Skip to main content
Log in

Metabolism of vanillic acid by Micromycetes

  • Research Papers
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The ability of 953 strains of Micromycetes to grow with vanillic acid (0.5 g/l) was investigated. Toxicity assays were performed on malt extract/agar medium, while consumption was estimated by growing fungi on solid synthetic medium with vanillic acid as sole carbon source. More than half of the tested strains grew in both conditions. After cultivation on solid media, 296 strains were selected and cultivated in liquid synthetic medium. These experiments allowed division of the Micromycetes into different groups according to their consumption of the phenolic compound and the appearance of new metabolites. Results were related to the taxonomic position of the strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, E., Lindgren, B.O. & Saeden, U. 1952 The β-guaiacyl ether of α-veratryl-glycerol as a lignin model.Svensk Papperstidning 55, 245–253.

    Google Scholar 

  • Ander, P. & Eriksson, K.E. 1978 Lignin degradation and utilization by microorganisms.Progress in Industrial Microbiology 14, 1–58.

    Google Scholar 

  • Ander, P. & Eriksson, K.E. 1987 Determination of phenoloxidase activity using vanillic acid decarboxylation and syringaldazine oxidation.Biotechnology and Applied Biochemistry 9, 160–169.

    Google Scholar 

  • Ander, P., Eriksson, K.E. & Yu, H.S. 1984 Metabolism of lignin-derived aromatic acids by wood-rotting fungi.Journal of General Microbiology 130, 63–68.

    Google Scholar 

  • Ander, P., Hatakka, A. & Eriksson, K.E. 1980 Vanillic acid metabolism by the white-rot fungusSporotrichum pulverulentum.Archives of Microbiology 125, 189–202.

    Google Scholar 

  • Betts, W.B. & Dart, R.K. 1988 Screening of fungi and bacteria for their ability to degrade insoluble, lignin-related aromatic compounds.Microbios 55, 85–93.

    Google Scholar 

  • Buswell, J.A., Ander, P., Pettersson, B. & Eriksson, K.E. 1979a Oxidative decarboxylation of vanillic acid bySporotrichum pulverulentum.FEBS Letters 103, 98–101.

    PubMed  Google Scholar 

  • Buswell, J.A., Eriksson, K.E., Gupta, J.K., Hamp, S.G. & Nordh, I. 1982 Vanillic acid metabolism by selected soft-rot, brown-rot and white-rot fungi.Archives of Microbiology 131, 366–374.

    Google Scholar 

  • Buswell, J.A., Hamp, S.G. & Eriksson, K.E. 1979b Intracellular quinone reduction inSporotrichum pulverulentum by a NAD(P)H: quinone oxidoreductase. Possible role in vanillic acid catabolism.FEBS Letters 108, 229–232.

    PubMed  Google Scholar 

  • Cain, R.B., Bilton, R.F. & Darrah, J.A. 1968 The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi.Biochemical Journal 108, 797–832.

    PubMed  Google Scholar 

  • De Hoog, G.S., Seigle-Murandi, F., Steiman, R. & Eriksson, K.E. 1985 A new species ofEmbellisia from the North Sea.Antonie van Leeuwenhoek 51, 409–413.

    PubMed  Google Scholar 

  • Eriksson, K.E. 1987 Production of H2O2 inPhanerochaete chrysosporium during lignin degradation.Philosophical Transactions of the Royal Society of London, Series A 321, 455–459.

    Google Scholar 

  • Flaig, W. & Haider, K. 1961 Die Verwertung phenolischer Verbindungen durch Weissfaulepilze.Archiv der Mikrobiologie 40, 212–223.

    Google Scholar 

  • Galzy, P. & Slonimski, P. 1957 Variations physiologiques de la levure au cours de la croissance sur l'acide lactique comme seule source de carbone.Comptes Rendus de l'Académie des Sciences 245, 2423–2426.

    Google Scholar 

  • Gams, W., Steiman, R. & Seigle-Murandi, F. 1990 The Hyphomycetes genusGoidanichiella.Mycotaxon 38, 149–159.

    Google Scholar 

  • Haars, A., Tautz, D. & Huttermann, A. 1986 Bioconversion of organosoluble lignins by different types of fungi.Resources and Conservation 13, 37–51.

    Google Scholar 

  • Hammel, K.E., Tien, M., Kalyanaraman, B. & Kirk, T.K. 1985 Mechanism of oxidative Cα−Cβ cleavage of a lignin model dimer byPhanerochaete chrysosporium ligninase—Stoichiometry and involvement of free radicals.Journal of Biological Chemistry 260, 8348–8353.

    PubMed  Google Scholar 

  • Hart, J.H., Wardell, J.F. & Hemingway, R.W. 1975 Formation of oleoresin and lignans in sapwood of white spruce in response to wounding.Phytopathology 65, 412–417.

    Google Scholar 

  • Hedges, J.I., Blanchette, R.A., Weliky, K. & Devol, A.H. 1988 Effects of fungal degradation on the CuO oxidation products of lignin: a controlled laboratory study.Geochimica et Cosmochimica Acta 52, 2717–2726.

    Google Scholar 

  • Higuchi, T. 1971 Formation and biological degradation of lignins.Advances in Enzymology 34, 207–283.

    Google Scholar 

  • Kirk, T.K. & Chang, H.M. 1975 Decomposition of lignin by white-rot fungi. II. Characterization of heavily degraded lignins from decayed spruce.Holzforschung 29, 56–64.

    Google Scholar 

  • Kirk, T.K., Harkin, J.M. & Cowling, E.B. 1968 Oxidation of guaiacyl- and veratryl-glycerol-β-guaiacyl ether byPolyporus versicolor andStereum frustulatum.Biochemica et Biophysica Acta 165, 134–144.

    Google Scholar 

  • Kirk, T.K. & Lorenz, L.F. 1973 Methoxyhydroquinone, an intermediate of vanillate catabolism byPolyporus dichrous.Applied Microbiology 26, 173–175.

    PubMed  Google Scholar 

  • Lacharme, J., Seigle-Murandi, F. & Steiman, R. 1980 Transformations biologiques du gaïacol par des Micromycètes.Comptes Rendus des Séances de la Société de Biologie 174, 783–788.

    Google Scholar 

  • Leisola, M.S.A., Ulmer, D.C., Waldner, R. & Fiechter, A. 1984 Role of veratryl alcohol in lignin degradation byPhanerochaete chrysosporium.Journal of Biotechnology 1, 331–339.

    Google Scholar 

  • Lundborg, A. 1988 Increased degradation of steam exploded birch lignin during interactions between white-rot fungi and other fungi.Materia Organica 23, 37–48.

    Google Scholar 

  • Milstein, O., Trojanowski, J., Huttermann, A. & Gressel, J. 1988 Catabolism of single ring aromatic acids by fourAspergillus species.Microbios 55, 7–16.

    PubMed  Google Scholar 

  • Nishida, A. & Fukuzumi, T. 1978 Formation of coniferyl alcohol from ferulic acid by the white-rot fungusTrametes.Phytochemistry 17, 417–419.

    Google Scholar 

  • Ohta, M., Higuchi, T. & Iwahara, S. 1979 Microbial degradation of dehydrodiconiferylalcohol, a lignin substructure model.Archives of Microbiology 121, 23–28.

    Google Scholar 

  • Rahouti, M. 1987 Métabolisation des acides férulique, syringique et sinapique par les Micromycétes. PhD Thesis. University of Grenoble.

  • Rahouti, M., Seigle-Murandi, F., Steiman, R. & Eriksson, K.E. 1989 Metabolism of ferulic acid byPaecilomyces variotii andPestalotia palmarum.Applied and Environmental Microbiology 55, 2391–2398.

    Google Scholar 

  • Randerath, K. 1971Chromatographie sur Couches Minces, 2nd edn. Paris: Gauthier-Villard.

    Google Scholar 

  • Reh, U., Kraepelin, G. & Lamprecht, I. 1986 Use of differential scanning calorimetry for structural analysis of fungally degraded wood.Applied and Environmental Microbiology 52, 1101–1106.

    Google Scholar 

  • Rogalski, J., Szczodrak, J. & Ilczuk, Z. 1986 Decomposition of specifically14C-labelled phenols as models for lignin degradation byAspergillus terreus.Acta Microbiologica 35, 85–89.

    Google Scholar 

  • Seigle-Murandi, F., Nicot, J., Ravanel, P. & Lacharme, J. 1977 Association cryptogamique prélevée sur les débris ligneux dans une grotte de Chartreuse.Comptes Rendus des Séances de la Société de Biologie 171, 386–390.

    Google Scholar 

  • Seigle-Murandi, F., Nicot, J., Sorin, L. & Genest, L.C. 1980a Association mycologique dans la salle de la Verna et le tunnel de l'EDF du réseau de la Pierre Saint Martin.Revue d'Ecologie et de Biologie du Sol 17, 149–157.

    Google Scholar 

  • Seigle-Murandi, F., Nicot, J., Sorin, L. & Lacharme, J. 1981 Mycoflore des cerneaux de noix destiné à l'alimentation.Cryptogamie, Mycologie 2, 217–237.

    Google Scholar 

  • Seigle-Murandi, F., Steiman, R. & Lacharme, J. 1980b Transformation de l'agarose par les Micromycètes. I. Rôle éventuel de la gélose lors de screenings réalisés avec des Micromycètes.Bulletin des Traveaux de la Société de Pharmacie de Lyon 24, 7–19.

    Google Scholar 

  • Seigle-Murandi, F., Steiman, R., Rahouti, M., Benoit-Guyod, J.L. & Eriksson, K.E.L. 1990 Metabolism of ferulic and syringic acids by Micromycetes.Microbiologica 13, 191–200.

    PubMed  Google Scholar 

  • Seigle-Murandi, F., Varry, F., Steiman, R. & Lacharme, J. 1980c Activité des Micromycètes comme agents de biotransformations de composé phénoliques dérivés de la lignine.Comptes Rendus des Séances de la Société de Biologie 174, 314–319.

    Google Scholar 

  • Steiman, R. & Seigle-Murandi, F. 1984 Vanillic acid metabolism by Micromycetes.Applied Biochemistry and Biotechnology 9, 415–416.

    Google Scholar 

  • Steiman, R., Seigle-Murandi, F. & Lacharme, J. 1982 Utilisation par les Micromycètes de certains dérivés phénoliques de la série des constituents de la lignine.Journées Internationales du Groupe Polyphénols 11, 285–293.

    Google Scholar 

  • Sundman, V. 1965 A study of ligninolytic soil bacteria with special reference to α-conidendrin decomposition.Acta Polytechnica Scandinavia, Chemistry including Metallurgy Series 40, 1–116.

    Google Scholar 

  • Targonski, Z., Rogalski, J. & Szczodrak, J. 1986 Decomposition of14C-labelled vanillic acid and its related compounds byFusarium oxysporum.Systematical Applied Microbiology,8, 148–151.

    Google Scholar 

  • Umezawa, T. & Higuchi, T. 1985 Role of guaiacol in the degradation of arylglycerol-β-guaiacyl ether byPhanerochaete chrysosporium.FEMS Microbiology Letters 26, 123–126.

    Google Scholar 

  • Umezawa, T., Shimada, M., Higuchi, T. & Kusai, K. 1986 Aromatic ring cleavage of β-O-4 lignin substructure model dimers by lignin peroxidase ofPhanerochaete chrysosporium.FEBS Letters 205, 287–292.

    Google Scholar 

  • Waldner, R., Leisola, M.S.A. & Fiechter, A. 1988 Comparison of ligninolytic activities of selected white rot fungi.Applied Microbiology and Biotechnology 29, 400–407.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guiraud, P., Steiman, R., Seigle-Murandi, F. et al. Metabolism of vanillic acid by Micromycetes. World J Microbiol Biotechnol 8, 270–275 (1992). https://doi.org/10.1007/BF01201877

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01201877

Key words

Navigation