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1 Introduction

Corporate performance and its directly related profit are highly dependent
on the synergy of a variety of activities from all over the entire product de-
velopment process, "beginning with the perception of a market opportunity
and ending in the production, sale, and delivery of a product” [1]. However,
thoroughly converting all individual needs, expectations, and information
from the different areas into marketable products [2, 3] requires well-founded
decisions for the product and all related processes and activities [4, 5]. Prod-
uct design is, therefore, an essential contributor to corporate success since
the resulting product quality and costs are determined to a large extent early
in the product design stage [6-8].

Depending on the product lifecycle phase or a particular aspect in focus, the
design is primarily aligned to one or several frequently conflicting objectives
but simultaneously accompanied by a set of boundary conditions [4, 9]. As
a consequence, any decision in product design for a particular objective,
commonly addressed under the term Design for X (DfX) [4, 10], is also a
decision to meet several requirements forming a dynamically changing set of
interdisciplinary objectives and constraints to be complied by the product
design.

Although competition has always been fierce [11], the increasingly short
product lifecycles and high cost and quality pressure, exacerbated by the
demanding international markets, force product development to differentiate
itself from competitors more than ever [12-15]. Thus, product development
has to be supported continuously by simulation and optimization to find the
best, high-quality and cost-aware product design and to survive as one of the
fittest on the market with an optimal trade-off between the various objectives
and interests.

1.1 Motivation and problem statement

Within this tense, multidimensional field of conflicting objectives and con-
straints, tolerancing plays a crucial role in the total product development
process [16-18]. Its primary aim is to assure a high level of product quality
and, thus, customers’ satisfaction by limiting the variations of single part
features concerning size, location, orientation, and form [19-21]. At the
same time, however, the individually assigned part tolerances determine
the objectives, requirements, and constraints for the subsequent activities,
i.e., manufacturing, assembly, and inspection, while implicitly and unin-
tentionally defining a significant share of the product costs [22-24]. Hence,
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1 Introduction

tolerancing is dominated by a general dichotomy between product and pro-
cess design leading to severe conflicts of interest [25]. While tight tolerances
are needed to guarantee high product quality, loose tolerances should be
preferred to save costs by a simplified part manufacturing (see Fig. 1) [26-31].
Although design engineers mostly do not have detailed knowledge about
manufacturing costs, available machines, tools, fixtures, etc., they are respon-
sible for allocating suitable tolerance values already in the design stage since
they overview the total assembly [32, 33]. The main challenge of tolerance
allocation is, thus, to find an answer to the question "what is [technically]
necessary and what is economically possible [or rather reasonable]” [34],
enabling a suitable trade-off between the opposite interests of design and
manufacturing [25, 35-37].

C,,nc, Tolerance-related C,,nc, Assembly non- Coum=C+C, nc
manufacturing conformance
costs C;

f\é 2
XlOi tl Xzoi tZ é‘»
design design £, t
Utopia < S oS Design for A, ¢, |, Design for
of manufacturing manufacturing cost quality

Figure 1: Conflict between total product quality and manufacturing costs as a function of the
assigned tolerance values.

Assigning tight tolerances for safety while merely hoping that they are not too
expensive [38], rough estimations by general rules-of-thumb and heuristic,
(over-)simplified tolerance allocation methods [39-41], as well as the joint
iterative application of tolerance and sensitivity analysis [P1], intend to choose
a satisfactory solution from the margin of quality between the utopias from
design and manufacturing [42] (see Fig. 1). To solve the tolerance-cost conflict
more efficiently and find the best solution, tolerance-cost optimization, an
optimization-based approach to allocate part tolerance values, was invented
in the mid-20th century [P1]. Inspired by its basic idea of an automatic bal-
ancing of the individual part tolerances with the aid of optimization, various
methods, approaches, and solutions have been presented and improved in
literature over the last five decades [P1]. However, in addition to all the advan-
tages of computer-based optimization approaches, there are also significant
obstacles to overcome, as their usage requires high-level skills "to generate,
derive, and manipulate complex mathematical models” [43], "to relate vari-
ous cost-versus-tolerance functions to a specific problem” [43], and "to write
computer algorithms to perform numerical analysis [and optimization]” [43],



1.2 Methodical approach and general outline of the work

which is based not least on a generally high degree of "creative thinking, expe-
rience and intuition” [44]. Tolerance allocation and its methods are therefore
perceived as broad, (too) complicated, demanding, and tedious [43-47]. As
predicted more than 20 years ago, they are therefore only applicable by highly
experienced tolerance engineers [P2] and still "a conundrum for many in
industry” [43]. Hence, tolerance-cost optimization could not prevail so far
and is paid little attention in the industry. As a result, cost potentials and
valuable competitive factors through optimal tolerance allocation remain
largely unused.

1.2 Methodical approach and general outline of the work

Motivated to overcome these drawbacks, this thesis follows the global aim to
advance the establishment of tolerance-cost optimization enhancing optimal
tolerance allocation for assemblies of industrial complexity. Since its poten-
tial is highest in the design phase, as research and surveys prove [48], this
thesis focuses on tolerance allocation at the design phase’s assembly level. It
addresses primarily mechanical products' and geometrical part variations.

A systematic approach is required to reach this goal, which is briefly presented
in the following. The underlying general outline of this work is illustrated
in Fig. 2. A review of the fundamentals of tolerancing, its different activities,
and its role in the context of the geometry assurance process in Sec. 2.1 serves
as the general basis for the subsequent sections. It is followed by a detailed
analysis of the literature in the field of tolerance-cost optimization, where a
final retrospect on the last fifty years in Sec. 2.2-2.3 reflects the current state
of the art and research. The presented findings help to reveal the general
shortcomings of tolerance-cost optimization in Sec. 3.1 restricting its usability
in the detail design phase. The subsequent discussion on the combination of
sampling-based tolerance analysis and metaheuristic optimization for opti-
mal tolerance allocation in Sec. 3.2 emphasizes its benefits and justifies the
research focus of this thesis on sampling-based tolerance-cost optimization,
i.e., tolerance-cost optimization with sampling-based tolerance analysis as a
subroutine for statistical quality assurance. The discussion on its potentials
and shortcomings is used to define the research questions in Sec. 3.3 and the
structure of the main part before they are successively answered in Chap. 4-6
focusing on the optimization’s accuracy, completeness and efficiency. Chap. 7

! Although "the function of mechanical products may depend upon electrical, hydraulic,
optical, pneumatic, thermal, or some combinations of these or other physical effects” [49],
the expression mechanical assembly/product is suitably used "if [...] parts which comprise
the product are primarily mechanical” [49]. The products focused on in this thesis are
mechanical assemblies consisting of at least two parts or subassemblies.
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summarizes and harmonizes the individual findings and proposes a frame-
work for optimal tolerance allocation based on sampling-based tolerance-cost
optimization. Its application and evaluation in Chap. 8 aim to verify the re-
search goals’ achievement. Finally, Chap. 9 summarizes this thesis and gives

an outlook on further research potentials.
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2  State of the art and research

The subsequent sections aim to give a holistic overview of the current state of
the art and research in the field of tolerancing in general and tolerance-cost
optimization in detail.

2.1 Tolerancing, its activities, and its role in the geometry
assurance process

Although the demand for individualized and personalized products steadily
increases [2], technical products are typically manufactured in high-volume
serial or (customized) mass production to ensure profitability. Interchange-
ability is thereby an essential prerequisite for its successful implementation
creating technical products by a pure random assembly of numerous parts
originating from different manufacturing machines as well as processes and
differing in material and geometry [49]. However, it is significantly com-
plicated by the axiom that all manufacturing and assembly processes are
subject to variations from its ideal value' [52, 53]. Even if it was possible
to reduce manufacturing imprecision to zero and to manufacture all parts
ideally or perfectly, i.e., identically and exactly, all the time [54-57], which
is technically impossible [58], it would be economically not useful [57, 58]
(see Fig. 1). As a consequence, variations are compulsorily ubiquitous in all
individual processes necessary to realize a product [53, 59] and significantly
influence the product’s quality, cost, and time for its development and produc-
tion [60]. For this reason, serious attention has to be paid when claiming to
offer "world-class products” [61]. In contrast to cost and time, product quality
is, however, more difficult to first define and second to quantify. Besides
numerous other definitions [62], quality can be defined as "conformance to
requirements” [63] and further suitably supplemented by its various dimen-
sions, such as performance, reliability, aesthetics, or perceived quality [64].

Since variations negatively impact the multidimensional quality of a product
and cause technical, programmatic, schedule, or cost risks [23, 65], variation
has to be verified, reduced, and monitored [66] assuring high product quality
and mitigating these variation-dependent risks [67]. As its complete elimina-
tion is impossible or often too expensive, product designs and processes are
designed to be insensitive or at least less sensitive to variation [68, 69]. Fol-
lowing this general idea, numerous robust design methods have been tailored
to the various product development stages [68, 70, 71]. In addition to other

! The term variation acc. to ASME Y14.5-2018 [50] is preferably used instead of the term
deviation acc. to the ISO 1101:2017 [51] in this work.
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influences and perturbations, many quality problems can be traced back to
the geometry of the parts and the associated accumulations of their varia-
tions [72]. A holistic geometry assurance process is, thus, indispensable [19,
73]. It comprises a set of activities of product design, pre-production, and
production, "contributing to minimizing the effect of geometrical variation
in the final product” [19] and "ensur[ing] that all geometrical requirements
on the product are fulfilled” [74].

Within this process, both dimensional and geometrical part tolerances, con-
straining the variation of a part feature in size, location, orientation, and form
by defining "the difference between the maximum and minimum limits” [50],
are critical design instruments to control the geometrical variations [75].2
Tolerancing, in particular, comprises the set of activities enriched by tools
and methods which are linked to tolerance information [78] to "manage [all]
geometrical variations [...] from preliminary design [and] detailed design
[over] process planning [and] manufacturing activities [up to] geometrical in-
spection” [20]. Hence, they are further addressed under the terms "tolerance
management” [34, 79-81] and "dimensional management” [60, 82-84] in both
research and industry. Tolerancing contributes to mitigating the individual
risks by improving "robustness, reliability, flexibility, evolvability, and interop-
erability of the final product” [23]. It mainly focuses on variation-dependent
aspects of interchangeability, manufacturability, product performance, and
customer requirements [23], including not only product functionality but
also perceived quality aspects [85-87]. In comparison to methods focusing
on robustness and reliability, tolerancing is limited to or concentrates on part
manufacturing- and assembly-related variations leading to aleatory uncer-
tainties [23], which are, in contrast to epistemic uncertainties, known and
describable via stochastic processes and random variables [88-90]. The origi-
nal scope of tolerancing with a focus on function and assembly [75, 91] has
grown into a comprehensive, holistic framework ”to meet [all] predetermined
dimensional quality goals” [82]. This includes a variety of issues from the
entire product lifecycle and is not limited to the detailed design phase [92,

93] (see Fig. 3).

To strengthen the importance of improving product quality, widely acknowl-
edged in theory [34, 96], but often underestimated in practice [97] leading to
daily tolerance-related problems [34], various process models for a step-by-
step application of tolerancing tools, methods, and strategies were presented

2 Depending on the scope of interest and lifecycle phase, there are different views on a
feature [76], which lead to different understandings and definitions of the term feature. In
this thesis, a part feature is seen from a geometrical point of view as "a physical portion of a
part” [50], which can be "a point, line, surface, or volume or a set of these elements” [77] and
is the result of one or multiple manufacturing processes. Otherwise, it is explicitly stated.
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Figure 3: Tolerance-related activities overspread the total product lifecycle leading to a contin-
uous push and pull of data, information, and models, inspired by [1, 73, 94, 95].

in the past, for instance in [98, 99], and have also proven their industrial
applicability. Depending on the lifecycle stage in focus, tolerancing activities
are driven by the objectives and viewpoints, requiring a dynamic change of
their role [16]. Accordingly, it is helpful to distinguish whether the methods
are applied from the point of view of product design or process design, con-
sisting of part manufacturing, inspection, and assembly process planning [82,
100].

2.1.1 Product design-driven tolerancing activities

The consideration of variations along the product development process can be
divided in three main phases acc. to Taguchi [95] (see Fig. 3). While principle
solutions and concepts are identified, evaluated, and finally selected in system
design, the nominal values for all relevant design parameters are defined in
the subsequent parameter design [95, 101]. Efforts in both stages with a
focus on product robustness have thereby a positive effect on the subsequent
tolerance-related steps [P3] fostering the tackling of tolerance problems
early on [7, 20], even if the final geometry is not entirely defined [102]. In
tolerance design, the last design step and direct link to production planning
(see Fig. 3), the focus is on the assignment of the tolerances. Therefore, it
covers the following main tolerancing activities [43, 103].

A systematic breakdown of the product quality requirements into smaller geo-
metrical characteristics allows to identify the so-called Key Characteristics
(KC), which are sensitive to variations from its nominal, and their variation
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has a significant influence on the fulfillment of the quality requirements [66].
Although KCs can generally be assigned on the product, (sub-)assembly,
or part level [6, 66], the term KC is used in the following for geometrical
characteristics on the assembly level. The KCs serve as the basis for the top-
down definition of the individual part tolerances flowing from assembly over
the part to the feature level [6, 73] making use of tolerance specification,
allocation, analysis, and synthesis methods (see Fig. 3).

Tolerance specification is first used to translate the KC requirements into a
set of geometrical part specifications for all relevant features by choosing both
the types of part tolerances and the datum reference frames in compliance
with current tolerancing standards [23, 104]. Further information, e.g., on
tolerance zones, material conditions, or filtering operations, complete the
specification to compactly and clearly communicate all necessary matters
[105]. This leads to a clear recipe for part manufacturing and inspection [99],
but also already defines the costs to a certain extent [106, 107].3 With the
aim to communicate through an internationally uniformly valid language,
tolerance specification is based on international standards for Geometric
Dimensioning and Tolerancing (GD&T) [110]. In most cases, either the Geo-
metrical Product Specification (GPS) standards defined by the International
Standardization Organization (ISO), which are structured in a comprehen-
sive matrix model [111], or the GD&T guidelines mainly expressed in the
ASME Y14.5 by the American Society of Mechanical Engineering (ASME) [50]
function as a reference, showing some differences [110], but are both widely
applied and accepted in industry. Regardless of the choice of the standard,
a comprehensive set of rules with often non-trivial aspects has to be ob-
served but can be supported by computer-aided methods [104]. Examples are
rule-based practices, directly integrated into or developed for CAD-systems
and stand-alone tools [112-116] as well as enhanced knowledge-based and
data-driven approaches [117] based on ontological web language [118-120]
and metamodeling [121, 122]. Besides the tolerance types, they partially al-
ready propose an initial assignment of tolerance values, e.g., based on general
tolerances or previously defined preferred values.

Nonetheless, specific tolerance allocation methods are needed to find the
values for all specified tolerances more consciously. Rational allocation meth-
ods based on heuristics [39-41] have thereby supplemented the pure reliance
on standards, textbooks, or guesses keeping general rules-of-thumb such as
"the lower the tolerance, the higher the cost of manufacturing” or "do not spec-
ify higher accuracy than is really needed” in mind [123]. Graphical [124-126],

3 Depending on the literature referred to, tolerance specification can additionally include the
assignment of tolerance values [16, 108, 109].
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as well as analytical approaches, distribute the total assembly tolerance on
the individual part tolerance values equally and proportionally to part dimen-
sions or process variations [40, 127, 128] - or taking weighted [129], constant
precision or complexity factors into account [40, 127]. Optimization-based
methods overcome the neglect or predominantly qualitative consideration
of cost aspects and their limited applicability. They constitute the group
of tolerance-cost optimization approaches, which are discussed in detail in
Sec. 2.2.

Tolerance analysis, sometimes named variation analysis/simulation [6,
73, 74, 105], aims to verify if tolerances specified and allocated can fulfill
the KC requirements [16]. Arithmetic and statistical methods, harnessed
via editable programming codes, spreadsheets, CAD-embedded and stand-
alone tools [48, 130, 131], are nowadays state-of-the-art design tools often
used daily for analyzing the effects of the accumulation of the individual
feature variations [48, 132]. More details on tolerance analysis will be given in
Sec. 2.2.2. Systematic methods making adjustments and reassignments, in
most cases repetitively, of the GD&T scheme in terms of types or values using
the tolerance analysis results can generally be summarized under the term
tolerance synthesis [78, 133] and include aspects and practices of tolerance
allocation, specification, and analysis [78, 134-136]. Consequently, the bound-
aries between tolerance synthesis and allocation are blurred, definitions for
both activities are often quite similar, and no clear distinction is made in
literature.

2.1.2 Process design-driven tolerancing activities

The product design stages are followed by a series of planning steps to con-
vert the virtual models into real parts and assemblies in compliance with
the specified tolerances and KC requirements (see Fig. 3). In the case of
purchased parts, the point of view changes from assembly to part regarding
part fabrication, whether performed internally or externally [32]. Tolerance
allocation, analysis, and synthesis methods, which are similar in their basic
idea to the methods in product design, are thereby used with a strong focus on
manufacturing-related issues [16]. Their primary goal is to support the trans-
fer of the design tolerances into a process plan [16], which transforms the raw
material into the final part while satisfying the design specifications involving
several machines, operations, tools, and fixtures [137, 138]. Consequently, if
there is more than one manufacturing step needed [139], a design tolerance t;
results from the accumulation of variations from all manufacturing operation
steps needed [140]. The assignment of manufacturing tolerances §; for all
intermediate dimensions [139], sometimes called working [141] or process
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tolerances [140, 142], in combination with a conscious selection of operations
and their sequencing [143, 144], i.e., arranging all operations in a logical and
chronological sequence [145], datum and machining parameters selection
[144, 146], etc., help to meet the design tolerances t; [140] (see Fig. 4). In
this regard, tolerance charts, which graphically represent the dimensions
and tolerances for all machining operations as well as the quantity of stock
material removed in each manufacturing operation [147, 148], are widely used
to analyze and control the workpiece dimensions and their tolerances [16,
148, 149]. By transferring the traditionally manual tolerance charting tech-
niques into computer-aided approaches, research efforts were intensified [28,
147, 150]. This led to an extension of the methods’ usability and its instru-
mentalization using knowledge-based expert systems and tools supporting
the individual computer-aided process planning (CAPP) and manufacturing
(CAM) tasks [25, 142], including optimization-based tolerance allocation to
optimally balance the process tolerance values &; (see Fig. 4).
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Figure 4: Tolerance allocation for design vs. for manufacturing, freely adopted from [41, P1].

In addition to the part level, numerous tasks have to be tackled during the
planning of the assembly steps, such as the choice of joining operations,
assembly sequences, locating schemes, etc., where attention to variation
and tolerances is indispensable [19, 73]. Both product and design process
activities are substantially supported by inspection-driven tolerancing
activities, such as tolerance verification, including planning and metrological
procedures to investigate assembly and manufacturing specifications [108],
providing a reliable tolerance information basis [151] and to evaluate the
assumptions made in the design stage [23, 108, 117].

2.1.3 Influence of Concurrent Engineering

The distinct separation and sequential flow of the presented tolerancing
activities were well-established for a long time. However, it complicates

10
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internal communication and requires recurring revision loops and design
iterations, resulting in time delays, quality degradation, and ultimately high
development costs [11, 152, 153]. The philosophy of Concurrent Engineering
(CE), conceptualized and coined in the 1980s [11, 153], broke these barriers and
turned the idea of throwing the part specifications from design simply over the
wall [11, 82] into a concurrent and joint accomplishment of the interrelated
tolerancing tasks [154, 155]. In doing so, the existing barriers are broken by
fostering cross-functional cooperation of design and manufacturing with
a common, merged knowledge base [11, 152]. As a result, decisions in the
design stage are better aligned with manufacturing-related issues. Individual
tasks of the process design stage are concurrently finished avoiding tolerance-
related problems before they get apparent in prototyping, ramp-up, or series
production and, thus, leading to shorter development cycle times with less

costs [11, 73, 152, 154].

2.1.4 Computerization and automation of tolerancing

The close interaction of the individual interdisciplinary issues, not at least
emphasized by the idea of CE, and the ongoing computerization of the toler-
ancing methods [75] require an intensive sharing of different information and
models from various sources [117]. In contrast to the times where CAD-tools
were first widely used (1970s) [8] and CAT was still in its infancy (1990s) [156],
simulation and optimization are nowadays everyday tools for tolerance en-
gineers [23, 157], where information from the total lifecycle is needed in
addition to the product and part geometry represented by CAD-models [117,
158]. Their enrichment by further product and manufacturing informa-
tion (PMI) using semantic, human-readable, and computer-interpretable
annotations supports the idea of a model-based definition (MBD) [159,
160], contributing to facilitate and automatize the tolerancing-related down-
stream activities in a closed loop manner [161, 162, P4]. In addition to direct
interfaces, more general solutions are based on neutral, standardized ex-
change formats [79, 162], primarily STEP (STandard for the Exchange of
Product model data) [163], JT (Jupiter Tessellation) [164] and QIF (Quality
Information Framework) [165], ensuring general interoperability by lossless
and uniform interchangeability and, thus, (re)use of product, manufacturing,
and measurement information [166, 167]. Their adaptions or extensions, e.g.,
by knowledge aspects using Web Ontology Language (OWL) [168-170], allow
to enhance their scope to further tolerancing-related purposes. Although
MBD mainly supports communication and collaborative work [159, 171], data
contextualization and information modeling are complex since it involves
“different locations with different people using the data in different ways and
in different contexts” [166], causing issues and barriers in its practical use

11
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[172]. Hence, it is still an important research topic with currently unsolved
matters, not only in geometrical variation management, where the increasing
digitalization of manufacturing in the context of industry 4.0 attracts its
attention [117, 158, 162].

To provide the tolerance information unambiguously and without redun-
dancy [25] as well as to support the total workflow of tolerancing more contin-
uously and consciously [108], a variety of specific tolerance representation
models were proposed in the past [173], which are either based on directly
computer-readable languages, e.g., Extensible Markup Language (XML) or
OWL, or have to be first translated into a suitable programming language
to make them computer-readable, e.g., Technologically and Topologically
Related Surfaces (TTRS), Unified Modeling Language (UML), or GeoSpelling
model [173]. More detailed information is given in [162, 173].

Intensified research in tolerance information modeling and the ongoing
computerization are the basis for the automation of tolerancing [174],
which is expected to considerably facilitate and accelerate the individual
activities [114, 175]. Optimization plays an essential key role in this overall
concept, particularly in tolerance allocation [P2] since it allows to automate
and expedite the tasks typically solved by trial-and-error [P2, 176].

2.2 Tolerance-cost optimization

As traditional heuristic approaches for tolerance allocation have only limited
applicability (see Sec. 2.1), solving more complex problems in the indus-
try by repetitively using a combination of sensitivity and tolerance analysis
is often preferred [P1] (see Fig. 5 (a)). Based on an initial guess [P1, 60,
82], experience [35, 60, 144, handbooks, standards, or relying on past and
similar product designs [123, 177-180], tolerance analysis is used to check if
the KC requirements can be fulfilled or not [P1]. Sensitivity analysis, often
named contributor/contribution analysis in tolerance design [60, 181], helps
to improve the solution in a structured way. Local methods, widespread in
commercial systems for computer-aided tolerancing (CAT), e.g., arithmeti-
cal, statistical, and High-Low-Median (HLM)-contributor analysis, as well
as more powerful, global, derivative-, variance-, and density-based sensitiv-
ity analysis methods are used to identify the contribution of the individual
(non-)geometrical variations to the KCs [182, 183]. Small contributor values
indicate which tolerances should be widened, as a low leverage on the KCs
implicitly consequences a high one on costs. High contributions hint at the
tolerances to be tightened, as their adaption will have the largest effect on
the resultant KC variation. This more or less endless loop has to be stopped
manually by the human-based decision that the current solution is optimal

12
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enough [184] or patience has run out [18]. Consequently, optimality cannot be
assured [184-186], rather hoped for [187]; it is a time-consuming and tedious
approach [188, 189] due to its unsystematic, experience-based procedure [47,
185, 186]. Moreover, it is not based on quantitative cost measures [47, 190].

(a) Trial-and-error-based... (b) Automated...
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Figure 5: Iterative, trial-and-error-based and automated tolerance allocation in comparison.

To eliminate the iterative adaption of the tolerance values [191], this hu-
man trial-and-error-based approach is converted into an optimization prob-
lem [192], which is solved in a computer-based and automated way using pow-
erful optimization algorithms [47, 193] (see Fig. 5 (b)). In doing so, tolerances
are automatically reallocated using the information of both tolerance-cost
and tolerance analysis until the algorithm decides on the basis of quantitative
termination criteria that the optimal tolerances must have been found [P5].

Numerous definitions and methods have been presented under different
names in literature to describe the optimization-based interpretation of tol-
erance allocation (see Appx. A.1). The term tolerance-cost optimization
unifies all presented approaches in one common definition and comprises to
”all methods that aim to identify an optimal set of tolerance [values]
with focus on cost and quality using optimization techniques [...] im-
ply[ing] that the cost aspect is covered [(implicitly or explicitly)] by at
least one objective or one constraint” [P1].

Consequently, the representation of the individual pre-production, produc-
tion, and post-production steps in the lifecycle of a technical product under
the perspective from both tolerance-related cost and quality aspects mainly
shapes the definition and solution of the optimization problem (see Fig. 6).

From the global perspective of systems thinking, it addresses a whole sys-
tem covering, in addition to all (pre-)production-related aspects, a variety of

3
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further issues, for instance, customer satisfaction, market conditions, ecolog-
ical aspects, taxes, regulations, etc. [29, 194, 195]. Depending on their scope
and level of detail, this requires a more or less intensive front-loading of indi-
vidual activities from later lifecycle phases and, consequently, always a strong
pull of data, information, and models (see Fig. 3). Regardless of differences
in detail of the numerous approaches, tolerance-cost optimization is always a
combination and harmonization of three main elements, viz. tolerance-cost
analysis, tolerance analysis, and the optimization problem (see Fig. 6) [196].
The abstract picture of tolerance-cost optimization, drawn in Fig. 5 (b) and
Fig. 6, is gradually detailed in the following.
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Figure 6: Concept of tolerance-cost optimization with its elements and interrelations.

2.2.1 Tolerance-cost analysis

Tolerance-cost analysis aims at getting insights into the direct and indirect
economic impact of the tolerances assigned in product design. In contrast to
traditional tolerance allocation, it enables to make quantitative claims about
the cost of tolerance, which is defined as the "amount of expenditure needed to
achieve certain levels of dimensional and geometrical accuracy” [197]. Hence,
its basis, the tolerance-cost model, is an important key element [127] and
offers decisive competitive advantages [198]. Its definition is, however, chal-
lenging and complicated [43, 127, 199, 200], as there is generally a lack [129,
198, 201] and need of a high amount of tolerance-cost data [198, 200]. More-
over, the access to reliable data sets is strongly limited [202] because only little
tolerance-cost information is published, presumably mostly for confidential
reasons [41, 203, 204]. In any case, their general suitability is questionable, as
numerous factors impact the costs, which depend on not only technological
aspects but also various external conditions [198], leading to the fact that cost
data is always site-, machine-, tool-, operator-, and material-specific [41, 49,
129, 198, 203] and further dependent on the specification, i.e., the type and
size, of the tolerated geometrical part feature [190, 200, 203].
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Therefore, a systematic procedure for a precise and case-specific quantifica-
tion of the manufacturing knowledge through a mathematical abstraction of
empirical production data is essential [137] since the accuracy of the tolerance-
cost model directly influences the reliability of the optimization results [137,
144, 205]. Fig. 7 illustrates the main steps of the tolerance-cost modeling
process. The subsequent step-by-step explanation intends to overview the
most relevant, interdisciplinary aspects.
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Figure 7: Overview of the main steps for systematically developing tolerance-cost models.

@ - Experimental studies The value or magnitude of a tolerance t; func-
tions as an intrinsic productive factor establishing the link between the part
variations and the resulting costs [206, P6]. Therefore, the process know-
ledge must be acquired and expressed via tolerance values. The unavoidable
part variations occur during the single operation steps in the manufactur-
ing process [128] and result in an accumulation of numerous inaccuracies
or variations from different internal and external sources, e.g., inaccuracies
and deformations of machines, tools, fixtures, and gauges, varying material
properties, environmental conditions, etc. [21, 128, 145, 207]. Thus, the total
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manufacturing environment influences the level of achievable part accuracy.
Apart from the machining setup, process parameters are significant con-
trol variables to reach a specified tolerance within a given machine/process
range [tl°; t'°] defined by the entirety of all boundary conditions. Experi-
mental studies based on statistical DOE with multiple fabrication repetitions
provide a series of measured values deviating with dy, from the ideal value
X; o [P6]. The tolerance values t; are derived from the resulting probability of
the population using statistical methods and characteristics [206, P6, 208].

Despite the comparatively high efforts in cost and time [P6], the gained
knowledge on process variability, expressed through both tolerance values
and probability distributions?, is an essential rational basis for not only a
reliable tolerance-cost analysis but also variation simulation in the context of
tolerance analysis (see Sec. 2.2.2) [28, 30, 209)].

@ - Costaccounting The consideration of the tolerances’ economic im-
pact implies a thorough estimation and mathematical description of all
incurred direct and indirect costs [202]. In general, all tolerance-related
costs can be broken down into fixed (tolerance-independent) and variable
(tolerance-dependent) fractions, while the latter typically decrease with in-
creasing tolerances [200, 203]. Depending on the given application and the
individual contribution to the total costs, the different cost fractions are either
set as fixed or variable and cannot be classified unambiguously [203]. As
tolerance allocation influences the entire product lifecycle (see Sec. 2.2), a
variety of individual cost aspects may be of interest, ranging from material
[210], machining [127, 210], tooling [211, 212], inspection [37, 210, 213, 214], re-
work/rejection/scrap [127, 210, 215] over assembly 37, 213, 216], maintenance
and service [212] up to ecological [217, 218], and also social costs [217].

- Harmonization of @ & @ The incorporation of the information
t=f(p Q,..), gained in step @, into the relation C = f(p,(, ...), obtained in
step 2), is used to establish the relationship between the tolerance t, which
serves as the mutual language to communicate the part accuracy requirements
defined by design to manufacturing and inspection [219], and the incurred
costs C [P6]. The result is a discrete tolerance-cost data set, which is exposed
to uncertainties from simplified, approximate cost measures, experimental
errors, and measurement uncertainties [203, P6, 220, 221].

@ - Regression analysis The empirical data serves as the basis for the
subsequent application of regression analysis techniques converting the dis-
crete data into a mathematical relation between cost and tolerance by curve

4 Manufacturing tolerances are often chosen wider than the experimentally obtained natural
tolerances to provide a margin of safety covering further variations such as tool wear [49].
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fitting [17, 41, 190], which can indirectly reduce the influence of the uncertain-
ties mentioned above by least square approximation [190]. Various parametric
tolerance-cost functions f; have been presented in literature, meeting the
requirements of an ease of use, a sufficient degree of approximation and
applicability to given manufacturing situations [202], and are reviewed in
detail in [41, 198, 203]. In general, they represent the costs C;(t;) as the sum
of fixed (0Cg,/0t; = 0) and variable (9C,,,/dt; # o) cost fractions [123]:

Ci(t) = Cﬁx + Cvar(ti)' (1)

Except for the direct use of pure discrete data [222], traditional approaches
transform the discrete data points into a mathematical expression using
(piecewise)-linear [197, 223], exponential, or reciprocal functions with two
up to four coefficients [41, 203]. In contrast, non-traditional approaches are
either based on higher-order polynomial degrees [224], spline models [137,
225], or combinations of several traditional approaches [P1, 203]. Besides,
Artificial Neural Network-based approaches have gained increased attention
in literature to enhance the model accuracy of the highly nonlinear tolerance-
cost relations [226-231]. Although cost curves are occasionally expressed as
functions of process precision [232], variance [232], or process capability [221,
233], the cost-to-design tolerance functions C(t;) (or cost-to-manufacturing
tolerance functions C(8;)) have prevailed [P1]. Exponential and reciprocal
tolerance-cost functions are preferred in research [198, 203], mostly in com-
bination with fictitious cost data or coefficients relying on largely outdated
books and cost charts [39], such as [204, 234-237]. The model type, however,
needs to be chosen consciously for the given data minimizing the fitting
errors [190, 208] as a sum of model type, term, and coefficient uncertain-
ties [238]. Tab. 1 summarizes the most commonly used functions in literature.

The number, type, and level of detail of the cost aspects considered in step ),
certain industrially relevant elements of series production, e.g., the consid-
eration of part tolerance distributions [198, 239] or cost increases through a
100%-part inspection for too low process capabilities [P7], as well as the de-
ployment of novel manufacturing technologies, e.g., laser technology-based
machining [208], manufacturing of composite structures [81, 240], or additive
manufacturing [P6, 239, 241], emphasize the need of a continuous improve-
ment of the existing cost accounting approaches. Enhanced approaches using
activity-based costing are promising alternatives to cover the wide range of
tolerance-related lifecycle activities causing direct and indirect costs [22, 242,

243].

- Definition of total tolerance-cost model The cost optimum for an
assembly can only be achieved by balancing all part tolerances t;. Thus, a
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Table 1: Summary of tolerance-cost functions used and presented in literature [41, 179, 190].

Cost function type Mathematical equation f
’F‘é Discrete Ci(ts) =csVs=1,..,S
:E (Piecewise) linear C(t) =agy —bgy -t
E Reciprocal Ct)=a+b- -t ¢
= (Modified) exponential Cit)y=a+b-eclt
~ Hybrid (linear + exponential) Ct)=a+b-t+d-e/t
'a Hybrid (reciprocal + exponential) Ct)=a+b-tC+d-eft
?;; Hybrid (reciprocal - exponential) Ct)=a+b-t¢-e 0t
E K-th polynomial C(t) =Tr_ ap -tk
S Spline models piecewise curve fitting
Artificial Neural Networks (ANN) numerical black box

common tolerance-cost model is to be defined as a set of I several individ-
ual tolerance-cost functions predicting the single costs C; to realize a part
tolerance t; by a predefined process and machine [44, 244]:

Csurn = Z;=1 Ci(ti)' (2)

If there is more than one machine or process alternative j to realize t;, each
option has to be modeled by an individual cost function f¢, . The resulting
total tolerance-cost model, characterized by overlapping machlne/process
limit ranges [245], makes it possible to analyze the total costs Cy,, for a given
set of tolerances and an individual selection of machines, processes, and
suppliers (see Sec. 2.2.4), where the tolerance-independent fixed cost shares
play a decisive role. If several production steps are required to achieve a
design tolerance t;, each operation step’s tolerance-related process costs must
be modeled by an individual cost curve [41, 44].

Besides the presented aspects of tolerance-related single costs C; = f(t;),
a second class of quality-related costs is addressed in tolerance allocation.
Quality loss costs are based on Taguchi’s philosophy of product quality,
claiming that any variation Ay from the ideal of a predefined KC with its nom-
inal Y, as a result of the assigned part tolerances t;, leads to a loss of quality
QL, customers’ dissatisfaction and, thus, indirectly to costs [200, 246] (see
Fig. 8 (a) vs. (b)). In contrast, following the traditional quality understanding,
quality loss only appears when LSL or USL are exceeded (see Fig. 8 (a)). Loss
functions L(Y) are used to convert the expected quality loss into financial
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2.2 Tolerance-cost optimization

figures [247], following three main principles, viz. nominal/target-the-best,
smaller-the-better, and larger-the-better [43, 248]. Product degradation oc-
curring over the total product lifetime further amplifies the quality loss [200,
246] and is addressed under the term present worth of the expected quality
loss [246]. The approximation of the hardly tangible effects of variance and
bias of Y on costs and their integration into the optimization problem leads
to a conflict since manufacturing costs and quality loss are contradictory [246,

249] (see Fig. 8 (b)).

(a) Traditional LOY) \C.o L) AC. (b) Quality Loss
LSL USL LSL ’ USL

’ .
1 7 symmetric
\/—— asymmetric

/

—— L —
Y=Y,-Ay ! Y, LY=Y4A,  Y=Y,A, Y, Y=Y A,
> >
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Figure 8: Quality loss L(Y) and manufacturing costs C(t) in conflict, inspired by [43, 250].

As the resulting probability frequency distributions of Y are often non-
normal [251], different types of symmetric and asymmetric quality loss func-
tions are needed to represent symmetric and unbalanced tolerances [252, 253],
triangular [254, 255], trapezoidal [254], folded normal [256], log-normal [45,
257], and truncated distributions [258] as well as to consider capability indices
[233, 258]. To overcome the assumption of non-correlation [259], various ap-
proaches have been proposed to describe the interrelations between multiple
KCs [17, 260-263].

Although a realistic representation of (non-)tangible costs and quality loss
for the whole lifetime of a product is an essential precondition for tolerance
allocation, it is complicated by the fact that the necessary cost information
is often lacking, the costs are difficult to estimate, or the manufacturing
conditions in the design stage are not yet known in detail [264, 265]. Alterna-
tive approaches aim at facilitating the cost modeling process and enabling
tolerance allocation with cost approximations, e.g., utilizing cost sensitivity
curves [265, 266] or relative cost factors, taking the general IT-grades into
account [203], or estimating the machinability to realize a tolerance [267-
270]. In this context, the fuzzy theory is commonly used to represent the
tolerance-related importance of the manufacturing cost and quality loss [271,
272], e.g., to consider cost-related aspects of service [273], wear [273, 274],
and general usage [274], and to convert linguistic complexity evaluations [271,
275, 276] and expert opinions [272] into figures [277].
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2.2.2 Tolerance analysis

Whether tolerance allocation is performed manually or automatically by
optimization (see Fig. 5), tolerance analysis is needed to analyze the effect
of the allocated part tolerances on the KCs in a repetitive loop [43, 179,
278]. Therefore, the deterministic or statistical assembly response Y to the
variability of the individual parts can mathematically be described with theaid
of an assembly response function f; over the stochastic input variables X [16,
571:

Y = £ (X). 3)

Therefore, the assembly response Y functions as a representative measure
to assure the associated KC under uncertainty.> The input variables X are
not restricted to pure geometrical parameters and their respective tolerances,
which are primarily focused on in tolerance design for mechanical assemblies
but can be any internal and external parameter influencing both geometri-
cal, e.g., gaps and clearances, and non-geometrical KCs, e.g., electrical power
or magnetic flux [P1]. Besides the classification of influences into internal
and external [285], it is helpful to distinguish them by their nature or how
they are represented in optimization (see Fig. 9):

(a) stochastic and deterministic, if their variance is taken into account or
neglected [P1],

(b) time-variant and time-invariant, if their mean or variance can change or
is constant over product lifetime [286, 287],

(c) or fixed and variable, if their mean, variance, or both are considered as
constant or adjustable in optimization [P1, 286].

In context of tolerance-cost optimization, temperature [286-290], mechan-
ical loads through external forces or gravity [286, 287, 201-293] as well as
wear [286, 294] are typical examples of additional variables. In contrast to
geometrical part tolerances, they are usually set as a priori fixed boundary
conditions in tolerance design and, thus, not considered as design variables
to be adjusted through optimization (see Sec. 2.2.3).

The analysis results are primarily used to verify if the specified tolerances
can assure the predefined KC requirements [16, 112]. Lower and/or upper
limits LSL and USL divide the estimated assembly response distribution into

5 In literature, numerous terms are used interchangeably for either the assembly response
function [279, 280], its output, and its requirements, such as design/stack up function,
fundamental equation of the assembly [281] as well as tolerance chain, datum flow chain,
dimension loop [282] (according to the model used), critical/functional/assembly/design
dimension [280] and assembly function(al) requirements [283, 284]. The terms assembly
response (function) and KC (requirements) are preferably used in this thesis.
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Figure 9: Classification of input variables X in tolerance analysis.

the region of conformance (also named reliability, acceptability [295-297],
or yield [298, 299]) and the region of non-conformance/non-conformity
(non-acceptance) [300, 301], composed of a lower and upper non-conforming
fraction [302]. It is common to generally express these interrelations through
probabilities P: [298, 303]

conforming non—conforming

1=P(SL<Y < USL)+ P(Y < LSL) + P(Y > USL) (1)

or via the integral over the assembly response probability density py: [298,

299
yield yld

A USL
zZ=1- fLSL ,Dy(t x)dx (5)

non—conformance rate

Three interdependent measures are commonly used to evaluate the
(non-)conformity of the KCs. The non-conformance rate (nc-rate) z is
typically preferred to express the relative frequency of non-conform parts
as a percentage or in parts-per-million (ppm) in compliance with the six
sigma philosophy [P5].° In the case of normality of data, it can directly be
converted into unit-less process capability indices, such as the C,;-value [302,
304]. Process capability indices for non-normally distributed and one-sided
KCs can be suitably considered by equations and methods developed for
on-line process quality control and are internationally standardized by
ISO 22514-2 [305]. In doing so, conformance rates and process capability
indices are used to describe how many assemblies will probably be within
the specified tolerance interval T, = USL — LSL and to verify whether they
meet the specified minimum conformance rates or process capability values.
Besides, the verification can be inverted by checking whether the resulting
assembly tolerance interval Ty, which can be calculated as a multiple of the

6 Despite their slight differences in meaning, the terms reject, defect, failure, and scrap rate
are often used synonymously in this context [129, Ps5, 232, 243]. The term non-conformance
rate will be used consistently in this thesis to describe the percentage of assemblies which
exceed the predefined lower and/or upper limits of a KC.
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standard deviation oy for normally distributed Y, is less than or equal to
T asm [306].

If there is more than one assembly response function, representing one
or multiple KCs, and thereby share at least one part tolerance, they are
interrelated and correlate [6, 127, 307, 308]. Tolerance compensation methods
can help to decouple and transform them into simple, uncoupled functions in
advance [181, 309, 310]. However, multiple, often conflicting functions cannot
be entirely avoided, leading to challenges in predicting the nc-rate [311, P§]
and having to be considered simultaneously in optimization [312, 313].

After having deliberately focused on the result and the objective of tolerance
analysis so far, i.e., the assembly response and the parameters for assessing
the fulfillment of the KC requirements, the three main preceding steps to get
there are now discussed, viz. the representation of geometrical variations on
feature level, the modeling of their common influence on the system behavior
on assembly level under the presence of variations and their evaluation using
arithmetic and statistical tolerance analysis techniques [314].

Geometrical models intend to model and represent the features, primarily
computer-aided, with their variations in size, orientation, position, and shape
with respect to the specified tolerances, their values, and further process-
related information from manufacturing [94, 109, 315, 316]. In this context,
different models have been presented and applied in literature and industry,
such as variational solid (offset) models [317, 318], tolerance envelopes [319],
vector-, matrix-, and small displacement torsor-based models [132, 320-322],
and skin model shapes [315, 323].

Behavior models are used for tolerance propagation, representing how the
features interact in the presence of variation during assembly and in use [314,
316]. Concerning the geometrical model type serving as input, they can be
classified into deviation and tolerance accumulation approaches [314, 316].
Tolerance stacks and vector loop equations [132, 324, 325] as well as matrix
models [132, 326] are examples of deviation accumulation, establishing the re-
lation fy between t and Y through variations on either analytical or numerical
basis [23, 94, 314]. In contrast, approaches based on Tolerance-Maps® [327,
328], polytopes [329, 330] and deviation domains [327, 331], for instance, use
certain summation and intersection operations to accumulate the individual
tolerance zones directly [94]. Tailored to the individual use case, geometrical
and behavior models must be carefully defined and harmonized to establish a
realistic expression of the assembly response function f;, [94] while accepting
simplifications at feature, part, and assembly level [323].
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Based thereon, the final tolerance evaluation using either arithmetic or sta-
tistical methods follows [314, 332].7 Arithmetic methods [324, 334], mostly
named worst-case, rarely sure fit [335] or methods of extremes [244], aim at
assuring all possible accumulations of geometrical part variations to provide
a 100%-conformance region [324, 336] through absolute interchangeabil-
ity [336, 337]. Without making any assumptions on part distributions [338],
the extreme, worst-case configurations are analyzed, which typically result
when the individual input variables are considered at their lower and upper
bounds of the assigned tolerance limits [244, 324]. Except for safety-critical
applications [337], this approach is too pessimistic for most practical prob-
lems [336, 339] where it is statistically unrealistic to realize the worst case
configurations very often by random assembly [126]. As a result, tolerances
must be chosen extremely tight, which are hard to achieve and control and,
thus, cost-intensive [336, 337].

It is far more realistic and cost-effective to choose probabilistic ap-
proaches [28], which accept a small fraction of non-conform assemblies
giving space to choose wider tolerances [244, 336]. Statistical tolerance
analysis predicts the assembly probability distribution based on the individ-
ual part tolerance distributions, usually expressed by a set of distribution
type-dependent parameters and moments, e.g., the mean pu, standard
deviation g, skewness k, and kurtosis y [339-341]. The traditional, mostly
convolution-based approaches like the root sum squares method (RSS) in
modified and generalized versions to cover (estimated) mean shifts and
non-normal distributions [40, 179, 180, 342, 343], the Hasofer-Lind reliability
index method [186, 344], or first- and second-order reliability methods
[303, 345], show their strengths in low computation times for tolerance-cost
optimization [41], but generally lack applicability and validity [41, 280].

Sampling-based tolerance analysis, mainly in the form of Monte Carlo
Simulation [23, 333], overcomes these limitations [18, 41, 280] and provides
the most realistic results [346] since it can handle any distribution [23, 339,
347] and assembly response function, whether it is nonlinear and should
not be linearized [282, 339] or it can only be represented implicitly [320,
347]. Random number generators in combination with sampling technique-
specific algorithms are first used to derive a set of samples according to a
predefined sample size n to represent the stochastic input variables X while
taking the part tolerance probability distributions and its assigned tolerances
t; into account (see Fig. 10) [18, 339]. Second, the assembly response Y is

7 Besides the preferred classification into arithmetic and statistical approaches, different
approaches, e.g., based on fuzzy logic and non-probabilistic set theory, are rarely used in
literature [78, 333].
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repetitively, sample per sample, analyzed, leading to the assembly response
distribution [18]. Provided that a sufficiently high sample size n is chosen [18,
328, 348, 349, it serves as a reliable basis for estimating the (non-)confor-
mance rates to statistically evaluate the KC requirement fulfillment [P5]. As
predicted early on [350] and in line with uncertainty quantification meth-
ods [351], sampling-based tolerance analysis has become the standard in
research but also industry [23, 130] due to its simplicity [134, 280, 352], flexi-
bility [280, 347], and broad applicability [130, 280]. It is the basis of most
commercial computer-aided tolerance analysis software [333].
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Since the choice of the individual models mainly depends on the type and
characteristics of the product design and its assembly process [P1, 353], it is
helpful to differentiate between two main assembly types: part-driven and
process-driven assemblies [6]. In part-driven assemblies, the positioning
of the parts results from joining and constraining them by their prefabricated
mating features, so the KCs are primarily influenced by part variations [6, 354].
Compared to isoconstrained, i.e., kinematically/properly constrained, assem-
blies, gaps are needed to ensure the assembly of overconstrained, part-driven
assemblies without mitigating the fulfillment of the KC requirements [6, 314,
355]. The challenge in tolerance allocation is to find a balance between the
clearance values and tolerances needed to avoid assembly problems and to
assure the KC for all possible gap configurations an assembly can take during
assembly or in use, if not all degrees of freedom are finally locked [134, P10].
Besides assuring assembly through clearance, certain degrees of freedom
are intentionally left open for mobility in mechanism design® [6]. As they
are designed to generate a defined movement with a certain accuracy [357,
358], it requires a time-variant evaluation of the KCs, either for the whole
movement or predefined, functional-relevant points in time [P1]. As they
have traditionally been an integral part of tolerance research, mechanisms

8 The definition of the term mechanism is not consistently used in literature. In this work, it
is used to describe all systems in motion as "mechanical portion[s] of a machine that ha[ve]
the function of transferring motion and forces from a power source to an output” [356].
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with full joints, such as revolute joints, including effects of clearance [358-
362] and lubrication [287, 363], and half joints, such as cams [364, 365] and
gears [279, 366-368], are in focus of tolerance allocation.

In contrast, process-driven assemblies are characterized by the fact that the
KCs are influenced mainly by the assembly process [354]. Hence, the process
variables serve as essential control variables for the quality assurance of the
total assembly [369]. The fixture layout design [55, 370, 371], including the
position, type, and number of clamps and locators to lock the open degrees
of freedom multiple times [6], its accuracy and further tool variations [369],
the sequence of part joining steps of (spot) welding, riveting, clinching,
glueing, or clinching [372-374], as well as the assembly sequence order of the
individual parts [303, 375] additionally cause part deformations, mechanical
stress and spring back-effects [376, Pu]. As these assembly-related effects
significantly influence the KCs of the overconstrained sheet-metal assemblies,
and in contrast to part-driven assemblies to a larger extent than the part
fabrication-related part variations, they have to be addressed in detail in
variation simulation [369]. To describe the propagation of the numerous
variations over the various multi-station assembly steps, specific models
have been proposed in literature, e.g., the state space model [377, 378] and
the stream-of-variation analysis model [379, 380], and serve as a basis for
assembly process-oriented tolerance-cost optimization methods [39, 196, 311,
369, 381]. Consequently, tolerance allocation-related research on process-
oriented assemblies differs from part-driven assemblies and forms an own
but strongly connected branch [39].

The number and complexity of the different, previously discussed aspects and
their interrelations influencing the quality assurance of the KCs make it often
difficult or even impossible to express the geometrical and behavior models
by mathematical equations and to derive a mathematically closed, explicit
definition of the assembly response function [P2]. As a solution, numerical
simulation, optimization, and software tools are used in the context
of tolerance analysis to implicitly support establishing the relationship be-
tween tolerances and the KC [314]. While parametric CAD-tools can suffice
for simple mechanical assemblies [227, 382], complex contact situations,
e.g., in simulations with form defects [383, 384], overconstrained assemblies
with gaps [134, 385], or mechanisms with half joints [279, 366, 367] require
numerical methods for assembly simulation. Established CAD-integrated
software modules, e.g., VSA-3D/Pro [231, 386—388] or Quick-UG stack up
module [389], and stand-alone and more detailed CAT-software for tolerance
analysis, such as RD&T® [217, P11, 390], 3DCS® [391-393], Cetol66® [394, 395],
Variation Analysis® [46], eM-TolMate® [193], or Sigmund [396], can be used in
tolerance-cost optimization using interfaces and exchange formats. Moreover,
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FE- and CFD-simulation are helpful tools to consider non-geometrical param-
eters or effects in more detail, e.g., on both geometrical and non-geometrical
KCs, directly or approximated by surrogate models in tolerance analysis [81,

290, 291, 397-399)].

With the increasing complexity of the assemblies and the ambition to model
them with similar accuracy avoiding to impair the validity by assumption
and oversimplification, analyses are not practicable in reasonable comput-
ing times [P2] - despite the ongoing increasing computer performance (see
Sec. 2.3). Since tolerance analysis is performed repeatedly for a large number
of different tolerance combinations within the inner optimization loop [27,
400], the computational and time effort required, which can take up hours
or even days [130], has a staggering effect on the efficiency of the entire op-
timization [296, 401]. The usage of sampling significantly aggravates this
dilemma [27, 296, 400, 402], as a large number of random samples are neces-
sary to be able to reliably assure the high industrial requirements in small
parts-per-million ranges [18, 40, 339, 352]. Hence, efficient tolerance-cost
optimization requires efficient tolerance analysis routines [403]. Variance
reduction methods help to increase efficiency because they require smaller
sample sizes to achieve the same precision as pure Monte Carlo Sampling
(MCS) [192, 352]. In the context of tolerance-cost optimization, Latin Hy-
percube Sampling [192, 392, 404, 405], Hammersley sampling [406], Quasi-
Monte Carlo method using Sobol’ sequences [392], Number Theoretical
Net [311, 400], importance sampling [352, 407], subset sampling [392], anti-
thetic variates [192, 405], correlation functions [352, 407], and polynomial
expansion [292, 293] have proven their suitability. Furthermore, an adaptive
increase in sample sizes over the optimization iterations can significantly
reduce the total number of tolerance analyses required [134, 279, 408].

Besides their intended use in deriving unknown relationships between inputs
and experimentally investigated outputs [386], such as in tolerance-cost mod-
eling (see Sec. 2.2.1), surrogate models are used even if these relationships
already exist in explicit or implicit form, but their evaluation is computation-
ally time-consuming [409]. Hence, they function as meta models making
statements about (simulation) models [410, 411]. They mainly aim to speed
up the individual tolerance analysis’ substeps in tolerance-cost optimization.
Different types of regression models, for instance, based on low-order polyno-
mial functions [298, 386, 412, 413], Gaussian and kriging models [81, 311, 402,
413-416), ANNs [398, 399], or support vector machines [P10], are used either
as approximate (sub-)models, e.g., to replace computational-intensive FE-
and CFD-simulations [81, 240, 398, 399, 414, 415] or as direct surrogates of
the total tolerance analysis [298, 311, 386, 402, 412, 413, 417, 418]. In addition
to general background information on surrogate modeling and their use in
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optimization given in the Appx. A.5, a detailed discussion on the different
ways of using them in tolerance-cost optimization will follow in Sec. 6.2.

2.2.3 Definition and solution of the optimization problem

Optimization is an automated and, thus, efficient way to solve the tolerance
allocation problem [Pz] by "obtaining the best result under given circum-
stances” [419]. For this purpose, it is necessary to express a given problem
through the language of optimization, basically consisting of the objective(s),
constraints and design variables [419].

In tolerance allocation, two main strategies can be differed according to their
objectives in focus. While quality-driven (quality-priority) tolerance-cost
optimization aims at optimizing the fulfillment of the quality requirements to
obtain the best quality, the aim of cost-driven (cost-priority) tolerance-cost
optimization is to minimize the total tolerance-related costs necessary for
quality assurance [9, 196, 303]. Consequently, objective and constraint(s) are
flipped, whether it is designed as a design for quality to meet cost-approach
or a design for cost to meet quality-approach (see Chap. 1)°, whereas the
latter depends on the underlying quality philosophy (see Fig. 8).The main
fundamental strategies with their corresponding optimization problems are
defined as follows: [192]

b) cost-driven
A

a) quality-driven ¢) robust tolerance design
/—/%
Minimize z Coum Coums L objective(s) (6)
subjeCt to : CSUITI S Crnax ZA S Zrnax ZA S Zmax (7)
. . . constraints
B St P i P << (8)
cl sl

S
design variables

The objective function(s), the constraints, and the design variables have
to be adjusted or extended by additional case-specific elements tailored to
the respective field and purpose of application [P12] (see Sec. 2.2.4)."° This

9 This distinction is based on the general definition of design to cost and design for cost acc.
to Dean and Unal in [420, 421].

1° The optimization problem given in Eq. (6)-(8) is restricted to one single KC for reasons of
clarity. In case of K multiple KCs, either the number of quality assurance objectives (see
Eq. (6) a)) and constraints (see Eq. (7) b)) are extended to K individual equations or an
overall quality criterion takes all KCs simultaneously with its correlations into account. In
the case of ¢), the multivariate quality loss is defined by K quality loss objective functions
and its correlation terms using covariances.
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includes the subroutines of tolerance-cost analysis and tolerance analysis
providing the information for both the objective and constraint evaluation.

The constraints can be classified according to their purpose into feasibil-
ity and acceptability of a design [422]. The tolerance design’s feasibility in
the context of tolerance allocation means that the obtained solution can be
technically realized for a given scenario. Process accuracy/capability con-
straints defining the lower and upper boundaries t!* and t! of the design
variables [139, 201, 423] are feasibility constraints ensuring that only toler-
ances are picked by the optimizer, which a given manufacturing setup can
technically realize. Acceptability constraints, in contrast, define if a tech-
nically feasible solution also satisfies further constraints, i.e., in case a) an
upper-cost limit C,,, [196] or in case b) a maximum non-conformance limit
Zmax [P5]. The nc-rate Z acc. to Eq. (5) is exemplarily chosen as a quality
measure in Eq. (6) and Eq. (7). In case a), except for the assembly toler-
ance Ty, the choice of the process capability C,, and the yield yld result in a
maximization problem, which, however, is always transformed into a mini-
mization problem by the negative of the objective function value, for example,
max(Cpy) = min(—Cyy). Incaseb) and ), the inequality constraints in Eq. (7)
are reformulated to Ty < Ty max, Cpk = Cpromin, OTYId 2 yld . [41].

The design variables, also called decision variables [419], which are "the
quantifiable parameters that the algorithm can change” [424], are primarily
the magnitude of the design tolerances (or manufacturing tolerances §; in
process design, see Sec. 2.1.2) [93, 192, 295]. The tolerance types are usually
set as fixed [16], with a few exceptions proposed in [192, 405]. The toler-
ance intervals t;, defined as the difference between the upper and lower limit
t; = UL—LL, are thereby varied by the optimizer. A fixed mean shift is usually
used for unbalanced bilateral tolerances (see also Fig. 9 (c)). Considering the
nature of the design variables, the tolerance values can either be continuous,
discrete, or mixed-discrete as a combination of both types [425]. Besides
the choice of any value from the continuous range [¢l°; t#°] with ¢; € R*,
they sometimes have to be selected from a limited, discrete set of prede-
fined options, if either fixed classes in case of external supply or IT standard
classes [426] are considered or discrete tolerance-cost functions are used (see
Tbl. 1). Moreover, it has to be considered in the design variables and by
additional constraints that some of the tolerances may be set as fixed a priori
since they should not be optimized and that multiple tolerance values may
be set as equal or correlated [427, 428], for instance, if they originate from the
same manufacturing process indirectly saving costs through setup reductions
or if parts from the same type are used several times in one assembly [96, 127,

307].
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In most cases, a least-cost tolerance design b) is prioritized over case a) and
defined as a minimization problem of the single tolerance-related costs Cy,,
acc. to Eq. (2) [429], and sometimes supplemented by the assembly-quality
related costs due to quality loss in case c)." The consideration of quality loss L
in case c), which is often addressed under the term robust tolerance design
in literature [41, 251] (see Sec. 2.2.4), extends the single-objective problem
to a multi-objective problem with conflicting objectives (see Fig. 8) [432].
The design space is usually limited by the acceptability constraint Eq. (7) c),
which is rarely omitted since the quality loss costs can indirectly control
the quality assurance. To handle this problem, it can be transformed into
a single-objective optimization problem by a weighted summation of the
objectives, where the weights w indicate their relative importance [433, 434]:

Ctot =w,- Csum(t) tw, - L(GY) with: w,+w, =1 (9)

Besides an equal weighting [200, 232, 250, 251], individual (normalized)
weight factors w; are chosen based on the designers’ prioritization or ex-
perience [433, 434]. Avoiding choosing the weights before optimization,
multi-objective optimization approaches determine a set of alternative but
equivalent best solutions. A certain solution can then be selected from the
resulting Pareto set either by a manual prioritizing of the objective functions
or supported by decision theory methods such as the TOPSIS method [414,

417, 432].

In the beginnings of tolerance-cost optimization, finding the best solution
for the mathematical tolerance allocation problem out of the infinite number
of solutions [41, 180, 244] was mostly based on deterministic optimization
techniques [39]. For simple allocation problems with convolution-based
tolerance analysis subroutines, optimal solutions can be found in low com-
puting times [S1]. As they are based on mathematical principles and often
need information on gradients or derivatives [39, 352], they mostly impose
strict requirements for monotonicity [36, 199, 297], continuity [96, 199, 435],
and derivability [96, 435, 436] of the objective and constraint functions [199].
Hence, traditional algorithms, such as linear and nonlinear programming,
often reach their limits, not only for industry-relevant problems, like

* non-traditional tolerance-cost functions, process limits, and machine/pro-
cess alternatives [41, 96, 435] (see Sec. 2.2.4),

+ multiple, interrelated KCs [41, 96, 435],

+ nonlinear and implicit assembly response functions [41, 368, 437], or

" In a few cases, tolerance-related costs are addressed indirectly by a maximum widening of
the tolerance values (see, for instance, in [176, 185, 399, 427, 430, 431]).
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+ sampling-based tolerance analysis techniques [352, 437, 438].

There are numerous strategies and tricks, such as linearization [176], con-
version of the probabilistic problem into a deterministic one, for instance,
by reliability indices [36, 186, 297, 344], estimation of gradients when using
sampling methods [352, 403, 407, 437], or establishing closed-form solutions
for quality loss based on Lambert W functions [439-443]. However, their
applicability is either limited [44, 435], the tolerance allocation problems are
strongly simplified [176], or their implementation requires high mathematical
and optimization skills to formulate them correctly.

In line with the general trends for solving real-world, mathematically complex
problems, metaheuristic, stochastic optimization algorithms are com-
monly used in tolerance allocation to explore the multimodal, non-convex,
partly discrete, and stochastic search spaces efficiently and to find the global
optimum [39, 444]. These soft-computing algorithms are mostly population-
based and mimic natural processes, usually inspired by biology, physics, and
chemistry [445, 446]. As they are global, direct search methods using random
principles for exploitation, i.e., local intensification of solutions, and explo-
ration, i.e., global diversification, of the search space, they are not based on
gradients or derivatives, their programming and implementation are simple,
they solve complex problems while having a higher probability of finding
the global optimum, and are resistant to noise [433, 444, 447]. Relying on
one of the so-called free lunch theorems [448], claiming that all algorithms
perform on average equally well for different values as they all show individual
strengths to solve various problems, a wide variety of algorithms have been
developed and implemented over the years [445]. Hence, any metaheuristic
algorithm™ can principally be used for tolerance-cost optimization, as long
as constraints can be taken into account, and additionally, depending on
the problem type, (mixed-)integer or discrete optimization variables as well
as multiple objectives can be considered. Thus, not only widely acknowl-
edged algorithms, e.g., simulated annealing [44, 93, 97, 232, 451, 452], genetic
algorithm (GA) [21, 96, 290, 291, 303, 431, 432, 434, 447, 453-455], particle
swarm optimization [33, 286, 432, 456-462], differential evolution [33, 130,
227, 431, 434, 455, 463], scatter search [464, 465], tabu search [223, 466],
and pattern search [467, 468], are studied in literature. But also less estab-
lished ones, such as ants colony algorithm [469], artificial bee algorithm [470,
471], bat algorithm [472], cuckoo search (CS) [294, 408], whale optimization

2 Despite the slight difference in the definition of heuristic and metaheuristic optimiza-
tion that metaheuristic is understood as higher-level heuristic approaches, both terms
are used interchangeably in literature [445, 449, 450]. Hence, all stochastic algorithms
using randomization, local search, and global exploration methods are commonly called
metaheuristics [445].
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algorithm [473], self-organizing migrating algorithm [474], game theoretic
approach algorithms [475-477], seekers algorithm [272], imperialist competi-
tive algorithm [478], teaching-learning-based optimization [479, 480], and
intelligent water drops algorithm [14]. Hybrid algorithms, combining the
individual strengths of stochastic and deterministic (or several stochastic) al-
gorithms in terms of exploration and exploitation, help to further improve the
solution and to increase the probability of finding the global optimum [245,
481-483]. Apart from the substantial benefits of metaheuristic optimization
algorithms, they cannot guarantee finding the global optimum [39], they are
less efficient as they might need a considerable number of iterations to con-
verge [484), and finding suitable settings for a given problem is crucial, but
decisive to identify first a feasible and second a near-optimal solution [485].
In addition to the algorithm itself, the handling of the multiple constraints
influences the optimization procedure and its solution. The penalty approach
is mostly preferred transforming the problem into an unconstrained one by
adding penalty terms to the objective values if constraints are violated [21,
313, 486]. More detailed information on metaheuristic algorithms, in general,
is given in Appx. A.3.

Besides the presented strategies using deterministic and stochastic optimiza-
tion techniques, solution techniques relying on methods adopted from
quality engineering for off-line-quality control [101, 248] are used, claiming
to be more practicable and applicable to complex assemblies [16, 39, 41].
Fractional Factorial DOE, such as orthogonal arrays [266, 487] or Central
Composite and Box-Behnken Designs [488, 489], mixture-amount exper-
iments [490, 491] and Monte Carlo Sampling [492], are primarily used in
combination with analysis of variance (ANOVA) [39] to explore the design
space and to find a suitable solution. However, they represent a comparatively
small portion of the tolerance allocation approaches in literature because they
cannot be applied universally and do not guarantee optimal solutions [P1].

2.2.4 Optimal tolerance allocation + ”"X”

Initiated by the stream of CE, various inter- and multidisciplinary aspects
from the downstream product development steps have been integrated into
the tolerance design phase (see Sec. 2.1). In addition to merely expanding
the optimization problem through additional elements such as specific cost
details, integrated optimization approaches have prevailed, concurrently
addressing one or more activities or problems ("X”) from mostly downstream
but also upstream product development phases. In doing so, additional or
adapted objectives and constraints with shared or additional design variables
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are considered within one joint, overall optimization problem [216, P12] or by
multi-level or -stage optimization strategies [196, 493, 494].

As one of the first, the directly adjacent tasks from tolerance allocation for
manufacturing were shifted to the design phase (see Sec. 2.1). The extension
of the optimization problem by manufacturing tolerance design variables as
well as machining tolerance and stock removal allowance constraints [44, 93,
139, 457, 495] enables a simultaneous consideration of KC requirements on
the assembly level and process design-related aspects on the part level. The
approaches developed are addressed under the terms concurrent/simulta-
neous tolerance design/allocation/synthesis/optimization. Besides the
consideration of dimensional and geometrical tolerances [430, 432, 465, 496],
integrated approaches additionally focus on further process design aspects,
e.g., optimal machining (cutting) process parameters [211, 497].

Since there is usually more than one predefined machine and/or process
alternative to realize an assigned design or manufacturing tolerance ¢; or
§; (see Fig. 7), optimal tolerance allocation is inevitably accompanied by
the problem of machine/process selection. As the available options with
their process limits dictate the respective achievable tolerance ranges and
least-cost combinations, their preselection before optimization cannot lead
to the global optimum [498]. Hence, the definition of a concurrent opti-
mization problem inevitably enables a realistic selection of tolerances for
the processes and machines used [97, Pg]. It further supports make or buy
decisions with multiple supplier alternatives [260, 494, 499, 500]. One way to
address alternative selection® in tolerance allocation is to treat it as a nested
subproblem to be solved within the inner optimization loop, for instance,
using exhaustive or univariate search methods [96, 312, 473, 501-503] or the
minimum-cost curve, also called bottom curve follower approach, selecting
the least cost-intensive alternatives for the current tolerances t; [97, 498, 501,
503]. Besides, the idea of simultaneously solving both problems within one
global optimization problem, where additional integer design variables take
over the selection task, was implemented in different ways, e.g., by means of
a multiple-choice knapsack problem [308], pseudo-boolean approach [504],
branch-and-bound [186, 312], zero-one integer programming using the Balas’
algorithm [38], sequential programming based on Lagrange multipliers [93,
312], and the Box complex method [505]. However, all these methods are
mostly too restrictive, inefficient, or cannot find the global optimum for
more complex problems, e.g., advanced tolerance-cost functions with process
limits or multiple interrelated KCs [38, 41, 312, 501]. They essentially lost their

3 As machine/process and also supplier selection can be treated equally from the optimization
point of view [Pg], they are summarized under the term alternative selection in this work.
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importance as they originate from times with limitations in optimization [Pg].
Nowadays, the highly nonlinear, mixed-integer problems are typically solved
by metaheuristic optimization [44, 96, 307, 447].

As the selection of machines and processes is strongly connected to process
planning and scheduling, these methods are often extended by further
tolerance-related aspects. Tolerance allocation is, thus, combined with op-
timal process planning of multi-stage, partially site-distributed production
steps [139, 216, 224, 242, 243, 405, 506], partially under a reconciliation of
bought-in parts [494], to minimize the overall costs while considering machin-
ing, overhead, and idle times, [473, 507], waste [485], resource allocation [215,
508], machine loading capacities [139, 499], product rates and demands [139,
485, 499], and delivery time constraints [509]. The balancing of tolerances
and process planning positively impacts the single overall equipment effective-
ness (OEE) of the machines involved [349] and, thus, the total manufacturing
costs, but also influences the subsequent assembly steps [194, 216].

Consequently, process planning for part fabrication often goes hand in hand
with the design of the assembly process, significantly influencing the KCs,
especially in the case of process-driven assemblies (see Sec. 2.2.2). Therefore,
optimization-based fixture layout design and assembly sequence planning,
including joining sequences of individual operation steps, e.g., spot welding
sequence [372, 510] and part assembly sequences, are acknowledged methods
in the industry to assure assembly quality while taking variations from part
manufacturing using already fixed tolerances into account [375]. To further
exploit its potential, integrated approaches have been developed to align
tolerance allocation and assembly process design by embedding fixture layout
optimization [196, P11, 493], assembly technique selection [300, 303], or
assembly sequence planning [300, 303] into tolerance-cost optimization.
Besides the detailed planning of the single process operation steps, this
also includes further technical and economic production planning-related
decisions and aspects, such as investments, automation, installation, and
operation of multi-station assembly lines [216].

In this case, the underlying assembly strategy mainly dictates product and
process design. Tolerance allocation is usually based on the concept of inter-
changeability requiring tight tolerances to fulfill the KC requirements when
parts are randomly assembled in mass production [49, 511]. Selective as-
sembly, in contrast, compensates the geometrical part variations to a certain
degree within the assembly process by a thoughtful pairing of groups of parts
of a predefined quality, also called classes, categories, or bins [512, 513], allow-
ing to achieve high precision assemblies with low precision parts [310, 512, 514,
515]. Thus, tolerances can be further widened, leading to a cost benefit [428,
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512] while additional costs, e.g., for a 100%-inspection and holding, etc., are
amortized [513, 516]. While selective assembly has become well established in
the automotive and roller bearing industry over the years [512], it is currently
getting more into focus in the context of industry 4.0 and digital twins [514,
517-520]. Optimal selective assembly problems try to find an optimal binning
strategy while tolerance values are usually set as fixed [521-525]. In combi-
nation with optimal tolerance allocation, tolerance values are considered
variable, defining the equal widths or areas of the bins for either a fixed or
variable number of bins using the potentials of both subdisciplines [14, 428,

470, 526, 527].

Besides the early consideration of integrated tolerance allocation approaches
in the design and pre-production phase, they further offer the potential to
be used for real-time optimizations during production taking advantage of
adaptive strategies for the design and scheduling of part fabrication and
assembly operations [518, 528].

In addition to these streams of front-loading, optimal tolerance allocation is
further coupled with parameter design to concurrently select both nomi-
nal and tolerance values. In addition to costs and quality, the objectives
or constraints are commonly supplemented by different measures of robust-
ness [529]. The definition of both nominal values and the tolerances of
internal and external parameters (see Fig. 9) as variable intends to achieve a
global cost and product robustness optimum using different measures, such
as the quality loss mentioned before [5, 435, 489, 530, 531], signal-to-noise-
ratio [41], sensitivity [41, 461, 469], variability [495], or manufacturing costs’
sensitivity [532]. Additional constraints avoid identifying infeasible solutions
through invalid parameter combinations [469].

In conclusion, the individual designs and implementations of tolerance
allocation, addressing a variety of different lifecycle aspects from design,
pre-production, and production in optimization, not only with its primary
focus on costs and product quality but also on product robustness as well as
risk [533-537], emphasize its vital role in the product development process.

2.3 Main research streams and current status of
tolerance-cost optimization

With the first ideas, based on analog and digital computation in the 1950s-
’60s [205, 538, 539], the beginnings of optimal tolerance allocation were driven

4 In this context, the term robust tolerance design is commonly used [41], indicating that at
least one measure of robustness - in most cases the quality loss (see Eq. (6) ¢)) - is added to
the optimization problem.
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by their application to electric circuits [205, 422, 540, 541] and antennas [542].
Since 1970, however, it has increasingly found its way into classic toleranc-
ing focusing on mechanical assemblies and has dominated the research on
tolerance-cost optimization. Since then, a large number of research papers,
approaches, methods, etc., have been developed and implemented, which
were initially analyzed in a literature review by the author and the findings
were published in [P1].

To create a holistic picture of optimal tolerance allocation and its development,
these initial findings are now supplemented by further criteria and current
publications.’> Hence, the following observations are based on an analysis
of 399 articles from the period of 1970-2023. Appx. A.2 gives a detailed
description of the literature review.

Still severely hampered in its origins by the given constraints in optimization
and computer performance (see also Sec. 2.1), tolerance-cost optimization
gained momentum especially in the 1990s and developed further in various
directions, thus setting the course for the subsequent three decades of inten-
sive research in this field (see Fig. 1 (bottom)). As the tolerances are strongly
connected to the machines/processes and suppliers chosen, the idea of alter-
native selection was early formed in the 1960s-"70s [38, 41]. It has mainly
drawn attention due to the emergence of metaheuristic algorithms in the
following years (see Fig. 11 (a)) and is often chosen as a challenging scenario,
e.g., to benchmark optimization algorithms or methods. At the beginning
of the 1990s, fostered by the CE movement, the mindset of concurrent tol-
erance design (see Sec. 2.1) was created and since then has represented an
important aspect of tolerance-cost optimization. However, most tolerance
allocation approaches still focus on the pure design phase and maintain the
strict separation of machine and production tolerances. (see Fig. 11 (b)). The
elementary equations and interrelationships of tolerances and costs, which
laid the foundation for the development of the method in the 1970s [543],
were followed by the first concrete approaches to the integration of quality
loss in the 1990s [200, 249] (see Fig. 11 (¢)) after the general introduction
of the robust design idea and quality loss in the 1980s [544]. Since then,
their consideration has become established in research, is simultaneously
considered alongside pure manufacturing costs, and is in the concrete focus
of individual research activities [P1].

> When analyzing the approaches presented in literature, a distinction must be made between
aspects examined in detail and those which are merely a means to an end. Therefore, general
statements that individual aspects are less relevant overall cannot be made since the research
articles usually focus on selected particular aspects, which means that other aspects are
pushed into the background. Nevertheless, the findings indicate the significant trends and
the historical development of the method concerning its main research areas.
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Although some approaches have been applied to dimensional and geo-
metrical tolerances as the power of the method has increased, the number
of methods presented for dimensional tolerances still predominates (see
Fig. 11 (d)). This can be mainly attributed to the choice of case studies, which
are primarily designed from an academic point of view and are often limited
to established one- and two-dimensional standard examples, even if the
number of more industry-relevant case studies is slowly increasing. Depend-
ing on the purpose of a research article, simple examples are sufficient to
study a particular aspect. However, it indirectly leads to the fact that the
methods often suffer from an academic character and are perceived by the
industry only less suitable for practical use. In contrast, due to their focus
on the manufacturing process, the process-oriented tolerance allocation
methods are far more industry-oriented and practice-driven. Since the first
applications at the beginning of the 21st century [376, 381, 546], the shift from
product to process has been consistently continued [39] and successively
supplemented by various relevant aspects from the downstream process steps
(see Sec. 2.2.4).

A closer look at the tolerance analysis techniques reveals that simplified
arithmetic methods had to give way to statistical evaluation techniques al-
ready in the early years. Not least because of tolerance-cost optimization’s
focus on high quantities and series production (see Fig. 11 (e)). Initially
dominated by convolution-based approaches, the methods are increasingly
replaced by powerful sampling methods, primarily when external tolerance
analysis methods are handled as black boxes by metaheuristic algorithms.
Arithmetic approaches are only used if the findings are independent of the
chosen tolerance analysis approach.

Shortly after the introduction of the first notable metaheuristic algorithms,
e.g., genetic algorithms in 1975 [547], scatter search in 1977 [548], simu-
lated annealing in 1983 [549], and particle swarm optimization in 1995 [550],
they found their way into tolerance-cost optimization and are mostly pre-
ferred nowadays to cope with the increasing complexity of the problems (see
Fig. 11 (f)). Thus, among the various aspects already mentioned, interrelated
KCs increasingly came into focus during this period.

In addition to the individual enhancements of the method, the 1990s were fur-
ther characterized by the development of knowledge-based expert systems
for tolerance-cost modeling, tolerance allocation for design, manufacturing,
and concurrent tolerance design [137, 152, 225, 267, 551-557]. In contrast to
CAT-software for tolerance specification and analysis (see Sec. 2.1), stand-
alone tools for tolerance-cost optimization could, however, not prevail so
far [114]. Although several mostly CAD-integrated or CAD-based software
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prototypes have been presented over the last three decades, such as [155, 242,
452, 558-563], a combination of optimization algorithms and approaches
with self-coded or commercial tolerance analysis routines and tolerance-cost
analysis software [394, 395, 564] is common [P1].

In summary, tolerance-cost optimization has a long history, is still a current
research topic, and has been and will be continuously developed through
various research activities strongly shaped by recent global trends.
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3 Identification of the need for research and
outline of the main part

Based on the state of the art and research presented in Chap. 2, the current
shortcomings in the field of optimal tolerance allocation and the need for
research are subsequently introduced, followed by the research goal, the
research questions, and the outline of the main part.

3.1 Current shortcomings

Optimization-based approaches for tolerance allocation have been inten-
sively studied for over five decades. The individual research activities and the
recording of their findings through a remarkable number of articles empha-
size the continuous evolution of tolerance allocation in theory (see Sec. 2.3).
Despite all scientific efforts, however, it has not yet been able to establish itself
in industry. It is still more a scientific conundrum than a practical solution for
tolerance-cost problems (see Chap. 1). Except for only a few examples of suc-
cessful implementation in industry, for instance, presented in [P7], manual,
iterative approaches are still preferred over automated, optimization-based
tolerance allocation while decisive tolerance-cost potentials remain unused.

One reason for the missing acceptance is that the numerous, mostly isolated
solutions usually lack transferability to other, particularly more complex
problems. They are either tailored to specific application cases or limited to
simplified, academic case studies with few dimensional tolerances. Correla-
tions of multiple, geometrical tolerances and interrelated KCs for single or
multiple assembly configurations are mostly neglected or oversimplified. In
addition, they are insufficiently aligned to industrially relevant aspects, such
asreliable quality measures, mapping of non-normal machine characteristics,
or realistic part manufacturing scenarios.

Furthermore, their strong mathematization and scientification constitute a
significant obstacle for tolerance engineers without in-depth knowledge of
statistics, mathematics, tolerancing, and optimization, further complicating
a productive application in practice. Suppose the ease of use of a CAT-tool,
which is a subjective measure at the end but mainly depends on how fast,
easy, and systematically a model can be set up and solved for a wide range
of problems, is not given [174]. It is not used, regardless of its potential,
alternative workarounds are preferred, or the activity is skipped at all [174].
Consequently, only a few tolerance experts can use these methods insofar as
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they suit the problem at hand. Even the knowledge-based expert systems
presented in literature have not yet been able to change this situation.

Specific detailed research issues, for instance, a sufficient acquisition and
processing of data for tolerance-cost modeling in series production, are still
open and have to be clarified. However, there is currently a significant lack of
an approach that can serve as the basis for a broadly applicable and powerful
tool and convince the industry with its usability. Otherwise, its potential will
still remain unused despite sophisticated details.

3.2 Linking sampling-based tolerance analysis and
metaheuristic optimization

The first step to overcome the presented shortcomings is to define the funda-
ment for optimal tolerance allocation. The literature study, summarized in
Fig. 11, indicates the trend towards a coupling of sampling-based tolerance
analysis methods and metaheuristic optimization algorithms for tolerance al-
location. This concept, existing for several years, was coined sampling-based
tolerance-cost optimization in [P5]. Fig. 12 illustrates its basic idea as an
extension of the general workflow given in Fig. 5 (b) for a population-based
algorithm. In each optimization iteration (generation) g, a new set of toler-
ance values, the population p of several individuals, is generated. For the first
generation g = 1, it is typically based on a random guess. Otherwise, results
from the previous generations are considered. The substeps of the inner loops,
i.e., the evaluation of both costs and quality using tolerance-cost analysis and
sampling-based tolerance analysis acc. to Fig. 10 and its transformation into a
fitness F using a suitable penalty function f’, is repeated for all n,, individuals
and all n, generations until the algorithm meets a termination criterion (see
also Appx. A.3 for further information on optimization theory).

At first sight, this idea is reasonable since both methods’ broad applicability
and general adaptability to arbitrary problems, which both techniques, as
so-called "panaceas” [280], inherently bring with them, basically offer an
excellent prerequisite to forming a solid basis. A detailed evaluation, however,
is needed to contrast the pros and cons. The statements, discussed in the
following and summarized in Tbl. 2, are partly based on the results of an
initial potential analysis presented in [P2] and [P13].

Sampling-based tolerance analysis is mostly the first choice for analyzing
complex problems with 3D and nonlinear effects, making it possible to simu-
late the impact of geometrical tolerances and complex assembly situations.
Thus, sampling-based optimization routines enable a direct integration of
standard tolerance analysis software tools preferably used in industry and an
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Figure 12: General workflow to solve a sampling-based tolerance-cost optimization problem
with population-based metaheuristic optimization algorithms based on [Pg].

easy embedding of the method into existing software landscapes. Consider-
ing non-normal manufacturing distributions and the freedom to integrate
measurement data opens up the possibility of including further manufactur-
ing information in the tolerance allocation for a more realistic representation
of relevant industrial scenarios, e.g., for machine and process selection.

Metaheuristics are soft-computing algorithms and therefore do not restrict
the choice and setting of tolerance analysis and tolerance-cost models, re-
gardless of the selected optimization case (see Sec. 2.2.3). Nonlinear, discon-
tinuous, and even implicit black box models for tolerance-cost and assembly
response functions can be integrated into optimization without adapting the
optimization problem and routines. They can deal with the noise from the
sampling procedures without further workarounds such as gradient estima-
tion (see Sec. 2.2.3). Similarly flexible, they can solve mixed-integer problems,
enabling an extension to discrete decision variables and covering industrial-
relevant aspects, such as selective assembly or machine selection. Overall,
significantly fewer mathematical foundations for optimization theory to
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formulate and solve the problems are necessary, facilitating automation and
instrumentalization of tolerance allocation by powerful, user-friendly expert
tools.

One major drawback, however, is that both methods require significantly
more computation time than alternatives, such as statistical, convolution-
based tolerance analysis methods and gradient-based algorithms. This
dilemma is further aggravated in interaction since the tolerance analysis
loop must be solved repetitively for each sample, i.e., n times, within both
optimization loops (see Fig. 12). Despite "increased computer power, faster
algorithms, and more efficient optimization routines” [157], computationally
intensive tolerance simulations are a major challenge for a practical appli-
cation, even with the use of advanced computer technology such as GPU-
computing [130]. Furthermore, both methods are based on the principle
of randomness containing statistical and stochastic operators. This leads
to uncertainties and, thus, to unreliable, i.e., either invalid or non-optimal,
as well as scattering, non-reproducible optimization results. The missing
guarantee for optimality and the strong dependence of the results on the
chosen optimization algorithm-specific settings make a joint application
difficult, particularly for users with less experience.

Table 2: Main benefits and deficits of sampling techniques and metaheuristic optimization
algorithms for optimal tolerance allocation.
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Sampling-based tolerance analysis Metaheuristic optimization
+ is powerful and highly flexible in + putsno limits on the use of tolerance-
handling complex industrial cost and tolerance analysis models
tolerance problems is capable of handling sampling-
3 | + isable to map individual induced noise
5 manufacturing distributions can properly solve mixed-integer
§ | + can directly handle any (implicit and problems to address machine-/pro-
8 explicit) assembly response function cess selection and selective assembly
+ is mostly used in common tolerance requires less mathematical theory
analysis software
— needs high computation times needs high computation times
@ | — induces uncertainties leading to its stochastic operators lead to lim-
;g invalid or non-optimal optimization ited reproducibility and reliability of
Y results results
[ is very sensitive to the settings
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3.3 Research goal, questions, delimitation, and outline

A second, more global view on the findings, summarized in Tbl. 2, illustrates
that the benefits and deficits have a direct or indirect influence on the us-
ability of the whole tolerance allocation approach. Usability is defined in
the ISO 9241-11 as the "extent to which a system, product or service can be
used by specified users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use” [565]. By transferring this
general definition to tolerance allocation’, the specified user corresponds to
the tolerance engineer, who has basic knowledge of statistical tolerancing
and optimization and operates in the specified context of use, the tolerance
design phase. The significant benefits of harmonizing sampling techniques
and metaheuristics for tolerance-cost optimization, identified in the pre-
vious Sec. 3.2, lead to the conclusion that sampling-based tolerance-cost
optimization as a basis for tolerance allocation offers great potential to close
the research gaps given in Sec. 3.1 - provided that its inherent deficiencies in
terms of effectiveness, i.e., the “accuracy and completeness with which users
achieve specified goals” [565], and efficiency can be adequately compensated.

Hence, the goal of this thesis is to enhance the usability of optimal toler-
ance allocation by sampling-based tolerance-cost optimization foster-
ing its broad applicability in the product development process.

The research goal is specified by three research questions (RQ) focusing on
the three main elements of usability, viz. the accuracy, completeness, and
efficiency:

* RQ1: How can the accuracy of sampling-based tolerance-cost opti-
mization be increased to enable a reliable and realistic consideration of
complex assemblies?

* RQz2: How can the completeness of sampling-based tolerance-cost
optimization be enhanced so that industrial-relevant issues are suitably
addressed?

* RQ3: How can the efficiency of sampling-based tolerance-cost op-
timization be improved to handle complex optimization problems in
reasonable computing times?

The relevant aspects are separately investigated in Chap. 4-6 to answer these
questions. Novel methods, based on initial findings presented in previous
publications by the author as well as students’ theses, are proposed for an

! The term usability and its general definition given in the ISO 9241-u1 can further be used to
evaluate non-physical products, e.g., software tools [566]. In this work, it is used tailored
to tolerance-cost optimization to discuss the developed methods and findings with their
primary focus on its effectiveness and efficiency.
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3 Identification of the need for research and outline of the main part

accurate, complete, and efficient solution of the optimal tolerance alloca-
tion problem (see Fig. 13). A straightforward but representative case study
of a wheel mounting assembly from literature (see Appx. A.8.1) is used in
Chap. 4-6 to illustrate and verify the findings. The consolidation and recon-
ciliation of the individual methods serve as the basis for proposing an optimal
tolerance allocation approach and its prototypical implementation in Chap. 7.
It is applied and evaluated in Chap. 8 for a practical use case of industrial
complexity as an example (see Appx. A.8.2) to verify the achievement of the
research goals finally. The optimization algorithms GA and CS are exemplarily
used to show the benefits of the individual methods. Detailed information on
their functionality is given in Appx. A.3. Since the studies primarily address
aspects of tolerance analysis and optimization, as well as their interrelations,
but are mainly independent of the type and scope of the chosen tolerance-cost
model, the work is limited to the most common form of least-cost tolerance
allocation, neglecting the idea of quality loss (see Eq. (6)). In addition, the
focus is on the allocation of design tolerances concerning geometrical KCs
(see Fig. 4). Manufacturing tolerances and concurrent tolerance allocation
(see Sec. 2.1.3) are not further discussed, though the findings provide the
possibility for transfer.
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Figure 13: Outline of the main part with the underlying works from the author and students.
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4 Increasing the accuracy of sampling-based
tolerance-cost optimization

The previous chapters emphasized the elementary role of tolerance analysis
in tolerance-cost optimization, simulating part fabrication, assembly, and
inspection to assure the resultant quality under variations through a sought
cost-optimal set of part tolerances. Fig. 14 takes up the subroutine shown in
Fig. 12 and schematically illustrates the steps and their interrelations. The
choice of the sampling technique and the sample size n causes aleatory
uncertainties propagating through the evaluation of the assembly responses
and non-conformance rate (nc-rate) into the quality assurance constraints
Eq. (7) b) of the optimization problem [214, 301]. Hence, the sampling and
the nc-rate estimation technique influence the accuracy of the constraint
evaluation and, thus, the optimization history and the results [408] affecting
their acceptability and optimality, and, in summary, their reliability.

Part . . F
tolerance S mp aC;s Evaluation | !MPacls distI;eilglEfiI:);}l(s)
probability of assembly of assembly
distributions | £ 7. = DR R response(s)Y response(s)Y

\ Technique | & Sample size n 1

—-_——— - - - ——

( History & results 'mPaCfS lmpacts Nc -rate lmpacts
of optimization

Figure 14: Sampling-based tolerance analysis steps and their effects on optimization.

-

Besides, the geometrical and behavior models used as the basis for evaluating
the assembly responses significantly influence how accurately the tolerance
analysis model can represent reality. Questions about representation models
are an integral part of decades of research resulting in a large number of
different approaches (see Sec. 2.2.2), which always have to be chosen indi-
vidually by the user as a compromise between accuracy and computing time
and, thus, have not to be in the focus of this thesis. Instead, the steps, which
are independent of the geometrical and behavior model, are studied with an
emphasis on its accuracy in the following - starting with the sampling tech-
nique and its uncertainties in Sec. 4.1 and followed by the nc-rate estimation
technique of single as well as multiple assembly responses in Sec. 4.2 and
Sec. 4.3.
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

41 Managing sampling-induced uncertainties

Sampling methods are used in tolerance analysis to infer the statistical dis-
tribution of the assembly response based on representative samples. Their
probabilistic behavior consequences that the tolerance analysis results are
always subject to sample size-dependent variance and, thus, induce aleatory
uncertainties in the optimization problem and its solutions. For this rea-
son, suitable measures to mitigate and control these effects are proposed in
the following. The presented aspects are extended from the first concepts
introduced in [S2] and [P14].

Problem statement Since the repetition of sampling-based tolerance analy-
sis will result in different probability frequency distributions of Y, the derived
nc-rates will also differ since Y serves as the data basis for the subsequent
nc-rate estimation step.' For the moment, however, the conversion of ¥ into
the nc-rate will be put on the background but considered in detail in Sec. 4.2.
The focus in the following is on the investigation of the sampling-induced
variances of the tolerance analysis results.

The sum of all variances of the estimated nc-rates Z results in a bilateral
margin of error €:

(2eQtlz—€e, <2<z+¢,}, (10)

enveloping the real, but unknown nc-rate value z, as both an over- and
underestimation of z can occur. Overestimates of the nc-rate are Z-values
estimated to be higher than the real value z. Underestimates mean that z is
higher than the predicted value Z (see Fig. 15 (left)).

Since tolerance analysis is performed for each potential tolerance combination
within the optimization, it is exposed to both scattering and discontinuity
effects (see Fig. 15 (right)). In this context, scattering effects mean that each
combination scatters differently when sampling is repeated during optimiza-
tion. In contrast, discontinuities describe the deviation of continuity of the
total nc-constraint surface and, thus, include the values of the neighboring
nc-values. It is well known from the literature that both effects influence the
history and results of optimization [27, 349] and negatively impact

+ the acceptability, since results are considered acceptable, which are, in fact,
not,

+ the optimality, since the noise effects complicate the solution of the opti-
mization problem and, thus, the identification of the global optimum,

! In this thesis, the primary focus is on the nc-rate as a quality assurance measure, also known
as tolerancing KPI [567]. Still, the results are also transferable to yld or Cypy.
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4.1 Managing sampling-induced uncertainties

* and, in summary, the reliability of the results, which is further hampered
by the probabilistic behavior of the metaheuristic algorithms.
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