avoid these delays.
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A
Safety and Liveness Proof for Egalitarian

Fault Tolerance

This chapter is a partially revised version of the pseudocode and proofs presented in the
appendix of the paper [88] of which I am the main author.

In Appendix A.1 we present the properties provided by Isos as described in Chapter 4.
Afterwards we prove these properties, first the agreement-specific parts in Appendix A.2
and then the execution in Appendix A.3. As last step, the checkpointing mechanism is
integrated into the proof in Appendix A.4.

A.1. Properties
We show that Isos provides the following properties. The Consistency, Execution
Consistency and Agreement Liveness properties are based on those used by EPaxos [162].

• Validity: Only correctly signed client requests are executed.

• Consistency: Two correct replicas commit the same request and dependencies for
a slot.

• Execution Consistency: Two conflicting requests are executed in the same order
on all correct replicas.

• Linearizability: If two conflicting requests are proposed one after another such
that the first request is executed at some correct replica before the second request
is proposed, then all replicas will execute these requests in that order.

• Agreement Liveness: During synchronous phases a client request will eventually
commit at all correct replicas.

• Execution Liveness: During synchronous phases a client will eventually receive a
result.
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We write pi to refer to a variable p from the perspective of replica ri.
A message m signed by replica ri is denoted as 〈m〉σri

. We make the following standard
assumptions regarding cryptography (cf. Section 2.1.5). All replicas are able to verify each
other’s signatures. A malicious replica is unable to forge signatures of correct replicas.
All replicas drop messages without a valid signature.

By h(m) we refer to the hash or digest of a message m calculated using a collision-
resistant hash function, that is, it must be virtually impossible to find two arbitrary
messages m and m′ with identical digest.

Messages for a slot are delivered eventually by retransmitting them, unless the slot was
garbage collected in the meantime. That is, we assume reliable point-to-point connections
between all replicas until slots are garbage collected. Once a replica has successfully
completed a view change for a slot, then it is no longer necessary to retransmit messages
for earlier views. It is also not necessary to retransmit DepPropose and DepVerify
messages once a new view was entered for the slot. In addition, for each message type
only the message from the highest view per slot in which the message type was sent has
to be retransmitted.
We first show the properties for Isos without checkpointing and later on extend the

pseudocode and proofs to include checkpointing.

A.2. Agreement

We start by presenting the pseudocode of the agreement, which includes the fast-path
optimization from Section 4.7.1. Afterwards we prove the validity and consistency
properties which only involve the agreement part of the protocol.

A.2.1. Pseudocode

1 Variables at each replica:
2 p[sj ] // DepPropose for agreement slot sj , includes fast-path quorum F
3 pr[sj ] // Request for DepPropose of agreement slot sj

4 v[sj ][fi] // DepVerify for slot sj from follower fi

5 step[sj ] ∈ {init,proposed,fp-verified,fp-committed,
rp-verified,rp-prepared,rp-committed,view-change}

6 view[sj ] // View number for slot sj , initially view[sj ] := −1
7 views[sj ][ri] // Highest view number for slot sj received from replica ri

8 cert[sj ] // Latest own certificate for slot sj

9 exec[sj ] // Tuple 〈r, D〉 of committed request r and its dependency set D for slot sj

10 ∆propose := 2∆; ∆commit := 8∆; ∆vc := 3∆; ∆vc−commit := 3∆;
∆query−exec := 4∆ // ∆vc is modified when adding checkpointing support
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Fast Path

11 Request coordinator co receives new r := 〈Request, w, tc〉:
12 assert r is a new request and is correctly signed
13 sj := 〈co, scj〉 // Smallest free slot
14 D := conflicts(r)
15 F := Quorum of 2f followers
16 dp := 〈〈DepPropose, sj , h(r), D, F 〉σco , r〉
17 〈p[sj ], pr[sj ]〉 := dp
18 step[sj ] := proposed
19 Broadcast dp to all replicas
20 Start commit timeout ∆commit for slot sj

22 Follower fi receives dp := 〈〈DepPropose, sj , h(r), D, F 〉, r〉 from co:
23 pre: step[sj ] = init
24 assert F is a valid fast-path quorum
25 assert pr[sj ] = ∅ ∧ sj .co = co // First DepPropose from coordinator
26 wait(D ∪ sj−1) // sj−1 is the previous slot from coordinator co
27 if p[sj ] = ∅:
28 Start commit timeout ∆commit for slot sj

29 Start propose timeout ∆propose for slot sj

30 p[sj ] := dp.DepPropose
31 if r 6= ⊥: // Check whether the full request is included
32 assert r correctly signed
33 Dfi

:= conflicts(r)
34 pr[sj ] := r
35 step[sj ] := proposed
36 if fi ∈ F :
37 Broadcast 〈DepVerify, sj , h(dp), Dfi

〉σfi

39 Replica ri receives m := 〈DepVerify, sj , h(dp), Dfi
〉 from fi:

40 pre: step[sj ] = proposed ∧ h(p[sj ]) = h(dp)
41 assert v[sj ][fi] = ∅ // First DepVerify from follower
42 assert fi ∈ p[sj ].F // Follower is in fast-path quorum
43 wait(Dfi

)
44 v[sj ][fi] := m

45 ~dv := {v[sj ][fi] | ∀fi ∈ p[sj ].F}
46 if | ~dv | = 2f:
47 Stop propose timeout ∆propose for slot sj

48 D := ∪Dfi
∈ ~dv

49 // Every dependency is reported by at least f + 1 followers
50 if {d ∈ D | |{fi | ∀fi : d ∈ v[sj ][fi].Dfi

}| ≥ f + 1} = D:
51 // Slot sj is now fp-verified at replica ri
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52 step[sj ] := fp-verified

53 Broadcast 〈DepCommit, sj , h( ~dv)〉σri

54 else:
55 Enter reconciliation path, stop participating in fast path

57 Replica ri receives 〈DepVerify, sj , ∗, ∗〉 from f + 1 replicas:
58 Start commit timeout ∆commit for slot sj

60 Replica ri receives 〈DepCommit, sj , h( ~dv)〉
with identical h( ~dv) from 2f + 1 replicas:

61 pre: step[sj ] = fp-verified ∧ h({v[sj ][fi] | ∀fi ∈ p[sj ].F}) = h( ~dv)
62 Stop propose/commit timeout ∆propose and ∆commit for slot sj

63 D := ∪Dfi
∈ ~dv

64 exec[sj ] := 〈pr[sj ], D〉
65 Forward 〈pr[sj ], D, sj〉 to execution

67 void wait(DependencySet D):
68 for d ∈ D:
69 sleep until either:
70 p[d] 6= ∅ // Received a valid DepPropose
71 received f + 1 DepVerifys
72 received f + 1 ViewChanges

74 DependencySet conflicts(Request r):
75 // The DependencySet must use the compact dependency encoding, see

Corollary A.3.9
76 return {si|∀si, pr[si] 6= ∅ : conflict(pr[si], r)}

Reconciliation Path

77 Timeout ∆propose for slot sj expires:
78 Broadcast 〈p[sj ], ⊥〉 to all replicas // Only distribute nil value

80 Timeout ∆commit for slot sj expires:
81 Move to new view vsj + 1

83 Enter reconciliation path for slot sj at replica ri:
84 step[sj ] := rp-verified

85 ~dv := {v[sj ][fi] | ∀fi ∈ p[sj ].F}
86 Broadcast 〈Prepare, sj , view[sj ], h( ~dv)〉σri

88 Replica ri receives 〈Prepare, sj , vsj , h( ~dv)〉
with identical h( ~dv) from 2f + 1 replicas:
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89 pre: step[sj ] = rp-verified ∧ view[sj ] = vsj

∧ h({v[sj ][fi] | ∀fi ∈ p[sj ].F}) = h( ~dv)
90 step[sj ] := rp-prepared

91 Broadcast 〈Commit, sj , vsj , h( ~dv)〉σri

93 Replica ri receives 〈Commit, sj , vsj , h( ~dv)〉
with identical h( ~dv) from 2f + 1 replicas:

94 pre: step[sj ] = rp-prepared ∧ view[sj ] = vsj

∧ h({v[sj ][fi] | ∀fi ∈ p[sj ].F}) = h( ~dv)
95 step[sj ] := rp-committed
96 Stop commit timeout ∆commit for slot sj

97 D := ∪Dfi
∈ ~dv

98 exec[sj ] := 〈pr[sj ], D〉
99 Forward 〈pr[sj ], D, sj〉 to execution

View Change

100 Move to new view vsj for slot sj at replica ri:
101 if propose timeout ∆propose for slot sj is active: trigger its expiry
102 Stop commit/VC timeout ∆commit and ∆vc for slot sj

103 dp := 〈p[sj ], pr[sj ]〉; ~dv := {v[sj ][fi] | ∀fi ∈ p[sj ].F if p[sj ] 6= ⊥}
104 // Update certificate if current view fp-verified / rp-prepared
105 if step[sj ] ∈ {fp-verified, fp-committed}:

106 cert[sj ] := 〈FPC, dp, ~dv, −1〉
107 else if step[sj ] ∈ {rp-prepared, rp-committed}:

108 ~prep := set of 2f + 1 Prepares with h( ~dv)
109 cert[sj ] := 〈RPC, dp, ~dv, ~prep, view[sj ]〉
110 view[sj ] := vsj

111 views[sj ][ri] := vsj

112 step[sj ] := view-change
113 Start query execute timeout ∆query−exec for slot sj

114 Broadcast 〈ViewChange, sj , vsj , cert[sj ]〉σri

116 Replica ri receives 〈ViewChange, sj , vsj , ∗〉 from rk:
117 pre: vsj > views[sj ][rk] // View number of a replica must only increase
118 views[sj ][rk] := vsj

119 vn := f + 1-highest in {views[sj ][rl] | ∀rl} // Move to f+1-highest known view
120 if vn > view[ri]:
121 Move to new view vn // Sends new ViewChange message

123 co := (sj .co + max(0, vsj )) mod N // Determine View-change coordinator
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125 View-change coordinator co for view vsj receives valid
V CS := {〈ViewChange, sj , vsj , ∗〉} from 2f + 1 replicas:

126 pre: step[sj ] = view-change ∧ view[sj ] = vsj

127 assert ∀V C ∈ V CS : V C is valid ∧ (V C.cert = ∅ ∨ V C.cert.view ≤ V C.vsj )
128 select dp, ~dv from
129 reconciliation-path result for highest view if RPC certificate exists
130 fast-path result if FPC certificate exists
131 no-op otherwise
132 Broadcast 〈NewView, sj , vsj , dp, ~dv, V CS〉σco

134 Replica ri receives valid 〈ViewChange, sj , vsj , ∗〉 from 2f + 1 replicas:
135 pre: step[sj ] = view-change ∧ view[sj ] = vsj

136 Start VC timeout ∆vc for slot sj

137 Stop query execute timeout ∆query−exec for slot sj

139 Timeout ∆vc for slot sj expires:
140 Move to new view vsj + 1

142 Replica ri receives 〈NewView, sj , vsj , dp, ~dv, V CS〉 from co:
143 pre: step[sj ] = view-change ∧ view[sj ] = vsj

144 assert co is view-change coordinator for view vsj

145 assert ∀V C ∈ V CS : V C is valid
146 assert dp, ~dv correctly selected based on V CS
147 〈p[sj ], pr[sj ]〉 := dp
148 v[sj ][∗] := ∅ // Cleanup DepVerifys

149 ∀dv ∈ ~dv : v[sj ][dv.fi] := dv
150 if sj .i = ri ∧ dp = no-op:
151 Permute fast-path quorum
152 Re-propose request in a new slot
153 Start commit timeout ∆commit with reduced timeout ∆vc−commit for slot sj

154 Enter reconciliation path

156 Timeout ∆query−exec for slot sj expires:
157 Broadcast 〈QueryExec, sj〉σri

to all replicas

159 Replica ri receives 〈QueryExec, sj〉 from replica rj:
160 pre: exec[sj ] 6= ∅
161 〈dp, D〉 := exec[sj ]
162 Send 〈Execute, sj , dp, D〉σri

to replica rj

164 Replica ri receives 〈Execute, sj , dp, D〉 from f + 1 replicas:
165 pre: exec[sj ] = ∅
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166 exec[sj ] := 〈dp, D〉
167 Forward 〈dp, D, sj〉 to execution with dependencies D

A.2.2. Validity
Theorem A.2.1 (Validity). Only correctly signed client requests are executed.

Proof. Only committed requests are executed. A client request is passed to the execution
either in Line 65 or 99 via the variable pr[sj ] or received via Execute messages in
Line 167. pr[sj ] is set in

• Lines 17 and 34: The validity of the client request was verified before setting the
variable.

• Line 147: The value can be a no-op request or a value from a certificate. As each
valid certificate contains 2f DepVerifys from the initial view, one must be from a
correct replica and as a correct replica only creates a valid DepVerify once after
verifying the client request (Line 37), the request must be correct. Otherwise, a
correct replica must have created two DepVerifys which yields a contradiction.

Requests received via Execute messages are only forwarded to the execution if a
replica receives f + 1 matching Executes. Thus, at least one Execute is from a correct
replica which must have processed the request according to one of the two previous cases.
The no-op request is skipped during execution and thus only correctly signed client

requests are executed.

A.2.3. Consistency
Theorem A.2.2 (Consistency). Two correct replicas commit the same request and
dependencies for a slot.

We first establish some additional terminology:

Definition A.2.3. A slot sj is verified if a correct replica collects a valid DepPropose dp,
2f valid DepVerifys from different replicas with matching h(dp) and each DepVerify
is from a replica in the fast-path quorum dp.F .

Definition A.2.4. A slot sj is fp-verified if a correct replica verified it and each
dependency in the DepVerifys occurs at least f + 1 times.

Definition A.2.5. A slot sj is fp-committed if a correct replica collects 2f + 1 DepCom-
mits from different replicas with matching h( ~dv).

Remark A.2.6. Note that fp-committed implies fp-verified as DepCommits are only sent
by replicas which fp-verified the slot.

Definition A.2.7. A slot sj is rp-verified if a correct replica verified it and it is not
fp-verified.

185



A. Safety and Liveness Proof for Egalitarian Fault Tolerance

Definition A.2.8. A slot sj is rp-prepared if a correct replica collects 2f + 1 Prepares
from different replicas with matching h( ~dv).

Definition A.2.9. A slot sj is rp-committed if a correct replica collects 2f + 1 Commits
from different replicas with matching h( ~dv).

Remark A.2.10. rp-committed implies rp-prepared. rp-prepared implies rp-verified.

Definition A.2.11. A slot sj is committed if a correct replica fp-committed or rp-
committed it.

We first show the following auxiliary lemmas.

Lemma A.2.12. A slot sj cannot both be fp-committed and rp-prepared in view = −1.

Proof. By contradiction. Assume that a slot is both fp-committed and rp-prepared
in view = −1. As the slot was rp-prepared, a correct replica received 2f + 1 Pre-
pares (Line 88). This requires f + 1 correct replicas to have entered the reconciliation
path (via Lines 55 and 83). To be fp-committed, another replica must have received
2f + 1 DepCommits. This requires a correct replica to send a DepCommit (Line 53)
and to enter the reconciliation path (Line 55). However, those are mutually exclusive,
which yields a contradiction.

Lemma A.2.13. The content of a reconciliation-path certificate (RPC) cannot be
manipulated without detection.

Proof. As each protocol phase includes hashes of the previous phase, faulty replicas can
only manipulate the last round of messages that is included in a certificate without imme-
diately invalidating the certificate. For an RPC only the Prepares can be manipulated,
however, as the certificate must include Prepares from correct replicas, the certificate
must still prove the correct DepPropose and DepVerifys.

Lemma A.2.14. A faulty replica can only create a manipulated but valid fast-path
certificate (FPC) if not fp-committed.

Proof. A faulty replica could try to construct a faulty FPC using manipulated Dep-
Verifys, which allows the replica to include manipulated dependency sets. A replica
only takes the fast path, if each dependency was reported in at least f + 1 DepVerifys
(Line 50). This requirement is also necessary for an FPC to be valid.

Only a single DepPropose can be verified as it requires the existence of 2f matching
DepVerifys and each correct replica only sends a DepVerify for the first DepPropose
for a slot. Thus, correct replicas use the same fast-path quorum F to create an FPC and
all valid FPCs must use the same F . To change the dependency sets faulty replicas only
have the option to create manipulated DepVerifys.
We now prove the Lemma by contradiction. Assume fp-committed holds. Then a

correct replica has received 2f DepVerifys in which each dependency is part of 0
(nonexistent dependency) or at least f + 1 DepVerifys.
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• 0 occurrences: A manipulated FPC can either not include the dependency in which
case the FPC is effectively unchanged. Or include a new dependency up to f times,
which causes the FPC to become invalid.

• f + 1 or more occurrences: A manipulated FPC can either include the existing
dependency at least f + 1 times in which case the outcome of applying the FPC is
unchanged. Or include a dependency only between 1 and f times, which causes
the FPC to become invalid.

Lemma A.2.15. A manipulated FPC can only be used if neither fp-committed nor
rp-committed.

Proof. If fp-committed, then according to Lemma A.2.14 no manipulated but valid FPC
can exist. If rp-committed, at least f + 1 correct replicas have rp-prepared and thus
at least one RPC is contained in one of the 2f + 1 ViewChanges required for the
view change. Thus, the FPC is ignored. As fp-committed and rp-prepared are mutually
exclusive (Lemma A.2.12) and rp-committed implies rp-prepared, no FPC from a correct
replica can exist.

Now we prove Theorem A.2.2 by contradiction:

Proof. Case 1: A replica ri commits 〈r, D, sj〉 via the fast-path (Line 65). r is the
request committed with dependencies D for slot sj .

• Case 1.1: Another replica rk commits 〈r′, D′, sj〉 with r 6= r′ ∨ D 6= D′ via the
fast-path.

– Case r 6= r′:

Proof. Then pi[sj ] 6= pk[sj ], as h(r) 6= h(r′) due to r 6= r′. h(p[sj ]) is part
of the DepVerifys. Therefore, h( ~dv) must differ. Then the replicas ri and
rk each need 2f + 1 DepCommits with different h( ~dv), which due to the
properties of a Byzantine majority quorum would require a correct replica to
send two DepCommits, which yields a contradiction.

– Case D 6= D′:

Proof. With D := ∪Dfi
∈ ~dv it follows, that for a differing fast-path quorum F

or dependency sets Dfi
, replicas ri and rk must use different h( ~dv). Now, the

proof of the previous case applies.

• Case 1.2: Replica rk commits in view −1 via the reconciliation path.

Proof. Then rp-committed holds. This implies rp-prepared which according to
Lemma A.2.12 conflicts with fp-committed, yielding a contradiction.
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• Case 1.3: rk commits 〈r′, D′, sj〉 with r 6= r′ ∨ D 6= D′ in view ≥ 0 via the
reconciliation path.
Deferred to Case 3.

• The cases are exhaustive.

Case 2: A replica ri commits 〈r, D, sj〉 via the reconciliation path in view = −1 (Line 99).

• Case 2.1: rk commits 〈r′, D′, sj〉 with r 6= r′ ∨ D 6= D′ via the fast-path.

Proof. See Case 1.2.

• Case 2.2: rk commits 〈r′, D′, sj〉 with r 6= r′ ∨ D 6= D′ in view −1 via the
reconciliation path.

Proof. This requires two sets of 2f + 1 Prepares with different h( ~dv) which would
require a correct replica to send two different Prepares (Line 83).

• Case 2.3: rk commits 〈r′, D′, sj〉 with r 6= r′ ∨ D 6= D′ in view ≥ 0 via the
reconciliation path.
Deferred to Case 3.

• The cases are exhaustive.

Case 3: A replica rk commits a diverging m′ := 〈r′, D′, sj〉 via the reconciliation path
in view ≥ 0.

Proof. We prove this by induction: Once a replica commits m := 〈r, D, sj〉, with r 6=
r′ ∨ D 6= D′, in some view, then no replica can commit or prepare a different result m′

in views > view.
Base case: view′ = view + 1:
Assume that m committed in view and that m′ prepares or commits in view′. A correct

replica only decides a result in view view′ after receiving a valid NewView (Line 154).
No manipulated RPC and FPC can be used according to Lemma A.2.13 and A.2.15.

• Case view = −1 ∧ fp-committed: No RPC can exist, as fp-committed and rp-
prepared are mutually exclusive. As the fast-path committed, at least f + 1 correct
replicas have fp-verified the slot. These will include an FPC in their ViewChange.
As the view-change coordinator has to wait for 2f + 1 ViewChanges, at least one
ViewChange will include the FPC, which must be selected by the view change.
The FPC contains m, which contradicts the assumption.

• Case view = −1 ∧ rp-committed: f + 1 correct replicas must be rp-prepared and
thus provide the view-change coordinator with an RPC, which must be included in
the NewView. No correct replica can be fp-committed, as it is mutually exclusive
with rp-prepared. Therefore, if valid RPC and FPC exist, then the RPC is selected,
as the FPC is from a faulty replica and must be ignored. Thus, the selected RPC
contains m which yields a contradiction.
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• Case view ≥ 0: The slot must have rp-committed and thus, similar to the previous
case, the view change correctly selects the RPC. Therefore, the RPC contains m
which yields a contradiction.

• The cases are exhaustive.

Induction step: view′ > view + 1:
To commit a slot, 2f + 1 replicas have to send a DepCommit or Commit. One

ViewChange message with a corresponding certificate from a correct replica must be
part of the 2f + 1 ViewChange messages. A correct replica always sends its newest
certificate (Line 105-109), and therefore one of the ViewChanges used by the view-
change coordinator includes a certificate from the highest view vmax in which a request
has committed.

• Case vmax ≥ 0: Thus, the reconciliation path must have committed in vmax, and
therefore the correct certificate is selected (Line 128-131).

• Case vmax = −1: The existence of an RPC shows that not fp-committed and thus
the RPC must be selected. If only an FPC exists, then not rp-committed and
therefore it is valid to select the FPC.

• The cases are exhaustive.

Case 4: A replica rk commits 〈dp, D, sj〉 after receiving f + 1 valid and matching
〈Execute, sj , ∗, dp, D〉 messages (Line 156-167). This case allows lagging replicas to
catch up and learn the agreement result as described in Section 4.3.4.

Proof. At least one of the Execute messages is from a correct replica, which either has
committed the slot itself such that the other cases apply to that replica. Or the correct
replica has learned from another correct replica that the slot was committed.

The cases are exhaustive.

A.3. Execution
This section first presents the execution pseudocode before providing proofs for the
remaining protocol properties.

A.3.1. Pseudocode
We first introduce some additional notation.

The relation conflict(a, b) states whether two requests a and b conflict with each other.
For a slot v, we write v.i to refer to replica i which is the request coordinator for that

slot. And v.seq to access the attached counter / sequence number. That is, for slot v,
its sequence number is si = 〈v.i, v.seq〉. For two slots v1 and v2 with v1.i = v2.i, we use

189



A. Safety and Liveness Proof for Egalitarian Fault Tolerance

v1 < v2 as shorthand for v1.seq < v2.seq. The dependencies that were committed for
a slot s are given by deps(s). If the context expects a request, we use slot v to refer
to its committed request. Calling “Forward 〈pr[sj ], D, sj〉 to execution” in the agreement
pseudocode, informs the execution about a slot v with request v = pr[sj ], dependencies
deps(v) = D and sequence number 〈v.i, v.seq〉 = sj .
We write a → b if a directly depends on b, that is, b ∈ deps(a). (Logical implications

are written as P ⇒ Q.) a  b also includes transitive dependencies, that is, a  b ⇔
a → b ∨ a → v1 → . . . → vn → b, with n ∈ N and unique vi.
A directed graph G = (V, E) consists of a set V of vertices and a set of directed

edges E. In a dependency graph, the graph contains slots vi (vertices) and edges vj → vk

between those slots. For brevity, we write v ∈ G when referring to the slots/vertices of a
graph, instead of the more verbose v ∈ G.V and (vj → vk) ∈ G to refer to edges in the
graph. Similarly, a comparison of a graph with a set of vertices, only compares against
the vertices of the graph.

rdeps(v) calculates a dependency graph starting from a slot v. By construction all
slots and edges in the graph are reachable from v. rdepsexp(v) calculate a dependency
graph that is limited to slots within the expansion limit.
168 Variables at each replica:
169 k // Size of execution window
170 committed, executed

// Sets containing all slots that have been commmitted or executed so far
171 rhist[∗] := ⊥ // History variable for dependency graph calculation. For each executed

slot v, it stores the dependency graph for v as it existed when v was executed.
172 // Helper functions
173 exp(ri) := min{vmin | vmin /∈ executed ∨ vmin.i = ri}

// Root node for replica ri. This is the first not executed slot for replica ri, that is,
the lower bound of the execution window

174 expk := {v | v.seq < exp(v.i) + k} // All slots that are currently below the expansion
limit, that is, all executed slots and those inside the execution windows

Request Execution

175 // Calculate dependency graph for slot vin. The resulting graph includes all slots
reachable from vin and the edges between them

176 DependencyGraph rdeps(Slot vin):
177 G′ := ({vin}, {}); G := ({}, {}) // G = (V, E)
178 while G 6= G′:
179 G := G′

180 for v ∈ G:
181 if v /∈ executed:
182 G′.V := G′.V ∪ deps(v)
183 G′.E := G′.E ∪ {(v → d) | d ∈ deps(v)}
184 else:
185 G′ := G′ ∪ rhist[v]

190



A.3. Execution

186 return G

188 // Calculate dependency graph for slot vin. Excludes slots outside the execution window
189 DependencyGraph rdepsexp(Slot vin):
190 G′ := ({vin} ∩ expk, {}); G := ({}, {}) // G = (V, E)
191 while G 6= G′:
192 G := G′

193 for v ∈ G:
194 if v /∈ executed:
195 G′.V := G′.V ∪ {d | d ∈ deps(v) ∧ d ∈ expk}
196 G′.E := G′.E ∪ {(v → d) | d ∈ deps(v) ∧ d ∈ expk}
197 else:
198 G′ := G′ ∪ rhist[v]
199 return G

201 while true:
202 Update slots committed in the meantime
203 // Repeat loop until no further suitable v exists
204 // Process all slots in the execution window, whose dependency graph is committed and

within the expansion limit
205 for all v ∈ (expk \ executed) ∧ rdeps(v) ⊆ (committed ∩ expk):
206 ~sc := find not executed strongly connected components in rdeps(v) in inverse

topological order
207 for sc ∈ ~sc:
208 // Standard execution case
209 execute(sc, rdeps(sc))
210 // Process all slots in the execution window, whose dependency graph part that is inside

the execution window is committed
211 for all v ∈ (expk \ executed) ∧ rdepsexp(v) ⊆ committed:
212 ~sc := find not executed strongly connected components in rdepsexp(v) in inverse

topological order
213 // Unblock execution case
214 execute(~sc[0], rdepsexp(~sc[0]))

216 void execute(SCC ~v, DependencyGraph G):
217 for v ∈ sort(~v):
218 Execute request v and reply to client
219 rhist[v] := G

221 Slots sort(SCC ~v):
222 return ~v sorted by sequence numbers v.seq and use replica ID v.i as tie breaker
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A.3.2. Execution Consistency
Similar to the Execution Consistency property in EPaxos [162], we show:

Theorem A.3.1 (Execution Consistency). Two conflicting requests are executed in the
same order on all correct replicas.

We first show that conflicting requests are connected by a dependency between each
other, before showing that conflicting requests are executed in the same order on all
replicas.

Lemma A.3.2. If conflict(a, b) then, a has a dependency to b, that is, b ∈ deps(a) or
the other way around.

Proof. For a request r, the dependencies are provided by one DepPropose and 2f Dep-
Verify, that is, messages from 2f + 1 replicas.

For requests a and b, due to the quorum intersection property, at least one correct
replica ri receives both requests.

• ri receives a before b: Then a ∈ deps(b).

• ri receives b before a: Then b ∈ deps(a).

Therefore, the dependency is included when the slot is committed via the fast or
reconciliation path in view = −1. We now discuss what happens during a view change.
When a replica rp-prepares the slot, then by construction its RPC must also include the
dependency. As an FPC must include f DepVerifys and a DepPropose from correct
replicas or f + 1 DepVerifys from correct replicas, one of these messages includes the
dependency. This is the case as a faulty replica cannot change the fast-path quorum F
afterwards and thus cannot change which replicas contribute to an FPC.
In case no FPC or RPC is part of the view change, then a no-op request is selected.

As that request does not conflict with any other request (except CheckpointReq,
which is added later on by the checkpointing support and is not relevant for now), no
dependencies are required.
Note that the requirement for an FPC or RPC, which include DepPropose and

DepVerifys, ensures that only the request coordinator can propose a request for the
slot.

Next, we show that conflicting requests are executed in the same order on all replicas.
We start with several definitions used in the following:

Definition A.3.3 (SCC). A strongly connected component (SCC) s [195] is a subset
s = (Vs, Es) of a graph G, such that Vs ⊆ G.V is a subset of the graph’s slots, and that
contains all edges connecting these slots Es = {(vi → vj) ∈ G.E | vi, vj ∈ Vs}. Like with
a dependency graph, we use v ∈ s to refer to some slot v that is part of the SCC s. The
subset must additionally have the following properties.

For any two slots ∀vi, vj ∈ s : vi  vj ∧vj  vi. That is, each slot in s must transitively
depend on any other slot in s.
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Additionally, no slot v ∈ G, /∈ s can be added to Vs such that the previous property
still holds. It must not be possible to extend the SCC without losing its connectivity
between all slots. That is, the SCC already has the maximum size.

Definition A.3.4 (Regular SCC). A regular SCC is one that was executed via the
standard case execution (Line 208).

Definition A.3.5 (SSCC). A special-case strongly connected component (SSCC) is an
SCC that was executed via the special case to unblock the execution (Line 213).

Definition A.3.6 (SCC trace). A SCC trace t is a 0-based vector consisting of executed
SCCs in the order of their execution. That is t = [s0, s1, ..., sn], with t[0] = s0, and si are
SCCs. We write ti to refer to the trace belonging to a replica ri.

For a trace t the function flatten(t) = {v | v ∈ s, s ∈ t} returns a set of all slots
contained in the trace t, where s is an SCC and v a slot.

Corollary A.3.7. An SCC trace fully defines the order in which requests are executed.
That is, all executed slots are part of the SCC trace. Every slot is only part of a single
SCC.

Proof. Slots can only be executed via execute(~v, G), which groups requests by SCCs. As
the execution algorithm filters out executed slots, each slot is only executed once and
can thus only be part of one SCC. Requests within an SCC are sorted before execution,
which yields a stable order.

Corollary A.3.8. Note that the inverse topological sorting (Line 206 and 212) ensures
that slots in an SCC can only depend on the SCC itself or earlier SCCs. Thus, when an
SCC is executed, then all its dependencies have already been executed. We rely on this
property in our following proofs.

Note that by definition executedi = flatten(ti).

Corollary A.3.9. The compact dependency encoding implicitly includes dependencies
on all earlier slots of a replica. That is, a dependency from slot va to slot vb ensures that
vb ∈ deps(va) ⇒ cdeps(vb) ⊆ deps(va) with cdeps(vb) = {v|v.i = vb.i ∧ v.seq ≤ vb.seq}.

Corollary A.3.10. Each slot v in an SCC s at replica i has the same rdepsi(v) or
rdepsi

exp(v) when s gets executed. By definition ∀v1, v2 ∈ s, v1 6= v2 : v1  v2 ∧ v2  v1.
Thus, rdepsi(v1) = rdepsi(v2). In the following we use rdepsi(v) and rdepsi(s) for slot
v ∈ SCC s interchangeably. This also applies to rdepsi

exp(s).

In the following we show that two arbitrary SCC traces ti and tj from replicas ri and
rj share certain properties. For this, we first prove a supporting Lemma that rhist[v],
which captures the dependency graph at the moment v is executed, is identical for slots v
executed at both replicas (v ∈ flatten(ti) ∩ flatten(tj)). That is, v was executed as part
of the same SCC on both replicas.
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Lemma A.3.11. Assume replicas ri and rj have traces ti and tj. Then ∀v ∈ flatten(ti)∩
flatten(tj) : rhisti[v] = rhistj [v], where v is a slot in an SCC.

We prove Lemma A.3.11 in multiple steps by induction. We first show that the Lemma
holds for an empty trace, that slots are either executed via a regular SCC or an SSCC,
that the Lemma holds when executing further regular SCCs, and also for further SSCCs.

Base case of Lemma A.3.11: |ti| = |tj | = 0:

Proof. flatten(ti) ∩ flatten(tj) = ∅

We now show an auxiliary lemma that an SCC is consistently executed as regular SCC
or SSCC on all replicas.

Lemma A.3.12. If ∀v ∈ flatten(ti) ∩ flatten(tj) : rhisti[v] = rhistj [v] holds before
executing a slot v1 via the standard case, then rdepsi(v1) = rdepsj(v1). Furthermore, if
v1 is executed as part of a regular SCC s at replica ri and rj (Line 208), then the SCC
is identical at both replicas, that is, si = sj and ∀v′ ∈ s : rdepsi(v′) = rdepsj(v′).

Proof. By construction, a slot v1 in an SCC s is only executed after all slots of s
were committed, therefore per (Agreement) Consistency for any committed slot vx:
depsi(vx) = depsj(vx) = deps(vx) are identical on all replicas. As by assumption no slot
of the SCC s was executed before, rdeps(v1) uses the values from deps(vs) for slots vs that
are part of the SCC s (Line 182). As all dependencies of an SCC were executed before the
SCC (cf. Corollary A.3.8), then these slots vd must be vd ∈ flatten(ti) and ∈ flatten(tj).
Thus, the graph from rhist[vd] is used for executed slots (Line 185), which by assumption
is identical on all replicas. Therefore, rdepsi(v1) = rdepsj(v1) = rdeps(v1).
We now show that (v1 ∈ si ∧ v1 ∈ sj) ⇒ (si = sj = s). This trivially follows for an

SCC of size 1. In the following we consider SCCs consisting of at least two slots and
show that if two regular SCCs at different replicas have at least one slot in common, then
the regular SCCs are identical. By definition ∀v1, v2 ∈ SCC, v1 6= v2 : v1  v2 ∧ v2  v1.
Thus, rdepsi(v1) = rdepsi(v2).

Now assume that two regular SCCs at replica ri and rj have si 6= sj ∧ si ∩ sj 6= ∅
(different SCCs, but with a common slot): W.l.o.g v1 ∈ si, /∈ sj and v2 ∈ si ∩ sj . Then
v1 ∈ rdepsi(v1) = rdepsi(v2) = rdepsj(v2) and therefore the dependency graph at ri

and rj contains the same SCCs, that is, v1 ∈ sj , which yields a contradiction. Thus,
si = sj .

Lemma A.3.13. An SSCC ŝ can only be executed iff ∀v ∈ ŝ : exp(v.i) ∈ ŝ.

Proof. By Corollary A.3.9, vb ∈ deps(va) ⇒ cdeps(vb) ⊆ deps(va). A dependency
vb ∈ deps(va) can be omitted by rdepsexp(v) and consequently from ŝ either if vb is
already executed (then vb < exp(vb.i)) or ∃vr = exp(vb.i) with vb.seq − vr.seq > k. Due
to Corollary A.3.9 vr ∈ deps(va). Thus, vr ∈ ŝ as otherwise it must already have been
executed (all dependencies of an SSCC are executed first, Lines 205 and 212), which
contradicts the definition of vr. These considerations also apply to all other dependencies
of slots in ŝ. Thus, an SSCC ŝ can only be executed exactly at the moment where
∀v ∈ ŝ : exp(v.i) ∈ ŝ, that is, the relevant part of expk is defined by the SSCC.
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Lemma A.3.14. If ∀v ∈ flatten(ti) ∩ flatten(tj) : rhisti[v] = rhistj [v] holds before exe-
cuting a slot v1 via the unblock execution case execution, then rdepsi

exp(v1) = rdepsj
exp(v1)

and rdepsi(v1) 6⊆ expi
k, rdepsj(v1) 6⊆ expj

k. Furthermore, if v1 is executed as part of an
SSCC ŝ at replica ri and rj (Line 213), then the SSCC is identical at both replicas, that
is, ŝi = ŝj and ∀v′ ∈ ŝ : rdepsi

exp(v′) = rdepsj
exp(v′).

Proof. Assume that rdepsi(v1) ⊆ expi
k, rdepsj(v1) ⊆ expj

k, then v1 is always executed
via the standard case (Line 208), such that Lemma A.3.12 applies. This prevents the
unblock execution case from running, which yields a contradiction.
The dependency graph calculated by rdepsexp(v1) depends on deps(v), rhist[v] and

expk. deps(v) is identical across replicas due to the (Agreement) Consistency property
and rhist[v] is identical across replicas as dependencies are executed first and thus this
follows from the assumption.
This leaves showing that the parts of expk that influence the generated dependency

graph are equivalent. According to Lemma A.3.13 the root nodes of an SSCC determine
the relevant parts of expk. Thus, we show by induction that after a common starting
point, that SSCCs executed by replicas ri and rj either use root nodes from disjunct sets
of replicas, or that the SSCCs with overlapping replicas are identical.
Consider slots v from the latest SSCCs that were executed on both replica ri and

rj . Per assumption these SSCCs must be equal as for them rhisti[v] = rhistj [v], such
that the same SCC must be calculated. Then let SSCC ŝi be the next one to execute at
replica ri and SSCC ŝj be the next one to execute at replica rj .

Case 1: Assume that the root nodes of ŝi and ŝj belong to disjunct sets of replicas.
Then we can consider each SSCC independently. Without loss of generality, we only
consider ŝi. Then the previous observation applies that ∀v ∈ ŝi : expi(v.i) ∈ ŝi and
therefore ŝi is determined by the already executed slots. Note that ŝi and ŝj cannot
depend on each other, as that would contradict the assumption that the SSCCs so far
have only executed at one replica.

Case 2: Assume that the root nodes of ŝi and ŝj overlap in at least one replica. We
select one such replica ro. Then vri = expi(ro) ∈ ŝi and vrj = expj(ro) ∈ ŝj . That is vri

and vrj are the root nodes for replica ro from the perspective of replicas ri and rj . Without
loss of generality, assume that vri ≤ vrj . We set vmi = max{vx|vx ∈ ŝi ∧ vx.i = ro},
which is the newest slot in ŝi for replica ro. Then either vmi < vrj or vri ≤ vrj ≤ vmi.

• Case 2.1: vmi < vrj . Then by construction, ŝj depends on vmi, which either would
have to be executed before, such that it would be covered by the common starting
point, which contradicts that vmi ∈ ŝi. Or if vmi is not executed yet at replica rj ,
then by definition of vrj we know that vrj ≤ vmi which contradicts the assumption
of the current case.

• Case 2.2: vri ≤ vrj ≤ vmi. Then a node ∃vx ∈ ŝj : vx → vri, that is, a slot vx

in ŝj depends on vri. And vri  vrj . vri cannot execute before vrj , and then by
definition of vrj it follows that vri = vrj .

• The cases are exhaustive.
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Then, vri and vrj depend on the same slots, which per the previous cases must use
the same root nodes. This applies to all root nodes of the SSCC. As a consequence,
ŝ is determined by any of its slots. That is, ŝ = ŝi = ŝj and ∀v ∈ ŝ : rdepsi

exp(v) =
rdepsj

exp(v).
The cases are exhaustive.

Lemma A.3.15. An SCC is either executed using the standard case execution on all
replicas (regular SCC) or using the unblock execution case on all replicas (SSCC).

Proof. According to Corollary A.3.7 a slot can only be executed once at a replica, thus it
remains to be shown, that the slot is always executed via the same case.

Case 1: To arrive at a contradiction, assume that a regular SCC is executed via the
unblock execution case.

For this, we must find a committed but not executed slot within the execution window,
that is, a slot v ∈ committed ∩ expk ∧ v /∈ executed that satisfies the following condition:
rdepsexp(v) ⊆ committed ∧ ¬(rdeps(v) ⊆ committed ∩ expk). The first part of the
condition ensures that the unblock execution case can execute (Line 211) and the second
part ensures that the standard case execution does not apply (Line 205).
⇔ rdepsexp(v) ⊆ committed ∧ (rdeps(v) 6⊆ committed ∨ rdeps(v) 6⊆ expk)
⇔ rdepsexp(v) ⊆ committed ∧ (rdeps(v) \ rdepsexp(v) 6⊆ committed ∨ rdeps(v) 6⊆ expk).
We also make the following observation: rdeps(v) ⊆ expk ⇒ rdeps(v) = rdepsexp(v).

If rdeps(v) ⊆ expk then the check against expk in rdepsexp never skips dependen-
cies (Line 195) and therefore rdeps(v) = rdepsexp(v).

• Case 1.1: Assume that the unblock execution case would execute for rdeps(v) ⊆
expk. Then rdeps(v) \ rdepsexp(v) = ∅ ⊆ committed which prevents the execution
of the unblock execution case.

• Case 1.2: Thus, the unblock execution case can only execute if rdeps(v) 6⊆ expk.
Due to the inverse topological sort order, the SSCC sc[0] in the unblock execution
case must have rdepsexp(sc[0]) \ sc[0] ⊆ executed, that is, all dependencies of sc[0]
must be executed and sc[0] ⊆ rdepsexp(sc[0]). sc[0] ⊆ expk, that is, sc[0] is a subset
of the slots in the execution window. Thus, rdepsexp(sc[0]) ⊂ rdeps(sc[0]) and
therefore ∃va ∈ rdeps(sc[0]) : (va → ve) ∈ rdeps(sc[0]) ∧ ve /∈ expk. That is, sc[0]
depends on a slot ve after the execution window. Due to the compact dependency
encoding, this also results in a dependency on all earlier slots of the corresponding
replica, including the root node vr, which must be part of sc[0] and was not executed
yet. More formally, due to Corollary A.3.9, exp(ve.i) = vr ∈ cdeps(ve) ⊆ deps(va)
and therefore (va → exp(ve.i)) = (va → vr) ∈ rdepsexp(sc[0]), vr ∈ sc[0]. By
definition ve.seq − vr.seq ≥ k and therefore always rdeps(sc[0]) 6⊂ expk. Thus, sc[0]
can never be executed via the standard case, which contradicts the assumption
that sc[0] is a regular SCC.

• The cases are exhaustive.
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Case 2: For v ∈ SSCC, as rdeps(v) 6⊂ expk when executing v, it can never execute
via the standard execution case.

The cases are exhaustive.

As slots must be either executed via a regular SCC or an SSCC, either Lemma A.3.12
or Lemma A.3.14 applies to each slot.

Induction step 1 of Lemma A.3.11: Assume that the Lemma applies to |ti| = |tj |.
We now show that is also applies to |t′i| = |t′j | = |ti|+1, where t′i[|t′i|−1] and t′j [|t′j |−1]
are regular or empty SCCs.
The assumption |ti| = |tj | can always be fulfilled by padding short traces with empty

SCCs, which are skipped during execution.

Lemma A.3.16. Lemma A.3.11 also applies to |t′i| = |t′j | = |ti|+1, where t′i[|t′i|−1] and
t′j [|t′j |−1] are regular SCCs. That is ∀v ∈ flatten(t′i)∩flatten(t′j) : rhisti[v] = rhistj [v].

Proof. We define si := t′i[|t′i| − 1] to be the last element in t′i. We only discuss si, the
same arguments apply to an sj with swapped i and j.

Case 1: si ∈ t′j : Both t′i and t′j contain s = si. Then according to Lemma A.3.15
SCC s must be executed as regular SCC at ri and rj . Thus, the proof follows from
Lemma A.3.12.

Case 2: si /∈ tj : We show that in this case si ∩ flatten(tj) = ∅ such that the Lemma
trivially holds. This is equivalent to ∀sj ∈ t′j , si 6= sj : si ∩ sj = ∅. We prove this by
contradiction. Assume that sj is the SCC with the lowest index in t′j with si ∩ sj 6= ∅.
Then by Lemma A.3.15, both are regular SCCs, such that applying Lemma A.3.12
immediately results in a contradiction.
The cases are exhaustive.

Induction step 2 of Lemma A.3.11: Assume that the Lemma applies to |ti| = |tj |.
We now show that is also applies to |t′i| = |t′j | = |ti|+1, where t′i[|t′i|−1] and t′j [|t′j |−1]
are SSCCs or empty SCCs.

Lemma A.3.17. Lemma A.3.11 also applies to |t′i| = |t′j | = |ti| + 1, where t′i[|t′i| − 1]
and t′j [|t′j | − 1] are SSCCs (or empty SCCs). That is ∀v ∈ flatten(t′i) ∩ flatten(t′j) :
rhisti[v] = rhistj [v].

Proof. We only show this for SSCC ŝi := t′i[|t′i| − 1], a symmetrical argument applies to
ŝj .

Case 1: ŝi ∈ t′j : Both t′i and t′j contain ŝ = ŝi. The proof immediately follows
from Lemmas A.3.14 and A.3.15 as rdepsi

exp(ŝ) = rdepsj
exp(ŝ) and therefore rhisti[ŝ] =

rhistj [ŝ].
Case 2: ŝi /∈ t′j : We show that in this case ŝi ∩ flatten(tj) = ∅ such that the Lemma

trivially holds. According to Lemma A.3.15 slots in an SSCC are executed via the unblock
execution case on all replicas. As shown in the proof of Lemma A.3.14 an SSCC is fully
determined by a single slot, such that v1 ∈ ŝi, v1 ∈ ŝj ⇒ ŝi = ŝj

The cases are exhaustive.
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This completes the proof of Lemma A.3.11 as according to Lemma A.3.15 slots are
either executed via a regular SCC or an SSCC.
Theorem A.3.1 (repetition) (Execution Consistency). All replicas execute all pairs of
committed, conflicting requests in the same order.

Now we prove the theorem:

Proof. The agreement guarantees that for two conflicting requests a and b in slots v1
and v2, at least one will depend on the other. Without loss of generality, assume that
v2 ∈ deps(v1) and that v1 and v2 were already executed.

Case 1: v1 and v2 are part of the same regular SCC or SSCC: An SCC is sorted
before execution, which ensures a stable order.

Case 2: v1 and v2 are executed as part of different SCCs, v2 ∈ rhist[v1]: Then v2 was
executed before v1. Assume this is not the case: This is only possible if v1 and v2 are
part of a single SCC, which contradicts the assumption.

Case 3: v1 and v2 are executed as part of different SCCs, v2 /∈ rhist[v1]: v1 must be
part of an SSCC, as only rdepsexp can exclude dependencies that are in deps(v1). When
the SSCC was executed, this requires that v1 ∈ expk, v2 /∈ expk. Then vr = exp(v2.i) ∈
deps(v1) due to Corollary A.3.9. In addition, vr  v1 as otherwise vr would be executed
before the SSCC. Therefore, v2.seq − vr.seq ≥ k such that v2 cannot execute at any
replica before v1 due to the limited size of the execution windows.
The cases are exhaustive.
In contrast to the SCC trace, the execution pseudocode starts from individual slots

and tests whether a slot and its dependency graph are executable. Only then the SCCs
are calculated and executed. When the tested slots are part of the SCC to execute next,
then it is trivial to see that both representations are equivalent. Now suppose slot vb of
SCC sB which depends on SCC sA is tested first. If both SCCs are regular SCCs, then
SCC sA will be executed before sB. As rhist[va] := rdeps(sA) for va ∈ sA it makes no
difference whether rdeps(sB) is calculated before or after executing SCC sA.
If only sA is an SSCC, then sA is executed first and afterwards the execution is

restarted, which includes a recalculation of rdeps(vb). If only sB is an SSCC, then we
arrive at a contradiction, as the regular SCC sA must already have been executed before
the unblock execution case can apply. If both are SSCCs, then one of both is executed
and afterwards the execution is restarted. In all these cases the behavior is equivalent to
that assumed when working with SCC traces. This generalizes to dependency graphs
that contain more than two SCCs.

Remark A.3.18. It is sufficient for the unblock execution case to only check slots in exp(∗),
that is, the root nodes. As shown in Lemma A.3.13, at least one slot in every SSCC is
∈ exp(∗).
Remark A.3.19. rhist can be ignored for an implementation, as by construction it only
contains executed slots. An already executed slot cannot have dependencies on not
yet executed slots. Therefore, slots in rdeps(v) and rdepsexp(v) can be partitioned into
two sets A ⊆ executed and B ∩ executed = ∅ with executed and not executed slots,
respectively. Only slots in B can depend on slots in A. This partitioning also applies to
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the SCCs calculated for rdeps(v) or rdepsexp(v). As already executed SCCs are always
skipped, it is equivalent to remove executed slots from rdeps or rdepsexp as well. The
simplest way to achieve that is to drop rhist completely.

Remark A.3.20. An implementation can handle rdeps and rdepsexp using a single graph
and immediately remove executed slots. This is easy to see for rdeps alone, the combina-
tion with rdepsexp requires small modifications. Only slots ∈ expk should be processed,
all other slots can be regarded as not yet committed. Then rdeps(v) 6⊆ committed ⇔
rdeps(v) 6⊆ expk. rdepsexp(v) can be emulated by ignoring dependencies on slots /∈ expk

while traversing the graph.

A.3.3. Linearizability

Theorem A.3.21 (Linearizability). If two conflicting requests are proposed one after
another, such that the first request is executed at some correct replica before the second
request is proposed, then all replicas will execute the requests in that order.

Proof. This follows from Theorem A.2.2 and Theorem A.3.1. Once a request a was
executed, then all later conflicting requests b will depend on a and are thus ordered after
a. To prevent the duplicate execution of client requests, the requests of a client always
conflict with each other, which guarantees a total order for the requests of each client.

A.3.4. Agreement Liveness

Similar to the liveness property in EPaxos [162], we show:

Theorem A.3.22 (Agreement Liveness). During synchronous phases a client request
will eventually commit at all correct replicas.

We first show that dependencies proposed by correct replicas will be accepted eventually,
then show that a slot will commit and finish by showing that this also holds for a client
request.

Definition A.3.23. We say that wait() (Line 67) accepts a slot as dependency, if the
function does not block permanently, that is, it returns eventually.

Lemma A.3.24. If a correct replica ri has accepted a DepPropose for slot sj from
replica rj, then all other correct replicas will accept slot sj as a dependency eventually.

Proof. We show this by induction. For the base case assume that the DepPropose
contains no dependencies. The propose timeout for slot sj stays active at replica ri until
it has accepted 2f matching DepVerifys for the DepPropose (Line 47).

• Case 1: Coordinator rj is correct.
All replicas will receive the DepPropose and thus wait() accepts the slot sj as
dependency.

199



A. Safety and Liveness Proof for Egalitarian Fault Tolerance

• Case 2: Coordinator rj is faulty.
rj has created a valid DepPropose (otherwise it would not have been accepted by
replica ri) but does not distribute it correctly.

– Case 2.1: Assume that replica ri has accepted 2f matching DepVerifys.
Only f − 1 faulty DepVerifys are possible. Thus, at least f + 1 of the
2f DepVerifys are from correct replicas. And therefore all replicas will
receive f + 1 DepVerifys causing wait() to accept the dependency.

– Case 2.2: Alternatively, replica ri will broadcast the DepPropose if it fails
to collect 2f DepVerifys within the propose timeout. This allows all other
replicas to learn about the slot corresponding to the DepPropose as the
message was signed by the request coordinator and therefore wait() accepts
the dependency.

– The cases are exhaustive.

• Case 3: A view change triggers at replica ri.
The replica ri broadcasts the DepPropose to all replicas if the propose timeout
was still active (Line 101).

• The cases are exhaustive.

For the induction step, we look at a later DepPropose for which the correct replica ri

must also have accepted all dependencies. Thus, the DepPropose for all these depen-
dencies will, according to the induction assumption, be broadcasted if necessary such
that the later DepPropose will be accepted eventually.

Remark A.3.25. Note that the view-change special case to broadcast the DepPro-
pose (Line 101) is not necessary during synchronous phases. For a view change at
least one correct replica rk must have sent a ViewChange. This in turn requires that
the replica rk has either received the DepPropose in which case it will broadcast the
DepPropose itself if necessary. Or the replica rk has received f + 1 valid DepVerifys
in which case at least one of these was sent by a correct replica that has received the
DepPropose and therefore also ensures its distribution. Together with the commit
timeout 8∆, which is much larger than the propose timeout of 2∆, the special case
would only trigger after another correct replica has already received and distributed the
DepPropose.

Lemma A.3.26. A dependency included in a request proposed by a correct replica ri

will be accepted by all correct replicas eventually.

Proof. By construction, correct replicas only propose dependencies for which they ac-
cepted the corresponding DepPropose. Then according to Lemma A.3.24 the corre-
sponding messages will be accepted (by wait()).

Lemma A.3.27. wait() only accepts slots as dependencies once it is guaranteed that
all correct replicas will eventually enforce the commit timeout for them.
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Proof. The wait() function waits for each dependency until one of the following cases
holds (Line 69-72):

• Case 1: f + 1 DepVerifys received.
These include at least one DepVerify from a correct replica, which must have
received a valid DepPropose and which will broadcast it if necessary.

• Case 2: f + 1 ViewChanges received.
At least one ViewChange is from a correct replica, which also ensures that a
correct replica has received a valid DepPropose, see Remark A.3.25.

• Case 3: DepPropose accepted.
This enables a replica to broadcast the DepPropose itself if necessary.

• The cases are exhaustive.

Together with Lemma A.3.24 and A.3.26, the commit timeout is eventually active at all
correct replicas.

Assume for now that the used timeout values are large enough to ensure progress.

Lemma A.3.28. A slot accepted by wait() will commit eventually at every correct
replica during synchronous phases.

Proof. Note that the Lemma only makes a statement about the slot but not which request
will be committed.

Case 1: The request coordinator is correct and the fast-path quorum F only contains
correct replicas.
Then one of the following can happen:

• Case 1.1: The slot commits without view change.

Proof. Correct replicas enforce that a coordinator does not leave gaps in its sequence
number space (Line 26). While the network is in a synchronous phase, then the
wait() calls in lines 26 and 43 do not block permanently according to Lemma A.3.26.
The coordinator and the fast-path quorum make up a total of 2f +1 correct replicas,
which allows the slot to commit.
In an asynchronous phase the coordinator will retransmit its DepPropose until
all correct replicas have received it. Then either the slot will commit or at leastf +
1 replicas trigger a view change.
The replicas start the commit timeout after receiving the DepPropose or in the
case of the request coordinator after sending the DepPropose and thus either
commit the slot or request a view change. Once f + 1 correct replicas have
committed, then the remaining f correct replicas can only trigger a view change
with the help of faulty replicas. When the view change does not start within
timeout ∆query−exec after sending the own ViewChange, then a replica issues
QueryExec requests to all other replicas (Line 157). These up to f replicas then
receive the result via Execute messages from the at least f +1 correct replicas.
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• Case 1.2: A view change is necessary for at least one replica.

Proof. As soon as f + 1 correct replicas have issued a ViewChange for view v + 1,
then eventually all correct replicas will issue a ViewChange (Line 119-121). In a
synchronous phase eventually all correct replicas will enter the view change in the
same view v + 1.
The timeout for view v + 2 is only started after ensuring that at least f + 1 correct
replicas have reached view v + 1 and sent a ViewChange. This in turn ensures
that all correct replicas will be in view v + 1 at the same time if the network is
synchronous, see also Lemma A.3.32. The correct replicas will start their view
change timeout, as enough ViewChanges exist to ensure that a NewView can
be created eventually.
After a replica ri accepts a NewView, then a different replica rj will either
eventually also receive and accept the NewView or switch to a higher view. As
2f + 1 ViewChanges are necessary to compute a NewView, at least f + 1 must
be from correct replicas, thus eventually all replicas initiate a view change, will
receive 2f + 1 ViewChanges and start their view-change timeouts. Then each
replica either accepts the NewView or switches to a higher view. After accepting
a NewView a replica restarts the commit timeout, which again ensures that the
reconciliation path completes or another view change is started.
The view-change coordinator is rotated in each view such that eventually a correct
coordinator is used, which allows the slot to commit.

• Case 1.3: DepPropose and DepVerify (from correct replicas) contain dependen-
cies not accepted by wait().

Proof. Using Lemma A.3.26 we immediately arrive at a contradiction.

• The cases are exhaustive.

Case 2: The request coordinator is correct and the fast-path quorum F contains
faulty replicas.
We show that faulty replicas in the fast-path quorum F cannot prevent committing

a slot (only its request) and cannot add dependencies to non-existing slots. The faulty
replicas can exhibit one of the following behaviors:

• Case 2.1: A faulty replica sends multiple DepVerifys.

Proof. The faulty replica can prevent the fast or reconciliation path from completing
when replicas collect diverging or no ~dv. If the faulty replica prevents the slots
from committing then the commit timeout enforces a view change. This will result
in filling the slot with a no-op request after the view change.

• Case 2.2: A faulty replica does not send a DepVerify.
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Proof. Same as the previous case.

• Case 2.3: A faulty replica proposes non-existing dependencies.

Proof. According to Lemma A.3.27, correct replicas that have received the Dep-
Propose will time out while waiting that the dependencies are distributed to a
quorum of replicas. This will trigger a view change that will fill the slot with a
no-op request. Thus, non-existing dependencies for a slot cannot commit and
consequently do not affect the request execution.

• The cases are exhaustive.

Case 3: The request coordinator is faulty.
After the DepPropose has been accepted by wait(), the commit timeout for the slot

will eventually be active at all replicas. Thus, either the slot commits as in Case 1.1, or
causes a view change according to Case 1.2 or Case 2. In both cases the slot will commit
eventually.
The cases are exhaustive.

Lemma A.3.29. The fast-path quorum F will eventually contain only correct replicas.

Proof. After filling a slot with a no-op request during the view change, the fast-path
quorum is rotated (Line 151). This will eventually result in a fast-path quorum F which
only contains correct replicas.

Remark A.3.30. Note that a faulty replica cannot prevent slots of correct replicas from
committing by proposing manipulated DepProposes. Assume this were the case. Then
a correct replica has to accept a DepPropose from the faulty coordinator. Therefore,
Lemma A.3.24 applies, which yields a contradiction. Thus, a faulty coordinator can
only cause the processing of its own DepPropose to block in wait(), which will also
prevent all further slots of that faulty replica to block in wait() (Line 26) until the faulty
DepPropose is finally accepted.

We now show that the timeout values are sufficient to ensure progress.

Lemma A.3.31. A DepPropose or DepVerify of a correct replica ri will be accepted
after at most 3∆ after sending.

Proof. Replica ri has received the DepPropose of a dependency as otherwise it would
not include the dependency. The propose timeout is 2∆. Thus, after 2∆ replica ri has
either received 2f DepVerifys and therefore after an additional ∆ all replicas have
received f + 1 DepVerifys after which wait() accepts the dependency. Or replica ri

broadcasts the DepPropose which will reach all replicas within ∆. The DepPropose
will be accepted within 3∆, as the argument also applies to all its dependencies, which
were proposed before and thus must already be accepted earlier on.
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Lemma A.3.32. The calculation of a NewView can complete within at most 3∆ during
synchronous phases.

Proof. Once a correct replica has received 2f + 1 ViewChanges then within 2∆ every
correct replica will receive 2f +1 ViewChanges. This allows the view-change coordinator
to calculate the NewView which after ∆ arrives at all replicas. That is, in total a timeout
of 3∆ is sufficient. We will revisit this timeout after adding support for checkpointing.

Lemma A.3.33. A commit timeout of at least 8∆ allows correct coordinators to commit
during synchronous phases.

Proof. It can take 3∆ each until a DepPropose and DepVerify are accepted. The
fast path takes another ∆ until DepCommit reaches all replicas. On the reconciliation
path Prepare and Commit require up to 2∆. This yields a total timeout of 8∆. As the
timeout cannot start before the DepPropose was sent, this is sufficient in all cases.
After a view change ∆vc−commit = 3∆ is sufficient as the reconciliation path only

requires up to 2∆ and the receipt time of a correct NewView can only vary by ∆
between replicas.

Now, we show Theorem A.3.22.
Theorem A.3.22 (repetition) (Agreement Liveness). During synchronous phases a
client request will eventually commit at all correct replicas.

Proof. For slots in which the request was replaced by a no-op request, the request
coordinator will propose the request again (Line 152). Together with Lemmas A.3.26,
A.3.28 and A.3.29 this ensures that a slot / slots and also eventually the request will
commit at all correct replicas. The client also broadcasts its request to all replicas after a
timeout. This guarantees that a correct coordinator will receive the request and commit
it.

Lemma A.3.34. The compact dependency encoding (cf. Corollary A.3.9) does not break
liveness.

Proof. The additional dependencies to replica rj have sequence numbers sd which are
lower than the maximum sequence number maxsj to which an explicit dependency
exists. That is, sd < maxsj = maxrj {d ∈ Di | d.i = rj}. A correct replica accepts a
DepPropose for maxsj only if it has seen all earlier sequence numbers, that is, wait()
must already have accepted these (Line 26). Thus, the guarantees provided by wait()
also include the earlier additional sequence numbers sd.
The compact dependency encoding does not affect execution consistency, as it can only

add but not remove dependencies.

A.3.5. Execution Liveness

Theorem A.3.35 (Execution Liveness). During synchronous phases a client will even-
tually receive a result.

204



A.4. Checkpointing

Lemma A.3.36. Any slot included as dependency of a committed slot will commit
eventually.

Proof. The wait() calls in Lines 26 and 43 together with Lemmas A.3.27 and A.3.28
ensure that all dependencies of any committed slot will commit eventually.

Lemma A.3.37. A committed request will be executed eventually.

Proof. Lemma A.3.36 shows that all slots on which a committed slot depends will commit
eventually. In order to avoid the execution live lock problem discussed in EPaxos [162],
we now show that there is a finite upper bound for the number of slots that have to
commit before a slot can be executed.
A slot s can be executed via the standard case (Line 208) if all slots in rdeps(s) ⊆ expk.

As expk by construction only includes up to k not executed slots per replica, the number
of dependee slots is bounded.

In addition, the unblock execution case (Line 213) executes slots in rdepsexp(s) which
by construction always is ⊆ expk. Thus, it remains to be shown that expk can only
contain a bounded number of slots that can block the execution.
A slot s can only depend on a bounded number of slots (as all dependencies must have

been proposed using a DepPropose before). Thus, if any dependency vd among these
dependencies is not yet executed and therefore can prevent execution of s, then it serves
as a finite upper bound for exp(∗) such that exp(vd.i).seq ≤ vd.seq. Other dependee
slots can further restrict exp(∗), which limits the size of the dependency set even further.
As the lowest upper bound per replica is relevant, a dependency chain can only include
additional requests by depending on another replica which is not yet part of rdeps(s)
or rdepsexp(s). As the number of replicas is fixed, this can only add dependencies to a
bounded number of slots.

The theorem follows by combining Theorem A.3.22, Lemma A.3.37 and Line 218 which
guarantee that a client receives at least f + 1 matching replies from correct replicas.

A.4. Checkpointing
We now extend the proof and pseudocode to also include the checkpointing mechanism
of Isos. We only show the modified parts of the agreement and execution pseudocode
below. Grey lines are unchanged.

223 Variables at each replica:
224 ∆vc := 5∆

Fast Path
225 Propose checkpoint request CheckpointReq if sj .seq mod k = 0

227 Follower fi receives dp := 〈〈DepPropose, sj , h(r), D, F 〉, r〉 from co:
228 pre: step[sj ] = init
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229 // Each replica must propose a checkpoint request exactly every k slots
230 assert (sj .seq mod k = 0) ⊕ (r = CheckpointReq)
231 [...]

233 conflicts(Request r):
234 // A checkpoint request CheckpointReq conflicts with all other requests
235 return {si|∀si, pr[si] 6= ∅ : conflict(pr[si], r)} ∪ barrier of latest stable checkpoint

View Change
236 Move to new view vsj for slot sj at replica ri:
237 [...]
238 else if step[sj ] ∈ {rp-prepared, rp-committed}:
239 [...]
240 else: // Fallback to default request
241 if sj .seq mod k = 0:
242 msg := CheckpointReq
243 Dri := Dri used by ri for own DepPropose / DepVerify

or as fallback conflicts(msg) \ sj

244 else:
245 msg := no-op
246 Dri := conflicts(msg) \ sj

247 dv := 〈DepVerify, sj , ri, h(msg), Dri〉σri

248 cert[sj ] := 〈DRC-part, msg, dv, −1〉 // For view -1
249 view[sj ] := vsj

250 [...]

252 View-change coordinator co for view vsj receives valid
V CS := {〈ViewChange, sj , vsj , ∗〉} from 2f + 1 replicas:

253 pre: for each V C ∈ V CS containing a DRC-part: block until wait(V C.dv.Dfi
)

has returned
254 assert V C.dv.h(msg) equals h(CheckpointReq) if V C.dv.sj .seq mod k = 0

else h(no-op)
255 [...]
256 select dp, ~dv from [...]
257 if dp = no-op:
258 if sj .seq mod k = 0:
259 dp := CheckpointReq
260 ~dv := {V C.dv | V C ∈ V CS} // Each VC must contain a DepVerify
261 Broadcast 〈NewView, sj , vsj , dp, ~dv, V CS〉σco

Request Execution
262 execute(SCC ~v, DependencyGraph G):
263 barrier := ∅
264 if CheckpointReq ∈ ~v:
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265 barrier := ({x | ∀ri : x < exp(ri)}
⋃

v∈~v,v.req=CheckpointReq deps(v) ∪ v) ∩ expk

266 for c ∈ sort(~v):
267 if c 6= CheckpointReq ∧ (barrier = ∅ ∨ c ∈ barrier):
268 Execute request c and reply to client
269 rhist[v] := G

270 if barrier 6= ∅:
271 Create execution checkpoint with barrier
272 Restart request execution

As described in Section 4.5, a replica broadcasts a Checkpoint message after creating
a checkpoint. Once a valid checkpoint is backed by at least 2f + 1 replicas, it becomes
stable. This guarantees that the checkpoint is correct. To apply a checkpoint, a replica
retrieves the checkpoint certificate along with the checkpoint content and applies the
checkpoint after verifying the correctness of all messages.

The Validity and Consistency properties are not affected by applying a checkpoint as
this does not affect agreement slots except by garbage collecting old ones. The Execution
Consistency is also maintained as the execution state of a correct replica is applied. As
soon as a correct replica has a stable checkpoint, all other replicas will eventually be able
to learn about the checkpoint. This in turn allows all correct replicas to update their
state if necessary.

To show that the Consistency property also holds for checkpoint requests, the following
Lemma adapts the proof of Theorem A.2.2 accordingly.
Lemma A.4.1. For a slot, if a DRC is selected during a view change then the slot did
not commit previously.
Proof. As shown in the proof of Theorem A.2.2, the NewView calculation always
includes an FPC or RPC if the slot committed. Thus, the DRC cannot be selected.

Lemma A.4.2. All correct replicas create identical checkpoints when executing the same
checkpoint request.
Proof. A checkpoint request conflicts with all other requests. This ensures that each
request is either executed before or after the checkpoint request at all replicas due to the
Execution Consistency property. In addition, this guarantees that all replicas execute a
checkpoint request as part of the same SCC. Thus, all correct replicas execute the same
part of the SCC before creating a checkpoint. As all replicas execute the same set of
requests before a checkpoint, expk is identical across replicas, and therefore all replicas
bound the checkpoint barrier to the same slots (Line 265).
We now show that the checkpoint barrier is tight.
Case 1: Assume that a slot x before the checkpoint barrier was not executed.
exp(∗) which is added as lower bound to the checkpoint barrier cannot add unexecuted

slots. For a slot x to be covered by the checkpoint barrier, the checkpoint request must
include a dependency on x or a slot x′ > x. Then by Corollary A.3.9 the checkpoint
request depends on x which therefore must be executed first.

Case 2: Assume that a slot x not covered by the checkpoint barrier was already
executed. That slot must have been executed as part of a regular SCC or an SSCC.

207



A. Safety and Liveness Proof for Egalitarian Fault Tolerance

• Case 2.1: Assume that slot x was executed as part of an SSCC.
The SSCC consists of at least 2 slots and therefore includes a dependency on the
slot x. Therefore, the SSCC also depends on all slots between exp(x.i) and the
slot x. Thus, after execution of the SSCC exp(x.i) > x. This yields a contradiction
as the checkpoint barrier covers {x′ | x′ < exp(∗)}.

• Case 2.2: Assume slot x was executed as part of a regular SCC.
x must either depend on the checkpoint request or vice versa. When the checkpoint
request depends on x, it also depends on all slot between exp(x.i) and x. Therefore,
exp(x.i) > x when the checkpoint is executed, which yields a contradiction. Now,
assume x depends on the checkpoint request. Then x must be executed after the
checkpoint or as part of an SSCC, which both yields a contradiction.

• The cases are exhaustive.

The cases are exhaustive.
Thus, all replicas create a checkpoint after executing the exact same set of requests.

Applying the checkpoint yields the same state as a replica has after executing all requests
up to the checkpoint.

We now show that applying a checkpoint or garbage collecting slots after a checkpoint
is stable, does not affect Execution Consistency.

Proof. Once a checkpoint becomes stable, all later requests will include dependencies
on all slots included in the checkpoint, that is, they will depend on everything covered
by the checkpoint barrier. Compared to an execution without checkpointing this can
only introduce additional dependencies. However, as all slots covered by the checkpoint
barrier are already executed, these have no influence on the request execution.

The following Lemma adapts the proof of Theorem A.3.22 to also consider checkpoint
requests.

Lemma A.4.3. If no RPC or FPC is included in the view change for a slot, that is, the
slot did not commit, then a DRC is selected during a view change.

Proof. The NewView calculation requires 2f + 1 ViewChanges, which are sufficient
to generate a DRC (Line 257-260). As shown in the proof of Lemma A.3.28, eventually
all correct replicas will send a ViewChange. These messages and their dependencies
will eventually be accepted by wait(), allowing the view change to complete (Line 253).
Once a DRC has committed via the reconciliation path, then it is handled like any other
request. This ensures that no-op requests or CheckpointReqs collect dependencies
reported by a quorum of replicas such that Lemma A.3.2 also holds for these requests.

We modify Lemma A.3.32 as follows:

Lemma A.4.4. The calculation of a NewView completes for a timeout of 5∆ in
synchronous phases.
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Proof. Once a correct replica has received 2f + 1 ViewChanges then within 2∆ every
correct replica will receive 2f + 1 ViewChanges. All ViewChanges from correct
replicas are sent after ∆ and are accepted at most 3∆ later, similar to Lemma A.3.31.
This allows the view-change coordinator to calculate the NewView, which after ∆ arrives
at all replicas. That is, in total a timeout of 5∆ is sufficient.
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B
Safety and Liveness Proof for Cloud-Based

Hierarchical Replication

This chapter is a partially revised version of the pseudocode and proofs presented in the
appendix of the paper [86] of which I am the main author. In Appendix B.1 we first
provide a detailed description of the individual components of Spider, along with the
assumptions and definitions used for proving the correctness and liveness properties of
Spider. Afterwards we present the pseudocode for Spider in Appendix B.2 and the
proof in Appendix B.3. We conclude with pseudocode for both IRMC implementation
variants (IRMC-RC and IRMC-SC) in Appendix B.4.

B.1. Properties

We first describe the properties provided by Spider before stating the required properties
of the agreement protocol black box, the checkpoint transfer component, the application
and the IRMCs. These components are identical to the building blocks described in
Section 5.3.
We assume that each execution group consists of 2fe + 1 replicas and that there are

at most fe faulty execution replicas per execution group. The agreement group has
3fa + 1 replicas of which at most fa agreement replicas may be faulty. All faults are
assumed to be Byzantine. We assume a partially synchronous network with periods of
synchrony that are long enough to allow the protocol to make progress [80].

B.1.1. Properties of Spider

The definitions of E-Safety and E-Validity follow the lines of those used for Steward [24].
E-Safety II and E-Liveness are adapted from PBFT [57]. E-Validity II captures the usual
at-most-once guarantee.
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Theorem B.1.1 (E-Safety). If two correct replicas execute the ith write, then these
writes are identical.

Theorem B.1.2 (E-Safety II). The system provides linearizability regarding requests
from correct clients.

Theorem B.1.3 (E-Validity). Only a correctly authenticated write request from a client
may be executed.

Theorem B.1.4 (E-Validity II). A correct replica executes a write request at most once.

Theorem B.1.5 (E-Liveness). A correct client will eventually receive a reply to its
request.

Consistency Guarantees
Spider provides strong consistency (linearizability) for write requests. Read requests
with strong consistency are treated similarly, but only the designated execution group
gets the full request, whereas all other groups just receive the client identifier c and
counter value tc. Weakly consistent read requests provide prefix consistency.

B.1.2. Cryptographic Primitives and Assumptions

The pseudocode uses the following cryptographic primitives:

• sign(m): Digitally signs message m (e.g., using RSA or ed25519).

• valid_sigE(m): Verifies that the signature for message m is valid and that the
signer is part of group E .

• macra,re(m): Adds a single message authentication code (MAC) to authenticate
message m from replica ra towards replica re [199]. This primitive, for example,
may be implemented using HMAC-SHA256 [133, 164].

• macra,E(m): Adds a MAC authenticator such that replica ra authenticates mes-
sage m to a replica group E [57]. It consists of a MAC for each replica in group E .

• valid_macra,e(m) and valid_macra,E(m) are used to verify these MACs.

• unwrap_mac(m): Strips the added MAC from message m and returns the original
message without the authentication.

• h(m): Calculate a cryptographically secure hash digest of message m, for example,
using SHA256.

We make the standard assumptions regarding cryptographic functions. We assume them
to be secure, that is, a malicious replica cannot forge signatures or MACs of other replicas
nor can it create a message m′ 6= m with hash h(m′) = h(m). That is, the hash function
is collision resistant.
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1 interface Agreement {
2 // Blocks until the request is returned by the ordered callback on this replica
3 void order_request(ClientID c, ClientCtr tc, Request r)
4 // Deliver ordered requests one after another
5 // Blocking callback, that is, the agreement can only deliver the next message after

the previous call has completed
6 // Delays in the callback may cause timeouts in the agreement protocol black box to

expire
7 callback ordered(SeqNr s, Request r)
8 // After this call no sequence number < s must be delivered
9 void collect_garbage_before(SeqNr s, ClientCtr[] ts)

10 }

Figure B.1: Interface of the agreement protocol black box

B.1.3. Agreement Protocol Black Box

We assume the agreement component to be a black box with the interface shown in
Figure B.1 and the following properties. The comments at the interface methods detail
their expected behavior. We assume that the first delivered sequence number is 1.

Definition B.1.6 (A-Safety). If two correct agreement replicas deliver an ordered
message for sequence number s, then these messages are identical.

Definition B.1.7 (A-Liveness). Once 2f + 1 correct replicas receive a message m for
ordering, then eventually f + 1 correct replicas will deliver message m and all preceding
messages.

Definition B.1.8 (A-Validity). A correct agreement replica will only deliver correctly
authenticated client requests.

Definition B.1.9 (A-Order). A correct agreement replica will deliver a message for
sequence number s only after all preceding sequence numbers were delivered or garbage
collected.

These requirements are, for example, fulfilled by PBFT [57].

B.1.4. Checkpoint Transfer Component

We assume that each replica has a checkpoint component with the interface from Fig-
ure B.2 and the following properties. The comments at the interface methods detail their
expected behavior.

Definition B.1.10 (Stable checkpoint). A checkpoint is called stable once a correct
replica collects a certificate consisting of f + 1 valid and matching checkpoint messages.
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1 interface Checkpoint {
2 // Create and distribute checkpoint
3 // By default only checkpoint transfer components within a single group communicate

with each other (i.e., checkpoints are group specific)
4 void generate(SeqNr s, State st)
5 // Sequence numbers for returned checkpoints must increase
6 // Checkpoints may be skipped
7 callback stable(SeqNr s, State st)
8 // Explicitly request the retrieval of a checkpoint, possibly from another group

(execution groups only)
9 void fetch(SeqNr s)

10 }

Figure B.2: Interface of the checkpoint transfer component

Once a replica possesses a stable checkpoint, it will pass the checkpoint to the stable()
callback, unless it has already delivered a checkpoint with a higher sequence number.

Definition B.1.11 (CP-Safety). A stable checkpoint was created by at least one correct
replica.

As shown later on, all correct replicas in a group will create identical checkpoints for the
same sequence number.

Definition B.1.12 (CP-Liveness). If one correct replica of a group delivers a checkpoint,
then eventually all correct replicas of that group will deliver that checkpoint, unless a
newer checkpoint was already delivered.

Definition B.1.13 (CP-Liveness II). Once f + 1 correct replicas create and distribute
identical checkpoint messages, the checkpoint will eventually become stable, unless it is
superseded by a newer one before.

An implementation should consider the following aspects:

• With an execution group size of 2fe + 1, CP-Safety requires that each checkpoint
message is authenticated using a signature. Section 2.3.3.5 describes a possible
implementation.

• In order to provide CP-Liveness, correct replicas within a group must continuously
inform or query each other about their latest stable checkpoint.

• Replica should only exchange checkpoint messages containing a hash h(st) of the
checkpoint state st to keep the network overhead low.

• The full checkpoint state should only be transferred when necessary.
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1 interface Application {
2 // Execute request and return a result
3 Result execute(Request m)
4 // Verify that a request is readonly
5 boolean is_read_only(Request m)
6 // Create application snapshot
7 AppState snapshot()
8 // Apply application snapshot
9 void apply(AppState st)

10 }

Figure B.3: Interface of the application component

B.1.5. Application
We assume that the application provides the interface shown in Figure B.3 and is
implemented as a deterministic state machine, which can execute() client requests
and provide a reply to them. In addition, the application must be able to serialize the
application state using snapshot() and apply() it.

Definition B.1.14 (Replicated state machine (RSM)). Different application instances
have an identical state for sequence number i when processing writes according to the
same total order [179].

B.1.6. IRMC Properties
The sender and receiver endpoint interfaces of the IRMC are shown in Figure B.4. As
before, the comments specify the expected behavior of the methods. All sender replicas
are contained in the set Rs and all receiver replicas in Rr. The capacity of an IRMC
(subchannel) is denoted as |IRMC| and is assumed to be ≥ 1. It is identical for all
subchannels of an IRMC. IRMCsc.win refers to the window of subchannel sc, which is
initialized to start at 1. min(IRMCsc.win) and max(IRMCsc.win) return the lower and
upper limit (inclusive) of the window of subchannel sc, respectively. receive(sc, p) = m
denotes that the receive call returned the message m.

Definition B.1.15 (IRMC-Correctness I). Receive only returns a message sent by a
correct sender:
(receive(sc, p) = m) ⇒ a correct sender called send(sc, p, m)

∧ the receiver called move_window(sc, p′) such that p′ ≤ p < p′ + |IRMCsc|.

Definition B.1.16 (IRMC-Correctness II). Moving a window requires a move request
by at least one correct replica:
(receive(sc, p) returns a 〈TooOld, p′〉 message with p′ > p) ⇒ a correct sender endpoint
called move_window(sc, p̂) with p̂ ≥ p′ ∨ a correct receiver called move_window(sc, p̂)
with p̂ ≥ p′.
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1 // Sender endpoint
2 interface IRMC_Sender {
3 // If p is too old: discard m and return immediately
4 // If p is in the current window: send m and return immediately
5 // If p is after the current window (p > max(IRMCsc.win)): block/wait
6 void send(Subchannel sc, Position p, Message m)
7 // Ask receiver endpoint to move the window forward
8 // The receiver endpoint will internally call move_window with the fs + 1-highest

received position
9 void move_window(Subchannel sc, Position p)

10 }

12 // Receiver endpoint
13 interface IRMC_Receiver {
14 // Blocks until either
15 // (1) a message m is delivered, then returns m,
16 // (2) or until the window is ahead of p, that is, p < min(IRMCsc.win), then

returns 〈TooOld, s〉, with s = new window lower bound
17 Message receive(Subchannel sc, Position p)
18 // Position p must increase monotonically, calls with lower values are silently

ignored
19 void move_window(Subchannel sc, Position p)
20 }

Figure B.4: IRMC interfaces (pseudocode)

Remark B.1.17. Calls to the send method block if the requested position is after the
upper limit of the current subchannel window. Calls to the receive method block if the
position is in or after the subchannel window and the corresponding message was not yet
received by the IRMC.

Definition B.1.18 (IRMC-Liveness I). An identical message sent (send method call
has returned) by at least fs + 1 correct replicas will eventually cause some message to be
received by all correct receivers unless it is skipped (see also IRMC-Correctness II):
If fs + 1 correct senders call send(sc, p, m), then eventually ∀ correct r ∈ Rs that call(ed)
receive(sc, p) : receive(sc, p) = ∗ ∨ receive(sc, p) = 〈TooOld, p′〉 with p′ > p.

Remark B.1.19. Due to IRMC-Correctness I, the received message can only be one that
was sent by at least one correct sender.

Definition B.1.20 (IRMC-Liveness II). Send calls return once the position is below the
subchannel window’s upper bound:
If fr +1 correct receivers r ∈ Rr call move_window(sc, pr), where pr is a receiver-specific
position, then eventually all send(sc, p′, m) calls will have returned on all correct sender
replicas where p′ < p̃ + |IRMCsc| and p̃ = f + 1-largest pr.
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1 tc := 1 // Client request counter
2 rep := ∅ // Reply for last request
3 g := {} // Collected replies
4 E := nearest execution group with |E| = 2fe + 1
5 write(Write w):
6 // Authenticate request
7 m := macc,E(signc(〈Write, w, c, tc〉))
8 rep := ∅
9 g := {}

10 // Repeat sending until reply was received
11 while rep = ∅:
12 broadcast m to E
13 sleep for tretry ∨ until rep 6= ∅
14 tc := tc + 1
15 return rep

17 on receive(m = 〈Reply, u, t′
c〉 from e ∈ E):

18 // Only process correctly authenticated replies
19 // Only accept first reply from each replica
20 if valid_mace,c(m) ∧ t′

c = tc ∧ (〈Reply, ∗, ∗〉 from e) /∈ g:
21 g := g ∪ {m}
22 // Return reply after receiving fe + 1 replies with matching tc and u
23 if ∃u : |{v|v = 〈Reply, u, tc〉 ∈ g}| ≥ fe + 1:
24 rep := u

Figure B.5: Client c (pseudocode)

Definition B.1.21 (IRMC-Liveness III). Receiver endpoints will move the window at
least as far as the fs + 1-highest move_window() call by a sender replica:
If fs + 1 correct senders call move_window(sc, ps), then eventually all correct receiver
endpoints will have (internally) called move_window(sc, p) with p such that p ∈ [f + 1-
largest ps, largest ps].

Remark B.1.22. Note that if a receiver endpoint has already moved a subchannel window
to a higher position than p, then the call to move_window() has no effect.

B.2. Spider Pseudocode
The pseudocode for the client is shown in Figure B.5, for the execution replica in
Figure B.6 and for the agreement replica in Figure B.7. Line numbers in the following
refer to one of these figures. The presented pseudocode covers the write request processing
as described in Section 5.4.2. The pseudocode for the agreement and execution replicas
has already been presented in Section 5.4.2.
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25 sn := 0 // Sequence number for last executed request
26 t[c] := 0 // Counter of latest forwarded client request
27 u[c] := ∅ // Reply cache 〈Reply, uc, tc〉
28 app = application, cp = checkpoint transfer component
29 E := execution group with |E| = 2fe + 1
30 rE = request IRMC sender // Each subchannel has a capacity of 2
31 // Subchannel 0 is used as commit channel, any other subchannel could also be used
32 cE = commit IRMC receiver // Commit subchannel capacity must be ≥ ke

33 on receive(m = 〈Write, w, c, tc〉 from c):
34 if !valid_macc,E(m): return // Ignore invalid requests
35 if tc ≤ t[c]:
36 if u[c] = 〈Reply, ∗, t′

c〉 ∧ t′
c = tc: // Check if a reply is available for the request

37 send macre,c(u[c]) to c
38 return // Silently return on retry with no result yet
39 if !valid_sigc(unwrap_mac(m)): return
40 // Each execution replica must forward a request once, even already executed ones
41 t[c] := tc

42 rE.move_window(c, tc) // Notify agreement of new request
43 rE.send(c, tc, 〈Request, unwrap_mac(m), E〉)

45 main loop:
46 while true:
47 m := cE.receive(0, sn + 1)
48 if m = 〈TooOld, s′〉:
49 // Executor missed committed requests → fetch checkpoint
50 cp.fetch(s′) // Ask other groups if necessary
51 else: // m = 〈Execute, 〈Request, 〈Write, w, c, tc〉, E ′〉, sn + 1〉
52 sn := sn + 1
53 // Only execute new requests
54 if (u[c] = 〈Reply, ∗, t′

c〉 ∧ tc > t′
c) ∨ u[c] = ∅:

55 uc := app.execute(m)
56 u[c] := 〈Reply, uc, tc〉 // Store reply
57 if E = E ′: // Only the local execution group sends the reply to the client
58 send macre,c(u[c]) to c
59 if sn ≡ 0 mod ke: // Periodically create a checkpoint
60 cp.generate(sn, (u, app.snapshot()))

62 on cp.stable(s, st = (u′, app’)):
63 cE.move_window(0, s + 1) // Allow garbage collection of commit channel
64 if s ≥ sn:
65 sn := s; app.apply(app’); u := u′

Figure B.6: Execution replica re (pseudocode)
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66 sn := 0 // Last ordered sequence number
67 win := [1,AG-WIN] // Range with [lower, upper] bound, both inclusive
68 AG-WIN ≥ ka // Size of agreement window
69 t[c] := 0 // Counter values of latest ordered request per client
70 t+[c] := 0 // Counter values for next expected request
71 ne := number of execution groups; z := limit on slow execution groups
72 hist := last |cE,0| Executes
73 ag = agreement protocol black box, cp = checkpoint transfer component
74 A := agreement group with |A| = 3fa + 1
75 for each execution group E:
76 rE = request IRMC receiver // Each subchannel has a capacity of 2
77 cE = commit IRMC sender // Commit subchannel capacity must be ≥ ke

78 parallel for each client c and execution group E:
79 while true:
80 m := rE.receive(c, t+[c])
81 if m = 〈TooOld, tc〉: t+[c] := tc

82 else: // m = 〈Request, 〈Write, w, c, tc〉, E〉
83 ag.order_request(c, tc, m) // Returns once request is ordered
84 t+[c] := tc + 1

86 // Delivered in-order, agreement must timeout if blocked for too long
87 on ag.ordered(s, r = 〈Request, 〈Write, w, c, tc〉, E〉):
88 sleep until s ≤ max(win) // Force agreement to periodically create a checkpoint
89 // Update state with new request
90 t[c] := tc; t+[c] := max(tc + 1, t+[c]); hist.add(〈Execute, r, s〉)
91 sn := s
92 parallel for each execution group E:
93 cE.send(0, s, 〈Execute, r, s〉)
94 sleep until completed for ne − z groups // Send calls continue in the background
95 if sn ≡ 0 mod ka: cp.generate(sn, (t, hist)) // Create checkpoint periodically

97 on cp.stable(s, st = (t′, hist′)):
98 parallel for each execution group E:
99 cE.move_window(0, s − |hist′| + 1) // Move commit window forward

100 ag.collect_garbage_before(s + 1, t′)
101 if s > sn:
102 tmp := sn; sn := s; t := t′; hist := hist′

103 parallel for each execution group E:
104 for x = 〈Execute, r, s′〉 ∈ hist, s′ ∈ [tmp + 1, s]:
105 cE.send(0, s′, x) // Add missing requests from hist to commit channel
106 sleep until completed for ne − z groups
107 win := [s+1, s+AG-WIN]

Figure B.7: Agreement replica ra (pseudocode)
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We assume that each method is executed atomically, unless it calls a blocking method,
at which point the execution may switch to other methods. Variable definitions are
written as var := value, whereas = is used for comparisons and destructuring of values,
for example, x = 〈Execute, r, s′〉 uses the value in x to define r and s′ using pattern
matching.

B.3. Proof

The proof primarily considers write requests. We assume for now that there is only one
execution group, that is, ne = 1 and z = 0. Later on, we will relax this assumption.
Strongly and weakly consistent read requests are considered afterwards.

B.3.1. Agreement Checkpoint Equivalence

We begin the proof with an auxiliary lemma to simplify the handling of checkpoints.

Lemma B.3.1 (CP-A-Equivalence). The state of an agreement replica (sn, t, hist and
queued commit IRMCs messages) that has reached sequence number s via processing
ag.ordered(s, r) (Line 87) is equivalent to that of a replica that reaches sequence number s
by applying a checkpoint for sequence number s.

Proof. We prove this by induction.
Base case: All correct agreement replicas initialize sn, t, hist and the commit IRMCs

with identical values. There is no checkpoint for that sequence number, as no checkpoint
was generated yet.

Induction step: All correct agreement replicas pass through the same states by pro-
cessing ordered requests or jump forward to one of those states via a checkpoint.
As the considered state parts are only updated in either ag.ordered (Line 87) or

cp.stable (Line 97), it suffices to show that when either of them updates sn to a
certain sequence number, then the resulting replica states are equivalent. Note that the
sequence number sn increases monotonically as ag.ordered is per A-Order only called
for increasing sequence numbers and cp.stable only increases the value of sn (Line 101).
Assume that from a common starting point, replicas reach sequence number s by

processing ag.ordered(s, r) (Line 87): Per A-Safety and A-Order all correct agreement
replicas receive the same sequence of requests via their ag.ordered callback, that is, sn,
t and hist (Line 90) evolve identically on those replicas. Therefore, a possible later call
to cp.generate(s, (t, hist)) (Line 95) for a sequence number s has identical parameters
on all correct agreement replicas.
As per CP-Safety only checkpoints which were created by at least one correct replica

can become stable, any call of cp.stable(s, (t′, hist′)) (Line 97) can only deliver that
checkpoint for sequence number s. Applying a checkpoint for the current or an older
sequence number s ≤ sn does not change sn, t and hist (Line 101). Applying a checkpoint
for a newer sequence number s > sn atomically updates sn, t and hist to the state they had
when the checkpoint was created (Line 102) and adds missing requests (i.e., those skipped
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by updating sn) to the commit IRMCs. The call to ag.collect_garbage_before(s + 1)
(Line 100), which happens atomically with the state update, ensures that ag.ordered
will only be called for sequence numbers ≥ s + 1. Per A-Order the next ag.ordered call
must be for sn + 1 = s + 1.
When called for an old checkpoint (s ≤ sn), then cE.move_window (Line 99) has no

effect, as a cE.send call for sn must already have been issued, such that the IRMC has
queued messages at least up to sequence number s. Therefore, max(cE,0.win) ≥ s ⇔
min(cE,0.win) ≥ s − |cE,0| + 1, that is, the window start is already at least at the position
requested by the cE.move_window call, see also the remark below.
For a newer checkpoint, as |hist′| = |cE,0|, this together with moving the window

forward from the sender side (per IRMC-Liveness II and IRMC-Liveness III) is enough
to fully update the state of the commit channel if necessary. Requests that were already
contained in the IRMC must be identical as the message sent for a specific sequence
number s in ag.ordered or cp.stable (Line 93 and 105) must be identical per induction
assumption.

Remark B.3.2. cE.move_window (Line 99) is actually called with s − |hist′| + 1 which
has the same effect as s − |cE,0| + 1 such that we assume |hist′| = |cE,0| in the following
to simplify the presentation of the proof. As the first delivered agreement sequence
number is 1 and for every delivered request a new message is added to hist (Line 90),
the size of |hist| = min(sn, |cE,0|). Thus, when applying a checkpoint s − |hist′| + 1 =
s − min(s, |cE,0|) + 1 = max(1, s − |cE,0| + 1). As the lower bound of the subchannel
window min(cE,0.win) is initialized to 1 and cE.move_window ignores calls which would
move the window backwards, s − |cE,0| + 1 is equivalent to s − |hist′| + 1.

B.3.2. Execution Safety

Theorem B.1.1 (repetition) (E-Safety). If two correct replicas execute the ith write,
then these writes are identical.
To prove theorem E-Safety we start with the following lemma:

Lemma B.3.3. When two execution replicas e1 and e2 receive message m and m′ at
position p in the commit channel, then m = m′.

Proof. We prove this by contradiction. Assume that m 6= m′. Per IRMC-Correctness I
cE.receive(0, p) (Line 47) only delivers a message m that was sent by a correct agreement
replica, the same holds for m′. Therefore, a correct agreement replica must have
called cE.send(0, p, m) and another correct agreement replica cE.send(0, p, m′) (either at
Line 93 or 105). For this to happen via the cE.send call in ag.ordered, the agreement
protocol black box must have delivered message m and m′ on two correct replicas, which
contradicts A-Safety. And according to CP-A-Equivalence the cE.send when applying a
checkpoint in cp.stable is equivalent to the previous send call in ag.ordered, which
contradicts the assumption.

With this we can prove E-Safety:
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Corollary B.3.4. An execution replica only executes requests received from the commit
channel (cf. Lines 47 and 55) which according to Lemma B.3.3 cannot receive different
requests on different correct execution replicas.

B.3.3. Execution Checkpoint Equivalence

Lemma B.3.5 (CP-E-Equivalence). The state of an execution replica (sn, app and
u) that has reached sequence number sn via processing the corresponding Execute
message (Line 51) for sn is equivalent to that of a replica that arrives there via a
checkpoint for sequence number sn.

The proof follows along the lines of CP-A-Equivalence.

Proof. We prove this by induction.
Base case: All correct execution replicas initialize sn, app and u with identical values.

There is no checkpoint for that sequence number, as no checkpoint was generated yet.
Induction step: All correct execution replicas pass through the same states or jump

forward to one of those states via a checkpoint.
As the considered state parts are only updated in either the main loop (Line 45) or

cp.stable (Line 62), it suffices to show that when either of them updates sn to a certain
sequence number, then the resulting replica states are equivalent. Note that the sequence
number sn increases monotonically as the main loop only increments it (Line 52) and
cp.stable can only increase the value of sn (Line 64).
Assume that from a common starting point, execution replicas reach sequence number

sn by processing the corresponding Execute message (Line 51): As cE.receive(0, sn +
1) (Line 47) is called sequentially (without skipping) for each sequence number and
per E-Safety all correct execution replicas process the same requests for each sequence
number, the (atomic) modifications of sn, u[c] and app in the main loop (Line 52 and
following) are identical across execution replicas. Either all correct execution replicas
skip the execution of request r (Line 54) based on u[c], which must be identical across
replicas as per induction assumption the replica states were identical which includes u[c],
or according to the RSM the execution replicas arrive at identical u[c] and app for sn

after processing r.
Therefore, a call to cp.generate(s, (u, app)) (Line 60) for sequence number s has

identical parameters on all correct execution replicas and thus per CP-Safety cp.stable(s,
(u′, app')) (Line 62) can only deliver that checkpoint.

Applying a checkpoint for the current or an older sequence number s ≤ sn does
not change sn, app and u (Line 64). Applying a checkpoint for a newer sequence
number s > sn atomically updates sn, app and u to the state they had when the
checkpoint was created (Line 65). Later calls to cE.receive (Line 47) will request the
next sequence number after the checkpoint.

cE.move_window (Line 63) will cause any cE.receive calls for an old sequence number
to finish with a TooOld message and request a sequence number after the checkpoint
on the next iteration.
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B.3.4. Execution Safety II
Theorem B.1.2 (repetition) (E-Safety II). The system provides linearizability regarding
requests from correct clients.
We begin by proving the following auxiliary lemma.

Lemma B.3.6. When a client accepts a reply for its request, then that reply is correct
and replies from correct execution replicas are identical.

Proof. A client waits for replies (Line 11) from fe + 1 different replicas of its execution
group with the same content (Line 20 and 23), such that per failure assumption at least
one of the replies is from a correct execution replica. As shown in CP-E-Equivalence, all
correct execution replicas that process a request arrive at the same state and result. That
result is either sent directly to the client (Line 58) or retrieved from u[c] on a request
retry (Line 37).

We can now prove E-Safety II:

Proof. In order to prove that Spider provides linearizability, we have to show that
requests issued at any point in time are always executed after all requests for which a client
has accepted the reply, and that the execution follows the application’s specification [118].
The latter part of the requirement was already shown in CP-E-Equivalence, which

uses the fact that requests are executed (Line 55) in a total order. This also guarantees
that at least one correct replica has processed the Execute message for each sequence
number. An executed request must have been delivered by the agreement protocol black
box (see the proof in Appendix B.3.2 for E-Safety).
Assume that the execution replicas have executed request r which was ordered at

sequence number s. Now let the execution replicas execute a request r′ afterwards that was
ordered at a sequence number s′ with s′ < s. However, as execution replicas only process
requests in order, this contradicts the assumption that r was already executed. Thus,
new requests are always ordered and executed at a sequence number higher than that of
previously executed requests. Per Lemma B.3.6, a client cannot receive different replies
from correct execution replicas.
That is, as soon as a single correct execution replica sends a reply to the client, which

by construction happens before that client has accepted the reply, later requests are
always ordered at a higher sequence number.

Remark B.3.7. The request IRMCs do not matter for E-Safety and E-Safety II, as the
agreement protocol black box is safe independent of the input.
Remark B.3.8. It is not necessary to store (unordered) client messages in an execution
checkpoint as a correct client keeps repeating incomplete requests. Already executed
requests are either part of a checkpoint or still available from the commit channel.
Remark B.3.9. A correct execution replica might not receive a request from a correct
client when the other execution replicas have already processed it. This is the reason why
cp.stable at execution replicas (Line 63) must push the window of a client’s subchannel
forward.
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B.3.5. Execution Validity

Theorem B.1.3 (repetition) (E-Validity). Only a correctly authenticated write request
from a client may be executed.
E-Validity follows as a corollary:

Corollary B.3.10. Per Lemma B.3.3, an executed request must have been delivered
by the agreement protocol black box, and per A-Validity only valid client requests are
delivered, thus together with the cryptographic assumptions the request must originate
from that client.

B.3.6. Execution Validity II

Theorem B.1.4 (repetition) (E-Validity II). A correct replica executes a write request
at most once.
Next, we prove E-Validity II:

Proof. This follows by construction of the main loop (Line 45): Requests that are not
either the first request of a client or that do not have a higher counter value tc than the
last one are skipped (Line 54). After executing a request the latest counter for client c is
stored (Line 56). As a request cannot have a counter value higher than its own counter
value, it can be executed at most once. Per CP-E-Equivalence u and app are always
restored together, such that if the application state contains the effects of executing
the write request, this fact is also reflected in u. And therefore the request will not be
executed more than once.

B.3.7. Execution Liveness

Theorem B.1.5 (repetition) (E-Liveness). A correct client will eventually receive a
reply to its request.
We now prove that a correct client will eventually receive a reply to its request(s).

Without loss of generality, we consider all requests to originate from the same client. For
this we show that each of the processing steps a request passes through will eventually
make progress. The lemmas assume implicitly that the client has either collected a stable
reply (in which case the request processing is finished) or that it still waits for replies to
its request and thus keeps resending its request.

Lemma B.3.11. When a correct client sends a new request r, then an execution replica
will pass it on to its request IRMC (unless it has already seen a newer request from that
client).

Proof. Assume that an execution replica receives a, from its perspective, new request
(Line 33). By construction a request r = 〈Write, w, c, tc〉 sent by a correct client is
correctly authenticated and signed (Line 7) and therefore passes the MAC and signature
checks (Line 34 and 39). The counter value tc is tc > t′

c, with t′
c being the counter

value of any older request, as a correct client always increments its counter value after
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accepting a reply (Line 14). As t[c] is only modified when the execution replica receives
a valid request from the client (Line 41), it must contain either some older value t′

c

or the default of 0. (The client starts with tc = 1, whereas an execution replica
defaults to t[c] = 0.) Therefore, tc > t[c] and the execution replica calls rE.send(c, tc,
〈Request, unwrap_mac(m), E〉) (Line 43).
In case the request is not new to the execution replica, then this Lemma provides no

assurances.

Lemma B.3.12. The send call by the execution replicas for the client’s request channel
will not block indefinitely.

Proof. The rE.send (Line 43) call only blocks if the request counter tc is larger than
max(rE,c.win), that is, the upper bound of the client’s request subchannel. To arrive at
a contradiction, assume that the rE.send call (Line 43) blocks indefinitely. As a correct
client sends its (new) request to all execution replicas, eventually fe + 1 correct execution
replicas will per Lemma B.3.11 have called rE.send and therefore also rE.move_window(c,
tc) (Line 42) in the line before. Per IRMC-Liveness III eventually all agreement replicas
will call rE.move_window(c, tc). With IRMC-Liveness II it follows that rE.send returns,
which contradicts the assumption.

Lemma B.3.13. An agreement replica will eventually try to receive a new correct
request r from a correct client (unless it has already seen a newer one or skipped it with
a checkpoint).

Proof. Lemma B.3.12 has already shown that all (≥ fe + 1) correct execution replicas
will rE.send the new client request r which per IRMC-Liveness I can be received by a
corresponding call on the agreement replicas, unless it is no longer part of the window
of the subchannel. According to IRMC-Correctness I only request r can be received,
as all correct execution replicas send this request. We therefore have to show that an
agreement replica will call rE.receive(c, t+[c]) (Line 80) for the right request counter
value tc.
Assume that t+[c] < tc: As shown above in the proof of Lemma B.3.12 all correct

agreement replicas will eventually call rE.move_window(c, tc), which according to the
semantics of the send method will cause it to return 〈TooOld, tc〉, which is used to
update t+[c] (Line 81) and request tc next.
Assume that t+[c] > tc: We show that this case never applies. An agreement replica

cannot have received a too new TooOld message and stored its counter value (Line 81):
According to IRMC-Correctness II, at least one correct execution replica must have
called rE.move_window accordingly, which requires that a correct execution replica has
received a valid request with counter t+[c] > tc from a correct client. This contradicts
the assumption that the request is new.
Incrementing t+[c] after having received a previous request (Line 84) or processing it

in ag.ordered (Line 90) would require a previous request with counter value t′
c ≥ tc,

which contradicts the assumption. (A faulty client could cause some chaos here, but this
is no problem as the effects are strictly limited to the client’s subchannel.)
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Remark B.3.14. These properties effectively allow the rE.receive call to synchronize
itself. That is, each agreement replica will eventually try to receive the latest request for
each client.

Lemma B.3.15. The agreement protocol black box will call ag.ordered (Line 87) for a
new request r at sequence number s within bounded time or apply a checkpoint for a later
or equal sequence number.

Proof. After fe + 1 execution replicas complete their call to rE.send(c, tc, r) (Line 43),
an agreement replica can receive request r and start the agreement process.
Assume that the request r is not delivered within bounded time and is also not skipped

via a checkpoint. The request of a correct client will eventually arrive at all correct
(≥ fe + 1) execution replicas. With Lemmas B.3.11 and B.3.12 it follows that fe + 1
correct execution replicas call rE.send. With IRMC-Liveness I, IRMC-Correctness I
and Lemma B.3.13 it follows that all correct agreement replicas will eventually receive
the request r or a 〈TooOld, t′

c〉 message if rE.move_window (Line 42) is called by
fe + 1 execution replicas with t′

c > tc. As a correct client does not issue a request with
counter t′

c > tc before r was executed, all correct execution replicas will eventually call
rE.move_window with exactly tc, but no higher value, such that receiving TooOld would
violate IRMC-Correctness II. (Executing r would require that it was delivered before by
at least one correct agreement replica, as shown in the proof of Lemma B.3.3.)
Thus, per IRMC-Liveness III all correct agreement replicas will eventually internally

call move_window(c, tc) on the request IRMC and 2fa + 1 correct agreement replicas
eventually rE.receive request r as long as r is not delivered via ag.ordered. Thus,
the replicas call ag.order_request() (Line 83) to start the agreement for that request.
With A-Liveness it follows that fa + 1 correct agreement replicas eventually deliver r,
contradicting the assumption.
Skipping the ag.ordered call via cp.stable (Line 97) requires per CP-Safety that

at least one correct agreement replica created the checkpoint (Line 95) and thus the
agreement protocol black box would already have delivered r, which contradicts the
assumption.

Lemma B.3.16. A request r delivered at sequence number s that is cE.send by fa +
1 correct agreement replicas will eventually either execute on fe + 1 correct execution
replicas or on one correct execution replica once a stable checkpoint with sequence number
sCP ≥ s was created.

Proof. Assume that no stable checkpoint with sequence number sCP ≥ s is applied at the
execution replica (Line 62) before processing r: IRMC-Liveness I states that fe +1 correct
execution replicas receive some request or a 〈TooOld, s′〉 message (Line 47) with s′ > s,
as fa+1 agreement replicas sent the request (Line 93). According to IRMC-Correctness I
the request can only be request r, as per Lemma B.3.3 all correct agreement replicas send
request r. The execution replicas cannot receive the TooOld message, as this would
violate IRMC-Correctness II.
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• Based on the assumption, execution replicas can only call cE.move_window(0, sCP +
1) (Line 63) with sCP < s, and thus sCP + 1 ≤ s, which does not allow TooOld
to be returned.
As the agreement protocol black box delivers requests in sequence number order
according to A-Order, an execution replica will also be able to receive any other
previous request between sCP and s and therefore will eventually try to receive s.

• Agreement replicas call cE.move_window(0, ŝ − |cE,0| + 1) (Line 99). To create an
agreement checkpoint at ŝ (Line 95), with ŝ > s, the window of the commit channel
must have included ŝ (as cE.send (Line 93) would have blocked otherwise), that is
max(cE,0.win) ≥ ŝ ⇔ min(cE,0.win)+|cE,0|−1 ≥ ŝ ⇔ min(cE,0.win) ≥ ŝ−|cE,0|+1.
That is, the lower bound of the commit channel window must have been larger or
equal to ŝ − |cE,0| + 1. Therefore, an agreement replica cannot advance the window
of the commit channel by applying a checkpoint unless an execution group triggered
the window move before. However, as shown in the previous paragraph the latter
would contradict the assumption. Therefore, fe + 1 correct execution replicas will
eventually execute the request and possibly create a checkpoint.

Assume that a stable checkpoint with sequence number sCP ≥ s gets applied: Per
CP-Safety at least one correct execution replica must have created the checkpoint and
thus have executed the request as per the previous part of the proof. Per CP-Liveness all
other correct execution replicas will eventually receive and apply the checkpoint or have
executed the request.

Lemma B.3.17. A correct execution checkpoint at sequence number sCP for which
fa + 1 agreement replicas delivered and called cE.send(0, sCP ) (Line 93) will eventually
become stable (Line 62) unless it is superseded by a newer one.

Proof. Assume that no such stable checkpoint exists and that it is not superseded by
a newer one. Then per Lemma B.3.16 fe + 1 correct execution replicas will execute
the request and thereby create their checkpoint messages (Line 60), which per CP-E-
Equivalence are identical and according to CP-Liveness II will become stable.

Lemma B.3.18. If no progress occurs, then eventually the start of the subchannel
window of the commit channel is min(cE,0.win) = sCP + 1 with sCP being the latest
stable execution checkpoint.

Proof. Per CP-Liveness eventually all execution replicas will receive the latest stable
execution checkpoint (Line 62) and call cE.move_window(0, sCP + 1) (Line 63). No
correct execution replica calls cE.move_window for a higher sequence number as sCP is
the number of the latest checkpoint.
Agreement replicas call cE.move_window(0, ŝ − |cE,0| + 1) (Line 99). To create an

agreement checkpoint at ŝ, the window of the commit channel must have included ŝ (as
cE.send (Line 93) would have blocked otherwise, preventing the checkpoint generation),
that is max(cE,0.win) ≥ ŝ ⇔ min(cE,0.win)+ |cE,0|−1 ≥ ŝ ⇔ min(cE,0.win) ≥ ŝ−|cE,0|+
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1. Therefore, an agreement replica cannot advance the window of the commit channel to
a sequence number that is larger than that of the execution replicas’ cE.move_window
calls. Thus, all correct agreement replicas eventually arrive at min(cE,0.win) = sCP + 1
with sCP being the latest stable execution checkpoint.

Lemma B.3.19. Agreement replicas will eventually complete cE.send(s, r) (Line 93).

Proof. ag.ordered blocks when win is full (Line 88). AG-WIN ≥ ka and win is always
anchored directly after the sequence number of the last stable agreement checkpoint.
Thus, win contains at least one sequence number for which a new agreement checkpoint
will be created.

Assume that ag.ordered blocks permanently on the window check. In that case, per
assumption, there can be no stable agreement checkpoint with sequence number sCP ≥ s
and sCP ∈ win, which would lead to progress. Therefore, as the client waits for r to be
executed, per Lemma B.3.15 eventually fa + 1 agreement replicas also deliver all requests
in win. That is, fa + 1 correct agreement replicas create a new agreement checkpoint,
which will become stable and moves win forward. This contradicts the assumption.
Assume that the cE.send (Line 93) call blocks permanently, which requires that

s > max(cE,0.win). Per A-Order and CP-A-Equivalence it follows that all previous slots
in the subchannel window are filled with requests. With Lemma B.3.15 this applies to
at least fa + 1 agreement replicas. As |cE,0| ≥ ke at least one position in the commit
channel window is an execution checkpoint sequence number. Per Lemma B.3.17 this
causes a new checkpoint to become stable, which according to Lemma B.3.18 eventually
moves the commit channel window forward and thus contradicts the assumption.

Now we can prove that a correct client will eventually receive a reply to its request:

Proof. Assume that the client does not get a reply. Then per Lemmas B.3.16 and B.3.19
fe + 1 correct execution replicas will eventually have the reply in u[c]. As a correct
client does not send a new request before having obtained a reply to the last one, u[c]
must eventually contain the reply. Per CP-E-Equivalence the reply is identical on all
correct execution replicas. At latest after the next request retry, the client will receive
the (identical) reply from fe + 1 correct execution replicas and therefore accept the
reply (Line 23), which contradicts the assumption.

Remark B.3.20. An agreement replica will receive a request r either via the request
IRMC, the agreement protocol black box or skip the request via a checkpoint.

B.3.8. Multiple Execution Groups

We now generalize to ne ≥ 1 execution groups of which z < ne might be skipped if these
are slow.

Lemma B.3.21. E-Liveness also holds for multiple execution groups.
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Proof. Even though an agreement replica only waits for ne − z groups (Line 94) to
complete cE.send, an execution group will only miss requests if the agreement replicas
call cE.move_window (Line 99) with a sequence number not yet received by a slow
execution group. As shown in the proof of Lemma B.3.18 an agreement replica can
only create a checkpoint that would push the window of the commit channel forward if
the execution group already has created a newer or matching checkpoint. Generalized
to ne execution groups, the cE.send (Line 93) calls for ne − z execution groups have
to complete, before an agreement checkpoint can be created (Line 95). Therefore, an
execution group that has fallen behind can always retrieve an up-to-date checkpoint from
one of the ne − z up-to-date execution groups.
As agreement replicas unconditionally move the commit channel window forward

(Line 99), this will lead to at least fa + 1 agreement replicas calling cE.move_window
(per Lemma B.3.19 a corresponding checkpoint will eventually exist and according
to CP-Liveness all correct agreement replicas will eventually receive it), which based
on IRMC-Liveness I and IRMC-Liveness III will eventually allow execution groups
that fell behind to receive a TooOld message. This triggers fetching an up-to-date
checkpoint (Line 50).

B.3.9. Consistency Guarantees
We now revisit the consistency guarantees provided by Spider.

Write Requests As previously shown in Appendix B.3.4, Spider provides linearizability
for write requests.

Read Requests with Strong Consistency Read requests with strong consistency work
like write requests with one exception: Only the designated execution group receives the
full request, whereas the other groups only get the client id c and counter tc. This leads
to the following observation:
Lemma B.3.22. With read requests, the content of checkpoints can vary between groups
in regard to the reply stored in u[c]. That is, CP-E-Equivalence only applies to individual
groups at a time.
Proof. Only the client’s execution group will receive the read request and modify u[c]
accordingly after executing the request (Line 56). All other execution groups store a
placeholder in u[c] which includes the request counter. Therefore, the reply parts of u[c]
can differ between groups. Note that this divergence is self-correcting in the sense that it
will disappear after executing the next write request for that client.

Remark B.3.23. This does not prevent the checkpoint from being transferred between
groups, as each group can still generate a valid proof for its checkpoint. However, the
global flow control could force a group to skip some requests, which might include group-
specific read requests. In that case an execution replica has to tell the client to resubmit
its request if only a placeholder is stored in u[c]. This does not affect consistency as read
requests do not modify the application state.
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1 rwin[r][sc] := [1, |IRMCsc|] // Received windows, r ∈ RR ∪ rs

2 cwin[sc] := [1, |IRMCsc|] // Combined window, f+1-highest received window
3 void send(Subchannel sc, Position p, Message m):
4 sleep until p ≤ max(cwin[sc])
5 if p ≥ min(cwin[sc]): // p ∈ cwin[sc]
6 send signrs(〈Send, m, sc, p〉) to RR

8 void move_window(Subchannel sc, Position p):
9 // The subchannel window start may only increase

10 if p > min(rwin[rs][sc]):
11 // Send and store window move
12 send macrs,RR

(〈Move, sc, p〉) to RR

13 rwin[rs][sc] := [p, p + |IRMCsc| − 1]

15 on receive(m = 〈Move, sc, p〉 from rr ∈ RR):
16 if !valid_macrr,RS

(m): return
17 // Only accept new move messages
18 if p > min(rwin[rr][sc]):
19 rwin[rr][sc] := [p, p + |IRMCsc| − 1]
20 // Calculate actual window start
21 w := fr + 1 highest {min(rwin[r′

r][sc]) | r′
r ∈ RR}

22 cwin[sc] := [w, w + |IRMCsc| − 1]
23 garbage collect messages with SeqNr s < cwin[sc]

Figure B.8: IRMC-RC sender endpoint at replica rs (pseudocode)

Read Requests with Weak Consistency

Lemma B.3.24. Weakly consistent read requests provide prefix consistency.

Proof. All write requests are totally ordered. As a correct client only accepts a result
that is sent by at least one correct execution replica, the result will correspond to some
point in this total order.

B.4. IRMC Pseudocode
In this section we provide pseudocode for the IRMC-RC and IRMC-SC, which have been
described in Sections 5.6.3 and 5.6.4.

B.4.1. IRMC-RC
The IRMC-RC variant shown in Figures B.8 and B.9 is a simple implementation of the
sender and receiver endpoint. In case a sender replica has multiple IRMCs and sends
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24 rwin[r][sc] = [1, |IRMCsc|] // Received windows, r ∈ RS ∪ rr

25 cwin[sc] = [1, |IRMCsc|] // Combined window
26 d[sc][p][rs] = ∅ // Messages received via Send messages
27 Message receive(Subchannel sc, Position p):
28 sleep until p ≤ max(cwin[sc])
29 sleep until either:
30 case p < min(cwin[sc]):
31 return 〈TooOld, min(cwin[sc])〉
32 case ∃m : |{rs|m = d[sc][p][rs], rs ∈ RS}| ≥ fs + 1:
33 return m // Received m from at least fs + 1 senders

35 void move_window(Subchannel sc, Position p):
36 // The subchannel window start may only increase
37 if p > min(cwin[sc]):
38 send macrr,RS

(〈Move, sc, p〉) to RS

39 cwin[sc] := [p, p + |IRMCsc| − 1]
40 garbage collect messages in endpoint state with SeqNr s < cwin[sc]

42 on receive(r = 〈Send, m, sc, p〉 from rs ∈ RS):
43 if !valid_sigRS

(r): return
44 if p ≥ min(cwin[sc]):
45 d[sc][p][rs] := m

47 on receive(m = 〈Move, sc, p〉 from rs ∈ RS):
48 if !valid_macrs,RR

(m): return
49 // Only accept new move messages
50 if p > min(rwin[rs][sc]):
51 rwin[rs][sc] := [p, p + |IRMCsc| − 1]
52 nw := fs + 1 highest {min(rwin[r′

s][sc]) | r′
s ∈ RS}

53 if nw > min(cwin[sc]):
54 move_window(s, nw)

Figure B.9: IRMC-RC receiver endpoint at replica rr (pseudocode)
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identical messages on the same subchannel and position, then these send the same Send
message, which allows the IRMCs to share the message’s signature. For a more detailed
explanation of signature sharing refer to Section 5.7.1.
Without loss of generality, we assume the set of senders RS and receivers RR to be

disjoint, that is, RS ∩ RR = ∅. We assume reliable point-to-point channels between
replicas, that is, messages sent between individual replicas will be delivered eventually,
unless messages are garbage collected at which point a replica discards old messages, even
when they were not successfully delivered yet. This can be achieved using the outbox
abstraction described in Section 5.6.2 and letting the send calls enqueue the message at
the corresponding message or acknowledgement outbox. Thereby the outboxes can limit
the transmission of messages to each receiver such that only messages are sent which
fit into the subchannel window at a receiver. The receiver replicas then drop received
messages outside the current subchannel window and thus can bound their state.

To simplify the presentation, the messages do not include an IRMC identifier. Such an
identifier has to be added in case it becomes necessary to differentiate between multiple
IRMC instances.

B.4.2. IRMC-SC
IRMC-SC shown in Figures B.10 and B.11 is a more complex but also more efficient
implementation than IRMC-RC.

For liveness, we assume that the Move message is protected against replay attacks, for
example, by including a counter to filter out already processed instances of the message.
In case a sender replica has multiple IRMCs and sends identical messages on the same
subchannel and position, then it can share a single signed Certificate message between
IRMCs.
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1 + Variables from IRMC-RC sender endpoint
2 sig[sc][p][rs] = ∅ // SigShare from sender rs for subchannel sc at position p
3 bundle[sc][p] = ∅ // Certificate for subchannel sc at position p
4 sender[sc][rr] = ⊥ // Selected sender for subchannel sc to receiver rr

5 d[sc][p] = ∅ // Message sent in subchannel sc at position p

6 void send(Subchannel sc, Position p, Message m):
7 sleep until p ≤ max(cwin[sc])
8 if p ≥ min(cwin[sc]): // p ∈ cwin[sc]
9 d[sc][p] := m

10 // SigShare is also processed locally
11 send signrs(〈SigShare, h(m), sc, p〉) to RS

13 // Collect SigShares to assemble a Certificate
14 on receive(sg = 〈SigShare, h(m), sc, p〉 from rs ∈ RS):
15 if !valid_sigRS

(sg): return
16 if p ≥ min(cwin[sc]) ∧ sig[sc][p][rs] = ∅: // Only accept first share per sender
17 sig[sc][p][rs] := sg
18 // Shares with matching hash
19 v := {sig[sc][p][r] | r ∈ RS , sig[sc][p][r].h = h(m)}
20 limit v to fs + 1 values
21 // Check if replica has fs + 1 matching shares and the actual request
22 if |v| = fs + 1 ∧ d[sc][p] 6= ∅ ∧ bundle[sc][p] = ∅:
23 bundle[sc][p] := macrs,RR

(〈Certificate, d[sc][p], sc, p, v〉)
24 send bundle[sc][p] to all receivers rr with sender[sc][rr] = rs

26 periodic:
27 // Send position of latest certificate per subchannel up to which there are no gaps at

previous positions in the subchannel window
28 for each Subchannel sc:
29 prog[sc] := highest p ∈ cwin[sc]

with ∀p′ ∈ cwin[sc], p′ ≤ p : bundle[sc][p′] 6= ∅
30 send macrs,RR

(〈Progress, prog〉) to RR

32 // move_window and receive(Move) are identical to IRMC-RC

34 // Select sender for subchannel
35 on receive(m = 〈Select, sc, s〉 from rr ∈ RR):
36 if !valid_macrr,RS

(m): return
37 sender[sc][rr] := s
38 // Send queued messages for subchannel sc to rr

39 ∀p : send bundle[sc][p] to receiver rr if s = rs

Figure B.10: IRMC-SC sender endpoint at replica rs (pseudocode)
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40 + Variables from IRMC-RC receiver endpoint
41 d[sc][p] = ∅ // Message received for subchannel sc at position p
42 pe[r][sc] := 0 // Expected progress for sc reported by r ∈ RS

43 pm[sc] := 0 // Merged progress values for sc (fs + 1 highest)
44 Message receive(Subchannel sc, Position p):
45 sleep until p ≤ max(cwin[sc])
46 sleep until either:
47 case p < min(cwin[sc]):
48 return 〈TooOld, min(cwin[sc])〉
49 case d[sc][p] 6= ∅:
50 return d[sc][p]

52 on receive(r = 〈Certificate, m, sc, p, v〉 from rs ∈ RS):
53 if !valid_macrs,RR

(r): return
54 // Certificate must contain fs + 1 matching signatures from different senders
55 if p ≥ min(cwin[sc]) ∧ |v| = fs + 1 ∧ ∀sg ∈ v : valid_sigRS

(sg) for m
∧ sg from different senders:

56 d[sc][p] := m

58 on receive(m = 〈Progress, np〉 from rs ∈ RS):
59 if !valid_macrs,RR

(m): return
60 // Merge progress vectors
61 for each Subchannel sc ∈ np:
62 pe[rs][sc] := max(pe[rs][sc], np[sc])
63 pm[sc] := fs + 1 highest {pe[r′][sc] | r′ ∈ RS}
64 // Start timeout if some messages are still missing
65 if ∃s′ ∈ [min(cwin[sc]), pm[sc]] : d[sc][s′] = ∅:
66 p := pm[sc]
67 // sc@p is a timer for subchannel sc at the position p
68 start timer for sc@p if not started yet

70 on timeout for sc@p:
71 // Timeout expired and there are still missing certificates
72 if ∃s′ ∈ [min(cwin[sc]), p] : d[sc][s′] = ∅:
73 select new sender rs for sc
74 send macrr,RS

(〈Select, sc, rs〉) to RS

75 restart timer for sc@p

77 // move_window and receive(Move) are identical to IRMC-RC

Figure B.11: IRMC-SC receiver endpoint at replica rr (pseudocode)
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List of Acronyms

COTS commercial of-the-shelf

COW copy-on-write

CRDT conflict-free replicated data
type

DDFC Differential Deterministic
Fuzzy Checkpointing

DFC Deterministic Fuzzy
Checkpointing

DNS domain name system

DRC default-request certificate

FIFO first-in-first-out

FPC fast-path certificate

GPS global positioning system

HMAC hash-based message
authentication code

IRMC Inter-Regional Message
Channel

IRMC-RC Inter-Regional Message
Channel with Receiver-side
Collection

IRMC-SC Inter-Regional Message
Channel with Sender-side
Collection

MAC message authentication code

RPC reconciliation-path certificate

RSM replicated state machine

SCC strongly connected
component

SSCC special-case strongly
connected component

TCP transmission control protocol

TLS transport layer security

YCSB Yahoo! Cloud Serving
Benchmark
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