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Abstract. Franz et al. (2023) report a diverse and three-
dimensionally preserved suite of mid-Proterozoic micro-
fossils from miarolitic cavities within the granitic Volyn
pegmatite field, a major granitic plutonic complex in NW
Ukraine. The biota is dated at between ~ 1.76 and ~ 1.5 Ga
and includes fungus-like objects. This biota is reported as
evidence of organisms living within the continental litho-
sphere, illuminating part of a ~ 1.8-0.8-billion-year inter-
val of the Proterozoic Eon characterised by relatively low
climatic variability and slow biological evolution. We show
that at least some of this putative diversity represents mod-
ern contamination including plant hairs, a distinctive pollen
grain assignable to the extant conifer genus Pinus, and likely
later fungal growth. Comparable diversity is shown to exist
in modern museum dust, presented as an example of poten-
tial airborne contamination and calling into question whether
any part of the Volyn “biota” is biological in origin. We em-
phasise the need for scrupulous care in collecting, analysing,
and identifying Precambrian microfossils.

1 Introduction

Franz et al. (2023) recently published a detailed study on
what they claim to be a diverse suite of in situ Proterozoic
microfossils from the Volyn pegmatite field within the Ko-

rosten Pluton, a major granitic complex intruded into conti-
nental crust and located WNW of Kyiv, Ukraine. The fos-
sils were extracted from eight kerite samples and one beryl
crystal originating from metre-scale crystal-lined (miarolitic)
cavities in the pegmatites (Franz et al., 2023, their Table 1;
see also Franz et al., 2022a, their Table 1; together com-
piled in Table 1 here). Kerite is a black, carbon-rich, bi-
tumoid compound found in these cavities in the Korosten
Pluton. The origin of kerite has been disputed. Ginzburg et
al. (1987), who first described fibrous kerite from the Volyn
pegmatite, posited an abiogenic origin from volatile hydro-
carbons (see also Luk’yanova et al., 1992), although Gor-
lenko et al. (2000) considered it to represent the remains of
cyanobacterial mats probably of hydrothermal origin. The
age of the kerite is less than the 1.76 Ga (latest Paleoprotero-
zoic) radiometric (i.e. crystallisation) age of the pegmatites
themselves (Shumlyanskyy et al., 2021) and has a minimum
radiometric age of 1.5 Ga (earliest Mesoproterozoic) based
on a breccia that contains degraded organic matter (Franz et
al., 2017, 2022b). This biota therefore falls within the so-
called “boring billion”, a 1.8-0.8 Gyr interval spanning the
Mesoproterozoic that was characterised by low oxygen lev-
els, relative climatic stability, sulfidic oceans, primitive life
forms, and very slow biological evolution (Mukherjee et al.,
2018, and references therein).
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The biota described by Franz et al. (2023) comprises a sub-
stantial variety of morphotypes classified by these authors
as filaments, hollow objects, irregular objects, and spheri-
cal objects, as well as flaky objects and agglutinating fila-
ments interpreted as fossil biofilms. Together these forms are
interpreted as representing free-living as well as sessile or-
ganisms. It is proposed that this biota lived in large cavities
within the pegmatite, therefore representing part of the deep
Mesoproterozoic biosphere, and was supposedly fossilised
by a rapid influx of hot, mineral-rich fluids associated with a
geyser system. These fluids were a mixture of magmatic flu-
ids and meteoric water that caused surficial infiltration of alu-
minium silicates coupled with encrustations and intergrowths
by various minerals, resulting in rapid fossilisation in an ex-
ceptional three-dimensional preservational state (Franz et al.,
2022a, 2023, Fig. 1b). The biota apparently lived relatively
close to the surface.

The microfossils were studied and comprehensively illus-
trated by Franz et al. (2023, their Figs. 3—11) using a scan-
ning electron microscope (SEM) and an electron microprobe
analyser. Analysis of carbon and nitrogen stable isotopes and
micro-Fourier transform infrared spectroscopy (micro-FTIR)
absorption spectra were also undertaken.

We comment on several aspects that point to the inclusion
of modern contaminants within the reported Volyn biota, and
we present both an SEM analysis of modern museum dust
and comparative micro-FTIR absorption spectra, calling into
question the high morphological diversity described by Franz
et al. (2023).

2 The Volyn biota in an evolutionary context

The 1.76-1.5 Ga age of the Volyn biota places it within a
billion-year interval first identified by Buick et al. (1995)
as lacking major biological, geological, and climatic events
and later coined the “boring billion” (Brasier, 2012). This in-
terval is now typically regarded as extending from ~ 1.8 to
0.8 Ga (latest Paleoproterozoic—earliest Neoproterozoic, or
“mid-Proterozoic”). It follows the final assembly of super-
continent Columbia at ~2.0-1.8 Ga but includes the mas-
sive Grenville orogeny and assembly of Rodinia at ~1.3—
1.0Ga (Johnson et al., 2020) prior to the advent of rela-
tively modern-style subduction tectonics at 0.9-0.8 Ga (San-
tosh and Groves, 2023). Indeed, the interval between 1.850
and ~ 0.850 Ga was characterised by relatively thin and un-
usually hot crust (Spencer et al., 2021). However, there were
no major glacial events, and atmospheric oxygen levels re-
mained low throughout. Biologically the interval is signif-
icant because eukaryotes had evolved by at least 1.7 Ga
(Javaux and Lepot, 2018; Miao et al., 2019) and questionably
as far back as 2.4 Ga (Barlow et al., 2023), with the appear-
ance of photosynthesising eukaryotes estimated at 1.25 Ga
(Gibson et al., 2018). Since all eukaryotes require oxygen
to metabolise, the low levels of dissolved oxygen in shal-
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Figure 1. Museum dust under the SEM as an example of potential airborne contamination. (a—c) Pinus pollen, (a) imaged with 6kV
accelerating voltage (AV); (b) imaged with 12kV AV that reveals the infrareticulum of the pollen air sacs (arrowhead), as also seen using a
high (10kV) AV in Fig. 9a— of Franz et al. (2023); and (c) detail of transitional area between leptoma and cappa with typical microrugulate
ornamentation. (d-1) Plant hairs (trichomes) showing various morphologies and views, including (g-k) observed with the SEM combined
with energy-dispersive X-ray spectroscopy (EDX) where heat maps depict distributions of elements (C, carbon; O, oxygen; Ca, calcium, S,
sulfur; Si, silicon) on each object and (1) detail of sinuous tapering end of trichome. (m—q) Indeterminate filaments, with (m) an additional
object (arrowhead) comparable to the arrowed specimen in Fig. 2i of Franz et al. (2023); (n) an unidentified specimen; (0—p) an elongate
specimen with a hole (arrowhead) in the middle of the thread-like structure, where (p) reveals mostly silicon (in blue, from silicate) under
EDX analysis; and (q) a smooth filament. Dust was mounted on aluminium stubs stickered with conductive carbon tabs and coated with
palladium; imaged with a TESCAN CLARA SEM. Images: Julia Gravendyck.
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low seas of the mid-Proterozoic (~ 0.1 % of modern surface
ocean levels; Tang et al., 2016) and perhaps other aspects of
ocean chemistry including low nutrient trace element con-
centrations (Mukherjee et al., 2018) explain their restrained
evolutionary diversification through much of this time. Short-
lived pulses of oxygenation (>4 % in Shang et al., 2019) do
not appear to have significantly affected this overall evolu-
tionary pattern, although a moderate increase in diversifica-
tion during the late Mesoproterozoic—early Neoproterozoic
(Javaux and Lepot, 2018) reflects a shift to more favourable
conditions.

Franz et al. (2023) described some of the filaments in their
Volyn biota as being “fungi-like” and considered molecular
clocks with respect to fungi. We note from the more recent
literature that clock ages of 887 Myr (Chang et al., 2015) and
1020 Myr (Lutzoni et al., 2018) for the origin of fungi are
far younger than the 1.76-1.5 Gyr age of the Volyn biota.
Other clocks based on individual fungal groups give younger
ages still, for instance with the fungal origins of lichenisa-
tion postdating the earliest tracheophytes which appeared in
the Ordovician (Nelson et al., 2019). The fungal affinity of
filamentous microfossils reported from 1010-890 Ma rocks
of Arctic Canada (Loron et al., 2019) was questioned by
Berbee et al. (2020) in part because fungal phylogeny does
not predict filamentous algae this early. It might be claimed
that the fossil record of fungi is poorly sampled, yielding
erroneously young estimates of divergence time. However,
molecular clocks for the origin of animals, which are close
relatives of fungi, approximate 700-800 Myr (Anderson et
al., 2023), which is in general accord with recent published
clocks for fungi. Unsurprisingly, among the early eukaryotes,
uncontested fungi therefore make a relatively late appearance
in the fossil record.

Within the mid-Proterozoic context of high crustal heat
flow and low overall biotic diversity, the Volyn biota with its
wide range of reported morphologies including structures as-
cribed to fungi-like organisms (Franz et al., 2023) represents
an anomaly and therefore calls for scrutiny.

3 Evidence for contamination

One of the “spherical objects” illustrated by Franz et
al. (2023, their Fig. 9a—c) is a bisaccate pollen grain
assignable to the extant coniferous genus Pinus (pine). Franz
et al. (2023, p. 1910) described this entity as having a
“double-ball shape ... clearly grown onto the substrate” and
bearing “remnants of a sheath [that] points to cell separa-
tion”. We note paired air sacs with subtle surface reticula-
tion that reflects internal structure, joined by a central body
with a microrugulate surface, all features that characterise
this well-known type of pollen (e.g. Moore et al., 1991, their
Plates 5, 59; Cojocaru et al., 2022). Bisaccate pollen first en-
tered the fossil record in the late Carboniferous (Traverse,
2008; Fig. 4 in Riding, 2021). The modern native distribution
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of pine across Eurasia including Germany and Ukraine, the
high numbers of airborne pollen produced by the parent tree,
the occurrence of this pollen type in museum dust (Fig. la—
¢), and its unique morphology and pristine condition all allow
us to confirm it as a modern contaminant.

Of the SEM images presented showing curvilinear fila-
ments with smooth surfaces and circular cross sections, we
note that a specimen illustrated by Franz et al. (2023, their
Fig. 3j-1) from three views and described as “multiple, con-
ical filaments with claw-like ends, growing from a common
center” strongly resembles an abietiform trichome (Payne,
1978). Trichomes are appendages covering plant surfaces in-
cluding leaves, stems, and fruits and are often microscopic
outgrowths of a single epidermal cell (Esau, 1965). Tri-
chomes similar to the specimen shown by Franz et al. (2023)
are found for example in extant species of the fagacean
genus Quercus (Hardin, 1976) and malvacean genus Alcea
(Arabameri et al., 2020). We do not know if this speci-
men was studied with a backscattered electron (BSE) de-
tector or micro-FTIR analysis to determine whether it was
mineralised. However, biomineralisation of plant trichomes
is a common phenomenon in angiosperms (e.g. Mustafa
et al., 2018; Weigend et al., 2018), with silica, calcium
carbonate, calcium oxalate, and calcium phosphate among
these biominerals (Lowenstam, 1981; Ensikat et al., 2016).
Such biominerals may show complex patterns even within a
single-celled trichome (Ensikat et al., 2017) and to the un-
trained eye might appear similar to the products of fossilisa-
tion, especially if only known beyond the context of the plant
body. Given that plant trichomes are present in the natural en-
vironment and are a common component of household and
museum dust (Fig. 1d-1), we consider the extremely well-
preserved specimen illustrated by Franz et al. (2023) to be a
modern trichome.

Franz et al. (2023) presented micro-FTIR spectra intended
to allow speculation on the biological affinities of the fossils
recovered. Micro-FTIR is a powerful non-destructive tech-
nique yielding fundamental information on the molecular
structure of organic and inorganic components in a sample
by using an infrared source and analysing the absorption
spectrum typically in the mid-infrared (approximately 4000
to 400 cm™1) region (Chen et al., 2015). Franz et al. (2023)
measured three 40-60 um wide translucent dark-brown frag-
ments of kerite from their sample no. 0 (a museum sample
from Kyiv), all showing similar spectra (Fig. 13a in Franz et
al., 2023; Fig. 2g). These spectra were compared with that of
a chitin standard (commercially supplied deacetylated chitin
from shrimp shells) and were found to be closely similar if
allowing for some thermal maturation of the kerite. The au-
thors take this as evidence of a biological origin of the Volyn
biota. Chitin is an essential ingredient of the cell walls of
fungi, and its presence would support the claim of Franz et
al. (2023) that morphologies displayed within the Volyn biota
can be interpreted as fungal in origin. We note, however, that
none of the existing micro-FTIR studies published on fos-

https://doi.org/10.5194/bg-21-1773-2024
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sil fungal remains from a variety of ages and thermal ma-
turities (Fig. 2) were included in their analysis or citations.
Moreover, no modern fungal chitin standard was shown for
comparison. Micro-FTIR spectra of extant, sub-fossil, and
fossil fungi (Salman et al., 2010; O’Keefe et al., 2015; Dai
et al., 2017; Chen et al., 2013, 2015; Fig. 2) display, with
increasing thermal maturity, characteristic changes including
reduction in wave height, reduction and eventual loss of the
OH stretching band of water, reduction in lipids, and loss
and/or alteration of carbohydrates and nucleic acids. These
changes are largely absent from the spectra produced by the
Volyn biota (Fig. 2g) and some other extremely deep-time
possible fungal fossils (Loron et al., 2019; Fig. 2f), except-
ing the loss of carbohydrates. A spectrum from ~ 635 Ma
fungus-like fossils from China does show the overall reduc-
tion in wave height, loss of the OH stretching band, and re-
duction in lipids, although changes in chemistry producing
lower wavenumbers are obscured by a quartz and pyrite over-
print (Gan et al., 2021; Fig. 2e). Analysis of Early Devonian
Prototaxites from the Bordeaux quarry (Vajda et al., 2022)
produced micro-FTIR spectra very similar to those seen in
fungus-like fossils from China. Given this variation (Fig. 2)
and that CH stretching and bending observed in the Volyn
biota spectra are common in many kinds of thermally mature
organic matter, including solid bitumen and vitrinite, and in
settings impacted by intrusions and hydrothermal alteration
(Lis et al., 2005; Presswood et al., 2016; Liu et al., 2019;
Teng et al., 2020), micro-FTIR results should not be used
as evidence for the presence of fungi. Rock-inhabiting fungi
are known from many substrates, including ancient gran-
ites with bitumen deposits reminiscent of kerite (Sazanova et
al., 2022; Ivarsson et al., 2020a, b, 2021). White-appearing
mycelium that is transparent under transmitted light obser-
vation is known to be invading rocks that form the Clarkia
Lagerstitte (Fig. 3). Together, these observations raise con-
cern that the material Franz et al. (2023) analysed represents
(a) thermally mature non-fungal material, (b) younger fun-
gal contamination, or (c) a combination thereof. The authors
note that their specimens were translucent, but they provided
no light microscope images that would help discern fossil
hyphae and/or spores from recent contaminants (presence of
nuclear materials, lipids, starches, etc.).

4 Modern museum dust

Museums are a convenient source of airborne contaminants
where they accumulate as dust. Such airborne contamination
can compromise samples at any stage from collection (as in a
ventilated mine) to analysis. As an illustration of their perva-
siveness and diverse composition, we used a SEM combined
with energy-dispersive X-ray spectroscopy (EDX) to exam-
ine dust from fossil displays of the palaecobotanical collection
in the Goldful3 Museum, Bonn (Fig. 1). Our EDX analysis is
very similar to the energy-dispersive X-ray analysis EDAX

https://doi.org/10.5194/bg-21-1773-2024
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EDS system used by Franz et al. (2023) on selected cross
sections (their Fig. 10j-1), but it allows elements comprising
or attached to the observed objects to be visualised over the
entire surface as imaged by the SEM (Fig. 1). In addition to
Pinus pollen (Fig. 1a—c), a number of trichomes (Fig. 1d-1)
were observed, along with indeterminate filaments (Fig. 1m—
q) reminiscent of the shapes and diversity depicted by Franz
et al. (2023) and with similar surface structures, with one
consisting primarily of silica showing an opening at its end
(Fig. 1o and p vs. Fig. 11 of Franz et al., 2023). We note in
particular the appearance of the infrareticulum visible on the
surface of air sacs in the Pinus pollen using a high acceler-
ating voltage (12kV) similar to the 10kV used by Franz et
al. (2023). The variety of trichomes encountered attests to
the ease with which they detach from plants and become air-
borne. The samples examined by Franz et al. (2023) under
SEM did not receive special cleaning other than with com-
pressed air on one sample, and in addition to samples col-
lected underground they included a specimen from a museum
and another from mine tailings. The underground specimens
were simply “picked up” and not separated from the rock ma-
trix. It seems that all samples were able to acquire airborne
“dust” and other contaminants before and/or after sampling.
Had Franz et al. (2023) used EDX in addition to applying
EDAX EDS to selected cross sections, they would have been
easily able to determine the elemental surface distribution
for all specimens they imaged using a SEM, which could
have assisted in discriminating extant contaminants from fos-
sil material.

5 Stable isotopes of carbon and nitrogen

Stable carbon and nitrogen isotope data obtained by Franz
et al. (2023) from bulk samples (all samples were analysed)
fall in the range of —31%o to —47 %o 8'3C and of 43 %o
to +10%o 8'°N. Because modern fungi have a range re-
stricted to —19 %o to —29 %o 8!13C, with the main cluster at
—22%o0 to —28 %o §13C (Mayor et al., 2009; Franz et al.,
2023), Franz et al. (2023) explained the much lower values
of 813C in the Volyn biota as reflecting incorporation of car-
bon from methanogenic bacteria into the fungi-like organ-
isms. These authors concluded that “We exclude an abiotic
origin ... because of the extremely low 8'3C values and the
large variation in morphology.” But laboratory experiments
have shown that organic compounds produced by abiotic
synthesis under hydrothermal conditions can have '>C deple-
tions in the range of biological fractionation, with methane
for example yielding a value of —50.3 %0 (McCollom and
Seewald, 2006). Nitrogen is an important component of or-
ganic matter, but there is increasing evidence that various
carbon-based solid organic compounds including those con-
taining nitrogen can be synthesised in Fischer—Tropsch-type
or Friedel-Crafts-type reactions (Ménez et al., 2018; Nan et
al., 2021) in hydrogen-rich hydrothermal systems. We there-

Biogeosciences, 21, 1773-1783, 2024
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(e) Lower Ediacaran (~635 Ma)
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Pyrite

Fungus-like fossils, South
China (Gan et al., 2021)
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Canada (Loron et al., 2019)
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Figure 2. Published Micro-FTIR spectra of (a) typical modern fungus spectrum (Fig. 1 in Salman et al., 2010) showing significant absorption
bands and their main functional groups (note large bands at ~ 1050 and 3350 cm™ 1) (b) latest Holocene hyphae recovered from a log buried
in a migrating sand dune for nearly a century (unpublished spectra from O’Keefe et al., 2015); (¢) Miocene funginite from subbituminous
Sand Bank Coal, Eel River Formation, California (Fig. 7a in Dai et al., 2017), (d) late Oligocene—Early Miocene fungal remains recovered
from bituminous C coals, Amagd Formation, Colombia (Figs. 2 and 4b in Chen et al., 2013, 2015); and (e) pyritised fungus-like fossils from
the ~ 635 Ma lower Ediacaran of southern China showing bands probably representing silica and pyrite (Fig. 6b in Gan et al., 2021). (f)
Possible fungi from the later Proterozoic of Arctic Canada (Loron et al., 2019, their Fig. 2 and extended data Fig. 3). (g) The Volyn study
presented by Franz et al. (2023, their Fig. 13a). Note the general reduction in absorption with increasing melanisation (dark hyphae) (b)
and age/thermal maturity (c—e). Note also rising then lowering absorption and minor changes in wavenumber for the amide peak at 1652—
1646 cm™ 1. In the kerite spectra (g) this peak is at 1658 em~!, somewhat higher than in any of the other spectra. Note also the loss of the
carbohydrate/lignin peak at 1082—-1050 em™~! from modern to ancient samples (a—d). This peak is entirely absent in the kerite spectra and
microfossils 2 and 3 (f) of Loron et al. (2019). The kerite spectra are overall most similar to the spectrum shown in (c), although they lack
peaks at 1446 and 1277 em™!, and to that shown in (f), although it lacks saccharides.
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Figure 3. Examples of growth habits of extant lithotrophic fungi from the Clarkia Lagerstitte in Idaho, USA. Fungal mycelium in the form
of fan-shaped mats of hyphae along a joint opened up during excavation (a) and fungal mycelium forming bulbous structures in voids in the
rock, some with melanised spores coating the surface (b). Photos JMKO, July 2021.

fore consider the carbon and nitrogen isotope data presented
by Franz et al. (2023) not to be conclusive evidence of bio-
genicity for the Volyn kerite.

6 Discussion

The Volyn biota at 1.76-1.5Ga, which includes putative
fungus-like organisms, is claimed to represent life in a highly
specialised continental setting within subterranean cavities
associated with a geyser system. It cannot therefore be com-
pared directly with published mid-Proterozoic records which
are mostly marine and include photosynthetic organisms, as
Franz et al. (2023) explain. But the hostile ambient condi-
tions in which this biota is proposed to have lived, including
high temperatures, lack of sunlight, and high radiation levels,
require exceptional proof for these claims to be accepted, es-
pecially given the high morphological variation recorded. It
would be necessary to consider and eliminate the possibility
of modern contamination, given the pristine state of preser-
vation of many components in the Volyn biota and knowl-
edge that fungal remains associated with bitumen in cavi-
ties of brecciated granitoids have been shown to be signif-
icantly younger than the rocks themselves (Ivarsson et al.,
2020b, 2021). Franz et al. (2022a, 2023) do not consider or
exclude contamination in any form, yet the age control of
other pristine microfossils in igneous rocks is generally lack-
ing or, where present, represents allochthonous material (e.g.
Drake et al., 2021).

We identify evidence of modern contamination within the
presented Volyn biota, and we raise concern that the pres-
ence of chitin-like material is the result of contamination
by younger fungi. Franz et al. (2023) discuss the morpho-
logical and geochemical similarities of their specimens with

Biogeosciences, 21, 1773-1783, 2024

fungi, and Bengtson et al. (2017) reported fungus-like objects
extending back 2.4 Ga although these present similar con-
cerns as those of the Volyn biota. However, Mesoproterozoic
records of such fungus-like fossils (e.g. Loron et al., 2021;
Miao et al., 2021) lack the exceptional preservational state of
the Volyn biota. While a model was proposed involving hy-
drothermal fluids to explain rapid preservation for the Volyn
biota, this remains a unique process without analogue and
therefore requires exceptional supporting evidence.

Documenting evidence of early life requires scrupulous
care to minimise and identify any possible contamination.
This begins with the careful collection of specimens, ide-
ally from freshly exposed rock surfaces to minimise the pos-
sibility of deep penetration by modern fungi. Comparable
studies have used petrographic thin sections (Ongeluk For-
mation, South Africa, 2.4 Ga, Bengtson et al., 2017; Grassy
Bay Formation, Canada, 1 Ga, Loron et al., 2019), transmis-
sion electron microscopy (Bengtson et al., 2017; Loron et
al., 2019), and synchrotron-radiation X-ray tomographic mi-
croscopy of discrete blocks (Bengtson et al., 2017) or involve
splitting (Strelley Pool, Australia, 3.4 Ga; Alleon et al., 2018)
or etching (Onverwacht Group, Australia, 3.5-3.3 Ga; West-
all et al., 2001) of the rock prior to its study. Some studies
have used light microscopy to reveal the internal structure
of the organic component (Loron et al., 2019, 2021; Miao et
al., 2021). Airborne contamination can occur in the labora-
tory, and when pristine three-dimensional fossils are identi-
fied, these should be checked using light microscopy to en-
sure there are no fresh cell contents.

Ultimately, all lines of evidence must be weighed, includ-
ing micro-FTIR spectra or EDX of all specimens, to exclude
the possibility of contamination before claims of ancient bio-
tas possessing unique preservation and morphological diver-
sity are made.
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We conclude that the Volyn biota presented by Franz et
al. (2023) incorporates modern contaminants including plant
hairs and a pollen grain, all present in modern dust from
a museum (and no doubt elsewhere), and the micro-FTIR
spectra of specimens are not diagnostic of the thermal ma-
turity that might be expected of in situ fungal-like organ-
isms but suggest the presence of younger fungal contami-
nation. Moreover, the carbon and nitrogen isotope data pre-
sented by Franz et al. (2023) do not provide conclusive evi-
dence of biological affinity. We do not necessarily challenge
the view that the fibrous kerite itself was formed along with
the Volyn pegmatites in the mid-Proterozoic. But these car-
bonaceous fibres have been attributed to postmagmatic abi-
otic synthesis from hot methane-containing fluids particu-
larly in the vapour phase (Lukjanova and Lovzova, 1994).
Such an origin would explain the lack of internal structure
found in fibres illustrated by Franz et al. (2023). These pro-
cesses, while discussed by Franz et al. (2023), now require
further consideration, especially in light of “chemical gar-
dening” laboratory experiments that have synthesised fibres
resembling purported fossils in both morphology and compo-
sition (McMahon, 2019). We have doubts therefore whether
any of the in situ Volyn “biota” is organic in origin.
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