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Limiting manufacturing-caused part variations by size, location, orientation, and form 
tolerances primarily aims to assure the total assembly quality. At the same time, however, 
the manufacturing conditions and, thus, the manufacturing costs are already predefined 
in the product development phase. The method of sampling-based tolerance-cost 
optimization, a combination of statistical tolerance analysis based on sampling techniques 
and metaheuristic optimization algorithms, enables an automated and optimal allocation 
of tolerance values and, thus, solves the conflict of objectives between costs and quality. 
However, limitations in effectiveness and efficiency still prevent its profitable application 
for solving complex, industry-relevant problems and exploiting hidden cost potentials.

To close the current research gaps, the individual methods involved, in particular the 
sampling, non-conformance rate estimation and surrogate model-based optimization, 
are (further) developed and harmonized in one common approach, ensuring that reliable 
optimization results can be obtained in adequate computing times. Its extension to 
simultaneous machine selection and allocation with different batch sizes and selective 
assembly, considering machine-specific part tolerance distributions and geometrical, 
mutually dependent tolerances, significantly expands the context of use to practical 
aspects. A final evaluation of the developed framework proves its potential for a profitable 
application to practical problems and serves to identify further research potentials.
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1 Introduction

Corporate performance and its directly related profit are highly dependent
on the synergy of a variety of activities from all over the entire product de-
velopment process, ”beginning with the perception of a market opportunity
and ending in the production, sale, and delivery of a product” [1]. However,
thoroughly converting all individual needs, expectations, and information
from the different areas intomarketable products [2, 3] requires well-founded
decisions for the product and all related processes and activities [4, 5]. Prod-
uct design is, therefore, an essential contributor to corporate success since
the resulting product quality and costs are determined to a large extent early
in the product design stage [6–8].

Depending on the product lifecycle phase or a particular aspect in focus, the
design is primarily aligned to one or several frequently conflicting objectives
but simultaneously accompanied by a set of boundary conditions [4, 9]. As
a consequence, any decision in product design for a particular objective,
commonly addressed under the term Design for X (DfX) [4, 10], is also a
decision to meet several requirements forming a dynamically changing set of
interdisciplinary objectives and constraints to be complied by the product
design.

Although competition has always been fierce [11], the increasingly short
product lifecycles and high cost and quality pressure, exacerbated by the
demanding international markets, force productdevelopment todifferentiate
itself from competitors more than ever [12–15]. Thus, product development
has to be supported continuously by simulation and optimization to find the
best, high-quality and cost-aware product design and to survive as one of the
fittest on themarket with an optimal trade-off between the various objectives
and interests.

1.1 Motivation and problem statement

Within this tense, multidimensional field of conflicting objectives and con-
straints, tolerancing plays a crucial role in the total product development
process [16–18]. Its primary aim is to assure a high level of product quality
and, thus, customers’ satisfaction by limiting the variations of single part
features concerning size, location, orientation, and form [19–21]. At the
same time, however, the individually assigned part tolerances determine
the objectives, requirements, and constraints for the subsequent activities,
i.e., manufacturing, assembly, and inspection, while implicitly and unin-
tentionally defining a significant share of the product costs [22–24]. Hence,
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1 Introduction

tolerancing is dominated by a general dichotomy between product and pro-
cess design leading to severe conflicts of interest [25]. While tight tolerances
are needed to guarantee high product quality, loose tolerances should be
preferred to save costs by a simplified part manufacturing (see Fig. 1) [26–31].
Although design engineers mostly do not have detailed knowledge about
manufacturing costs, available machines, tools, fixtures, etc., they are respon-
sible for allocating suitable tolerance values already in the design stage since
they overview the total assembly [32, 33]. The main challenge of tolerance
allocation is, thus, to find an answer to the question ”what is [technically]
necessary and what is economically possible [or rather reasonable]” [34],
enabling a suitable trade-off between the opposite interests of design and
manufacturing [25, 35–37].

Design for
quality

titi

C1 ,nc1 Tolerance-related
manufacturing
costs Ci

Utopia
of manufacturing

design

Assembly non-
conformance
rate nc

C2 ,nc2

manufacturing

design

X2,0 ± t2

t1

t2

nc

t1

t2

Design for
cost

- -

Csum = C1 + C2

X1,0 ± t1

Figure 1: Conflict between total product quality and manufacturing costs as a function of the

assigned tolerance values.

Assigning tight tolerances for safetywhile merely hoping that they are not too
expensive [38], rough estimations by general rules-of-thumb and heuristic,
(over-)simplified tolerance allocation methods [39–41], as well as the joint
iterative applicationof tolerance and sensitivity analysis [P1], intend to choose
a satisfactory solution from the margin of quality between the utopias from
design andmanufacturing [42] (see Fig. 1). To solve the tolerance-cost conflict
more efficiently and find the best solution, tolerance-cost optimization, an
optimization-based approach to allocate part tolerance values, was invented
in the mid-20th century [P1]. Inspired by its basic idea of an automatic bal-
ancing of the individual part tolerances with the aid of optimization, various
methods, approaches, and solutions have been presented and improved in
literature over the last five decades [P1]. However, in addition to all the advan-
tages of computer-based optimization approaches, there are also significant
obstacles to overcome, as their usage requires high-level skills ”to generate,
derive, and manipulate complex mathematical models” [43], ”to relate vari-
ous cost-versus-tolerance functions to a specific problem” [43], and ”to write
computer algorithms to perform numerical analysis [and optimization]” [43],

2



1.2 Methodical approach and general outline of the work

which is based not least on a generally high degree of ”creative thinking, expe-
rience and intuition” [44]. Tolerance allocation and its methods are therefore
perceived as broad, (too) complicated, demanding, and tedious [43–47]. As
predicted more than 20 years ago, they are therefore only applicable by highly
experienced tolerance engineers [P2] and still ”a conundrum for many in
industry” [43]. Hence, tolerance-cost optimization could not prevail so far
and is paid little attention in the industry. As a result, cost potentials and
valuable competitive factors through optimal tolerance allocation remain
largely unused.

1.2 Methodical approach and general outline of thework

Motivated to overcome these drawbacks, this thesis follows the global aim to
advance the establishment of tolerance-cost optimization enhancing optimal
tolerance allocation for assemblies of industrial complexity. Since its poten-
tial is highest in the design phase, as research and surveys prove [48], this
thesis focuses on tolerance allocation at the design phase’s assembly level. It
addresses primarily mechanical products1 and geometrical part variations.

A systematic approach is required to reach this goal, which is briefly presented
in the following. The underlying general outline of this work is illustrated
in Fig. 2. A review of the fundamentals of tolerancing, its different activities,
and its role in the context of the geometry assurance process in Sec. 2.1 serves
as the general basis for the subsequent sections. It is followed by a detailed
analysis of the literature in the field of tolerance-cost optimization, where a
final retrospect on the last fifty years in Sec. 2.2–2.3 reflects the current state
of the art and research. The presented findings help to reveal the general
shortcomings of tolerance-cost optimization in Sec. 3.1 restricting its usability
in the detail design phase. The subsequent discussion on the combination of
sampling-based tolerance analysis and metaheuristic optimization for opti-
mal tolerance allocation in Sec. 3.2 emphasizes its benefits and justifies the
research focus of this thesis on sampling-based tolerance-cost optimization,
i.e., tolerance-cost optimization with sampling-based tolerance analysis as a
subroutine for statistical quality assurance. The discussion on its potentials
and shortcomings is used to define the research questions in Sec. 3.3 and the
structure of the main part before they are successively answered in Chap. 4–6
focusing on the optimization’s accuracy, completeness and efficiency. Chap. 7

1 Although ”the function of mechanical products may depend upon electrical, hydraulic,

optical, pneumatic, thermal, or some combinations of these or other physical effects” [49],

the expression mechanical assembly/product is suitably used ”if [...] parts which comprise

the product are primarily mechanical” [49]. The products focused on in this thesis are

mechanical assemblies consisting of at least two parts or subassemblies.
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summarizes and harmonizes the individual findings and proposes a frame-
work foroptimal tolerance allocation based on sampling-based tolerance-cost
optimization. Its application and evaluation in Chap. 8 aim to verify the re-
search goals’ achievement. Finally, Chap. 9 summarizes this thesis and gives
an outlook on further research potentials.
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Figure 2: Overview of the outline of the thesis.
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2 State of the art and research

The subsequent sections aim to give a holistic overview of the current state of
the art and research in the field of tolerancing in general and tolerance-cost
optimization in detail.

2.1 Tolerancing, its activities, and its role in the geometry

assurance process

Although the demand for individualized and personalized products steadily
increases [2], technical products are typically manufactured in high-volume
serial or (customized) mass production to ensure profitability. Interchange-
ability is thereby an essential prerequisite for its successful implementation
creating technical products by a pure random assembly of numerous parts
originating from different manufacturing machines as well as processes and
differing in material and geometry [49]. However, it is significantly com-
plicated by the axiom that all manufacturing and assembly processes are
subject to variations from its ideal value1 [52, 53]. Even if it was possible
to reduce manufacturing imprecision to zero and to manufacture all parts
ideally or perfectly, i.e., identically and exactly, all the time [54–57], which
is technically impossible [58], it would be economically not useful [57, 58]
(see Fig. 1). As a consequence, variations are compulsorily ubiquitous in all
individual processes necessary to realize a product [53, 59] and significantly
influence the product’s quality, cost, and time for its development and produc-
tion [60]. For this reason, serious attention has to be paid when claiming to
offer ”world-class products” [61]. In contrast to cost and time, product quality
is, however, more difficult to first define and second to quantify. Besides
numerous other definitions [62], quality can be defined as ”conformance to
requirements” [63] and further suitably supplemented by its various dimen-
sions, such as performance, reliability, aesthetics, or perceived quality [64].

Since variations negatively impact the multidimensional quality of a product
and cause technical, programmatic, schedule, or cost risks [23, 65], variation
has to be verified, reduced, and monitored [66] assuring high product quality
and mitigating these variation-dependent risks [67]. As its complete elimina-
tion is impossible or often too expensive, product designs and processes are
designed to be insensitive or at least less sensitive to variation [68, 69]. Fol-
lowing this general idea, numerous robust designmethods have been tailored
to the various product development stages [68, 70, 71]. In addition to other

1 The term variation acc. to ASME Y14.5-2018 [50] is preferably used instead of the term

deviation acc. to the ISO 1101:2017 [51] in this work.
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2 State of the art and research

influences and perturbations, many quality problems can be traced back to
the geometry of the parts and the associated accumulations of their varia-
tions [72]. A holistic geometry assurance process is, thus, indispensable [19,
73]. It comprises a set of activities of product design, pre-production, and
production, ”contributing to minimizing the effect of geometrical variation
in the final product” [19] and ”ensur[ing] that all geometrical requirements
on the product are fulfilled” [74].

Within this process, both dimensional and geometrical part tolerances, con-
straining the variation of a part feature in size, location, orientation, and form
by defining ”the difference between the maximum and minimum limits” [50],
are critical design instruments to control the geometrical variations [75].2

Tolerancing, in particular, comprises the set of activities enriched by tools
and methods which are linked to tolerance information [78] to ”manage [all]
geometrical variations [...] from preliminary design [and] detailed design
[over] process planning [and] manufacturing activities [up to] geometrical in-
spection” [20]. Hence, they are further addressed under the terms ”tolerance
management” [34, 79–81] and ”dimensional management” [60, 82–84] in both
research and industry. Tolerancing contributes to mitigating the individual
risks by improving ”robustness, reliability, flexibility, evolvability, and interop-
erability of the final product” [23]. It mainly focuses on variation-dependent
aspects of interchangeability, manufacturability, product performance, and
customer requirements [23], including not only product functionality but
also perceived quality aspects [85–87]. In comparison to methods focusing
on robustness and reliability, tolerancing is limited to or concentrates on part
manufacturing- and assembly-related variations leading to aleatory uncer-
tainties [23], which are, in contrast to epistemic uncertainties, known and
describable via stochastic processes and random variables [88–90]. The origi-
nal scope of tolerancing with a focus on function and assembly [75, 91] has
grown into a comprehensive, holistic framework ”tomeet [all] predetermined
dimensional quality goals” [82]. This includes a variety of issues from the
entire product lifecycle and is not limited to the detailed design phase [92,
93] (see Fig. 3).

To strengthen the importance of improving product quality, widely acknowl-
edged in theory [34, 96], but often underestimated in practice [97] leading to
daily tolerance-related problems [34], various process models for a step-by-
step application of tolerancing tools, methods, and strategies were presented

2 Depending on the scope of interest and lifecycle phase, there are different views on a

feature [76], which lead to different understandings and definitions of the term feature. In

this thesis, a part feature is seen from a geometrical point of view as ”a physical portion of a

part” [50], which can be ”a point, line, surface, or volume or a set of these elements” [77] and

is the result of one or multiple manufacturing processes. Otherwise, it is explicitly stated.
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2.1 Tolerancing, its activities, and its role in the geometry assurance process
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Figure 3: Tolerance-related activities overspread the total product lifecycle leading to a contin-

uous push and pull of data, information, and models, inspired by [1, 73, 94, 95].

in the past, for instance in [98, 99], and have also proven their industrial
applicability. Depending on the lifecycle stage in focus, tolerancing activities
are driven by the objectives and viewpoints, requiring a dynamic change of
their role [16]. Accordingly, it is helpful to distinguish whether the methods
are applied from the point of view of product design or process design, con-
sisting of part manufacturing, inspection, and assembly process planning [82,
100].

2.1.1 Product design-driven tolerancing activities

Theconsiderationof variations along theproductdevelopmentprocess can be
divided in threemain phases acc. to Taguchi [95] (see Fig. 3). While principle
solutions and concepts are identified, evaluated, and finally selected in system
design, the nominal values for all relevant design parameters are defined in
the subsequent parameter design [95, 101]. Efforts in both stages with a
focus on product robustness have thereby a positive effect on the subsequent
tolerance-related steps [P3] fostering the tackling of tolerance problems
early on [7, 20], even if the final geometry is not entirely defined [102]. In
tolerancedesign, the last design step and direct link to production planning
(see Fig. 3), the focus is on the assignment of the tolerances. Therefore, it
covers the following main tolerancing activities [43, 103].

A systematic breakdown of the product quality requirements into smaller geo-
metrical characteristics allows to identify the so-called Key Characteristics
(KC), which are sensitive to variations from its nominal, and their variation
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has a significant influence on the fulfillment of the quality requirements [66].
Although KCs can generally be assigned on the product, (sub-)assembly,
or part level [6, 66], the term KC is used in the following for geometrical
characteristics on the assembly level. The KCs serve as the basis for the top-
down definition of the individual part tolerances flowing from assembly over
the part to the feature level [6, 73] making use of tolerance specification,
allocation, analysis, and synthesis methods (see Fig. 3).

Tolerance specification is first used to translate the KC requirements into a
set of geometrical part specifications for all relevant features by choosing both
the types of part tolerances and the datum reference frames in compliance
with current tolerancing standards [23, 104]. Further information, e.g., on
tolerance zones, material conditions, or filtering operations, complete the
specification to compactly and clearly communicate all necessary matters
[105]. This leads to a clear recipe for part manufacturing and inspection [99],
but also already defines the costs to a certain extent [106, 107].3 With the
aim to communicate through an internationally uniformly valid language,
tolerance specification is based on international standards for Geometric
Dimensioning and Tolerancing (GD&T) [110]. In most cases, either the Geo-
metrical Product Specification (GPS) standards defined by the International
Standardization Organization (ISO), which are structured in a comprehen-
sive matrix model [111], or the GD&T guidelines mainly expressed in the
ASME Y14.5 by the American Society of Mechanical Engineering (ASME) [50]
function as a reference, showing some differences [110], but are both widely
applied and accepted in industry. Regardless of the choice of the standard,
a comprehensive set of rules with often non-trivial aspects has to be ob-
served but can be supported by computer-aided methods [104]. Examples are
rule-based practices, directly integrated into or developed for CAD-systems
and stand-alone tools [112–116] as well as enhanced knowledge-based and
data-driven approaches [117] based on ontological web language [118–120]
and metamodeling [121, 122]. Besides the tolerance types, they partially al-
ready propose an initial assignment of tolerance values, e.g., based on general
tolerances or previously defined preferred values.

Nonetheless, specific tolerance allocation methods are needed to find the
values for all specified tolerances more consciously. Rational allocation meth-
ods based on heuristics [39–41] have thereby supplemented the pure reliance
on standards, textbooks, or guesses keeping general rules-of-thumb such as
”the lower the tolerance, the higher the cost of manufacturing” or ”do not spec-
ify higher accuracy than is really needed” in mind [123]. Graphical [124–126],

3 Depending on the literature referred to, tolerance specification can additionally include the

assignment of tolerance values [16, 108, 109].
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as well as analytical approaches, distribute the total assembly tolerance on
the individual part tolerance values equally and proportionally to part dimen-
sions or process variations [40, 127, 128] – or taking weighted [129], constant
precision or complexity factors into account [40, 127]. Optimization-based
methods overcome the neglect or predominantly qualitative consideration
of cost aspects and their limited applicability. They constitute the group
of tolerance-cost optimization approaches, which are discussed in detail in
Sec. 2.2.

Tolerance analysis, sometimes named variation analysis/simulation [6,
73, 74, 105], aims to verify if tolerances specified and allocated can fulfill
the KC requirements [16]. Arithmetic and statistical methods, harnessed
via editable programming codes, spreadsheets, CAD-embedded and stand-
alone tools [48, 130, 131], are nowadays state-of-the-art design tools often
used daily for analyzing the effects of the accumulation of the individual
feature variations [48, 132]. More details on tolerance analysis will be given in
Sec. 2.2.2. Systematic methods making adjustments and reassignments, in
most cases repetitively, of the GD&T scheme in terms of types or values using
the tolerance analysis results can generally be summarized under the term
tolerance synthesis [78, 133] and include aspects and practices of tolerance
allocation, specification, and analysis [78, 134–136]. Consequently, the bound-
aries between tolerance synthesis and allocation are blurred, definitions for
both activities are often quite similar, and no clear distinction is made in
literature.

2.1.2 Process design-driven tolerancing activities

The product design stages are followed by a series of planning steps to con-
vert the virtual models into real parts and assemblies in compliance with
the specified tolerances and KC requirements (see Fig. 3). In the case of
purchased parts, the point of view changes from assembly to part regarding
part fabrication, whether performed internally or externally [32]. Tolerance
allocation, analysis, and synthesis methods, which are similar in their basic
idea to themethods in product design, are thereby usedwith a strong focus on
manufacturing-related issues [16]. Their primary goal is to support the trans-
fer of the design tolerances into a process plan [16], which transforms the raw
material into the final partwhile satisfying the design specifications involving
several machines, operations, tools, and fixtures [137, 138]. Consequently, if
there is more than one manufacturing step needed [139], a design tolerance 𝑡𝑖
results from the accumulation of variations from all manufacturing operation
steps needed [140]. The assignment of manufacturing tolerances 𝛿𝑖 for all
intermediate dimensions [139], sometimes called working [141] or process
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tolerances [140, 142], in combination with a conscious selection of operations
and their sequencing [143, 144], i.e., arranging all operations in a logical and
chronological sequence [145], datum and machining parameters selection
[144, 146], etc., help to meet the design tolerances 𝑡𝑖 [140] (see Fig. 4). In
this regard, tolerance charts, which graphically represent the dimensions
and tolerances for all machining operations as well as the quantity of stock
material removed in each manufacturing operation [147, 148], arewidely used
to analyze and control the workpiece dimensions and their tolerances [16,
148, 149]. By transferring the traditionally manual tolerance charting tech-
niques into computer-aided approaches, research efforts were intensified [28,
147, 150]. This led to an extension of the methods’ usability and its instru-
mentalization using knowledge-based expert systems and tools supporting
the individual computer-aided process planning (CAPP) and manufacturing
(CAM) tasks [25, 142], including optimization-based tolerance allocation to
optimally balance the process tolerance values 𝛿𝑖 (see Fig. 4).
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Figure 4: Tolerance allocation for design vs. for manufacturing, freely adopted from [41, P1].

In addition to the part level, numerous tasks have to be tackled during the
planning of the assembly steps, such as the choice of joining operations,
assembly sequences, locating schemes, etc., where attention to variation
and tolerances is indispensable [19, 73]. Both product and design process
activities are substantially supported by inspection-driven tolerancing
activities, suchas toleranceverification, including planning andmetrological
procedures to investigate assembly and manufacturing specifications [108],
providing a reliable tolerance information basis [151] and to evaluate the
assumptions made in the design stage [23, 108, 117].

2.1.3 Influence of Concurrent Engineering

The distinct separation and sequential flow of the presented tolerancing
activities were well-established for a long time. However, it complicates
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internal communication and requires recurring revision loops and design
iterations, resulting in time delays, quality degradation, and ultimately high
development costs [11, 152, 153]. The philosophy of Concurrent Engineering
(CE), conceptualized and coined in the 1980s [11, 153], broke these barriers and
turned the ideaof throwing the part specifications from design simply over the
wall [11, 82] into a concurrent and joint accomplishment of the interrelated
tolerancing tasks [154, 155]. In doing so, the existing barriers are broken by
fostering cross-functional cooperation of design and manufacturing with
a common, merged knowledge base [11, 152]. As a result, decisions in the
design stage are better aligned with manufacturing-related issues. Individual
tasks of the process design stage are concurrently finished avoiding tolerance-
related problems before they get apparent in prototyping, ramp-up, or series
production and, thus, leading to shorter development cycle times with less
costs [11, 73, 152, 154].

2.1.4 Computerization and automation of tolerancing

The close interaction of the individual interdisciplinary issues, not at least
emphasized by the idea of CE, and the ongoing computerization of the toler-
ancing methods [75] require an intensive sharing of different information and
models from various sources [117]. In contrast to the times where CAD-tools
were first widely used (1970s) [8] and CATwas still in its infancy (1990s) [156],
simulation and optimization are nowadays everyday tools for tolerance en-
gineers [23, 157], where information from the total lifecycle is needed in
addition to the product and part geometry represented by CAD-models [117,
158]. Their enrichment by further product and manufacturing informa-
tion (PMI) using semantic, human-readable, and computer-interpretable
annotations supports the idea of a model-based definition (MBD) [159,
160], contributing to facilitate and automatize the tolerancing-related down-
stream activities in a closed loop manner [161, 162, P4]. In addition to direct
interfaces, more general solutions are based on neutral, standardized ex-
change formats [79, 162], primarily STEP (STandard for the Exchange of
Product model data) [163], JT (Jupiter Tessellation) [164] and QIF (Quality
Information Framework) [165], ensuring general interoperability by lossless
and uniform interchangeability and, thus, (re)use of product, manufacturing,
and measurement information [166, 167]. Their adaptions or extensions, e.g.,
by knowledge aspects using Web Ontology Language (OWL) [168–170], allow
to enhance their scope to further tolerancing-related purposes. Although
MBD mainly supports communication and collaborative work [159, 171], data
contextualization and information modeling are complex since it involves
”different locations with different people using the data in different ways and
in different contexts” [166], causing issues and barriers in its practical use
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[172]. Hence, it is still an important research topic with currently unsolved
matters, not only in geometrical variation management, where the increasing
digitalization of manufacturing in the context of industry 4.0 attracts its
attention [117, 158, 162].

To provide the tolerance information unambiguously and without redun-
dancy [25] as well as to support the total workflowof tolerancing more contin-
uously and consciously [108], a variety of specific tolerance representation
models were proposed in the past [173], which are either based on directly
computer-readable languages, e.g., Extensible Markup Language (XML) or
OWL, or have to be first translated into a suitable programming language
to make them computer-readable, e.g., Technologically and Topologically
Related Surfaces (TTRS), Unified Modeling Language (UML), or GeoSpelling
model [173]. More detailed information is given in [162, 173].

Intensified research in tolerance information modeling and the ongoing
computerization are the basis for the automation of tolerancing [174],
which is expected to considerably facilitate and accelerate the individual
activities [114, 175]. Optimization plays an essential key role in this overall
concept, particularly in tolerance allocation [P2] since it allows to automate
and expedite the tasks typically solved by trial-and-error [P2, 176].

2.2 Tolerance-cost optimization

As traditional heuristic approaches for tolerance allocation have only limited
applicability (see Sec. 2.1), solving more complex problems in the indus-
try by repetitively using a combination of sensitivity and tolerance analysis
is often preferred [P1] (see Fig. 5 (a)). Based on an initial guess [P1, 60,
82], experience [35, 60, 144], handbooks, standards, or relying on past and
similar product designs [123, 177–180], tolerance analysis is used to check if
the KC requirements can be fulfilled or not [P1]. Sensitivity analysis, often
named contributor/contribution analysis in tolerance design [60, 181], helps
to improve the solution in a structured way. Local methods, widespread in
commercial systems for computer-aided tolerancing (CAT), e.g., arithmeti-
cal, statistical, and High-Low-Median (HLM)-contributor analysis, as well
as more powerful, global, derivative-, variance-, and density-based sensitiv-
ity analysis methods are used to identify the contribution of the individual
(non-)geometrical variations to the KCs [182, 183]. Small contributor values
indicate which tolerances should be widened, as a low leverage on the KCs
implicitly consequences a high one on costs. High contributions hint at the
tolerances to be tightened, as their adaption will have the largest effect on
the resultant KC variation. This more or less endless loop has to be stopped
manually by the human-based decision that the current solution is optimal

12



2.2 Tolerance-cost optimization

enough [184] or patience has run out [18]. Consequently, optimality cannot be
assured [184–186], rather hoped for [187]; it is a time-consuming and tedious
approach [188, 189] due to its unsystematic, experience-based procedure [47,
185, 186]. Moreover, it is not based on quantitative cost measures [47, 190].
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Figure 5: Iterative, trial-and-error-based and automated tolerance allocation in comparison.

To eliminate the iterative adaption of the tolerance values [191], this hu-
man trial-and-error-based approach is converted into an optimization prob-
lem [192], which is solved in a computer-based and automated way using pow-
erful optimization algorithms [47, 193] (see Fig. 5 (b)). In doing so, tolerances
are automatically reallocated using the information of both tolerance-cost
and tolerance analysis until the algorithm decides on the basis of quantitative
termination criteria that the optimal tolerances must have been found [P5].

Numerous definitions and methods have been presented under different
names in literature to describe the optimization-based interpretation of tol-
erance allocation (see Appx. A.1). The term tolerance-cost optimization
unifies all presented approaches in one common definition and comprises to
”all methods that aim to identify an optimal set of tolerance [values]
with focus on cost and quality using optimization techniques [...] im-
ply[ing] that the cost aspect is covered [(implicitly or explicitly)] by at
least one objective or one constraint” [P1].

Consequently, the representation of the individual pre-production, produc-
tion, and post-production steps in the lifecycle of a technical product under
the perspective from both tolerance-related cost and quality aspects mainly
shapes the definition and solution of the optimization problem (see Fig. 6).

From the global perspective of systems thinking, it addresses a whole sys-
tem covering, in addition to all (pre-)production-related aspects, a variety of
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further issues, for instance, customer satisfaction, market conditions, ecolog-
ical aspects, taxes, regulations, etc. [29, 194, 195]. Depending on their scope
and level of detail, this requires a more or less intensive front-loading of indi-
vidual activities from later lifecycle phases and, consequently, always a strong
pull of data, information, and models (see Fig. 3). Regardless of differences
in detail of the numerous approaches, tolerance-cost optimization is always a
combination and harmonization of three main elements, viz. tolerance-cost
analysis, tolerance analysis, and the optimization problem (see Fig. 6) [196].
The abstract picture of tolerance-cost optimization, drawn in Fig. 5 (b) and
Fig. 6, is gradually detailed in the following.
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Figure 6: Concept of tolerance-cost optimization with its elements and interrelations.

2.2.1 Tolerance-cost analysis

Tolerance-cost analysis aims at getting insights into the direct and indirect
economic impact of the tolerances assigned in product design. In contrast to
traditional tolerance allocation, it enables to make quantitative claims about
thecostof tolerance,which isdefinedas the ”amountof expenditureneeded to
achieve certain levels of dimensional and geometrical accuracy” [197]. Hence,
its basis, the tolerance-cost model, is an important key element [127] and
offers decisive competitive advantages [198]. Its definition is, however, chal-
lenging and complicated [43, 127, 199, 200], as there is generally a lack [129,
198, 201] and need of a high amount of tolerance-cost data [198, 200]. More-
over, the access to reliable data sets is strongly limited [202] because only little
tolerance-cost information is published, presumably mostly for confidential
reasons [41, 203, 204]. In any case, their general suitability is questionable, as
numerous factors impact the costs, which depend on not only technological
aspects but also various external conditions [198], leading to the fact that cost
data is always site-, machine-, tool-, operator-, and material-specific [41, 49,
129, 198, 203] and further dependent on the specification, i.e., the type and
size, of the tolerated geometrical part feature [190, 200, 203].
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2.2 Tolerance-cost optimization

Therefore, a systematic procedure for a precise and case-specific quantifica-
tion of the manufacturing knowledge through a mathematical abstraction of
empirical productiondata is essential [137] since the accuracy of the tolerance-
cost model directly influences the reliability of the optimization results [137,
144, 205]. Fig. 7 illustrates the main steps of the tolerance-cost modeling
process. The subsequent step-by-step explanation intends to overview the
most relevant, interdisciplinary aspects.
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1 – Experimental studies The value or magnitude of a tolerance 𝑡𝑖 func-
tions as an intrinsic productive factor establishing the link between the part
variations and the resulting costs [206, P6]. Therefore, the process know-
ledge must be acquired and expressed via tolerance values. The unavoidable
part variations occur during the single operation steps in the manufactur-
ing process [128] and result in an accumulation of numerous inaccuracies
or variations from different internal and external sources, e.g., inaccuracies
and deformations of machines, tools, fixtures, and gauges, varying material
properties, environmental conditions, etc. [21, 128, 145, 207]. Thus, the total
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manufacturing environment influences the level of achievable part accuracy.
Apart from the machining setup, process parameters are significant con-
trol variables to reach a specified tolerance within a given machine/process
range [𝑡lb𝑖 ; 𝑡

ub
𝑖 ] defined by the entirety of all boundary conditions. Experi-

mental studies based on statistical DOEwith multiple fabrication repetitions
provide a series of measured values deviating with 𝑑𝑋𝑖 from the ideal value
𝑋𝑖,0 [P6]. The tolerance values 𝑡𝑖 are derived from the resulting probability of
the population using statistical methods and characteristics [206, P6, 208].

Despite the comparatively high efforts in cost and time [P6], the gained
knowledge on process variability, expressed through both tolerance values
and probability distributions4, is an essential rational basis for not only a
reliable tolerance-cost analysis but also variation simulation in the context of
tolerance analysis (see Sec. 2.2.2) [28, 30, 209].

2 – Cost accounting The consideration of the tolerances’ economic im-
pact implies a thorough estimation and mathematical description of all
incurred direct and indirect costs [202]. In general, all tolerance-related
costs can be broken down into fixed (tolerance-independent) and variable
(tolerance-dependent) fractions, while the latter typically decrease with in-
creasing tolerances [200, 203]. Depending on the given application and the
individual contribution to the total costs, thedifferent cost fractions are either
set as fixed or variable and cannot be classified unambiguously [203]. As
tolerance allocation influences the entire product lifecycle (see Sec. 2.2), a
variety of individual cost aspects may be of interest, ranging from material
[210], machining [127, 210], tooling [211, 212], inspection [37, 210, 213, 214], re-
work/rejection/scrap [127, 210, 215] over assembly [37, 213, 216], maintenance
and service [212] up to ecological [217, 218], and also social costs [217].

3 – Harmonization of 1 & 2 The incorporation of the information
𝑡 = 𝑓(𝑝, Ω, …), gained in step 1 , into the relation 𝐶 = 𝑓(𝑝, Ω, …), obtained in
step 2 , is used to establish the relationship between the tolerance 𝑡, which
servesas themutual language tocommunicate thepartaccuracy requirements
defined by design to manufacturing and inspection [219], and the incurred
costs 𝐶 [P6]. The result is a discrete tolerance-cost data set, which is exposed
to uncertainties from simplified, approximate cost measures, experimental
errors, and measurement uncertainties [203, P6, 220, 221].

4 – Regression analysis The empirical data serves as the basis for the
subsequent application of regression analysis techniques converting the dis-
crete data into a mathematical relation between cost and tolerance by curve

4 Manufacturing tolerances are often chosen wider than the experimentally obtained natural

tolerances to provide a margin of safety covering further variations such as tool wear [49].
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fitting [17, 41, 190], which can indirectly reduce the influence of the uncertain-
tiesmentioned above by least squareapproximation [190]. Various parametric
tolerance-cost functions 𝑓𝐶 have been presented in literature, meeting the
requirements of an ease of use, a sufficient degree of approximation and
applicability to given manufacturing situations [202], and are reviewed in
detail in [41, 198, 203]. In general, they represent the costs 𝐶𝑖(𝑡𝑖) as the sum
of fixed (𝜕𝐶fix/𝜕𝑡𝑖 = 0) and variable (𝜕𝐶var/𝜕𝑡𝑖 ≠ 0) cost fractions [123]:

𝐶𝑖(𝑡) = 𝐶fix + 𝐶var(𝑡𝑖). (1)

Except for the direct use of pure discrete data [222], traditional approaches
transform the discrete data points into a mathematical expression using
(piecewise)-linear [197, 223], exponential, or reciprocal functions with two
up to four coefficients [41, 203]. In contrast, non-traditional approaches are
either based on higher-order polynomial degrees [224], spline models [137,
225], or combinations of several traditional approaches [P1, 203]. Besides,
Artificial Neural Network-based approaches have gained increased attention
in literature to enhance the model accuracy of the highly nonlinear tolerance-
cost relations [226–231]. Although cost curves are occasionally expressed as
functions of process precision [232], variance [232], or process capability [221,
233], the cost-to-design tolerance functions 𝐶(𝑡𝑖) (or cost-to-manufacturing
tolerance functions 𝐶(𝛿𝑖)) have prevailed [P1]. Exponential and reciprocal
tolerance-cost functions are preferred in research [198, 203], mostly in com-
bination with fictitious cost data or coefficients relying on largely outdated
books and cost charts [39], such as [204, 234–237]. The model type, however,
needs to be chosen consciously for the given data minimizing the fitting
errors [190, 208] as a sum of model type, term, and coefficient uncertain-
ties [238]. Tab. 1 summarizes the most commonly used functions in literature.

The number, type, and level of detail of the cost aspects considered in step 2 ,
certain industrially relevant elements of series production, e.g., the consid-
eration of part tolerance distributions [198, 239] or cost increases through a
100%-part inspection for too low process capabilities [P7], as well as the de-
ployment of novel manufacturing technologies, e.g., laser technology-based
machining [208], manufacturing of composite structures [81, 240], or additive
manufacturing [P6, 239, 241], emphasize the need of a continuous improve-
ment of the existing cost accounting approaches. Enhanced approaches using
activity-based costing are promising alternatives to cover the wide range of
tolerance-related lifecycle activities causing direct and indirect costs [22, 242,
243].

5 – Definition of total tolerance-cost model The cost optimum for an
assembly can only be achieved by balancing all part tolerances 𝑡𝑖. Thus, a
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Table 1: Summary of tolerance-cost functions used and presented in literature [41, 179, 190].

Cost function type Mathematical equation 𝒇𝑪

T
ra

d
it
io

n
al Discrete 𝐶𝑠(𝑡𝑠) = 𝑐𝑠 ∀ 𝑠 = 1, … , 𝑆

(Piecewise) linear 𝐶(𝑡) = 𝑎(𝑘) − 𝑏(𝑘) ⋅ 𝑡

Reciprocal 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡−𝑐,

(Modified) exponential 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑒−𝑐 (⋅𝑑)⋅𝑡

N
o
n
-t
ra

d
it
io

n
al

Hybrid (linear + exponential) 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡 + 𝑑 ⋅ 𝑒−𝑓⋅𝑡

Hybrid (reciprocal + exponential) 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡−𝑐 + 𝑑 ⋅ 𝑒−𝑓⋅𝑡

Hybrid (reciprocal ⋅ exponential) 𝐶(𝑡) = 𝑎 + 𝑏 ⋅ 𝑡−𝑐 ⋅ 𝑒−𝑑⋅𝑡

K-th polynomial 𝐶(𝑡) = ∑
𝐾

𝑘=0 𝑎𝑘 ⋅ 𝑡
𝑘

Spline models piecewise curve fitting

Artificial Neural Networks (ANN) numerical black box

common tolerance-cost model is to be defined as a set of 𝐼 several individ-
ual tolerance-cost functions predicting the single costs 𝐶𝑖 to realize a part
tolerance 𝑡𝑖 by a predefined process and machine [44, 244]:

𝐶sum = ∑
𝐼

𝑖=1 𝐶𝑖(𝑡𝑖). (2)

If there is more than one machine or process alternative 𝑗 to realize 𝑡𝑖, each
option has to be modeled by an individual cost function 𝑓𝐶𝑖,𝑗. The resulting
total tolerance-cost model, characterized by overlapping machine/process
limit ranges [245], makes it possible to analyze the total costs 𝐶sum for a given
set of tolerances and an individual selection of machines, processes, and
suppliers (see Sec. 2.2.4), where the tolerance-independent fixed cost shares
play a decisive role. If several production steps are required to achieve a
design tolerance 𝑡𝑖, each operation step’s tolerance-related process costs must
be modeled by an individual cost curve [41, 44].

Besides the presented aspects of tolerance-related single costs 𝐶𝑖 = 𝑓𝐶(𝑡𝑖),
a second class of quality-related costs is addressed in tolerance allocation.
Quality loss costs are based on Taguchi’s philosophy of product quality,
claiming that any variation Δ𝑌 from the ideal of a predefined KCwith its nom-
inal 𝑌0, as a result of the assigned part tolerances 𝑡𝑖, leads to a loss of quality
QL, customers’ dissatisfaction and, thus, indirectly to costs [200, 246] (see
Fig. 8 (a) vs. (b)). In contrast, following the traditional quality understanding,
quality loss only appears when LSL or USL are exceeded (see Fig. 8 (a)). Loss
functions 𝐿(𝑌) are used to convert the expected quality loss into financial

18



2.2 Tolerance-cost optimization

figures [247], following three main principles, viz. nominal/target-the-best,
smaller-the-better, and larger-the-better [43, 248]. Product degradation oc-
curring over the total product lifetime further amplifies the quality loss [200,
246] and is addressed under the term present worth of the expected quality
loss [246]. The approximation of the hardly tangible effects of variance and
bias of 𝑌 on costs and their integration into the optimization problem leads
to a conflict sincemanufacturing costs and quality loss are contradictory [246,
249] (see Fig. 8 (b)).

(b) Quality Loss(a) Traditional

Tasm

L(Y)

Y0

USL
CsumLSL

asymmetric

Tasm

L(Y)

Y0

USL
CsumLSL

symmetric

ΔYY =Y0- ΔYY =Y0+ ΔYY =Y0- ΔYY =Y0+

Figure 8: Quality loss 𝐿(𝑌) and manufacturing costs 𝐶(𝑡) in conflict, inspired by [43, 250].

As the resulting probability frequency distributions of 𝑌 are often non-
normal [251], different types of symmetric and asymmetric quality loss func-
tions are needed to represent symmetric and unbalanced tolerances [252, 253],
triangular [254, 255], trapezoidal [254], folded normal [256], log-normal [45,
257], and truncated distributions [258] aswell as to consider capability indices
[233, 258]. To overcome the assumption of non-correlation [259], various ap-
proaches have been proposed to describe the interrelations between multiple
KCs [17, 260–263].

Although a realistic representation of (non-)tangible costs and quality loss
for the whole lifetime of a product is an essential precondition for tolerance
allocation, it is complicated by the fact that the necessary cost information
is often lacking, the costs are difficult to estimate, or the manufacturing
conditions in the design stage are not yet known in detail [264, 265]. Alterna-
tive approaches aim at facilitating the cost modeling process and enabling
tolerance allocation with cost approximations, e.g., utilizing cost sensitivity
curves [265, 266] or relative cost factors, taking the general IT-grades into
account [203], or estimating the machinability to realize a tolerance [267–
270]. In this context, the fuzzy theory is commonly used to represent the
tolerance-related importance of the manufacturing cost and quality loss [271,
272], e.g., to consider cost-related aspects of service [273], wear [273, 274],
and general usage [274], and to convert linguistic complexity evaluations [271,
275, 276] and expert opinions [272] into figures [277].
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2.2.2 Tolerance analysis

Whether tolerance allocation is performed manually or automatically by
optimization (see Fig. 5), tolerance analysis is needed to analyze the effect
of the allocated part tolerances on the KCs in a repetitive loop [43, 179,
278]. Therefore, the deterministic or statistical assembly response 𝑌 to the
variabilityof the individual partscanmathematically bedescribedwith theaid
of an assembly response function 𝑓𝑌 over the stochastic input variables 𝑿 [16,
57]:

𝑌 = 𝑓𝑌(𝑿). (3)

Therefore, the assembly response 𝑌 functions as a representative measure
to assure the associated KC under uncertainty.5 The input variables 𝑿 are
not restricted to pure geometrical parameters and their respective tolerances,
which are primarily focused on in tolerance design for mechanical assemblies
but can be any internal and external parameter influencing both geometri-
cal, e.g., gaps and clearances, and non-geometrical KCs, e.g., electrical power
or magnetic flux [P1]. Besides the classification of influences into internal
and external [285], it is helpful to distinguish them by their nature or how
they are represented in optimization (see Fig. 9):

(a) stochastic and deterministic, if their variance is taken into account or
neglected [P1],

(b) time-variant and time-invariant, if their mean or variance can change or
is constant over product lifetime [286, 287],

(c) or fixed and variable, if their mean, variance, or both are considered as
constant or adjustable in optimization [P1, 286].

In context of tolerance-cost optimization, temperature [286–290], mechan-
ical loads through external forces or gravity [286, 287, 291–293] as well as
wear [286, 294] are typical examples of additional variables. In contrast to
geometrical part tolerances, they are usually set as a priori fixed boundary
conditions in tolerance design and, thus, not considered as design variables
to be adjusted through optimization (see Sec. 2.2.3).

The analysis results are primarily used to verify if the specified tolerances
can assure the predefined KC requirements [16, 112]. Lower and/or upper
limits LSL and USL divide the estimated assembly response distribution into

5 In literature, numerous terms are used interchangeably for either the assembly response

function [279, 280], its output, and its requirements, such as design/stack up function,

fundamental equation of the assembly [281] as well as tolerance chain, datum flow chain,

dimension loop [282] (according to the model used), critical/functional/assembly/design

dimension [280] and assembly function(al) requirements [283, 284]. The terms assembly
response (function) and KC (requirements) are preferably used in this thesis.
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Figure 9: Classification of input variables 𝑋 in tolerance analysis.

the region of conformance (also named reliability, acceptability [295–297],
or yield [298, 299]) and the region of non-conformance/non-conformity
(non-acceptance) [300, 301], composed of a lower and upper non-conforming
fraction [302]. It is common to generally express these interrelations through
probabilities 𝑃: [298, 303]

1 =

conforming

⏜⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏜𝑃(LSL ≤ 𝑌 ≤ USL)+

non−conforming

⏜⎴⎴⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⎴⎴⏜𝑃(𝑌 < LSL) + 𝑃(𝑌 > USL) (4)

or via the integral over the assembly response probability density 𝜌𝑌: [298,
299]

𝑧̂ = 1−

yield yld

⏜⎴⎴⎴⎴⏞⎴⎴⎴⎴⏜
∫

USL

LSL
𝜌𝑌(𝒕, 𝑥)𝑑𝑥⏝⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⏝

non−conformance rate

. (5)

Three interdependent measures are commonly used to evaluate the
(non-)conformity of the KCs. The non-conformance rate (nc-rate) 𝑧 is
typically preferred to express the relative frequency of non-conform parts
as a percentage or in parts-per-million (ppm) in compliance with the six
sigma philosophy [P5].6 In the case of normality of data, it can directly be
converted into unit-less process capability indices, such as the 𝐶𝑝𝑘-value [302,
304]. Process capability indices for non-normally distributed and one-sided
KCs can be suitably considered by equations and methods developed for
on-line process quality control and are internationally standardized by
ISO 22514-2 [305]. In doing so, conformance rates and process capability
indices are used to describe how many assemblies will probably be within
the specified tolerance interval 𝑇asm = USL − LSL and to verify whether they
meet the specified minimum conformance rates or process capability values.
Besides, the verification can be inverted by checking whether the resulting
assembly tolerance interval 𝑇𝑌, which can be calculated as a multiple of the

6 Despite their slight differences in meaning, the terms reject, defect, failure, and scrap rate
are often used synonymously in this context [129, P5, 232, 243]. The term non-conformance
rate will be used consistently in this thesis to describe the percentage of assemblies which

exceed the predefined lower and/or upper limits of a KC.
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standard deviation 𝜎𝑌 for normally distributed 𝑌, is less than or equal to
𝑇asm [306].

If there is more than one assembly response function, representing one
or multiple KCs, and thereby share at least one part tolerance, they are
interrelated and correlate [6, 127, 307, 308]. Tolerancecompensationmethods
can help to decouple and transform them into simple, uncoupled functions in
advance [181, 309, 310]. However, multiple, often conflicting functions cannot
be entirely avoided, leading to challenges in predicting the nc-rate [311, P8]
and having to be considered simultaneously in optimization [312, 313].

After having deliberately focused on the result and the objective of tolerance
analysis so far, i.e., the assembly response and the parameters for assessing
the fulfillment of the KC requirements, the three main preceding steps to get
there are now discussed, viz. the representation of geometrical variations on
feature level, themodeling of their common influence on the system behavior
on assembly level under the presence of variations and their evaluation using
arithmetic and statistical tolerance analysis techniques [314].

Geometrical models intend to model and represent the features, primarily
computer-aided, with their variations in size, orientation, position, and shape
with respect to the specified tolerances, their values, and further process-
related information from manufacturing [94, 109, 315, 316]. In this context,
different models have been presented and applied in literature and industry,
such as variational solid (offset) models [317, 318], tolerance envelopes [319],
vector-, matrix-, and small displacement torsor-based models [132, 320–322],
and skin model shapes [315, 323].

Behaviormodels are used for tolerance propagation, representing how the
features interact in the presence of variation during assembly and in use [314,
316]. Concerning the geometrical model type serving as input, they can be
classified into deviation and tolerance accumulation approaches [314, 316].
Tolerance stacks and vector loop equations [132, 324, 325] as well as matrix
models [132, 326] are examples of deviation accumulation, establishing the re-
lation 𝑓𝑌 between 𝑡 and 𝑌 through variations on either analytical or numerical
basis [23, 94, 314]. In contrast, approaches based on Tolerance-Maps® [327,
328], polytopes [329, 330] and deviation domains [327, 331], for instance, use
certain summation and intersection operations to accumulate the individual
tolerance zones directly [94]. Tailored to the individual use case, geometrical
and behaviormodels must be carefully defined and harmonized to establish a
realistic expression of the assembly response function 𝑓𝑌 [94] while accepting
simplifications at feature, part, and assembly level [323].
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Based thereon, the final tolerance evaluation using either arithmetic or sta-
tistical methods follows [314, 332].7 Arithmetic methods [324, 334], mostly
named worst-case, rarely sure fit [335] or methods of extremes [244], aim at
assuring all possible accumulations of geometrical part variations to provide
a 100%-conformance region [324, 336] through absolute interchangeabil-
ity [336, 337]. Without making any assumptions on part distributions [338],
the extreme, worst-case configurations are analyzed, which typically result
when the individual input variables are considered at their lower and upper
bounds of the assigned tolerance limits [244, 324]. Except for safety-critical
applications [337], this approach is too pessimistic for most practical prob-
lems [336, 339] where it is statistically unrealistic to realize the worst case
configurations very often by random assembly [126]. As a result, tolerances
must be chosen extremely tight, which are hard to achieve and control and,
thus, cost-intensive [336, 337].

It is far more realistic and cost-effective to choose probabilistic ap-
proaches [28], which accept a small fraction of non-conform assemblies
giving space to choose wider tolerances [244, 336]. Statistical tolerance
analysis predicts the assembly probability distribution based on the individ-
ual part tolerance distributions, usually expressed by a set of distribution
type-dependent parameters and moments, e.g., the mean 𝜇, standard
deviation 𝜎, skewness 𝜅, and kurtosis 𝛾 [339–341]. The traditional, mostly
convolution-based approaches like the root sum squares method (RSS) in
modified and generalized versions to cover (estimated) mean shifts and
non-normal distributions [40, 179, 180, 342, 343], the Hasofer-Lind reliability
index method [186, 344], or first- and second-order reliability methods
[303, 345], show their strengths in low computation times for tolerance-cost
optimization [41], but generally lack applicability and validity [41, 280].

Sampling-based tolerance analysis, mainly in the form of Monte Carlo
Simulation [23, 333], overcomes these limitations [18, 41, 280] and provides
the most realistic results [346] since it can handle any distribution [23, 339,
347] and assembly response function, whether it is nonlinear and should
not be linearized [282, 339] or it can only be represented implicitly [320,
347]. Random number generators in combination with sampling technique-
specific algorithms are first used to derive a set of samples according to a
predefined sample size 𝑛 to represent the stochastic input variables 𝑿 while
taking the part tolerance probability distributions and its assigned tolerances
𝑡𝑖 into account (see Fig. 10) [18, 339]. Second, the assembly response 𝑌 is

7 Besides the preferred classification into arithmetic and statistical approaches, different

approaches, e.g., based on fuzzy logic and non-probabilistic set theory, are rarely used in

literature [78, 333].
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repetitively, sample per sample, analyzed, leading to the assembly response
distribution [18]. Provided that a sufficiently high sample size 𝑛 is chosen [18,
328, 348, 349], it serves as a reliable basis for estimating the (non-)confor-
mance rates to statistically evaluate the KC requirement fulfillment [P5]. As
predicted early on [350] and in line with uncertainty quantification meth-
ods [351], sampling-based tolerance analysis has become the standard in
research but also industry [23, 130] due to its simplicity [134, 280, 352], flexi-
bility [280, 347], and broad applicability [130, 280]. It is the basis of most
commercial computer-aided tolerance analysis software [333].
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Figure 10: Workflow of sampling-based tolerance analysis adopted from [P9].

Since the choice of the individual models mainly depends on the type and
characteristics of the product design and its assembly process [P1, 353], it is
helpful to differentiate between two main assembly types: part-driven and
process-driven assemblies [6]. In part-driven assemblies, the positioning
of the parts results from joining and constraining them by their prefabricated
mating features, so the KCs are primarily influenced bypart variations [6, 354].
Compared to isoconstrained, i.e., kinematically/properly constrained, assem-
blies, gaps are needed to ensure the assembly of overconstrained, part-driven
assemblies without mitigating the fulfillment of the KC requirements [6, 314,
355]. The challenge in tolerance allocation is to find a balance between the
clearance values and tolerances needed to avoid assembly problems and to
assure the KC for all possible gap configurations an assembly can take during
assembly or in use, if not all degrees of freedom are finally locked [134, P10].
Besides assuring assembly through clearance, certain degrees of freedom
are intentionally left open for mobility in mechanism design8 [6]. As they
are designed to generate a defined movement with a certain accuracy [357,
358], it requires a time-variant evaluation of the KCs, either for the whole
movement or predefined, functional-relevant points in time [P1]. As they
have traditionally been an integral part of tolerance research, mechanisms

8 The definition of the term mechanism is not consistently used in literature. In this work, it

is used to describe all systems in motion as ”mechanical portion[s] of a machine that ha[ve]

the function of transferring motion and forces from a power source to an output” [356].
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with full joints, such as revolute joints, including effects of clearance [358–
362] and lubrication [287, 363], and half joints, such as cams [364, 365] and
gears [279, 366–368], are in focus of tolerance allocation.

In contrast, process-drivenassemblies are characterized by the fact that the
KCs are influenced mainly by the assembly process [354]. Hence, the process
variables serve as essential control variables for the quality assurance of the
total assembly [369]. The fixture layout design [55, 370, 371], including the
position, type, and number of clamps and locators to lock the open degrees
of freedom multiple times [6], its accuracy and further tool variations [369],
the sequence of part joining steps of (spot) welding, riveting, clinching,
glueing, or clinching [372–374], as well as the assembly sequence order of the
individual parts [303, 375] additionally cause part deformations, mechanical
stress and spring back-effects [376, P11]. As these assembly-related effects
significantly influence the KCs of the overconstrained sheet-metal assemblies,
and in contrast to part-driven assemblies to a larger extent than the part
fabrication-related part variations, they have to be addressed in detail in
variation simulation [369]. To describe the propagation of the numerous
variations over the various multi-station assembly steps, specific models
have been proposed in literature, e.g., the state space model [377, 378] and
the stream-of-variation analysis model [379, 380], and serve as a basis for
assembly process-oriented tolerance-cost optimization methods [39, 196, 311,
369, 381]. Consequently, tolerance allocation-related research on process-
oriented assemblies differs from part-driven assemblies and forms an own
but strongly connected branch [39].

The number and complexity of the different, previously discussed aspects and
their interrelations influencing the quality assurance of the KCs make it often
difficult or even impossible to express the geometrical and behavior models
by mathematical equations and to derive a mathematically closed, explicit
definition of the assembly response function [P2]. As a solution, numerical
simulation, optimization, and software tools are used in the context
of tolerance analysis to implicitly support establishing the relationship be-
tween tolerances and the KC [314]. While parametric CAD-tools can suffice
for simple mechanical assemblies [227, 382], complex contact situations,
e.g., in simulations with form defects [383, 384], overconstrained assemblies
with gaps [134, 385], or mechanisms with half joints [279, 366, 367] require
numerical methods for assembly simulation. Established CAD-integrated
software modules, e.g., VSA-3D/Pro [231, 386–388] or Quick-UG stack up
module [389], and stand-alone and more detailed CAT-software for tolerance
analysis, such as RD&T® [217, P11, 390], 3DCS® [391–393], Cetol6σ® [394, 395],
Variation Analysis® [46], eM-TolMate® [193], or Sigmund [396], can be used in
tolerance-costoptimizationusing interfaces and exchange formats. Moreover,

25



2 State of the art and research

FE- and CFD-simulation are helpful tools to consider non-geometrical param-
eters or effects in more detail, e.g., on both geometrical and non-geometrical
KCs, directly or approximated by surrogate models in tolerance analysis [81,
290, 291, 397–399].

With the increasing complexity of the assemblies and the ambition to model
them with similar accuracy avoiding to impair the validity by assumption
and oversimplification, analyses are not practicable in reasonable comput-
ing times [P2] – despite the ongoing increasing computer performance (see
Sec. 2.3). Since tolerance analysis is performed repeatedly for a large number
of different tolerance combinations within the inner optimization loop [27,
400], the computational and time effort required, which can take up hours
or even days [130], has a staggering effect on the efficiency of the entire op-
timization [296, 401]. The usage of sampling significantly aggravates this
dilemma [27, 296, 400, 402], as a large number of random samples are neces-
sary to be able to reliably assure the high industrial requirements in small
parts-per-million ranges [18, 40, 339, 352]. Hence, efficient tolerance-cost
optimization requires efficient tolerance analysis routines [403]. Variance
reduction methods help to increase efficiency because they require smaller
sample sizes to achieve the same precision as pure Monte Carlo Sampling
(MCS) [192, 352]. In the context of tolerance-cost optimization, Latin Hy-
percube Sampling [192, 392, 404, 405], Hammersley sampling [406], Quasi-
Monte Carlo method using Sobol’ sequences [392], Number Theoretical
Net [311, 400], importance sampling [352, 407], subset sampling [392], anti-
thetic variates [192, 405], correlation functions [352, 407], and polynomial
expansion [292, 293] have proven their suitability. Furthermore, an adaptive
increase in sample sizes over the optimization iterations can significantly
reduce the total number of tolerance analyses required [134, 279, 408].

Besides their intended use in deriving unknown relationships between inputs
and experimentally investigated outputs [386], such as in tolerance-costmod-
eling (see Sec. 2.2.1), surrogate models are used even if these relationships
already exist in explicit or implicit form, but their evaluation is computation-
ally time-consuming [409]. Hence, they function as metamodels making
statements about (simulation) models [410, 411]. They mainly aim to speed
up the individual tolerance analysis’ substeps in tolerance-cost optimization.
Different types of regressionmodels, for instance, based on low-order polyno-
mial functions [298, 386, 412, 413], Gaussian and kriging models [81, 311, 402,
413–416], ANNs [398, 399], or support vector machines [P10], are used either
as approximate (sub-)models, e.g., to replace computational-intensive FE-
and CFD-simulations [81, 240, 398, 399, 414, 415] or as direct surrogates of
the total tolerance analysis [298, 311, 386, 402, 412, 413, 417, 418]. In addition
to general background information on surrogate modeling and their use in
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optimization given in the Appx. A.5, a detailed discussion on the different
ways of using them in tolerance-cost optimization will follow in Sec. 6.2.

2.2.3 Definition and solution of the optimization problem

Optimization is an automated and, thus, efficient way to solve the tolerance
allocation problem [P2] by ”obtaining the best result under given circum-
stances” [419]. For this purpose, it is necessary to express a given problem
through the languageof optimization, basicallyconsistingof theobjective(s),
constraints and design variables [419].

In tolerance allocation, two main strategies can be differed according to their
objectives in focus. While quality-driven (quality-priority) tolerance-cost
optimization aims at optimizing the fulfillment of the quality requirements to
obtain the best quality, the aim of cost-driven (cost-priority) tolerance-cost
optimization is to minimize the total tolerance-related costs necessary for
quality assurance [9, 196, 303]. Consequently, objective and constraint(s) are
flipped, whether it is designed as a design for quality to meet cost-approach
or a design for cost to meet quality-approach (see Chap. 1)9, whereas the
latter depends on the underlying quality philosophy (see Fig. 8).The main
fundamental strategies with their corresponding optimization problems are
defined as follows: [192]

Minimize 𝑧̂ 𝐶sum 𝐶sum; 𝐿 (6)

subject to ∶ 𝐶sum ≤ 𝐶max 𝑧̂ ≤ 𝑧max 𝑧̂ ≤ 𝑧max (7)

𝑡lb𝑖 ≤ 𝑡𝑖 ≤ 𝑡
ub
𝑖 𝑡lb𝑖 ≤ 𝑡𝑖 ≤ 𝑡

ub
𝑖 𝑡lb𝑖 ≤ 𝑡𝑖 ≤ 𝑡

ub
𝑖 (8)

a) quality-driven

b) cost-driven

c) robust tolerance design

objective(s)

constraints

design variables

The objective function(s), the constraints, and the design variables have
to be adjusted or extended by additional case-specific elements tailored to
the respective field and purpose of application [P12] (see Sec. 2.2.4).10 This

9 This distinction is based on the general definition of design to cost and design for cost acc.
to Dean and Unal in [420, 421].

10 The optimization problem given in Eq. (6)–(8) is restricted to one single KC for reasons of

clarity. In case of 𝐾 multiple KCs, either the number of quality assurance objectives (see

Eq. (6) a)) and constraints (see Eq. (7) b)) are extended to 𝐾 individual equations or an

overall quality criterion takes all KCs simultaneously with its correlations into account. In

the case of c), the multivariate quality loss is defined by 𝐾 quality loss objective functions

and its correlation terms using covariances.
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includes the subroutines of tolerance-cost analysis and tolerance analysis
providing the information for both the objective and constraint evaluation.

The constraints can be classified according to their purpose into feasibil-
ity and acceptability of a design [422]. The tolerance design’s feasibility in
the context of tolerance allocation means that the obtained solution can be
technically realized for a given scenario. Process accuracy/capability con-
straints defining the lower and upper boundaries 𝑡lb𝑖 and 𝑡ub𝑖 of the design
variables [139, 201, 423] are feasibility constraints ensuring that only toler-
ances are picked by the optimizer, which a given manufacturing setup can
technically realize. Acceptability constraints, in contrast, define if a tech-
nically feasible solution also satisfies further constraints, i.e., in case a) an
upper-cost limit 𝐶max [196] or in case b) a maximum non-conformance limit
𝑧max [P5]. The nc-rate 𝑧̂ acc. to Eq. (5) is exemplarily chosen as a quality
measure in Eq. (6) and Eq. (7). In case a), except for the assembly toler-
ance 𝑇𝑌, the choice of the process capability 𝐶𝑝𝑘 and the yield yld result in a
maximization problem, which, however, is always transformed into a mini-
mization problem by the negative of the objective function value, for example,
max(𝐶𝑝𝑘) = min(−𝐶𝑝𝑘). In case b) and c), the inequality constraints in Eq. (7)
are reformulated to 𝑇𝑌 ≤ 𝑇𝑌,max, 𝐶𝑝𝑘 ≥ 𝐶𝑝𝑘,min, or yld ≥ yld

min
[41].

The design variables, also called decision variables [419], which are ”the
quantifiable parameters that the algorithm can change” [424], are primarily
the magnitude of the design tolerances (or manufacturing tolerances 𝛿𝑖 in
process design, see Sec. 2.1.2) [93, 192, 295]. The tolerance types are usually
set as fixed [16], with a few exceptions proposed in [192, 405]. The toler-
ance intervals 𝑡𝑖, defined as the difference between the upper and lower limit
𝑡𝑖 = UL−LL, are thereby varied by the optimizer. A fixed mean shift is usually
used for unbalanced bilateral tolerances (see also Fig. 9 (c)). Considering the
nature of the design variables, the tolerance values can either be continuous,
discrete, or mixed-discrete as a combination of both types [425]. Besides
the choice of any value from the continuous range [𝑡lb𝑖 ; 𝑡

ub
𝑖 ] with 𝑡𝑖 ∈ ℝ

+,
they sometimes have to be selected from a limited, discrete set of prede-
fined options, if either fixed classes in case of external supply or IT standard
classes [426] are considered or discrete tolerance-cost functions are used (see
Tbl. 1). Moreover, it has to be considered in the design variables and by
additional constraints that some of the tolerances may be set as fixed a priori
since they should not be optimized and that multiple tolerance values may
be set as equal or correlated [427, 428], for instance, if they originate from the
samemanufacturing process indirectly saving costs through setup reductions
or if parts from the same type are used several times in one assembly [96, 127,
307].
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In most cases, a least-cost tolerance design b) is prioritized over case a) and
defined as a minimization problem of the single tolerance-related costs 𝐶sum
acc. to Eq. (2) [429], and sometimes supplemented by the assembly-quality
related costs due to quality loss in case c).11 The consideration of quality loss 𝐿
in case c), which is often addressed under the term robust tolerance design
in literature [41, 251] (see Sec. 2.2.4), extends the single-objective problem
to a multi-objective problem with conflicting objectives (see Fig. 8) [432].
The design space is usually limited by the acceptability constraint Eq. (7) c),
which is rarely omitted since the quality loss costs can indirectly control
the quality assurance. To handle this problem, it can be transformed into
a single-objective optimization problem by a weighted summation of the
objectives, where the weights 𝑤 indicate their relative importance [433, 434]:

𝐶tot = 𝑤1 ⋅ 𝐶sum(𝒕) + 𝑤2 ⋅ 𝐿(𝜎𝑌) with: 𝑤1 +𝑤2 = 1. (9)

Besides an equal weighting [200, 232, 250, 251], individual (normalized)
weight factors 𝑤𝑖 are chosen based on the designers’ prioritization or ex-
perience [433, 434]. Avoiding choosing the weights before optimization,
multi-objective optimization approaches determine a set of alternative but
equivalent best solutions. A certain solution can then be selected from the
resulting Pareto set either by a manual prioritizing of the objective functions
or supported by decision theory methods such as the TOPSIS method [414,
417, 432].

In the beginnings of tolerance-cost optimization, finding the best solution
for the mathematical tolerance allocation problem out of the infinite number
of solutions [41, 180, 244] was mostly based on deterministic optimization
techniques [39]. For simple allocation problems with convolution-based
tolerance analysis subroutines, optimal solutions can be found in low com-
puting times [S1]. As they are based on mathematical principles and often
need information on gradients or derivatives [39, 352], they mostly impose
strict requirements for monotonicity [36, 199, 297], continuity [96, 199, 435],
and derivability [96, 435, 436] of the objective and constraint functions [199].
Hence, traditional algorithms, such as linear and nonlinear programming,
often reach their limits, not only for industry-relevant problems, like

• non-traditional tolerance-cost functions, process limits, and machine/pro-
cess alternatives [41, 96, 435] (see Sec. 2.2.4),

• multiple, interrelated KCs [41, 96, 435],
• nonlinear and implicit assembly response functions [41, 368, 437], or

11 In a few cases, tolerance-related costs are addressed indirectly by a maximum widening of

the tolerance values (see, for instance, in [176, 185, 399, 427, 430, 431]).
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• sampling-based tolerance analysis techniques [352, 437, 438].

There are numerous strategies and tricks, such as linearization [176], con-
version of the probabilistic problem into a deterministic one, for instance,
by reliability indices [36, 186, 297, 344], estimation of gradients when using
sampling methods [352, 403, 407, 437], or establishing closed-form solutions
for quality loss based on Lambert W functions [439–443]. However, their
applicability is either limited [44, 435], the tolerance allocation problems are
strongly simplified [176], or their implementation requires highmathematical
and optimization skills to formulate them correctly.

In linewith the general trends for solving real-world, mathematically complex
problems, metaheuristic, stochastic optimization algorithms are com-
monly used in tolerance allocation to explore the multimodal, non-convex,
partly discrete, and stochastic search spaces efficiently and to find the global
optimum [39, 444]. These soft-computing algorithms are mostly population-
based and mimic natural processes, usually inspired by biology, physics, and
chemistry [445, 446]. As they are global, direct searchmethods using random
principles for exploitation, i.e., local intensification of solutions, and explo-
ration, i.e., global diversification, of the search space, they are not based on
gradients or derivatives, their programming and implementation are simple,
they solve complex problems while having a higher probability of finding
the global optimum, and are resistant to noise [433, 444, 447]. Relying on
one of the so-called free lunch theorems [448], claiming that all algorithms
performon average equallywell for different values as they all show individual
strengths to solve various problems, a wide variety of algorithms have been
developed and implemented over the years [445]. Hence, any metaheuristic
algorithm12 can principally be used for tolerance-cost optimization, as long
as constraints can be taken into account, and additionally, depending on
the problem type, (mixed-)integer or discrete optimization variables as well
as multiple objectives can be considered. Thus, not only widely acknowl-
edged algorithms, e.g., simulated annealing [44, 93, 97, 232, 451, 452], genetic
algorithm (GA) [21, 96, 290, 291, 303, 431, 432, 434, 447, 453–455], particle
swarm optimization [33, 286, 432, 456–462], differential evolution [33, 130,
227, 431, 434, 455, 463], scatter search [464, 465], tabu search [223, 466],
and pattern search [467, 468], are studied in literature. But also less estab-
lished ones, such as ants colony algorithm [469], artificial bee algorithm [470,
471], bat algorithm [472], cuckoo search (CS) [294, 408], whale optimization

12 Despite the slight difference in the definition of heuristic and metaheuristic optimiza-

tion that metaheuristic is understood as higher-level heuristic approaches, both terms

are used interchangeably in literature [445, 449, 450]. Hence, all stochastic algorithms

using randomization, local search, and global exploration methods are commonly called

metaheuristics [445].
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algorithm [473], self-organizing migrating algorithm [474], game theoretic
approach algorithms [475–477], seekers algorithm [272], imperialist competi-
tive algorithm [478], teaching-learning-based optimization [479, 480], and
intelligent water drops algorithm [14]. Hybrid algorithms, combining the
individual strengths of stochastic and deterministic (or several stochastic) al-
gorithms in termsof exploration and exploitation, help to further improve the
solution and to increase the probability of finding the global optimum [245,
481–483]. Apart from the substantial benefits of metaheuristic optimization
algorithms, they cannot guarantee finding the global optimum [39], they are
less efficient as they might need a considerable number of iterations to con-
verge [484], and finding suitable settings for a given problem is crucial, but
decisive to identify first a feasible and second a near-optimal solution [485].
In addition to the algorithm itself, the handling of the multiple constraints
influences the optimization procedure and its solution. The penalty approach
is mostly preferred transforming the problem into an unconstrained one by
adding penalty terms to the objective values if constraints are violated [21,
313, 486]. More detailed information on metaheuristic algorithms, in general,
is given in Appx. A.3.

Besides the presented strategies using deterministic and stochastic optimiza-
tion techniques, solution techniques relying on methods adopted from
quality engineering for off-line-quality control [101, 248] are used, claiming
to be more practicable and applicable to complex assemblies [16, 39, 41].
Fractional Factorial DOE, such as orthogonal arrays [266, 487] or Central
Composite and Box-Behnken Designs [488, 489], mixture-amount exper-
iments [490, 491] and Monte Carlo Sampling [492], are primarily used in
combination with analysis of variance (ANOVA) [39] to explore the design
space and to find a suitable solution. However, they represent a comparatively
small portionof the tolerance allocation approaches in literature because they
cannot be applied universally and do not guarantee optimal solutions [P1].

2.2.4 Optimal tolerance allocation + ”X”

Initiated by the stream of CE, various inter- and multidisciplinary aspects
from the downstream product development steps have been integrated into
the tolerance design phase (see Sec. 2.1). In addition to merely expanding
the optimization problem through additional elements such as specific cost
details, integrated optimization approaches have prevailed, concurrently
addressing one or more activities or problems (”X”) from mostly downstream
but also upstream product development phases. In doing so, additional or
adapted objectives and constraints with shared or additional design variables
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are considered within one joint, overall optimization problem [216, P12] or by
multi-level or -stage optimization strategies [196, 493, 494].

As one of the first, the directly adjacent tasks from tolerance allocation for
manufacturing were shifted to the design phase (see Sec. 2.1). The extension
of the optimization problem by manufacturing tolerance design variables as
well as machining tolerance and stock removal allowance constraints [44, 93,
139, 457, 495] enables a simultaneous consideration of KC requirements on
the assembly level and process design-related aspects on the part level. The
approaches developed are addressed under the terms concurrent/simulta-
neous tolerance design/allocation/synthesis/optimization. Besides the
consideration of dimensional and geometrical tolerances [430, 432, 465, 496],
integrated approaches additionally focus on further process design aspects,
e.g., optimal machining (cutting) process parameters [211, 497].

Since there is usually more than one predefined machine and/or process
alternative to realize an assigned design or manufacturing tolerance 𝑡𝑖 or
𝛿𝑖 (see Fig. 7), optimal tolerance allocation is inevitably accompanied by
the problem of machine/process selection. As the available options with
their process limits dictate the respective achievable tolerance ranges and
least-cost combinations, their preselection before optimization cannot lead
to the global optimum [498]. Hence, the definition of a concurrent opti-
mization problem inevitably enables a realistic selection of tolerances for
the processes and machines used [97, P9]. It further supports make or buy
decisionswith multiple supplier alternatives [260, 494, 499, 500]. Oneway to
address alternativeselection13 in tolerance allocation is to treat it as a nested
subproblem to be solved within the inner optimization loop, for instance,
using exhaustive or univariate search methods [96, 312, 473, 501–503] or the
minimum-cost curve, also called bottom curve follower approach, selecting
the least cost-intensive alternatives for the current tolerances 𝑡𝑖 [97, 498, 501,
503]. Besides, the idea of simultaneously solving both problems within one
global optimization problem, where additional integer design variables take
over the selection task, was implemented in different ways, e.g., by means of
a multiple-choice knapsack problem [308], pseudo-boolean approach [504],
branch-and-bound [186, 312], zero-one integer programming using the Balas’
algorithm [38], sequential programming based on Lagrange multipliers [93,
312], and the Box complex method [505]. However, all these methods are
mostly too restrictive, inefficient, or cannot find the global optimum for
more complex problems, e.g., advanced tolerance-cost functionswith process
limits or multiple interrelated KCs [38, 41, 312, 501]. They essentially lost their

13 Asmachine/process and also supplier selection can be treated equally from the optimization

point of view [P9], they are summarized under the term alternative selection in this work.
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importance as they originate from timeswith limitations in optimization [P9].
Nowadays, the highly nonlinear, mixed-integer problems are typically solved
by metaheuristic optimization [44, 96, 307, 447].

As the selection of machines and processes is strongly connected to process
planning and scheduling, these methods are often extended by further
tolerance-related aspects. Tolerance allocation is, thus, combined with op-
timal process planning of multi-stage, partially site-distributed production
steps [139, 216, 224, 242, 243, 405, 506], partially under a reconciliation of
bought-in parts [494], tominimize theoverall costswhile consideringmachin-
ing, overhead, and idle times, [473, 507], waste [485], resource allocation [215,
508], machine loading capacities [139, 499], product rates and demands [139,
485, 499], and delivery time constraints [509]. The balancing of tolerances
and process planning positively impacts the singleoverall equipmenteffective-
ness (OEE) of themachines involved [349] and, thus, the total manufacturing
costs, but also influences the subsequent assembly steps [194, 216].

Consequently, process planning for part fabrication often goes hand in hand
with the design of the assembly process, significantly influencing the KCs,
especially in the case of process-driven assemblies (see Sec. 2.2.2). Therefore,
optimization-based fixture layout design and assembly sequence planning,
including joining sequences of individual operation steps, e.g., spot welding
sequence [372, 510] and part assembly sequences, are acknowledged methods
in the industry to assure assembly quality while taking variations from part
manufacturing using already fixed tolerances into account [375]. To further
exploit its potential, integrated approaches have been developed to align
tolerance allocation and assembly process design by embedding fixture layout
optimization [196, P11, 493], assembly technique selection [300, 303], or
assembly sequence planning [300, 303] into tolerance-cost optimization.
Besides the detailed planning of the single process operation steps, this
also includes further technical and economic production planning-related
decisions and aspects, such as investments, automation, installation, and
operation of multi-station assembly lines [216].

In this case, the underlying assembly strategy mainly dictates product and
process design. Tolerance allocation is usually based on the concept of inter-
changeability requiring tight tolerances to fulfill the KC requirements when
parts are randomly assembled in mass production [49, 511]. Selective as-
sembly, in contrast, compensates the geometrical part variations to a certain
degree within the assembly process by a thoughtful pairing of groups of parts
of a predefined quality, also called classes, categories, or bins [512, 513], allow-
ing to achieve high precision assemblieswith low precision parts [310, 512, 514,
515]. Thus, tolerances can be further widened, leading to a cost benefit [428,
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512] while additional costs, e.g., for a 100%-inspection and holding, etc., are
amortized [513, 516]. While selective assembly has becomewell established in
the automotive and roller bearing industry over the years [512], it is currently
getting more into focus in the context of industry 4.0 and digital twins [514,
517–520]. Optimal selective assembly problems try to find an optimal binning
strategy while tolerance values are usually set as fixed [521–525]. In combi-
nation with optimal tolerance allocation, tolerance values are considered
variable, defining the equal widths or areas of the bins for either a fixed or
variable number of bins using the potentials of both subdisciplines [14, 428,
470, 526, 527].

Besides the early consideration of integrated tolerance allocation approaches
in the design and pre-production phase, they further offer the potential to
be used for real-time optimizations during production taking advantage of
adaptive strategies for the design and scheduling of part fabrication and
assembly operations [518, 528].

In addition to these streams of front-loading, optimal tolerance allocation is
further coupled with parameter design to concurrently select both nomi-
nal and tolerance values. In addition to costs and quality, the objectives
or constraints are commonly supplemented by different measures of robust-
ness [529].14 The definition of both nominal values and the tolerances of
internal and external parameters (see Fig. 9) as variable intends to achieve a
global cost and product robustness optimum using different measures, such
as the quality loss mentioned before [5, 435, 489, 530, 531], signal-to-noise-
ratio [41], sensitivity [41, 461, 469], variability [495], or manufacturing costs’
sensitivity [532]. Additional constraints avoid identifying infeasible solutions
through invalid parameter combinations [469].

In conclusion, the individual designs and implementations of tolerance
allocation, addressing a variety of different lifecycle aspects from design,
pre-production, and production in optimization, not only with its primary
focus on costs and product quality but also on product robustness as well as
risk [533–537], emphasize its vital role in the product development process.

2.3 Main research streams and current status of

tolerance-cost optimization

With the first ideas, based on analog and digital computation in the 1950s–
’60s [205, 538, 539], the beginningsof optimal toleranceallocationweredriven

14 In this context, the term robust tolerance design is commonly used [41], indicating that at

least one measure of robustness – in most cases the quality loss (see Eq. (6) c)) – is added to

the optimization problem.
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by their application to electric circuits [205, 422, 540, 541] and antennas [542].
Since 1970, however, it has increasingly found its way into classic toleranc-
ing focusing on mechanical assemblies and has dominated the research on
tolerance-cost optimization. Since then, a large number of research papers,
approaches, methods, etc., have been developed and implemented, which
were initially analyzed in a literature review by the author and the findings
were published in [P1].

Tocreateaholisticpictureof optimal toleranceallocationand itsdevelopment,
these initial findings are now supplemented by further criteria and current
publications.15 Hence, the following observations are based on an analysis
of 399 articles from the period of 1970-2023. Appx. A.2 gives a detailed
description of the literature review.

Still severely hampered in its origins by the given constraints in optimization
and computer performance (see also Sec. 2.1), tolerance-cost optimization
gained momentum especially in the 1990s and developed further in various
directions, thus setting the course for the subsequent three decades of inten-
sive research in this field (see Fig. 11 (bottom)). As the tolerances are strongly
connected to the machines/processes and suppliers chosen, the idea of alter-
native selection was early formed in the 1960s–’70s [38, 41]. It has mainly
drawn attention due to the emergence of metaheuristic algorithms in the
following years (see Fig. 11 (a)) and is often chosen as a challenging scenario,
e.g., to benchmark optimization algorithms or methods. At the beginning
of the 1990s, fostered by the CE movement, the mindset of concurrent tol-
erance design (see Sec. 2.1) was created and since then has represented an
important aspect of tolerance-cost optimization. However, most tolerance
allocation approaches still focus on the pure design phase and maintain the
strict separation of machine and production tolerances. (see Fig. 11 (b)). The
elementary equations and interrelationships of tolerances and costs, which
laid the foundation for the development of the method in the 1970s [543],
were followed by the first concrete approaches to the integration of quality
loss in the 1990s [200, 249] (see Fig. 11 (c)) after the general introduction
of the robust design idea and quality loss in the 1980s [544]. Since then,
their consideration has become established in research, is simultaneously
considered alongside pure manufacturing costs, and is in the concrete focus
of individual research activities [P1].

15 When analyzing the approaches presented in literature, a distinctionmust bemade between

aspects examined in detail and thosewhich aremerely ameans to an end. Therefore, general

statements that individual aspects are less relevant overall cannot bemade since the research

articles usually focus on selected particular aspects, which means that other aspects are

pushed into the background. Nevertheless, the findings indicate the significant trends and

the historical development of the method concerning its main research areas.
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Figure 11: Historical development of tolerance-cost optimization over the last five decades and

its main milestones further contrasted to the evolution of computer performance acc. to [545].

The pie plots illustrate the distribution of the approaches used over the entire period (see

Appx. A.2 for more details).
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Although some approaches have been applied to dimensional and geo-
metrical tolerances as the power of the method has increased, the number
of methods presented for dimensional tolerances still predominates (see
Fig. 11 (d)). This can be mainly attributed to the choice of case studies, which
are primarily designed from an academic point of view and are often limited
to established one- and two-dimensional standard examples, even if the
number of more industry-relevant case studies is slowly increasing. Depend-
ing on the purpose of a research article, simple examples are sufficient to
study a particular aspect. However, it indirectly leads to the fact that the
methods often suffer from an academic character and are perceived by the
industry only less suitable for practical use. In contrast, due to their focus
on the manufacturing process, the process-oriented tolerance allocation
methods are far more industry-oriented and practice-driven. Since the first
applications at the beginning of the 21st century [376, 381, 546], the shift from
product to process has been consistently continued [39] and successively
supplemented by various relevant aspects from the downstream process steps
(see Sec. 2.2.4).

A closer look at the tolerance analysis techniques reveals that simplified
arithmetic methods had to give way to statistical evaluation techniques al-
ready in the early years. Not least because of tolerance-cost optimization’s
focus on high quantities and series production (see Fig. 11 (e)). Initially
dominated by convolution-based approaches, the methods are increasingly
replaced by powerful sampling methods, primarily when external tolerance
analysis methods are handled as black boxes by metaheuristic algorithms.
Arithmetic approaches are only used if the findings are independent of the
chosen tolerance analysis approach.

Shortly after the introduction of the first notablemetaheuristic algorithms,
e.g., genetic algorithms in 1975 [547], scatter search in 1977 [548], simu-
lated annealing in 1983 [549], and particle swarm optimization in 1995 [550],
they found their way into tolerance-cost optimization and are mostly pre-
ferred nowadays to cope with the increasing complexity of the problems (see
Fig. 11 (f)). Thus, among the various aspects alreadymentioned, interrelated
KCs increasingly came into focus during this period.

In addition to the individual enhancements of themethod, the 1990swere fur-
ther characterized by thedevelopmentof knowledge-basedexpert systems
for tolerance-cost modeling, tolerance allocation for design, manufacturing,
and concurrent tolerance design [137, 152, 225, 267, 551–557]. In contrast to
CAT-software for tolerance specification and analysis (see Sec. 2.1), stand-
alone tools for tolerance-cost optimization could, however, not prevail so
far [114]. Although several mostly CAD-integrated or CAD-based software
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prototypes have been presented over the last three decades, such as [155, 242,
452, 558–563], a combination of optimization algorithms and approaches
with self-coded or commercial tolerance analysis routines and tolerance-cost
analysis software [394, 395, 564] is common [P1].

In summary, tolerance-cost optimization has a long history, is still a current
research topic, and has been and will be continuously developed through
various research activities strongly shaped by recent global trends.
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outline of themain part

Based on the state of the art and research presented in Chap. 2, the current
shortcomings in the field of optimal tolerance allocation and the need for
research are subsequently introduced, followed by the research goal, the
research questions, and the outline of the main part.

3.1 Current shortcomings

Optimization-based approaches for tolerance allocation have been inten-
sively studied for over five decades. The individual research activities and the
recording of their findings through a remarkable number of articles empha-
size the continuous evolution of tolerance allocation in theory (see Sec. 2.3).
Despite all scientific efforts, however, it has not yet been able to establish itself
in industry. It is still more a scientific conundrum than a practical solution for
tolerance-cost problems (see Chap. 1). Except for only a few examples of suc-
cessful implementation in industry, for instance, presented in [P7], manual,
iterative approaches are still preferred over automated, optimization-based
tolerance allocation while decisive tolerance-cost potentials remain unused.

One reason for the missing acceptance is that the numerous, mostly isolated
solutions usually lack transferability to other, particularly more complex
problems. They are either tailored to specific application cases or limited to
simplified, academic case studies with few dimensional tolerances. Correla-
tions of multiple, geometrical tolerances and interrelated KCs for single or
multiple assembly configurations are mostly neglected or oversimplified. In
addition, they are insufficiently aligned to industrially relevant aspects, such
as reliable qualitymeasures, mapping of non-normal machine characteristics,
or realistic part manufacturing scenarios.

Furthermore, their strong mathematization and scientification constitute a
significant obstacle for tolerance engineers without in-depth knowledge of
statistics, mathematics, tolerancing, and optimization, further complicating
a productive application in practice. Suppose the ease of use of a CAT-tool,
which is a subjective measure at the end but mainly depends on how fast,
easy, and systematically a model can be set up and solved for a wide range
of problems, is not given [174]. It is not used, regardless of its potential,
alternative workarounds are preferred, or the activity is skipped at all [174].
Consequently, only a few tolerance experts can use these methods insofar as
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they suit the problem at hand. Even the knowledge-based expert systems
presented in literature have not yet been able to change this situation.

Specific detailed research issues, for instance, a sufficient acquisition and
processing of data for tolerance-cost modeling in series production, are still
open and have to be clarified. However, there is currently a significant lack of
an approach that can serve as the basis for a broadly applicable and powerful
tool and convince the industry with its usability. Otherwise, its potential will
still remain unused despite sophisticated details.

3.2 Linking sampling-based tolerance analysis and

metaheuristic optimization

The first step to overcome the presented shortcomings is to define the funda-
ment for optimal tolerance allocation. The literature study, summarized in
Fig. 11, indicates the trend towards a coupling of sampling-based tolerance
analysis methods and metaheuristic optimization algorithms for tolerance al-
location. This concept, existing for several years, was coined sampling-based
tolerance-cost optimization in [P5]. Fig. 12 illustrates its basic idea as an
extension of the general workflow given in Fig. 5 (b) for a population-based
algorithm. In each optimization iteration (generation) 𝑔, a new set of toler-
ance values, the population 𝑝 of several individuals, is generated. For the first
generation 𝑔 = 1, it is typically based on a random guess. Otherwise, results
from theprevious generations are considered. The substeps of the inner loops,
i.e., the evaluation of both costs and quality using tolerance-cost analysis and
sampling-based tolerance analysis acc. to Fig. 10 and its transformation into a
fitness 𝐹 using a suitable penalty function 𝑓P, is repeated for all 𝜂𝑝 individuals
and all 𝜂𝑔 generations until the algorithm meets a termination criterion (see
also Appx. A.3 for further information on optimization theory).

At first sight, this idea is reasonable since both methods’ broad applicability
and general adaptability to arbitrary problems, which both techniques, as
so-called ”panaceas” [280], inherently bring with them, basically offer an
excellent prerequisite to forming a solid basis. A detailed evaluation, however,
is needed to contrast the pros and cons. The statements, discussed in the
following and summarized in Tbl. 2, are partly based on the results of an
initial potential analysis presented in [P2] and [P13].

Sampling-based tolerance analysis is mostly the first choice for analyzing
complex problems with 3D and nonlinear effects, making it possible to simu-
late the impact of geometrical tolerances and complex assembly situations.
Thus, sampling-based optimization routines enable a direct integration of
standard tolerance analysis software tools preferably used in industry and an
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Figure 12: General workflow to solve a sampling-based tolerance-cost optimization problem

with population-based metaheuristic optimization algorithms based on [P9].

easy embedding of the method into existing software landscapes. Consider-
ing non-normal manufacturing distributions and the freedom to integrate
measurement data opens up the possibility of including further manufactur-
ing information in the tolerance allocation for a more realistic representation
of relevant industrial scenarios, e.g., for machine and process selection.

Metaheuristics are soft-computing algorithms and therefore do not restrict
the choice and setting of tolerance analysis and tolerance-cost models, re-
gardless of the selected optimization case (see Sec. 2.2.3). Nonlinear, discon-
tinuous, and even implicit black box models for tolerance-cost and assembly
response functions can be integrated into optimization without adapting the
optimization problem and routines. They can deal with the noise from the
sampling procedures without further workarounds such as gradient estima-
tion (see Sec. 2.2.3). Similarly flexible, they can solvemixed-integer problems,
enabling an extension to discrete decision variables and covering industrial-
relevant aspects, such as selective assembly or machine selection. Overall,
significantly fewer mathematical foundations for optimization theory to
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formulate and solve the problems are necessary, facilitating automation and
instrumentalization of tolerance allocation by powerful, user-friendly expert
tools.

One major drawback, however, is that both methods require significantly
more computation time than alternatives, such as statistical, convolution-
based tolerance analysis methods and gradient-based algorithms. This
dilemma is further aggravated in interaction since the tolerance analysis
loop must be solved repetitively for each sample, i.e., 𝑛 times, within both
optimization loops (see Fig. 12). Despite ”increased computer power, faster
algorithms, and more efficient optimization routines” [157], computationally
intensive tolerance simulations are a major challenge for a practical appli-
cation, even with the use of advanced computer technology such as GPU-
computing [130]. Furthermore, both methods are based on the principle
of randomness containing statistical and stochastic operators. This leads
to uncertainties and, thus, to unreliable, i.e., either invalid or non-optimal,
as well as scattering, non-reproducible optimization results. The missing
guarantee for optimality and the strong dependence of the results on the
chosen optimization algorithm-specific settings make a joint application
difficult, particularly for users with less experience.

Table 2: Main benefits and deficits of sampling techniques and metaheuristic optimization

algorithms for optimal tolerance allocation.

Sampling-based tolerance analysis Metaheuristic optimization

B
e
n
e
fi
ts

+ is powerful and highly flexible in

handling complex industrial

tolerance problems

+ is able to map individual

manufacturing distributions

+ can directly handle any (implicit and

explicit) assembly response function

+ is mostly used in common tolerance

analysis software

+ puts no limits on theuseof tolerance-

cost and tolerance analysis models

+ is capable of handling sampling-

induced noise

+ can properly solve mixed-integer

problems to address machine-/pro-

cess selection and selective assembly

+ requires less mathematical theory

D
e
fi
ci
ts

− needs high computation times

− induces uncertainties leading to

invalid or non-optimal optimization

results

− needs high computation times

− its stochastic operators lead to lim-

ited reproducibility and reliability of

results

− is very sensitive to the settings
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3.3 Research goal, questions, delimitation, and outline

A second, more global view on the findings, summarized in Tbl. 2, illustrates
that the benefits and deficits have a direct or indirect influence on the us-
ability of the whole tolerance allocation approach. Usability is defined in
the ISO 9241-11 as the ”extent to which a system, product or service can be
used by specified users to achieve specified goals with effectiveness, efficiency,
and satisfaction in a specified context of use” [565]. By transferring this
general definition to tolerance allocation1, the specified user corresponds to
the tolerance engineer, who has basic knowledge of statistical tolerancing
and optimization and operates in the specified context of use, the tolerance
design phase. The significant benefits of harmonizing sampling techniques
and metaheuristics for tolerance-cost optimization, identified in the pre-
vious Sec. 3.2, lead to the conclusion that sampling-based tolerance-cost
optimization as a basis for tolerance allocation offers great potential to close
the research gaps given in Sec. 3.1 – provided that its inherent deficiencies in
termsof effectiveness, i.e., the “accuracy and completenesswith which users
achieve specified goals” [565], and efficiency can be adequately compensated.

Hence, the goal of this thesis is to enhance the usability of optimal toler-
ance allocation by sampling-based tolerance-cost optimization foster-
ing its broad applicability in the product development process.

The research goal is specified by three research questions (RQ) focusing on
the three main elements of usability, viz. the accuracy, completeness, and
efficiency:

• RQ1: How can the accuracy of sampling-based tolerance-cost opti-
mization be increased to enable a reliable and realistic consideration of
complex assemblies?

• RQ2: How can the completeness of sampling-based tolerance-cost
optimization be enhanced so that industrial-relevant issues are suitably
addressed?

• RQ3: How can the efficiency of sampling-based tolerance-cost op-
timization be improved to handle complex optimization problems in
reasonable computing times?

The relevant aspects are separately investigated in Chap. 4–6 to answer these
questions. Novel methods, based on initial findings presented in previous
publications by the author as well as students’ theses, are proposed for an

1 The term usability and its general definition given in the ISO 9241-11 can further be used to

evaluate non-physical products, e.g., software tools [566]. In this work, it is used tailored

to tolerance-cost optimization to discuss the developed methods and findings with their

primary focus on its effectiveness and efficiency.
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3 Identification of the need for research and outline of the main part

accurate, complete, and efficient solution of the optimal tolerance alloca-
tion problem (see Fig. 13). A straightforward but representative case study
of a wheel mounting assembly from literature (see Appx. A.8.1) is used in
Chap. 4–6 to illustrate and verify the findings. The consolidation and recon-
ciliation of the individual methods serve as the basis for proposing an optimal
tolerance allocation approach and its prototypical implementation in Chap. 7.
It is applied and evaluated in Chap. 8 for a practical use case of industrial
complexity as an example (see Appx. A.8.2) to verify the achievement of the
research goals finally. Theoptimization algorithmsGAand CS are exemplarily
used to show the benefits of the individual methods. Detailed information on
their functionality is given in Appx. A.3. Since the studies primarily address
aspects of tolerance analysis and optimization, as well as their interrelations,
but aremainly independentof the typeand scopeof the chosen tolerance-cost
model, the work is limited to the most common form of least-cost tolerance
allocation, neglecting the idea of quality loss (see Eq. (6)). In addition, the
focus is on the allocation of design tolerances concerning geometrical KCs
(see Fig. 4). Manufacturing tolerances and concurrent tolerance allocation
(see Sec. 2.1.3) are not further discussed, though the findings provide the
possibility for transfer.
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Figure 13: Outline of the main part with the underlying works from the author and students.
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4 Increasing the accuracy of sampling-based

tolerance-cost optimization

The previous chapters emphasized the elementary role of tolerance analysis
in tolerance-cost optimization, simulating part fabrication, assembly, and
inspection to assure the resultant quality under variations through a sought
cost-optimal set of part tolerances. Fig. 14 takes up the subroutine shown in
Fig. 12 and schematically illustrates the steps and their interrelations. The
choice of the sampling technique and the sample size 𝑛 causes aleatory
uncertainties propagating through the evaluation of the assembly responses
and non-conformance rate (nc-rate) into the quality assurance constraints
Eq. (7) b) of the optimization problem [214, 301]. Hence, the sampling and
the nc-rate estimation technique influence the accuracy of the constraint
evaluation and, thus, the optimization history and the results [408] affecting
their acceptability and optimality, and, in summary, their reliability.

Technique

Sampling
Frequency

distribution(s)
of assembly

response(s)Y

Evaluation
of assembly

response(s)Y

Part
tolerance

probability
distributions

impactsimpacts

Nc-rate
estimation
technique

impactsOptimization
problem

History & results
of optimization

impactsimpacts Nc-rate
z�

Sample size n

Figure 14: Sampling-based tolerance analysis steps and their effects on optimization.

Besides, the geometrical and behavior models used as the basis for evaluating
the assembly responses significantly influence how accurately the tolerance
analysis model can represent reality. Questions about representation models
are an integral part of decades of research resulting in a large number of
different approaches (see Sec. 2.2.2), which always have to be chosen indi-
vidually by the user as a compromise between accuracy and computing time
and, thus, have not to be in the focus of this thesis. Instead, the steps, which
are independent of the geometrical and behavior model, are studied with an
emphasis on its accuracy in the following – starting with the sampling tech-
nique and its uncertainties in Sec. 4.1 and followed by the nc-rate estimation
technique of single as well as multiple assembly responses in Sec. 4.2 and
Sec. 4.3.
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

4.1 Managing sampling-induced uncertainties

Sampling methods are used in tolerance analysis to infer the statistical dis-
tribution of the assembly response based on representative samples. Their
probabilistic behavior consequences that the tolerance analysis results are
always subject to sample size-dependent variance and, thus, induce aleatory
uncertainties in the optimization problem and its solutions. For this rea-
son, suitable measures to mitigate and control these effects are proposed in
the following. The presented aspects are extended from the first concepts
introduced in [S2] and [P14].

Problem statement Since the repetition of sampling-based tolerance analy-
sis will result in different probability frequency distributions of 𝒀, the derived
nc-rates will also differ since 𝒀 serves as the data basis for the subsequent
nc-rate estimation step.1 For the moment, however, the conversion of 𝒀 into
the nc-rate will be put on the background but considered in detail in Sec. 4.2.
The focus in the following is on the investigation of the sampling-induced
variances of the tolerance analysis results.

The sum of all variances of the estimated nc-rates 𝑧̂ results in a bilateral
margin of error 𝜖:

{𝑧̂ ∈ ℚ+
0 ∣ 𝑧 − 𝜖u ≤ 𝑧̂ ≤ 𝑧 + 𝜖o} , (10)

enveloping the real, but unknown nc-rate value 𝑧, as both an over- and
underestimation of 𝑧 can occur. Overestimates of the nc-rate are 𝑧̂-values
estimated to be higher than the real value 𝑧. Underestimates mean that 𝑧 is
higher than the predicted value 𝑧̂ (see Fig. 15 (left)).

Since toleranceanalysis is performed foreachpotential tolerancecombination
within the optimization, it is exposed to both scattering and discontinuity
effects (see Fig. 15 (right)). In this context, scattering effects mean that each
combination scatters differently when sampling is repeated during optimiza-
tion. In contrast, discontinuities describe the deviation of continuity of the
total nc-constraint surface and, thus, include the values of the neighboring
nc-values. It is well known from the literature that both effects influence the
history and results of optimization [27, 349] and negatively impact

• the acceptability, since results are considered acceptable, which are, in fact,
not,

• the optimality, since the noise effects complicate the solution of the opti-
mization problem and, thus, the identification of the global optimum,

1 In this thesis, the primary focus is on the nc-rate as a quality assurance measure, also known

as tolerancing KPI [567]. Still, the results are also transferable to yld or 𝐶𝑝𝑘.
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4.1 Managing sampling-induced uncertainties

• and, in summary, the reliability of the results, which is further hampered
by the probabilistic behavior of the metaheuristic algorithms.
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Figure 15: The use of sampling leads to varying analysis results and a bilateral margin of error

𝜖 resulting in scattering (different results when repeating tolerance analysis with the same

tolerance values) and discontinuity effects (non-smooth constraint surfaces) in tolerance-cost

optimization.

Estimating the margin of error Confidence intervals of proportions can
be used to estimate the accuracy of the estimated nc-rates in ppm based on
MCS [336, 348, 568, 569] with 𝑃 = 𝑧/106 as a function of the sample size 𝑛
and a chosen confidence level 1− 𝛼 as follows [570]:

𝑃̂ − 𝑍𝛼/2√
𝑃̂⋅(1−𝑃̂)

𝑛⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝜖/106

< 𝑃 < 𝑃̂ + 𝑍𝛼/2√
𝑃̂⋅(1−𝑃̂)

𝑛⏝⎵⎵⎵⏟⎵⎵⎵⏝
𝜖/106

, (11)

and, thus, provide a guide to selecting a proper sample size 𝑛 for tolerance
analysis.2 Fig. 16 (top) emphasizes the benefits and validity of sample size
variable confidence intervals for the example of 𝑧 = 2,700 ppm, where (a)
is approximated via Eq. (11) and (b) is simulated for a 250 times repeated
MCS-based tolerance analysis predicting the nc-rate for 𝑓𝑌2

of the wheel
mounting assembly (see Sec. A.8.1 and in particular Eq. (84)).3 With in-
creasing sample size 𝑛, the margin of error decreases proportionally to √𝑛,
whereby the estimated and the predicted margins of error to be faced within
optimization show a good agreement (see the relative difference of under-

2 Eq. (11) is valid, if data is normally distributed, binomial experiment conditions are given

and 𝑛 ⋅min (𝑃, 1 − 𝑃̂) ≥ 5 [570].
3 The assembly response in focus is defined by 𝑓𝑌 = 𝑓𝑌2

= −𝑋1 − 𝑋2 − 𝑋3 + 𝑋5 and in detail

described in Appx. A.8.1. The specification limits are set acc. to the strategy described in

Appx. A.9.
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

and overestimates 𝛿u𝑧̂ , 𝛿
o
𝑧̂ in Fig. 16) and can, thus, be used to estimate 𝜖 in

advance – though the exact location of 𝑧̂ in this margin is unknown. In addi-
tion, 𝜖 strongly depends on the real value of 𝑧. Fig. 16 (bottom) exemplarily
illustrates the margin of error 𝜖 as function over 𝑧 for 𝑛 = 10,000.
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Figure 16: Scattering of nc-rates: lower and upper bounds of confidence interval 𝑞𝑧,2.5%, 𝑞𝑧,97.5%
estimated with Eq. (11) with 𝛼 = 0.05 (a) and empirically 𝑞𝑧̂,2.5%, 𝑞𝑧̂,97.5% as 2.5 %- and 97.5%-

quantiles (b) for repeated MCS-based analysis of the wheel mounting assembly problem (top).

Relative difference between estimated and predicted confidence interval boundaries 𝛿u
𝑧̂ and

𝛿o
𝑧̂ leading to under- and overestimation in percent (center). Predicted absolute and relative

margin of errors 𝜖, 𝜖% = 𝑓(𝑧) for 𝑛 = 10,000 (bottom).

Consequently, in tolerance-cost optimization, the predicted nc-rates and
the corresponding real values 𝑧′ vary with the currently chosen tolerance
values combination 𝒕′ during optimization. While under- and overestimation
consequently influence the optimization steps, the final results’ accuracy
is mainly dependent on 𝑧max since the optima are typically near or on the
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4.1 Managing sampling-induced uncertainties

boundaries of the nc-constraint surface. This knowledge offers the potential
to incorporate the information on 𝜖 into the optimization problem by adding
themas additional noise terms 𝜖 = 𝑓(𝑛, 𝑧̂′) to the nc-rate constraints in either
an optimistic or pessimistic manner, as it is for instance introduced in [301].
Going beyond a pure awareness and acceptance of these sampling-induced
uncertainties, different methods to mitigate or even eliminate the scattering
and discontinuity effects are proposed in the following.

Theoretical solution – Variance reduction in sampling At first, the focus
is on the source of the uncertainties, the sampling itself (see Fig. 14). Different
ways exist togenerate thedistribution frequencies forall individual𝑋𝑖 through
pseudo-random number generators. The inverse sampling method, which
is used in this thesis4, first generates uniform random numbers between
𝑋′𝑖 ∼ 𝒰 ∈ [0, 1] and second transforms them into the final variates 𝑋𝑖 using
the inverse cumulativedistribution functions (icdf) for the assumed tolerance
part distributions with their density function 𝜌𝑖 (see Fig. 17).5 Consequently,
the choice of sampling technique and the sample size 𝑛 affect the first step of
the procedure.6

It is well known from the central limit theorem that the variance of the toler-
ance analysis results decreases proportionally to the root of 𝑛 as 𝑛 increases in
caseof normality. This effect can, forexample, be seen in Fig. 16. In addition to
a conscious choice of high enough sample sizes, variance reduction methods
are alternatives to the well-established MCS for tolerance analysis achieving
lower variances for the same sample size. These two aspects have already par-
tially been investigated in literature (see Sec. 2.2.2). From theory, it is verified
that the scattering of the statistical moments 𝜇̂ and 𝜎̂ can be reduced, which
positively affects the scattering and discontinuity in the constraint evaluation.
However, a quantitative discussion on the effects of variance reduction on
the nc-rate as a quality measure and its propagation along the entire chain
of Fig. 14 on the intermediate and final optimization results is missing so
far. For the subsequent studies, MCS, Latin Hypercube Sampling (LHS), and
Quasi-Monte Carlo Sampling with low discrepancy Sobol’ sequences (QMCS)
are examined inmore detail. Their principles and differences are summarized
in Appx. A.4.

Practical transfer and findings For investigating the influence of the
sampling techniques, the deviation of the determined nc-values from the

4 The reason for this is given at the end of this section.
5 More details on sampling techniques are given in Appx. A.4.
6 In addition, the accuracy of the assumed individual probability density functions (pdf)

𝜌𝑖 plays an essential role [348]. It is not further studied in detail but finally discussed in

Sec. 8.3.
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inverse method.

expected value must be known. The linearity of the focused assembly re-
sponse function of the wheel mounting assembly and the assumption of
normality of all contributing individual characteristics 𝑋𝑖 ± 𝑡𝑖 allow to di-
rectly determine the resulting variance of the assembly response 𝑌 as the sum
squares of all individual variances 𝜎𝑖 = 𝑡𝑖/6. This relation can be utilized to
inversely define the lower and upper specification limits LSL,USL so that a
given set of tolerances 𝑡𝑖 (here 𝑡𝑖 = 0.05 for all tolerances) yields a predefined
nc-rate as the true value. In short, the real values of 𝑧max can be determined
implicitly via LSL and USL as a function of the so-called sigma-level 𝑢, well
known from the six sigma philosophy, where the cumulative distribution
function gives the direct relation between nc-rate and sigma level for the
standard normal distribution [571].7 More details on the definition of the
specification limits are given at the beginning of Appx. A.9 and its concrete
values in Appx. A.9.1. In the subsequent study, the three levels 𝑢 = 2, 3, 4,
corresponding to 𝑧max = 45,500; 2,700; 63.3 ppm, serve as a reference, where
tolerance analysis using MCS, LHS, and QMCS is repeated 100 times for
samples sizes from 𝑛 = 10,000 up to 250,000. The results summarized in
Tbl. 10 are shown through boxplots in Fig. 18.

7 Thenc-rates for themostcommonlyused sigma levels𝑢 candirectly be read from tables [571].
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4.1 Managing sampling-induced uncertainties

The accuracy of 𝑧̂ depends mainly on how representative the samples for 𝑋𝑖
are to represent, in sum, the tails of the assembly response distribution of 𝒀,
i.e., the areas below LSL and aboveUSL, with sufficient probability. Especially
for very tight quality criteria, such as ±4𝜎, these areas are underrepresented
at low sample sizes and lead to a strong underestimation of 𝑧̂.
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Figure 18: Spread of over- and underestimates of the nc-rate 𝑧̂, studied for the three sampling

strategies (MCS, LHS, QMCS) and sigma levels (±4𝜎,±3𝜎,±2𝜎), different sample sizes 𝑛 and

with a 100-fold repetition of each.

As the sample size increases, the samples’ density in these areas increases,
and the variance of 𝑧̂ decreases proportionally to √𝑛. Its mean values shift to
their real values so that the imbalance of the bilateral margin of errors can be
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

equalized with higher sample sizes. While there is no noticeable reduction
in variance, the use of QMCS shows a significant reduction in the width of
the margin of error.

Fig. 19 takes up the results and sets the 95%-scatter range of the absolute
errors |𝑧̂ − 𝑧max| in relation to the real value 𝑧max, denoted as metric 𝛿𝑧̂,95%. It
first emphasizes the comparatively high errors and low accuracy in estimating
low ppm rates with low sample sizes. Second, in contrast to the small positive
effect for LHS, using QMCS significantly helps to achieve more accurate
results with the same sample sizes.
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of the absolute error |𝑧̂ − 𝑧max| relative to the real value 𝑧max, denoted as 𝛿𝑧̂,95%.

Expectedly, the reduction in the variance of the nc-rates, especially evident
for QMCS, should have amitigating effect on the scattering and discontinuity
effects in constraint evaluation and, finally, on the scattering of the optimiza-
tion results. Besides the summary in Tbl. 11, Fig. 20 illustrates the results of
a 50-fold repeated tolerance-cost optimization for the selected example of
the wheel mounting assembly using the CS algorithm with 𝑛 = 10,000 and
𝑧max = 2,700 ppm. Under the condition that each part tolerance 𝑡𝑖 has the
same contribution to both nc-rate and costs, the global cost optimum 𝐶ref

sum,
serving as reference, can analytically be determined for 𝑡𝑖 = 𝑡

opt, where the
maximum limit of 𝑧max is fully exploited. The latter is ensured using the same
tolerance-cost functions for all tolerances (see Tbl. 8).

While MCS and LHS show comparable results, the variance reduction by
QMCS leads to a noticeable variance reduction of the obtained optima 𝐶

opt
sum.

This is reflected in the smaller range between the 2.5%- and 97.5%-quantile
qr

𝐶,95%
, covering 95%of all costoptimasince theconstraintevaluationsduring

optimization are subject to minor variance for the same sample size 𝑛 (see
Fig. 20 (left)). Besides the impact of sampling-induced uncertainties on the
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4.1 Managing sampling-induced uncertainties

evaluation of the fitness of the solutions during optimization, the resulting
margin of errors or confidence intervals with the finally determined tolerance
values are, in particular, critical to the reliability and acceptability of the
results. Fig. 20 (right) shows the superposition of the margins of error for
𝑧̂opt, which result from a 100-fold evaluation of the nc-rates for the 50 feasible,
optimally identified tolerance combinations after optimization. As expected,
the margins of error for the QMCS are significantly lower than for MCS and
LHS. The reasons for the significantly more frequent exceeding of 𝑧̂max for all
sampling strategies and the corresponding shift from theglobal cost optimum
𝐶refsum results from the imbalance mentioned above of the margin of error and
tendency to underestimation for low sample sizes.
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obtained for a

50-fold repetition of solving the wheel mounting assembly problem taking the three sampling

strategies into account (left). Scatter of nc-rates 𝑧̂opt for a 100 times resampling and tolerance

analysis using the identified optimal tolerances (right).

Theoretical solution – Scattering and discontinuity elimination The
above results show that variance reductionmethods can reduce scattering and
discontinuities, but also that these can never be avoided entirely, mainly for
computational time reasons. Since the scattering results from the repetitive
execution of the tolerance analysis, it is purposeful to mitigate these effects
to a minimum or even to eliminate them.

Following this idea, it is useful if the scattering in twosucceedingoptimization
steps can be avoided for the elitist solutions, i.e., the best solutions of the
current generation 𝑔 and included in the population in the next generation
𝑔+1. By skipping the step toanalyze themagainwith newlygenerated random
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

numbers, solutions that were valid beforehand are not evaluated as invalid
in the subsequent generation lying in the upper part of the margins of error,
i.e., in the region of underestimation. This will lead to less perturbation in
the intensification steps, which, in addition to diversification, are crucial for
achieving the global optimum (see Appx. A.3). Fig. 21 exemplarily contrasts
two optimization runs for the wheel mounting assembly allocation problem,
whereas in strategy (a), the whole population, including the elitists from
the previous generation, and in (b) only the new individuals are evaluated.
Additional background information on the study is given in Tbl. 12.

(a) Reevaluation of elitist solutions (b) Reuse of previous results
for elitist solutions
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Figure 21: Optimization history for the optimal costs 𝐶min
sum and its related nc-rates 𝑧̂opt over the

generations 𝑔 and the change in two succeeding generations Δ𝐶𝑔 for strategy (a), reevaluat-

ing the elitist solutions, and strategy (b), reusing of previous results for elitist solutions, in

comparison.
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4.1 Managing sampling-induced uncertainties

Having a look at the optimization history for strategy (a), there is a noisy
course of 𝑧̂ and 𝐶min

sum over 𝑔, leading to erratic changes in the current optimal
cost 𝐶min

sum in two successive generations Δ𝐶𝑔. Besides stagnation Δ𝐶𝑔 = 0 or
improvement Δ𝐶𝑔 < 0, the results can also deteriorate Δ𝐶𝑔 > 0 because the
previously elite solutions are now classified as invalid and another individual
with higher costs and mostly lower nc-rate is identified as the best solution.
Strategy (b) eliminates this effect, resulting in a less scattered and noisy
optimization. Most of the implementations of metaheuristic algorithms
already consider this aspect, as it not only reduces scattering in stochastic
optimization algorithms but also has the advantage of shorter computation
times in deterministic problems. Theoretically, if all intermediate results are
remembered and not repeated, the scattering could be eliminated entirely.
Nevertheless, the calculated nc-rates for all potential tolerance combinations
are subject to aleatory uncertainties. Hence, the position in the margin of
error is purely random and discontinuous response surfaces result, where
the chosen sampling procedure and the sample size 𝑛 define the extent of
discontinuity.

Motivated by the proven positive effect of eliminating scattering results from
repeated tolerance analysis, the idea is now expanded to completely avoid
both scattering and discontinuity effects in optimization. The variance of the
results originates from the generation of the uniformly distributed random
numbers in the first sampling step of Fig. 17. However, this first step is
identical in all optimization steps. Only the second step, the transformation
of the uniform variates into the current characteristics 𝑋𝑖, is different in each
optimization step since the currently allocated tolerances 𝑡𝑖 serve as the input
for the icdfs. Instead of repeating the random number generation step for
each individual 𝑝 in each generation 𝑔, it makes sense to perform it only
once at the beginning and to reuse the generated uniform numbers for all
tolerance analyses performed during the optimization, turning the stochastic
problem into a deterministic one. Fig. 22 depicts the idea of reusing initially
generated uniform pseudo-random numbers (b) compared to the standard
method of iterative resampling (a).

Practical transfer and findings Using the wheel mounting assembly as
a case study with the same settings for CS again, both strategies (a) and (b)
are studied in the following. Fig. 23 summarizes the results, given in detail
in Tbl. 13, the achieved cost optima 𝐶

opt
sum for 𝑧max as well as the margin of

error when repeating the optimization 50 times with MCS and a sample
size 𝑛 = 10,000; 50,000; 100,000. First, it can be seen that the variance of
the optima and its mean shift from the real optimum is decreasing with
increasing sample size 𝑛, whereas the proportionality to √𝑛 is recognizable.
The optima 𝐶

opt
sum obtained by strategy (a) are, however, significantly lower
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Figure 22: Random numbers used in sampling-based tolerance-cost optimization: iterative

resampling (a) vs. reuse of initially generated uniform random numbers (b).

than the referencevalue𝐶refsum, which can beexplained by the high frequencyof
underestimation of the nc-rates 𝑧̂opt. In comparison, using the same random
numbers (strategy (b)), 𝐶

opt
sum leads to significantly higher variance, but the

mean shift to the reference values is smaller.

The obtained differences in the results can be suitably explained by taking
a closer look at the optimization history. Therefore, Fig. 24 visualizes two
exemplary optimization runs utilizing its intermediate optima 𝐶min

sum and
corresponding nc-rates with 𝑛 = 10,000, where the results of a 100 times
repeated tolerance analysis for each best intermediate solution are visualized
as a scatter plot. For strategy (a), the optimizer tries to improve the current
solution by widening the tolerances as far as possible whenever it finds a
set of random numbers that yield lower cost values by underestimating the
nc-rate. Thus, by giving the optimizer a sufficiently large number of trials,
i.e., by high numbers of generations 𝜂𝑔, the probability of finding a sample
that gives larger underestimates of the nc-rate increases. The acceptability
constraints hold for the current sample set and, thus, further improvement
of the objective function and a new cost optimum is achieved. In contrast,
the initial chosen set of random numbers in strategy (b) defines the constant
shift from the real value. When repeating the optimization, the distribution
of the location in the margin of error is symmetrical, having both under- and
overestimation of 𝑧 represented in the final solutions. This effect leads in
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Figure 23: The scatter of the obtained optima 𝐶
opt
sum and their corresponding nc-rates 𝑧̂opt results

for a 50-fold repetition of sampling-based tolerance-cost optimization of the wheel mounting

assembly using strategy (a), iterative resampling, and (b), reuse of same random numbers.

sum to the higher variances in 𝐶
opt
sum and 𝑧̂opt but lower mean shifts to their

real values in Fig. 23.

Although strategy (a) generally tends to underestimate, it cannot be claimed
if andwhere exactly the algorithmconverges in the region of underestimation.
It always depends on the problem’s complexity, structure, and chosen settings
for optimization. However, the results obtained by strategy (b) are not more
reliable per se since they are always subject to a constant shift from the real
value during optimization. In contrast, the exact value of the shift is purely
random and depends on the chosen sampling. The confidence intervals pro-
posed help to estimate the total margin of error, providing information about
the range of potential variance in advance. The deterministic nature of strat-
egy (b) helps to ensure the comparability of different optimization algorithms
or strategies. Therefore, Appx. A.7 overviews different strategies to handle
random numbers in optimization and sampling, serving as reference in this
thesis. In addition to the reduced noisiness in the optimization, the overall
optimization time is reduced, which has a positive effect, especially when us-
ing time-consuming sampling techniques such as the LHS. For these reasons,
the proposed inverse sampling method with the same random numbers is
recommended for sampling-based tolerance-cost optimization.
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Figure 24: Optimization history expressed by the objective values 𝐶min
sum, the respective nc-rates

𝑧̂, and its scatter for a 100 times repetition in comparison: (a) iterative resampling vs. (b) using

the same, initially generated random numbers for repetitive tolerance analysis acc. to Fig. 22.

In conclusion, variance reduction in combination with the reuse of ran-
dom numbers constitutes an effective method for increasing the accuracy of
tolerance-cost optimization. At the same time, the latter ensures the compa-
rability of optimization results since the randomness of the results from the
sampling is eliminated and these are only subject to the randomness from the
metaheuristics. Nevertheless, its potential is limited when using commercial
tolerance analysis software. Since they often exclude a modification of the
sampling routines, the sample size remains the only countermeasure.

Sampling-based tolerance analysis induces aleatory uncertainty in
tolerance-cost optimization and negatively influences its accuracy. High
sample sizes, variance reduction techniques, and the reuse of previous
results and random numbers within optimization help to reduce and
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4.2 Estimation of product (non-)conformance

eliminate scattering and discontinuity effects on the constraint surface,
improving the results’ reliability.

4.2 Estimation of product (non-)conformance

The second main contributor to the accuracy of tolerance analysis and opti-
mization results is the nc-rate estimation method (see Fig. 14). The different
nc-rate estimation methods presented in [P5] are discussed in more detail
below, incorporating the findings from Sec. 4.1.

Problem statement It is already known from Sec. 2.2.2 that the specification
limits LSL and USL divide the solution space of 𝑌 into a conformance and
non-conformance region. Hence, the yld or conformance corresponds to the
probability that the critical assembly response 𝑌 will fall in this region of
conformance, which can be mathematically expressed as an integration of
the multivariate probability distribution of all characteristics 𝑋𝑖 with their
lower and upper boundaries 𝑋lb

𝑖 , 𝑋
ub
𝑖 involved [27]:

𝑧 = 1− yld = 1− ∫
𝑋ub
1

𝑋lb
1
…∫

𝑋ub
𝑛

𝑋lb
𝑛
𝑞 (𝑋1, … , 𝑋𝑛) 𝜌 (𝑋1, … , 𝑋𝑛)d𝜒1…d𝜒𝑛, (12)

where 𝑞(𝑋1, … , 𝑋𝑛) represents a binary indicator evaluating if the condition
LSL ≤ 𝑓𝑌(𝑿𝑚) ≤ USL is met (𝑞(𝑿𝑚) = 1) or not (𝑞(𝑿𝑚) = 0).

In sampling-based tolerance analysis, the integral of Eq. (12) is not solved
explicitly but approximated by numerical integration. In the first step, 𝑛
samples for the characteristics 𝑋𝑖 are drawn from the part tolerance proba-
bility distributions 𝜌𝑖, purely randomly or more systematically depending
on the sampling procedure chosen (see also Sec. 4.1 and Appx. A.4), and
the respective 𝑌 values are calculated via 𝑓𝑌(𝑿𝑚). The result is a frequency
distribution of 𝑌 for which a statistical conclusion about the conformance of
the population is to be made in the second step. Mathematically, this second
step, i.e., the nc-rate estimation, can be expressed as an integral over the
resulting probability density function 𝜌𝑌 or consequently with the associated
cumulative frequency distribution Φ𝑌 (see Fig. 25):

𝑧̂(𝑡) = 1− ∫
USL

LSL
𝜌𝑌(𝒕, 𝜒)d𝜒 = 1− (Φ𝑌(USL) − Φ𝑌(LSL)), (13)

where one-sided, only lower- or upper-bounded assembly response functions
are represented by USL = ∞ or LSL = −∞. Consequently, the accuracy
of the nc-rate estimation depends primarily on the ”fit of [the] statistical
distribution [𝜌𝑌] to the resultant assembly data [𝒀]” [348], besides the quality
of the input data, i.e., the sampled data 𝒀 based on the assumed probability
distributions 𝜌𝑖 [348].
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

Theoretical solution Therefore, the main question in nc-rate estimation
is how the cumulative distribution function (cdf) Φ𝑌 can be obtained. The
answer differs if the assumption of the distribution of 𝑌 can be confirmed or if
it must be dealt with an unknown distribution of 𝑌. Suppose the assumption
of normality or non-normal distributions, such as the log-normal or beta
distribution, can be verified with the help of suitable statistical tests, such
as the Kolmogorov-Smirnov-test [572] or the Anderson-Darling-test [573]. It
is then possible to predict 𝑧̂ numerically (with the aid of known, formulaic
relationships for the cumulative frequency distribution and the statistical
moments determined from 𝑌, e.g., 𝜇̂ and 𝜎̂) or practically (via tabulated 𝑧-
values [574]). For the assumption of normality and based on the underlying
statistical principles [575, 576], Eq. (13) can be transformed into:8

𝑧̂ = 1− (Φ𝜇̂,𝜎̂(USL) − Φ𝜇̂,𝜎̂(LSL)) (14)

with: Φ𝜇̂,𝜎̂(x) =
1

√2𝜋𝜎̂
∫

x

−∞

exp(−
(𝜒 − 𝜇̂)

2

2𝜎̂2
)d𝜒, (15)

where 𝑥 = LSL or 𝑥 = USL. (16)

Consequently, the accuracy of the nc-rate estimation (ncdf) acc. to
Eq. (14)–(16) depends on the deviation of the true and estimated value of the
statistical moments 𝜇 − 𝜇̂ and 𝜎2 − 𝜎̂2.
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Figure 25: Principleof cdf-based nc-rate estimation for knownand unknownassembly response

distributions 𝜌𝑌.

8 An alternative expression of Eq. (14)–(16) results with the error function erf known and used

in literature: Φ(𝑥, 𝜇, 𝜎) = 0.5 ⋅ (1 + erf (
𝑥−𝜇

𝜎√2
)) [576].
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4.2 Estimation of product (non-)conformance

However, if the distribution type of 𝜌𝑌 is unknown, the cdf must be approxi-
mated using non-parametric procedures [577]. The kernel density estimation
(kde) is one possible way to estimateΦ𝑌 over a sequence of densities of se-
lected kernels Κ with a defined bandwidth ℎΚ [578]. Here, the estimation
quality depends on the fit of the chosen kernel Κ, i.e., the selected single
density function, and its bandwidth ℎΚ to 𝒀. More details on kde are given in
Appx. A.4.

In comparison, it is mathematically less complex to describe the cdf with an
empirically approximated cdf (ecdf) as follows:

𝑧̂ = 1−
∑
𝑛

𝑚=1 𝑞(𝑌𝑚)

𝑛
, (17)

with: 𝑞 (𝑌𝑚) = {
1 if LSL ≤ 𝑌𝑚 ≤ USL,

0 otherwise,
(18)

𝑌𝑚 = 𝑓𝑌(𝑿𝑚), (19)

where 𝑞(𝑌𝑚) is an indicator function for product conformance. In words,
it means that all the samples 𝒀, which are smaller and larger than LSL and
USL, respectively, are counted and then put in ratio to the total number of
samples 𝑛. Consequently, the estimator depends on the sample size 𝑛 and
the sampled data 𝒀.

Practical transfer and findings The subsequent investigations aim to study
the difference between the proposed parametric and non-parametric nc-rate
estimationmethods. Thewheelmounting assembly fromtheprevious section
with thesameassumptions isused againasacase study. MCS,QMCS, and LHS
is repeated 100-fold for different sample sizes 𝑛 from 10,000 up to 250,000. In
linewith Sec. 4.1, the influence of the three proposed nc-rate techniques ncdf,
kde-cdf, and ecdf is studied for 𝑧max = 63; 2,700; 45,500 ppm (±4𝜎;±3𝜎;±2𝜎).
Because of the linearity of 𝑓𝑌 and the normally distributed input variables 𝑋𝑖,
normality for 𝑌 is given and the parametric estimation follows Eq. (14)–(16).
A Cauchy kernel Κ is chosen for kde-based nc-rate estimation, where the
bandwidth is individually selected to optimally estimate normal density acc.
to [579] (see Appx. A.4 and Appx. A.9.1).

Fig. 26 gives an overview of the predicted nc-rate values 𝑧̂ for MCS. The
estimates using ecdf and kde-cdf yield comparable wide margins of error,
which decrease successively over 𝑛 as expected. In particular, ecdf shows a
strong underestimation of the nc-rate, especially when 𝑛 is too small.
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4.2 Estimation of product (non-)conformance

This effect is particularly evident in the caseof very lowexpected nc-rates. The
reason for this is the determination of the nc-rates by the discrete, piecewise-
linearly defined cdf, which results in a strong discretization of the nc-rates
in dependence of 𝑛. For example, considering 𝑛 = 10,000, a sample more
or less in the tails of 𝜌𝑌 outside LSL or USL leads to a difference/change of
(1 ∶ 10,000) ⋅ 1 ⋅ 106 ppm = 100 ppm.

In comparison, the estimates using kde-cdf and ncdf lead to more symmetric
error margins. The continuous cdfs determined via kde or given directly for
standard distributions, such as normal distribution in the case of ncdf, result
in amore balanced ratio of underestimates and overestimates. At this point, it
must be said retroactively that all studies in the previous section are based on
an ecdf-based nc-rate estimation acc. to Eq. (17)–(19), further explaining the
results in Fig. 18 et seq. Particularly striking are the narrow margins of error
resulting through the robust estimation of the statistical moments of 𝜇̂ and
𝜎̂ for cdf. The use of variance-reducing sampling methods further enhances
this effect. Fig. 27, contrasting the results obtained with MCS and QMCS for
𝑧max = 2,700 ppm, emphasizes the positive effect of variance reduction for
all estimation methods, but especially significant for ncdf.
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Figure 27: Comparison of the results obtained for a 100 times repeated tolerance analysis based

on MCS and QMCS and the presented nc-rate estimation techniques ecdf (a), kde-cdf (b),

and ncdf (c).

Besides, it illustrates the tendency of ecdf to underestimation and kde-cdf to
overestimation, which can be seen in the shift of the scatter boxes and the
median from the true value 𝑧max. In contrast, themargins of error for ncdf are
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

centered around 𝑧max. In line with the findings from Sec. 4.1, the results for
LHS are comparable to those for MCS, whereby the previously made findings,
specific for the respective nc-rate estimation techniques, are confirmed. Thus,
no detailed discussion of these results is given at this point. The complete set
of results is summarized in Tbl. 14–16 and additionally visualized in Fig. 97.

To further study the effects on optimization, the tolerance allocation problem
from Sec. 4.1 is now solved 50 times following the strategy of same random
numbers from Sec. 4.1. MCS is chosen as tolerance analysis technique and
optimization is performed for the different nc-rate estimation techniques,
each for 𝑛 = 10,000; 50,000; 100,000. CS is used for optimization (for the
settings, see Appx. A.9.1). Fig. 28 illustrates the results, summarized in Tbl. 17,
by means of the achieved cost optima 𝐶

opt
sum for 𝑧max (left).
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Figure 28: Overview of the obtained optima 𝐶
opt
sum, the average computation times in relation

to the minimum one 𝜏rel, and the scatter of final nc-rates 𝑧̂opt for a 50-fold repetition of

optimization making use of the proposed nc-rate estimation techniques ecdf (a), kde-cdf (b),

and ncdf (c).

Similar to Fig. 23, it shows the variance of 𝑧̂when repeating tolerance analysis
and nc-rate estimation 100 times after optimization taking the optimally allo-
cated tolerance values into account (right). The ncdf-specific effects of lower
variances and more centered error margins of 𝑧̂, already observed in the anal-
ysis studies, have a direct impact on lower variances as well as the centrality
of 𝐶

opt
sum (see Fig. 28 (c)). Given that this study uses the same sampling within

the optimization (as proposed in Sec. 4.1), the values below 𝐶ref
sum obtained

for ecdf are observed much more frequently due to the higher probability of
underestimation of 𝑧̂ (see Fig. 28 (a)). In comparison, the tendential overes-
timation of the kde-cdf, additionally influenced by the stochastic approach
of the optimizer, which does not exclude an early convergence outside the
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4.3 Non-conformance rate estimation for multiple assembly responses

global optimum, leads in total to higher optima 𝐶
opt
sum (see Fig. 28 (b)). In

terms of computational efficiency, kde is inferior to ncdf and ecdf, which is
reflected in the comparison of the relative average optimization times 𝜏rel in
Fig. 28.

In summary, the estimation of nc-rates using ncdf provided the best results.
At the same time, the variance reduction method QMCS is suitable to fur-
ther improve the accuracy of sampling-based tolerance-cost optimization.
However, parametric estimators are only applicable if a predefined assump-
tion of the distribution is proven to be true for at least the optimal solution.
But, for all intermediate tolerance value sets (which might be numerically
cost-intensive), the distribution type of 𝑌may also change during the opti-
mization, for example, since the contributors of tolerances 𝑡𝑖 vary with their
currently allocated values or the input distributions 𝜌𝑖 of the single features
𝑋𝑖 dynamically alter, as it is the case in machine selection/allocation (see
Sec. 5.1–5.2).

Provided that the distribution of the assembly response is known and
passes a statistical test, the use of its cumulative distribution function
for parametric nc-rate estimation leads to a tighter margin of error and
more accurate optimization results at the same sample size. Otherwise,
non-parametric nc-rate estimation based on ecdf is superior to kde.

4.3 Non-conformance rate estimation formultiple

assembly responses

The reflections so far restrict that the total assembly quality is expressed
by only one KC and represented in tolerance analysis by a single assembly
response function. However, it is common in practical applications that a set
of multiple KCs contribute to total product quality, which first impacts the
nc-rate estimation and second the definition and solution of the tolerance-
cost optimization problem. The findings below summarize and extend the
research presented in [P8, P10] introducing a solution to handle multiple
assembly responses and their correlations accurately in tolerance-cost opti-
mization.

Problem statement At first, the difference between KC and assembly
response, as understood in this thesis, should be emphasized. A KC is a
characteristic on the assembly level critical for the overall product quality,
e.g., a gap or an angle. In comparison, assembly responses 𝑌 act as virtual
metrics, which represent the KCs in simulation alone or in part and can
be determined via implicit and explicit functions 𝑓𝑌 (see Sec. 2.2.2). Fig. 29
follows this distinction and overviewsdifferent caseswheremultiple assembly
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

responses 𝑌 are needed for product quality assurance by simulation, where
either one or multiple KCs are of interest.

Figure 29: Multiple assembly responses to be handled in nc-rate estimation. Functional

requirements expressed by one KC (𝐾 = 1) (top) and multiple KCs (𝐾 > 1) (bottom). The

examples are freely adopted from [183, 203, 287].

Depending on the assembly and KC type and theirmodeling, several assembly
responses 𝑌 are often necessary to represent one single KC. In this respect,
the definition of the assembly response function 𝑓𝑌, including the selected
geometrical and behavior model, plays an essential role. If, for example, a
minimum distance in 2D is defined as KC and shape variations are neglected,
it can, for instance, be represented by two virtual measurements. Either the
separately determined 𝑌measures are transferred into a substitute response
value 𝑌′ (here 𝑓𝑌′ = min(𝑌1, 𝑌2)) or they are checked each individually via
respective specification limits. In comparison, an angularity requirement
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4.3 Non-conformance rate estimation for multiple assembly responses

can only be evaluated through 𝑌′ because the KC limits are defined by both
assembly response information (see Fig. 29 (top)).

Besides, multiple assembly responses occur if a KC must be assured for dif-
ferent assembly configurations 𝜁. Typical examples are time-variant mecha-
nisms, for which certain positions or the entire motion, e.g., to evaluate its
motion accuracy, are considered to be critical. Similarly, different configu-
rations may occur in static assemblies during the assembly process, either
randomly or intentionally, e.g., due to gravity or external forces for alignment.
In the case of overconstrained assemblies with gaps, for example, all admissi-
ble gap configurations must be considered (see Fig. 29 (top)). They originate
from the degrees of freedom intentionally left open by clearance [134, 355]
and are finally locked by subsequent joining or assembly operations, i.e., by
additional elements for part-driven assemblies or by joining operations for
process-driven assemblies (see Sec. 2.2.2).

Moreover, even for simple assemblies, multiple KCs (𝐾 > 1) may be rele-
vant, although axiomatic design pretends that these situations should be
avoided in advance [580]. For instance, multiple critical gaps must be within
predefined specification limits to ensure assembly functionality (see Fig. 29
(bottom)). If the KCs do not share any common elements, they are indepen-
dent of each other and variations of characteristics 𝑿 always affect only one
KC [6]. Otherwise, they are interrelated via common geometrical features
or non-geometrical characteristics. Typical examples are dimensional and
geometrical variations or variable material properties, e.g., the temperature
expansion coefficient. Interrelated KCs are correlating, but some KCs may
play a minor role in comparison [6] because the contributors of the common
characteristics 𝑿 to them are significantly smaller and/or the boundaries
and/or the specification limits are wider and, thus, less critical. In contrast,
if the variations of 𝑿 contribute in a contradictory way in their algebraic sign
(e.g., 𝑋𝑖 ↑ → 𝑌1 ↑ & 𝑌2 ↓), the KCs conflict and some KCs will degrade the
others [6, 580].

A review of the approaches from the literature shows that, especially when
several KCs are taken into account, they are usually assessed separately and
checked with 𝐾 individual constraints following Eq. (4). However, the small
example in Fig. 30 illustrates that the correlations of several assembly re-
sponses impacting the higher-level assembly quality are neglected in nc-rate
estimation. While the isolated evaluation of 𝑌1 and 𝑌2 indicates two and four
non-conform assemblies, the sample-per-sample assessment of all criteria
leads to five non-conform assemblies. Approaches using QL-functions cap-
ture these effects appropriately by additional covariance terms. These effects
are, however, neglected when estimating the nc-rate (or the directly related
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

𝐶𝑝𝑘-values) by sampling methods or 𝑇𝑌 by convolution-based approaches,
for instance, by the RSS or estimated mean shift method (see Sec. 2.2.3).
Consequently, this shortcoming negatively affects the constraint evaluation’s
accuracy and, thus, the optimization results’ acceptability.

n −|A| ; A = {m | LSL1 ≤ Y1,m ≤ USL1}

n −|B| ; B = {m | LSL2 ≤ Y2,m ≤ USL2}
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Figure 30: Illustration of the effect of multiple assembly responses on nc-rate estimation.

Instead of an independent consideration of a set of single nc-rates according
to Eq. (5) with the aid of a univariate pdf 𝜌𝑌𝑜, a multiple integral over one
common multivariate pdf 𝜌∗𝑌 can handle this problem properly:

𝑧̂(𝒕) = 1− ∫
USL𝑜=1

LSL𝑜=1
⋯∫

USL𝑂

LSL𝑂
𝜌∗𝑌(𝒕, 𝜒1, … , 𝜒𝑜)𝑑𝜒1…𝑑𝜒𝑂. (20)

Theoretical solution Since 𝜌∗𝑌 cannot be easily describedmathematically so
that it can be integrated or transformed into amultivariate cdf, it is reasonable
to solve this problem by an ecdf-based nc-rate estimation method. There-
fore, Eq. (17) is extended to a multivariate ecdf covering multiple assembly
responses 𝑌 by a set of test functions 𝑞, covering the cases shown in Fig. 29.

The functions 𝑞(𝑿𝑚) check if the 𝑘-th KC is fulfilled for 𝑿𝑚:

𝑞𝑘(𝑿𝑚) = {
1 if LSL𝑘 ≤ 𝑓𝑌𝑘(𝑿𝑚) ≤ USL𝑘,

0 otherwise.
(21)

If there are multiple configurations, 𝑞𝑘,𝜁(𝑿𝑚) is used to check if the 𝑘-th KC
is fulfilled for the 𝜁-th assembly configuration:

𝑞𝑘,𝜁(𝑿𝑚) = {
1 if LSL𝑘 ≤ 𝑓𝑌𝑘(𝑿𝑚) ≤ USL𝑘,

0 otherwise.
(22)

Eq. (22) could further be extended to multiple assembly responses separately
evaluated for the 𝑘-th KC. However, it makes no difference in the result if they
are first reduced to a critical response 𝑌′ and then assessed or evaluated for all

68



4.3 Non-conformance rate estimation for multiple assembly responses

configurations. For clarity, this case is not further mathematically specified
in Eq. (22).

Aggregating the developed test functions for all 𝐾 KCs with Ζ configurations
in one overall nc-rate estimation equation, Eq. (17) expands to:

𝑧̂asm = 1−
∑
𝑛

𝑚=1 𝑞asm(𝑿𝑚) ⋅ ∏
𝐾

𝑘=1
∏
Ζ

𝜁=1 𝑞𝑘,𝜁 (𝑌𝑘,𝜁,𝑚)

𝑛
, (23)

with: 𝑞asm(𝑿𝑚) = {
1 if asm. reqs. are fulfilled for 𝑿𝑚,

0 otherwise,
(24)

𝑞𝑘,𝜁 (𝑌𝑚,𝑘,𝜁) = {
1 if LSL𝑘 ≤ 𝑌𝑚,𝑘,𝜁 ≤ USL𝑘,

0 otherwise ,
(25)

𝑌𝑚,𝑘,𝜁 = 𝑓𝑌𝑘,𝜁(𝑿𝑚, 𝜁), (26)

where 𝑞asm is a test function to evaluate whether the parts with the current
variations 𝑿𝑚 can be assembled at all. Again, the modeling decides whether
the assemblability criterion has to bemapped explicitly or is already implicitly
contained in 𝑓𝑌. Part non-interference equations, for instance, have to be
satisfied while finding the worst-case configurations by optimization [134]
or the solution of mechanisms are not allowed to be complex so that the
𝑌-values can be determined either at all or correctly [581]. In contrast, using
vector models, for example, the assemblability can be considered directly via
𝑓𝑌 with reasonable specification limits discarding part interference.

Practical transfer and findings The effects of the correlations between
multiple assembly responses on the optimization results for least-cost tol-
erance allocation are the focus of the subsequent studies. Therefore, two
optimization strategies are compared, viz. quality assurance with an individ-
ual nc-constraint for each assembly response (a) and with one overall nc-rate
constraint (b) according to Eq. (23)–(26). The maximum nc-rate is set for all
𝐾 constraints as well as for the total nc-rate to 𝑧𝑘,max = 𝑧max = 2,700 ppm.
A second KC supplements the wheel mounting assembly from the previous
example, so two KCs (𝐾 = 2) are functional-critical for one assembly configu-
ration Ζ = 1 (see Fig. 90). As the geometrical and behavior model are based
on a vector model, the assemblability condition 𝑞asm is implicitly considered
in the specification limits and must not be evaluated separately. All 𝐾 lower
specification limits LSLk > 0, so negative gaps and part intersections are
excluded via the nc-rate estimation. Each characteristic is still assumed to
be normally distributed. As in the previous sections, this allows to define
the specification limits LSL and USL inversely as a multiple of the root sum
squares of the sumof all individual part tolerances 𝑡𝑖 = 0.5⋅(𝑡ub𝑖 − 𝑡lb𝑖 ) leading
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4 Increasing the accuracy of sampling-based tolerance-cost optimization

to a balanced solution spacewith 50% feasible and 50% non-feasible solutions
(see Appx. A.9.1). This implies that the boundaries and the tolerance-cost
parameters are equal for all tolerances. For optimization, the CS algorithm is
used with 𝜂𝑝 = 25, 𝜂𝑔 = 200, 𝜂𝑔,stall = 50. The same MCS with 𝑛 = 100,000 is
used for the individual repetitions for both strategies (a) and (b) (𝜂𝑟 = 10),
ensuring the comparability of the results while following strategy O-2/S-3
acc. to Tbl. 6. Further details on the study are given in Tbl. 7 and Appx. A.9.1.
The main optimization results are visualized in Fig. 31. All details are given in
Tbl. 18–20.
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Figure 31: Tolerance-cost optimization results with multiple assembly responses handled by

(a) 𝐾 nc-constraints and (b) one overall total nc-constraint.

It is evident that the obtained cost minima 𝐶
opt
sum are lower for case (a) (see

Fig. 31 (left)). For case (b), tighter tolerances are needed not to exceed the
maximum limit of the total nc-rate. This finally leads to higher manufac-
turing costs since 𝑧̂

opt
asm is always higher due to its correlation terms than the

dominant, most critical 𝑘-th nc-rate and thus the acceptability constraints
are more restrictive in case (b) (see Fig. 31 (center)). On the one hand, these
interrelations can be observed in comparing the optimal tolerance values for
the respective best runs in Fig. 32. On the other hand, the comparison of
the total nc-rates in Fig. 31 (right), where these are calculated for strategy (a)
after optimization for the obtained best tolerance values, indicates that they
are much higher than the nc-rates obtained by strategy (b). Hence, the study
exemplarily proves the theoretical considerations discussed above.

Consequently, if the focus is ultimately on the overall assembly quality, only
the ecdf-based nc-rate estimation according to Eq. (23)–(26) can represent
it accurately. Further transferring the findings on best-quality tolerance
allocation (see Eq. (6) a)), the number of 𝐾 objectives for the𝐾 single nc-rates
is reduced to one objective for the total nc-rate, whereby the multi-objective
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4.3 Non-conformance rate estimation for multiple assembly responses

optimization can be turned into a single-objective optimization. Finally, it is
essential to note that the level in the KC flow-down is decisive. In the above
considerations, quality was only considered at the functionality level. In the
example, both KCs define function fulfillment, so it is reasonable that the
conformity requirements for the functionality must be fulfilled in total. If
further criteria, such as aesthetics, are considered for quality assurance, an
individual assessment and prioritization or weighting of the requirements
can make sense.

1 2 3 4 5
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𝑡!
"#$
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Figure 32: Obtained optimal tolerance values for the best runs from Fig. 31.

If multiple KCs or measurements are required to virtually assure the total
product quality, their correlations can adequately be considered through
an overall empirical cdf-based nc-rate estimation. Their consideration
acc. to Eq. (23)–(26) and in optimization by one acceptability constraint
leads to tighter tolerances and higher costs, but it can assure the total
product quality more accurately.
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5 Enhancing the completeness of

sampling-based tolerance-cost

optimization

In academia and industry, it is agreed that tolerance-cost optimization should
be performed as one of the last product design steps [48]. Its inclusion in the
product-driven tolerance design phase is reasonable since it is the only phase
where the tolerance expert can overview the entire assembly and balance the
individual design tolerances across the parts. After that, their interrelations
over the KCs are generally lost in the subsequent part manufacturing process
planning steps acting on the part level. Consequently, the main context of
use of tolerance-cost optimization is specified for product design, in which
the answering of product design relevant questions are put in the spotlight,
e.g., the representation of the assembly behavior in use. Although the manu-
facturing and assembly processes are to be simulated virtually in tolerance
analysis (Fig. 10), process design aspects are represented in a simplified way
or neglected, which can partly be explained by the lack of information on the
machines, processes, and suppliers to be used, which are not yet defined. Ex-
tensionsof optimization-based toleranceallocationmethods toearly consider
issues from process planning, such as machine selection and process schedul-
ing, intend to counteract the lack of manufacturing orientation but are partly
hampered when using convolution-based tolerance analysis techniques due
to the abstraction of information by one single tolerance value and relying on
often freely chosen or estimated standard part tolerance probability distribu-
tions. Sampling techniques, in contrast, are generally capable of answering
these questions more realistically through machine-specific manufactur-
ing distributions, but the current scope of sampling-based tolerance-cost
optimization limits its potential.

Hence, the subsequent sections focus on the shortcomings mentioned above
in its completeness, the second important aspect of effectiveness (see
Sec. 3.3). Novel machine/supplier selection and allocation methods with
multiple, geometrical tolerances are introduced to cover more practical in-
dustrial fabrication scenarios. An early consideration of relevant process
design aspects and tasks helps to better link and tailor the adjacent toler-
ance allocation and process planning phases and to represent the tolerance
allocation problem more completely. As in the previous section, the wheel
mounting assembly example, described in detail in Appx. A.8.1, accompanies
the presentation of the methods as the use case with different scenarios.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

5.1 Alternativemachine and supplier selection

In the previous chapters, the part tolerance probability distributions were set
fixed before optimization and assumed to follow normality. In practice, it is
instead the case that the selection of tolerance values also requires choosing
a suitable machine for a manufacturing process or a supplier, which differs
not only in its tolerance-related costs but also in the resulting geometrical
part quality (see Fig. 33). The subsequent discussion is limited to the decision
on machines for single-stage processing and suppliers without considering
additional process selection. However, process selection can be regarded as
an additional task to machine selection in the same manner since the general
problem to be solved in optimal tolerance allocation stays the same [P9].
The subsequent findings are based on initial studies presented in [S5] and
published in [P9].

Problem statement Sampling provides the advantage that ma-
chines/suppliers-dependent frequency distributions can be considered
within tolerance analysis. As literature has already proven, a preselection
of machines/processes or suppliers before optimization cannot lead to
the cost minimum. Instead, they must always be selected together with
the tolerances during optimization (see Sec. 2.2.4). It is assumed, for the
moment, that there is only one tolerance 𝑖 per part. Fig. 33 visualizes the
concurrent tolerance allocation and machine/supplier selection problem for
two tolerances (𝐼 = 2) with three machine alternatives (𝐽𝑖 = 3) each with
randomly selected values 𝑡′𝑖. Depending on the currently chosen tolerance
value 𝑡′𝑖, a decision has to be made which machine firstly can and secondly
should be chosen to realize 𝑡𝑖. In this example, 𝑡′2 could be realized by all
alternatives while 𝑡′1 is too tight for alternative 𝑗 = 2.
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Figure 33: General idea of machine selection in sampling-based tolerance-cost optimization.
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5.1 Alternative machine and supplier selection

Adopting themathematical notation from [38, 44], the optimization problem
from Eq. (6)–(8) b) expands to:

Minimize 𝐶sum(𝒕, 𝒙) = ∑
𝐼

𝑖=1
∑
𝐽𝑖
𝑗=1 𝑥𝑖,𝑗 ⋅ 𝐶𝑖,𝑗(𝑡𝑖), (27)

subject to: 𝑧̂(𝒕, 𝒙) = 1− yld(𝒕, 𝒙, 𝑼𝑺𝑳, 𝑳𝑺𝑳) ≤ 𝑧max, (28)

∑
𝐽𝑖
𝑗=1 𝑥𝑖,𝑗 = 1 ∀ 𝑖 = 1, … , 𝐼 (29)

𝑥𝑖,𝑗 = {
1 if machine 𝑗 is selected for 𝑡𝑖,

0 otherwise,
(30)

𝑡lb𝑖,𝑗 ≤ 𝑡𝑖 ≤ 𝑡
ub
𝑖,𝑗 ∀ 𝑖 = 1, … 𝐼 ∧ 𝑥𝑖,𝑗 = 1, (31)

where the binary, zero-one selection parameter 𝑥𝑖,𝑗 selects one alternative
with its costs 𝐶𝑖,𝑗 and part tolerance distribution 𝜌𝑖,𝑗 out of all available 𝐽𝑖
options for each tolerance 𝑡𝑖 [307, 495]. Whether a tolerance value can be
achieved, depends on the process range of the selected machine (see Eq. (31)).
𝑡𝑖,𝑗 and 𝑥𝑖,𝑗 are then defined by:

{𝑥𝑖,𝑗 ∈ ℕ0 ∣ 𝑥𝑖,𝑗 ∈ [0; 1]}, (32)

{𝑡𝑖,𝑗 ∈ ℝ
>0 ∣ 𝑡𝑖,𝑗 ∈ [𝑡

lb
𝑖,𝑗; 𝑡

ub
𝑖,𝑗 ] } or {𝑡𝑖,𝑗 ∈ ℝ

>0 ∣ 𝑡𝑖,𝑗 ∈ {𝑡𝑖,1; … ; 𝑡𝑖,𝑆 }} , (33)

where Eq. (33) (left) is valid for continuous tolerance values. In the case
of discrete tolerance values, which result from a limited freedom of choice,
e.g., in the case of defined supplier classes with 𝑆 fixed values specified by
the supplier, the domain is limited by Eq. (33) (right). They can be repre-
sented in optimization by discrete or integer variables but require capable
algorithms [P17].1

Theoretical solution Since both costs 𝐶sum and the nc-rate 𝑧̂ are functions
of 𝒕 and 𝒙 (see Eq. (27) and Eq. (28)), both design variables must not only be
mapped in tolerance-cost and tolerance analysis in each optimization step,
i.e., for each individual 𝑝 in each generation 𝑔 (see also Fig. 12), but also be
balanced optimally by a suitable routine. For this reason, two approaches, viz.
the minimum-cost curve approach (a) and mixed-integer optimization (b), are
studied in the following. Both approaches have proven to be more efficient in
solving problems by parallel consideration than additional search algorithms
nested in the optimization to identify the best combination of machines for

1 It is also possible to consider all tolerances as discrete values with a certain accuracy, in µm,

for example [P17]. Optimization problems with discrete optimization variables are usually

more difficult to solve but can be handled by metaheuristic optimization algorithms. For

clarity, tolerances are considered continuous in this thesis, except fixed tolerance classes for

external supply.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

each intermediate value set (see Sec. 2.2.4). Fig. 34 compares both methods
for the example of Fig. 33.

When applying the so-called minimum-cost approach (a), the parallel
branches of tolerance-cost and tolerance analysis (see Fig. 12) are serial. Be-
fore tolerance analysis can be performed, tolerance-cost analysis has to be
completed since the results indicate the machine/supplier characteristics for
realizing 𝑡′𝑖. In line with the global aim, viz. cost minimization, the lowest-
cost alternative is always chosen, resulting in a piecewise total minimum-cost
curve, which gives the approach its name (see Fig. 34 (left)). In case (b), the
choice is left to the optimizer by an additional set of integer design variables
𝒗𝑥, including onevariable 𝑣𝑥𝑖 for each tolerance 𝑡𝑖, { 𝑣𝑥𝑖 ∈ ℕ ∣ 𝑣𝑥𝑖 ∈ [1; 𝐽𝑖] } (see
Fig. 34 (right)). Together with the design vector 𝒗𝑡 for tolerance allocation,
they form a mixed-integer problem. For 𝑥𝑖,𝑗, the respective pre-specified pdf
𝜌𝑖,𝑗 and its parameters, or rather by the corresponding inverse cumulative dis-
tribution function (see Fig. 17), are picked and used for sampling to generate
the geometrical part variations. Except for this additional selection step, the
tolerance analysis routine remains the same as shown in Fig. 10.

The selection parameter 𝑥𝑖,𝑗 for (a) and (b) is defined as follows:

𝑥𝑖,𝑗 = {

1 if 𝐶𝑖,𝑗 (𝑡𝑖) < 𝐶𝑖,𝑘 (𝑡𝑖) , 𝑘 ≠ 𝑗,

𝑡lb𝑖,𝑗 ≤ 𝑡𝑖 ≤ 𝑡
ub
𝑖,𝑗

0 else.

𝑥𝑖,𝑗 = {

1 if 𝑣𝑥𝑖 = 𝑗,

0 else.

(34)

(a) minimum-cost curve (b) mixed-integer optimization

The design vector 𝒗𝑡, comprising 𝐼 entries 𝑣𝑡𝑖 for the choice of 𝑡𝑖, is the same

for both cases. The lowerand upper boundaries 𝑡lb𝑖 , 𝑡ub𝑖 result from theprocess
limits of all alternatives (see Fig. 34):

𝑡lb𝑖 = min (𝑡lb𝑖,𝑗) ∧ 𝑡ub𝑖 = max (𝑡ub𝑖,𝑗) ∀𝑗 = 1, … , 𝐽𝑖. (35)

Theminimum-cost curve approach (a) only takesmachines/suppliers feasible
for 𝑡′𝑖 into account (see Eq. (34)). Hence, Eq. (31) is always implicitly fulfilled.
However, in thecaseof mixed-integeroptimization (b), the informationabout
the capability to realize 𝑡′𝑖 is lost by splitting the choice of machine/supplier
and tolerances over the two independent decision variable vectors 𝒗𝑡 and 𝒗𝑥.
As a result, tolerance and machines/suppliers may be chosen although they
are not defined for them (see 𝑡∗2 in Fig. 34).
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Figure 34: Machine selection based on (a) minimum-cost curves vs. (b) by mixed-integer

optimization.

Explicitly defined linear inequality constraints following Eq. (31) exclude this
issue for each part 𝑖:

[

𝑡lb𝑖,1

⋮

𝑡lb𝑖,𝐽𝑖

]

⏝⏟⏝

𝒕lb𝑖

⊙ [

𝑥𝑖,1

⋮

𝑥𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝
𝒙𝑖

≤ [

𝑡𝑖 ⋯ 0

⋮ ⋱ ⋮

0 ⋯ 𝑡𝑖

]

⏝⎵⎵⏟⎵⎵⏝
𝑰𝐽𝑖×𝐽𝑖⋅𝑡𝑖

⋅ [

𝑥𝑖,1

⋮

𝑥𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝
𝒙𝑖

≤ [

𝑡ub𝑖,1

⋮

𝑡ub𝑖,𝐽𝑖

]

⏝⏟⏝

𝒕ub𝑖

⊙ [

𝑥𝑖,1

⋮

𝑥𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝
𝒙𝑖

, (36)

where the constraints for the currently selected alternative 𝑗 are enabled
through 𝑥𝑖,𝑗.

Any section in the entire process range where no alternative can realize the
chosen tolerance with process reliability must be represented in both cases
via additional constraints or directly via high penalty costs so that the opti-
mizer avoids these regions. Fortunately, metaheuristic algorithms tackle the
occurring discontinuities and non-convex problems well.

Practical transfer and findings The proposed approaches for concurrent
machine/supplierand tolerance selectionarenowapplied to thewheelmount-
ing assemblywith its twocritical KCs (see Fig. 90) using theecdf-based nc-rate
estimation technique from Sec. 4.3. Except for tolerance 𝑡4 (𝐽𝑖 = 2), 𝐽𝑖 = 4
alternatives with individual costs and limits are considered for all tolerances.
The first study (1) assumes that all machines have standard normally distri-
buted characteristics. The data is summarized in Tbl. 21. For optimization,
a GA is used with continuous design variables for the minimum-cost curve
approach (a) and mixed-integer ones for the optimization-based alternative
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

selection (b). The algorithm settings were chosen based on preliminary
studies and are summarized in Appx. A.9.2. To evaluate the influence of
the number of individuals on the results and its scattering, two population
sizes 𝜂𝑝 ∈ {50; 100} are studied in a tenfold repetition (𝜂𝑟 = 10). The same
MCS with equal random numbers, 𝑛 = 100,000, excluding sampling-induced
scattering effects (see Sec. 4.1), are used (O-2/S-3 acc. to Tbl. 6). Fig. 35
contrasts the optimization results for (a) and (b) at a glance, more details are
given in Appx. A.9.2, Tbl. 22.
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Figure 35: Optimization results for concurrentmachine/supplier selection using (a) minimum-

cost curve approach vs. (b) mixed-integer optimization: study (1) 𝜌𝑖,𝑗 = 𝜌𝑖, normally distribu-

ted.

Bothapproaches lead to thesamecostoptima for thedifferent runs, apart from
minor differences resulting from the stochastic approach of the optimizer.
As expected and at the expense of the computation time, the duplication
of the population size has a positive effect on finding the global optimum.
The differences in the optima significantly decrease and the rate of successful
runs increases (see Tbl. 23). The chosen alternatives for both best runs are
identical, so the choice by the optimizer in case (b) leads to the same decision
as based on least costs using the minimum-cost approach (a) (see Tbl. 24).
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5.1 Alternative machine and supplier selection

For the second study (2), the normality assumption is discarded and individ-
ual machine-specific part tolerance distributions are now defined. Tbl. 25
summarizes the alternatives with their individual part tolerance distribu-
tions and statistical moments. Besides normal and uniform distributions,
the Pearson system can represent different machine-dependent probability
distributions (see Appx. A.4). In addition, part 2 with 𝑡2 is now considered as
a purchased part and has to be chosen cost-optimally from the choice of four
options with discrete tolerances and costs. All optimization settings, etc. are
identical to the study (1).

Comparing the results given in Fig. 36 with the ones from the previous study
in Fig. 35, it can be seen that themixed-integer optimization (b) now achieves
lower costs than the minimum-cost curve approach (a). Since all the pre-
dicted nc-rates 𝑧̂asm are slightly below or equal to 𝑧max = 2,700 ppm for
both approaches and the chosen tolerances are within the defined limits, the
obtained solutions are all feasible and acceptable (see Tbl. 26–27).
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Figure 36: Optimization results for concurrentmachine/supplier selection using (a) minimum-

cost curve approach vs. (b) mixed-integer optimization: study (2) 𝜌𝑖,𝑗 = var.

To explain the difference in optima, Fig. 37 picks out the best results for
both approaches and breaks down the total costs 𝐶

opt
sum into its individual
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

cost shares 𝐶𝑖,𝑗 for the optimally selected alternatives 𝑥
opt
𝑖,𝑗 . It reveals that

the optimizer has preferred supplier 3 with higher costs 𝐶2,3 to realize part 2
over 𝐶2,4, but the additional costs are amortized by lower costs for all other
parts achieved by wider tolerances. Hence, it can be useful to admit higher
single costs for one tolerance, as the better, more problem-tailored part
quality resulting from both the optimally chosen tolerance value and the part
tolerance probability offers freedom to widen the other tolerances (and/or
select other machine/supplier combinations). Using the minimum-cost
curve approach (a), the selection is, however, always made part-wise in a
least-cost manner, so some sections of the cost curves are always discarded
and not considered at all (see Fig. 34). In this example, 𝐶2,4 is, thus, always
preferred over 𝐶2,3 acc. to Eq. (34) since 𝐶2,4 < 𝐶2,3. However, it consequences
tighter tolerances for the other parts and, thus, higher individual and total
costs (see Tbl. 24 and Tbl. 28). Although the complexity of the optimization
problem increases by the higher dimensions of the search space (in this case
dim(a) = 5 and dim(b) = 10), mixed-integer variables and the additional set
of constraints (see Eq. (36)), alternative selection by optimization (b) leads
to the global cost optimum. If the alternatives only differ in their costs, as it is
considered for study (1) and typically done for more approximate approaches
such as RSS, a choice on minimum costs separate for each part or in sum leads
to the same results, so both approaches lead to the global optimum.

ΔC

0

10

20

30

MU

50

(a)

(a) (b)

50

MU

150

1 2 3 4 5

(b)

1
2

1

1

1

1

2
2

2

2

3
3

3
3

4
4 4

C1,4

C2,4

C3,4

C4,2

C5,2

27.13

22.00

27.25

50.75

22.34

24.28

23.00

24.05

37.31

21.08

C

C2,3

C3,4

C4,2

C5,2

0

10

20

30

MU

50

1 2 3 4 5

1
2

1

1

1

1

2 2

2

2

3

3

3

3

4
4

4

𝑖𝑖

𝐶𝐶𝑖𝑖,𝑗𝑗
opt 𝐶𝐶sum

opt 𝐶𝐶𝑖𝑖,𝑗𝑗
opt

𝑖𝑖

0
1,4
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The proposed extension of sampling-based tolerance-cost optimization
to machine/supplier selection offers the possibility to consider given man-
ufacturing conditions through part tolerance distributions. If the alterna-
tives differ in their achievable distributions, mixed-integer optimization
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5.2 Multiple machine/supplier selection

should be preferred over the minimum-cost curve approach to find the
global cost optima. However, it leads to higher search space dimensions,
additional constraints, and mixed-integer variables.

5.2 Multiple machine/supplier selection

In addition to the primary task of finding the least-cost tolerance values, the
extensions for sampling-based tolerance-cost optimization introduced in
Sec. 5.1 enable the concurrent selection of machines and suppliers. How-
ever, as mathematically defined in Eq. (30) and Eq. (34), only one single
machine/supplier is allowed to be chosen to produce the entire batch. Al-
though this simplification may often be satisfactory in the tolerance design
phase, the probability distribution-based mapping of the individual ma-
chine/supplier characteristics also entails the potential to further expand the
alternative selection to multiple machines with distributed manufacturing
and suppliers. Sec. 5.2.1 introduces the idea and implementation of concur-
rent tolerance and machine allocation for random assembly.2 Afterwards,
Sec. 5.2.2 expands it on aspects for selective assembly. As in Sec. 5.1, each
part is assumed to contribute only with one tolerance value to the assembly
response and the associated total product quality.

5.2.1 Machine/supplier allocation and random assembly

Problem statement In the context of series production, which is charac-
terized by vast quantities and makes tolerance-cost optimization profitable
through economies of scale, a distribution of the entire production volume
over several machines is quite common. If it can be assumed that the part
tolerance distributions are equal for the respective machines or suppliers,
the previously proposed method can be suitably extended by aspects of pro-
cess scheduling. This includes additional objectives and constraints, for
instance, to address machine capacities, overhead, machining and idle times,
product demands, and delivery times during optimization (see Sec. 2.2.4).
Integrating these aspects would affect the definition and solution of the op-
timization problem presented in Eq. (27)–(31). The subroutine of tolerance
analysis, however, stays the same. An allocation of an entire batch on al-
ternatives considering same part tolerance values 𝑡𝑖,𝑗 = 𝑡𝑖 or distributions
𝜌𝑖,𝑗 = 𝜌𝑖 ∀ 𝑗 = 1, ⋯ , 𝐽𝑖 does, from the simulation point of view, not influence
the virtual manufacturing and assembly steps within tolerance analysis.

2 The term machine allocation is used in this thesis to allocate an entire manufacturing

batch on multiple machines/suppliers with individual machine loads or batch sizes by

optimization.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

However, suppose the various selected machines/suppliers differ significantly
in their part tolerance distributions (a), their allocated tolerance values, or
both (b). In that case, it must be appropriately represented in optimization
and tolerance analysis. The subsequentdetailed investigationsof theproblem
and its methodical solution continue the thoughts presented in [P15]. For
this purpose, Fig. 38 picks up the example from Fig. 33 and extends it to the
outlined problem for case (b).
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Figure 38: General idea of machine allocation with variable machine loads𝑤𝑖,𝑗.

Compared to machine selection, a weight factor𝑤𝑖,𝑗 replaces the selection
parameter 𝑥𝑖,𝑗. It indicates the percentage of the entire batch to be realized by
machine 𝑗 with 𝑡𝑖,𝑗 and 𝜌𝑖,𝑗. Hence, the optimization problem of Eq. (27)–(31)
expands to a concurrent allocation problem for both tolerances and machines:

Min 𝐶sum(𝒕, 𝒘) = ∑
𝐼

𝑖=1
∑
𝐽𝑖
𝑗=1𝑤𝑖,𝑗 ⋅ 𝐶𝑖,𝑗 (𝑡𝑖,𝑗, 𝑤𝑖,𝑗) , (37)

s. t.: 𝑧̂(𝒕, 𝒘) = 1− yld(𝒕, 𝒘, 𝑼𝑺𝑳, 𝑳𝑺𝑳) ≤ 𝑧max, (38)

∑
𝐽𝑖
𝑗=1𝑤𝑖,𝑗 = 1, (39)

𝑤𝑖,𝑗 {
> 0 if machine is allocated with 𝑛𝑖,𝑗,

= 0 if machine is not allocated,
(40)

𝑤lb
𝑖,𝑗 ≤ 𝑤𝑖,𝑗 ≤ 𝑤

ub
𝑖,𝑗 ∀𝑖 = 1, … , 𝐼; ∀𝑗 = 1, … , 𝐽𝑖 ∧ ∀ 𝑤𝑖,𝑗 ≠ 0, (41)

𝑡lb𝑖𝑗 ≤ 𝑡𝑖,𝑗 ≤ 𝑡
ub
𝑖,𝑗 ∀𝑖 = 1, … , 𝐼; ∀𝑗 = 1, … , 𝐽𝑖 ∧ ∀ 𝑤𝑖,𝑗 ≠ 0, (42)

where Eq. (39)–(40) denotes the allocation of at least one up to 𝐽𝑖 machines.
The case 𝑤𝑖,𝑗 = 0 leaves the option open to omitting a machine or supplier,
whereby the chosen tolerance 𝑡𝑖,𝑗 becomes irrelevant for both tolerance-cost
and tolerance analysis (see, for instance, machine 𝑗 = 3 for part 𝑖 = 1 in
Fig. 38). Therefore, the batch sizes 𝑛𝑖,𝑗, varying over the optimization process,
are given by 𝑛𝑖,𝑗 = 𝑤𝑖,𝑗 ⋅ 𝑛tot, 𝑛𝑖,𝑗 ∈ ℕ0. The total batch size 𝑛tot is equal to the
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5.2 Multiple machine/supplier selection

sample size 𝑛 in tolerance analysis and results in 𝑛tot = ∑
𝐽𝑖
𝑗=1 𝑛𝑖,𝑗. Optional

capacity constraints in Eq. (41) can further ensure that alternatives from
and only up to a certain threshold 𝑤lb

𝑖,𝑗 and 𝑤ub
𝑖,𝑗 may be selected. On the

one hand, this facilitates the mapping of manufacturing process-relevant
aspects and opens up possibilities for process scheduling. On the other
hand, it avoids that low values that are not economically viable due to high
shortage surcharges or setup costs are assigned for a machine or supplier. The
cumulative tolerance-related costs𝐶sum in Eq. (37) can beapproximated by the
sumof the individual costs 𝐶𝑖,𝑗, where 𝐶𝑖,𝑗 could further be a function over𝑤𝑖,𝑗
to represent costs arising from distributed manufacturing/supply. However,
following the general focus of the thesis, the tolerance-cost modeling for
machine allocation is not investigated in more detail. 𝐶𝑖,𝑗 is thus considered
only as a function of 𝑡𝑖,𝑗 and constant over𝑤𝑖,𝑗.

Theoretical solution For the same reasons that apply to singlemachine/sup-
plier selection, it is reasonable to prefer a concurrent overall optimization
approach over nesting a second, search- or optimization-based subroutine
into the tolerance-cost optimization workflow. The tolerance allocation task
is now changing since each alternative can be allocated by an individual value
(see Fig. 38) in case (b). Hence, the design vector 𝒗𝑡 needs to be extended to
𝐽𝑖 entries, where the lower and upper bounds for the design variables corre-
spond to the process limits 𝑡lb𝑖,𝑗,𝑡

ub
𝑖,𝑗 , directly satisfying Eq. (42). For case (a)

with 𝑡𝑖,𝑗 = 𝑡𝑖, 𝒗𝑡 remains the same. The boundaries are defined by Eq. (35)
and additional constraints similar to Eq. (36) are required since the relations
between the allocated machine/suppliers and their capabilities get lost.

The design variables for machine/supplier allocation 𝒗𝑤 include an entry 𝑣𝑤𝑖,𝑗

for each part 𝑖 and eachmachine/supplier option 𝑗, { 𝑣𝑤𝑖,𝑗
∈ ℝ0 ∣ 𝑣𝑤𝑖,𝑗

∈ [0; 1] },
so that 𝑣𝑤𝑖,𝑗

can be chosen continuously between 0 and 1 and a mixed-integer
problem arises only when discrete tolerance values are considered. Since the
weights𝑤𝑖,𝑗 are interrelated (seeEq. (40)) buthave tobechosen independently
by the optimizer, the values formachine/supplier allocation variable𝑤𝑖,𝑗 have
to be calculated by weighting 𝑣𝑤𝑖,𝑗

over all 𝐽𝑖 entries in 𝒗𝑤𝑖
for part 𝑖:

𝑤𝑖,𝑗 =
𝑣𝑤𝑖,𝑗

∑
𝐽𝑖
𝑗=1 𝑣𝑤𝑖,𝑗

. (43)

Additional linear inequality constraints ∑
𝐽𝑖
𝑗=1 𝑣𝑤𝑖,𝑗

> 0 assure that at least one

machine is allocated (see Eq. (39)) and avoids a dividing by zero in Eq. (43).
The capacity constraints from Eq. (41) for each part 𝑖 are transformed into
linear inequality constraints completing the required set of constraints:
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[

𝑤lb
𝑖,1

⋮

𝑤lb
𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝

𝒘lb
𝑖

⊙ [

sgn(𝑤𝑖,𝑗)

⋮

sgn(𝑤𝑖,𝐽𝑖)

]

⏝⎵⎵⎵⏟⎵⎵⎵⏝
sgn(𝒘𝑖)

≤ [

𝑤𝑖,1

⋮

𝑤𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝
𝒘𝑖

⊙ [

sgn(𝑤𝑖,𝑗)

⋮

sgn(𝑤𝑖,𝐽𝑖)

]

⏝⎵⎵⎵⏟⎵⎵⎵⏝
sgn(𝒘𝑖)

≤ [

𝑤ub
𝑖,1

⋮

𝑤ub
𝑖,𝐽𝑖

]

⏝⎵⏟⎵⏝

𝒘ub
𝑖

⊙ [

sgn(𝑤𝑖,𝑗)

⋮

sgn(𝑤𝑖,𝐽𝑖)

]

⏝⎵⎵⎵⏟⎵⎵⎵⏝
sgn(𝒘𝑖)

, (44)

where sgn(𝑤𝑖,𝑗) serves as activation function for all constraints with 𝑤𝑖,𝑗 ≠ 0.

Besides the suggested extensions in optimization, tolerance analysis must
allow for the total sample set to consist of the subsets of the allocated ma-
chine/suppliers with its current batch size 𝑛𝑖,𝑗. Fig. 39 exemplifies that 𝑛𝑖,𝑗
virtual parts are first generated batch-wise for the respective pdfs 𝜌𝑖,𝑗, and 𝑡

′
𝑖,𝑗,

second merged into an entire batch, and third shuffled to preserve random-
ness. This excludes the use of a LHS or QMCS and requires an MCS since
allocating the individual samples to each other is not purely random. Hence,
it must be evaluated first completely and second in the same association (see
Appx. A.4 for more information). The subsequent tolerance evaluation and
nc-rate estimation steps stay the same.
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Figure 39: Subroutine of tolerance analysis with individual batch sizes 𝑛𝑖,𝑗 and part tolerance

distributions 𝜌𝑖,𝑗 illustrated for the example shown in Fig. 38 and a single assembly response 𝑌.

Practical transfer and findings To study its applicability, the proposed
method is now applied to the use case of the wheel mounting assembly from
the previous section. Therefore, the example is transferred to an illustrative
scenario where an optimal allocation of multiple machines constrained by
individual upper machine-specific capacity limits 𝑤ub

𝑖,𝑗 is searched for. All
tolerance-cost and further information is summarized in Tbl. 29. An equal
MCS with 𝑛 = 100,000 is used for all 𝜂𝑟 = 10 repetitions (O-2/S-3 acc. to
Tbl. 6) and both studied cases, viz. (a) 𝑡𝑖,𝑗 = 𝑡𝑖 and (b) 𝑡𝑖,𝑗 = var. Not only
due to address both assembly responses properly, ecdf acc. to Eq. (23)–(26)
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is chosen for nc-rate estimation. But also, because the variable weights 𝑤𝑖,𝑗
and the tolerance values 𝑡𝑖,𝑗 in combination with the alternative-specific
distributions 𝜌𝑖,𝑗 may lead to a dynamic change in the distribution type of
the mixed batches 𝑋𝑖 and consequently of 𝑌 within the optimization process,
making a parametric nc-rate estimation complicated. While the settings
chosen for optimization with GA are given in Appx. A.9.2, Tbl. 30–32 contain
all information on the optimization results. Fig. 40 (top) overviews the
obtained cost optima 𝐶

opt
sum with its nc-rates 𝑧̂

opt
asm for all optimization runs.

It can be seen thatall runs lead to feasibleand acceptable results, satisfying the
defined maximum nc-rate of 𝑧max as well as the defined machine process and
capacity limits. The latter can be seen in Fig. 40 (bottom), where the optimal
values for the tolerances 𝑡

opt
𝑖,𝑗 and weights 𝑤

opt
𝑖,𝑗 are shown for the best runs.

All tolerance values are within the predefined lower and upper boundaries
𝑡lb𝑖,𝑗 and 𝑡

ub
𝑖,𝑗 and the chosen machine loads do not exceed the individual limits

𝑤ub
𝑖,𝑗 (see settings given in Tbl. 29). The more extensive scattering of the cost

optima compared to the previous studies indicate that the complexity of the
optimization problem has increased due to the higher number of variables
and constraints. The additional consideration of an individual tolerance per
machine in case (b) further leads to a higher dimensionality of the problem,
increased by 𝐽𝑖 − 1 per part 𝑖, which is reflected in the larger spread of the
results in comparison to (a). Adapting the algorithm-specific optimization
settings to the complexity of the problem, which increases with the number
of tolerances, machines/suppliers, and their restrictions in capacity and
capabilities, can reduce the scatter of the different results and increase the
probability of finding the global optimum.

Apart from the effect on the performance of the optimization, the results
show that the allocation of an individual tolerance 𝑡𝑖,𝑗 = var for each ma-
chine enables an individual widening to exploit the nc-rate limit fully and
consequently leads to lower overall costs in case (b). However, it has to be
mentioned that the solutions found by optimization must also be technically
implementable in series production. Nonetheless, the proposed method
offers a methodical basis for representing multiple machine selection in
tolerance-cost optimization using the sampling-based tolerance analysis.
The results prove its applicability and offer the potential for extension by
further aspects from process planning and to be examined for its application
in an industrial context. Finally, to clarify the ideaof mixed batches simplified
sketched in Fig. 39, Fig. 41 shows an enhanced version of the𝑤𝑖,𝑗-heatmap for
the best run of case (b) with the individual sampled frequency distributions
and the resulting mixed overall batches.
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Figure 40: Overview of obtained cost optima 𝐶
opt
sum, corresponding nc-rates 𝑧̂

opt
asm for concurrent

tolerance and machine/supplier allocation with variables batch sizes and random assembly

(top) and details on the final weights𝑤
opt
𝑖,𝑗 and tolerances 𝑡

opt
𝑖,𝑗 of the best runs (bottom). (a)

same tolerance value for all machines vs. (b) individual tolerance values for each machine.
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Figure 41: Visualization of the optimal batch sizes and tolerance values for the best run of case

(b) through individual part characteristic histograms and resultant mixed batches.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

5.2.2 Machine/supplier allocation and selective assembly

In theprevious section, theprimary focuswason representingdistributedpart
fabrication in sampling-based tolerance-cost optimization. For this purpose,
random assembly, which is predominant in practical use, was represented
by forming a randomly shuffled entire batch from the virtually generated
individual batches and randomly selecting the parts for assembly (see Fig. 39).
However, the potentials of the proposed machine/supplier allocation method
with variable batch sizes can further be exploited for selective assembly, first
studied in [S4], second published in [P12], and presented in the following.

Problem statement Due to the differentweights of the individual machines,
the entire sample set is already divided into several classes, which correspond
to the respective assumed distribution 𝜌𝑖,𝑗 and the current tolerance values
𝑡𝑖,𝑗 (see Fig. 39). Instead of discarding this pre-classification by forming an
entire mixed batch, the resulting classes are now used for selective assem-
bly. In contrast to traditional selective assembly applications, in which all
components are measured in advance and then divided into their classes by
distinct strategies (see 2.2.4), the binning step has already been done by ma-
chine/supplier allocation. A subsequentoptimal assignmentof the individual
bins, which are then interchangeably assembled, aims to reduce the nc-rate 𝑧̂
compared to a pure random assembly. In tolerance-cost optimization, this
gives additional room to widen the individual tolerance values and/or adjust
the machine/supplier allocation, further reducing the tolerance-related costs
𝐶sum. However, the resulting cost savings must amortize additional costs
caused by the additional selective assembly steps, such as warehousing or
logistics. In the following, they are assumed to be constantover the tolerances,
machine weights, and sorting. Therefore, they are not represented in the
tolerance-cost model but must always be set in relation to the optimal costs
for random assembly.

To represent the selective assembly by simulation, the subroutine of tolerance
analysis from Fig. 39 has to be adapted. The individual batches are nowpaired
with each other concerning a selected combination 𝒄𝑗, and the individual
assembly response functions 𝑌𝑘,𝑐𝑗 are then determined by random assembly

within their combination (see Fig. 42).
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Figure 42: Subroutine of tolerance analysis with individual batch sizes 𝑛𝑖,𝑗 and selective

assembly illustrated for one single assembly response 𝑌1.

The bin with the smallest number of parts in each combination 𝒄𝑗 dominates
the number of achievable assemblies:

𝑛𝑗,min = min (𝑛1,𝑝1,𝑗
, … , 𝑛𝐼−1,𝑝𝐼−1,𝑗 , 𝑛𝐼,𝑝𝐼,𝑗) . (45)

Since the bins are typically unequal in size due to the varying machine/sup-
plier weights above optimization, so-called surplus parts are left over in each
combination 𝒄𝑗:

𝑛surplus = ∑
𝐽𝑖
𝑗=1 𝑛𝑗,surplus = ∑

𝐽𝑖
𝑗=1 (𝑛𝑖,𝑝𝑖,𝑗 − 𝑛𝑗,min) , (46)

whereby the different number of machines/suppliers will lead to compar-
atively large imbalances. Usually, a smart binning strategy minimizes the
surplus parts and, thus, avoids unpaired parts and rejects. This approach
randomly assembles all leftover parts at the end (see Fig. 42). This completes
the total batch size 𝑛tot and the sample size 𝑛 in simulation:

𝑛 = 𝑛tot = ∑
𝐽𝑖
𝑗=1 𝑛𝑗,min + 𝑛surplus, (47)

resulting in the frequency distribution for 𝑌𝑘 from the individual assembly
responses 𝑌𝑘,𝑐𝑗 and 𝑌𝑘,surplus.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

The minimum number of machines 𝐽min = min (𝐽1, … , 𝐽𝐼−1, 𝐽𝐼) dictates the
number𝑁𝑐 of different combinations 𝒄:

𝑁𝑐 =
1

𝐽min!
⋅

𝐼

∏

𝑖=1

𝐽𝑖!

(𝐽𝑖 − 𝐽min)!
. (48)

(I)

(II)

(III)

Fig. 43 illustrates Eq. (48) using a simple example. The number of all possible
combinations is the full factorial permutation of all single permutations 𝒑𝑖,
which results from swapping single elements 𝑝𝑖,𝑗 within a part-column (I)
corresponding to a 𝐽𝑖-permutation without repetition. However, the different
number of bins results in identical solutions (II), since all combinations
above 𝑐𝑗>𝐽min

are treated as surplus parts (see also Fig. 42). This reduces the

number from 𝐽𝑖!- to 𝐽
𝐽min

𝑖 -permutations 𝒑𝑖. Likewise, the sequence of the
combinations 𝑐𝑗 is irrelevant in the total (III), reducing the total number by
𝐽min! to 𝑁𝑐.
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Figure 43: Simple example illustrating identical selective assembly solutions for different

combinations of permutations.

Theoretical solution The concurrent optimization problem from
Eq. (37)–(42) is now extended to additionally find the optimal combi-
nation among the 𝑁𝑐 combinations. The expression of 𝒄 as a combination
of permutations 𝒑𝑖 is suitable for this purpose. Common algorithms can be

used to generate the 𝐽
𝐽min

𝑖 -permutations, whereby an associated index idx
indicates the particular permutation 𝒑𝑖. For instance, the idx-th permutation
of part 1 shown in Fig. 43 is given as follows:

𝑖𝑑𝑥 → 1 2 3 4 5 6 7 8 9 10 11 12

𝑗
1 1 1 2 2 2 3 3 3 4 4 4
2 3 4 1 3 4 1 2 4 1 2 3
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Thus, an additional design vector 𝒗𝑝 can be defined with a set of integer de-

sign variables {𝑣𝑝𝑖 ∈ ℕ ∣ 𝑣𝑝𝑖 ∈ [1; 𝐽
𝐽min

𝑖 ]} to represent the respective index idx,

which leads in combination with 𝒗𝑡 and 𝒗𝑤 to a mixed-integer optimization
problem.3 The nc-constraint in Eq. (38) is, thus, additionally a function of
the permutations 𝒑.

Practical transfer and findings In line with the previous chapters, the
developed method is once again applied to the example of the wheel mount-
ing assembly. The tolerance-cost data and part tolerance distributions are
listed in Tbl. 33. To evaluate the proposed method, two different scenarios
are considered, viz. study (1) with predefined weights 𝑤𝑖,𝑗 = 1/𝐽𝑖, equally
distributed among all availablemachines, and study (2) with variableweights,
where optimal binning is done indirectly by machine/supplier allocation.
For comparison, both studies are performed for random assembly (a) and
selective assembly (b). GA is used again for mixed-integer optimization; the
settings are given in Appx. A.9.2. Fig. 44 (top) shows the optimization results
of the 10-fold repeated optimization runs (𝜂𝑟 = 10) based on the same MCS
with 𝑛 = 10,000 (O-2/S-3 acc. to Tbl. 6). Fig. 44 (bottom) illustrates the
optimally identified combinations out of 𝑁𝐶 = 1296 options by the optimizer
for the best runs.

All optimization runs have succeeded in satisfying all acceptability and feasi-
bility constraints (see also Tbl. 34–35, Tbl. 37–38). In line with the previous
section’s findings, adding the design vector 𝒗𝑝 to identify the best combina-
tions for selective assembly further complicates the optimization problem.
This leads to the scattering of the optimization optima 𝐶

opt
sum, which is higher

for case (2) due to the additional task of finding optimal weights for all ma-
chines (see Fig. 44 (top)). It is apparent that the random assembly approach
(a) leads to higher manufacturing costs than the proposed selective assembly
approach (b) for both studies, while the resultant nc-rates 𝑧̂

opt
asm reach the

acceptable nc-rate thresholds of 𝑧max = 2,700 ppm. The difference in optima
can be explained by having a look at the nc-rates 𝑧̂

opt
asm (b*) when the tolerance

values optimally obtained for selective assembly (b) are repeated for random
assembly after optimization. It illustrates that the total non-conformance
rates are significantly lower through selective assembly without tightening
the tolerances. Hence, this leads to the aforementioned additional room for
the optimization algorithm to further widen the individual part tolerances
(see Tbl. 36, Tbl. 39).

3 Using the proposed approach, each combination in the real also has only one parameter

combination assigned to in optimization. If evolutionary algorithms are used, this is

referred to as phenotype-genotype mapping, which has already shown its potential for

optimal selective assembly in [582].
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Figure 44: Results for concurrent tolerance and machine/supplier allocation with selective

assembly: cost optima 𝐶
opt
sum, corresponding nc-rates 𝑧̂

opt
asm (top) and details on the final batch

combinations of the best runs (bottom); (a): random assembly, (b): selective assembly.

The studies exemplify its applicability with pre-allocated machines/suppliers
and as an overall optimization of the machine loads and their batch-wise
pairing. Different routines such as an additional splitting of the individual
machine batches can help to increase assembly efficiency. At this point, it
becomes apparent that the method has been able to demonstrate its general
potential, but at the same time offers a variety of possible applications as
well as a need for further scientific investigations and answers to questions
about technical feasibility and profitability in practice. Hence, it provides
a methodological basis for extending sampling-based tolerance-cost opti-
mization from series production with interchangeability to batch production
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5.3 Coping with multiple part tolerances in optimization

with selective assembly. It can also be useful for dynamic tolerance allocation
approaches applied in ramp-up or production phases.

Sampling-based tolerance analysis enables the extension of single ma-
chine/supplier selection to multiple machine/supplier selection with in-
dividual batch sizes. The proposed methods are helpful for a concurrent
consideration of optimal tolerance and machine allocation for random
and selective assembly revealing hidden cost potentials and serving as a
general basis that can be tailored to given manufacturing situations.

5.3 Coping with multiple part tolerances in optimization

So far, the proposed methods are limited to assemblies consisting of parts
with just one tolerance each. In the following, they are extended to multiple,
geometrical part tolerances based on the first findings reported in [S3].

Problem statement In practice, multiple part features and their variations
determine the probabilistic assembly behavior. Hence, a set of geometrical
tolerances are needed to limit them for all functional relevant features, in-
fluencing the optimal tolerance allocation procedure on different levels (see
Fig. 45):

• At feature level, it is common to specify multiple tolerances for one fea-
ture 𝑢 to control its size, location, orientation, and form (a). The confor-
manceof the tolerance specification to the referenced tolerancing standards,
either the ASME-Y14.5 or the GPS-ISO standards, is already assured in the
tolerance specification. Nonetheless, suppose the envelope principle is
applied (either as default by rule #1 in the ASME-Y14.5 [50] or by specifying
the relevant features by the Envelope Requirement Symbol E acc. to the
ISO 8015 [583]). In that case, the independency of the multiple tolerance
values is repealed and has to be represented properly in the optimization
problem.

• At part level, identical features are used in part design when intended to
have the same function (b). Same tolerances with the same tolerance values
are, thus, helpful to reduce the tolerance-related costs by holding the setup
costs for fabrication and inspection low [127].

• Atassembly level, themultipleuseof partsof the samequality is acommon
practice to reduceproduct complexityand costs (c). Indoing so, an identical
tolerance specification for all multiple parts is reasonable.

Besides the influence of the effects on the tolerance allocation itself, it also
affects the tasks of machine/process selection and allocation and their im-
plementation in optimization. In tolerance allocation for manufacturing as
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Figure 45: Multiple tolerances per part and feature influencing the definition and solution of

the tolerance allocation optimization problem.

well as concurrent tolerance allocation (see Sec. 2.2.4), the individual manu-
facturing operations, including the definition of the manufacturing datums,
selection of tools, process parameters to reach the individual manufacturing
tolerances for each process step, are defined and tailored to each other in
detail. In sum, this leads to the part features with their assigned design toler-
ances. A thorough modeling of numerous correlations and interrelations is
inevitable [584, 585]. Its complexity, scope, and lack of information in the
design stage make a detailed and complete process design extremely difficult.
Thus, these aspects are often considered in a highly simplified manner, in
which design tolerances are defined from the assembly functionality point of
view as requirements for the subsequent part fabrication, and just a preselec-
tion of machineor supplier alternatives ismade. As a compromise, alternative
selection can be approximated as the selection of one predefined total set of
manufacturing process combination alternatives with a set of part tolerance
probabilities 𝝆 for the final design tolerances 𝒕. Therefore, the focus of the
selection parameter 𝑥𝑖,𝑗 changes from tolerance to part level 𝑥𝑙,𝑖 to select an
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alternative 𝑗 from 𝐽𝑙 alternatives for each part 𝑙. Consequently, the objective
function from Eq. (27) modifies to:

𝐶sum(𝒕, 𝒙) = ∑
𝐿

𝑙=1
∑
𝐽𝑙
𝐽=1
∑
𝑈𝑙
𝑢=1
∑
𝐼𝑢𝑙
𝑖=1 𝐶𝑙,𝑢,𝑖,𝑗 (𝑡𝑙,𝑢,𝑖) ⋅ 𝑥𝑙,𝑗, (49)

with the individual tolerance-related manufacturing costs 𝐶𝑙,𝑢,𝑖,𝑗 for realizing
the tolerance 𝑡𝑙,𝑢,𝑖 assigned to the 𝑖-th tolerance of the 𝑢-th feature of the 𝑙-th
part realized by the 𝑗-th machine/supplier alternatives combination.

From a puremethodological point of view, themethods formachine/supplier
allocation from Sec. 5.2 can also be extended in the sameway to multiple and
geometrical tolerances. From a practical point of view, however, a strong sim-
plification of the various manufacturing aspects does not allow a meaningful,
comparatively detailed specification of part manufacturing and assembly
aspects, such as the scheduling or allocation of machines. Although the
methods from Sec. 5.2 offer potential for dynamic tolerance allocation in
ramp-up or serial production and can also be extended in a process-oriented
manner, the subsequent discussion is limited to tolerance allocation with
alternative selection based onmixed-integeroptimization in thedesign phase
(see Sec. 5.1).

Theoretical solution – feature level (a) Assigning multiple tolerances to
one feature 𝑢 is to individually refine the tolerances by additional location,
orientation, or form tolerances [50]. For instance, the profile tolerance 𝑡7,1,1,
assigned to part 𝑙 = 7 shown in Fig. 45 (a), limits the location primarily
but encloses the restriction of parallelism and flatness of the planar feature
𝑢 = 1 of the cover. Since the control of the form of a feature might already
be established through an orientation, runout, or profile tolerance [50], the
value of the form tolerance cannot be freely chosen. Otherwise, it violates
the virtual condition as a collective effect of all variations at their maximum
limits [50]. For instance, the additional parallelism 𝑡7,1,2 and flatness toler-
ance 𝑡7,1,3 impose tighter requirements on the orientation and form. Their
values must be chosen smaller than the profile tolerance value (and also the
parallelism tolerance): 𝑡7,1,1 > 𝑡7,1,2 > 𝑡7,1,3. Consequently, the tolerance values
are dependent and cannot be chosen freely by the optimizer. Complying
with the GD&T rules and the envelope principle for size tolerances within
tolerance-cost optimization, an additional set of linear inequality constraints
must be added for each feature 𝑢 if multiple tolerances 𝐼𝑢𝑙 > 1 are assigned to
it.

95



5 Enhancing the completeness of sampling-based tolerance-cost optimization

For a correlated tolerance tuple ⟨𝑡𝑙,𝑢,𝑖, 𝑡𝑙,𝑢,𝑖⟩, it applies:

𝑡𝑙,𝑢,𝑖 < 𝜆 ⋅ 𝑡𝑙,𝑢,𝑖, 𝑖 ≠ 𝑖, (50)

𝜆 = {
0.5 if 𝑡𝑙,𝑢,𝑖 is a size tolerance,

1 otherwise.
(51)

The number of tuples and required constraints depend on the number and
type of tolerances specified.

Theoretical solution – part level (b) To treat all identical part features
equally in optimization, all tuples of identical features have first to be identi-
fied and second be consolidated in a quadratic feature equality matrix 𝑨eq for
each part:

𝑨eq =

⎡
⎢
⎢
⎢
⎢
⎣

𝑎1,1 𝑎1,2 ⋯ 𝑎1,𝑈

𝑎2,1 𝑎2,2 ⋯ 𝑎2,𝑈

⋮ ⋮ ⋱ …

𝑎𝑈,1 𝑎𝑈,2 ⋯ 𝑎𝑈,𝑈

⎤
⎥
⎥
⎥
⎥
⎦

= (𝑎𝑢,𝑢)𝑢=1,⋯,𝑈;𝑢=1,⋯𝑈
(52)

where 𝑎𝑢,𝑢 = 𝑎𝑢,𝑢 = {
1 if feature 𝑢 and 𝑢 are identical,

0 otherwise.
(53)

Using this information, the tolerance values for identical features of one part
can then mathematically be defined as follows:

𝑡𝑢,𝑖 = 𝑡𝑢,𝑖 if 𝑎𝑢,𝑢 = 1 ∀ 𝑢, 𝑢 = 1, … , 𝑈; ∀𝑖 = 1, ..., 𝐼𝑢𝑙; 𝑢 ≠ 𝑢. (54)

To handle this case for all considered parts in optimization, additional linear
equality constraints could be added for all tolerances. However, due to lower
dimensions and less constrained design spaces, a design dimension reduc-
tion method is preferred in this thesis. In doing so, the design variables are
reduced to aminimum before the optimization, where some of them are used
as shared variables for all identical feature tolerances. Its basic principle is
shown in Fig. 46 (left) for the shaft 𝑙 = 9 using a gene string representation.
Four design variables are sufficient to define all eight tolerances. Therefore,
𝑨eq is used in each iteration to expand the reduced design vector to the total
number of tolerances as an inverse operation of the dimension reduction. In
general (and at least approximately in this thesis), it can then be assumed
that, besides the equal costs, the variations of the same features with the
same setup result in similar frequency distributions. Hence, the same part
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5.3 Coping with multiple part tolerances in optimization

tolerance probability distributions can be considered for tolerance analysis.
For the sampling, different uniform random numbers 𝑋′ for all characteristics
(see Sec. 4.1) have to be generated to avoid unrealistic correlations of the
simulated variations.

Theoretical solution – assembly level (c) Similar to the idea of the feature
equalitymatrix acc. to Eq. (52)–(53) in case (b), thedefinitionof apart equality

matrix𝑩eq = (𝑏𝑙,𝑙)
𝑙=1,⋯,𝐿;𝑙=1,⋯𝐿

can beused tomathematicallydescribe case (c)

allocating equal tolerances for all multiple used parts:

𝑡𝑙,𝑢,𝑖 = 𝑡𝑙,𝑢,𝑖 if 𝑏𝑙,𝑙 = 1∀ 𝑙, 𝑙 = 1, ⋯ , 𝐿; 𝑢𝑙 = 1… ,𝑈𝑙; 𝑖 = 1, ..., 𝐼𝑢𝑙; 𝑙 ≠ 𝑙, (55)

with 𝑏𝑙,𝑙 = 𝑏𝑙,𝑙 = {
1 if part 𝑙 and 𝑙 are identical,

0 otherwise.
(56)

From a cost point of view, it is further reasonable to choose the same alterna-
tives for all identical parts:

𝑥𝑙,𝑗 = 𝑥𝑙,𝑗 if 𝑏𝑙,𝑙 = 1∀ 𝑙 = 1, ⋯ , 𝐿; 𝑗 = 1… , 𝐽𝑙; 𝑙 ≠ 𝑙, (57)

which further leads to the same tolerance-related costs per part. In line
with case (b), the same part tolerance distributions can be assumed for the
identical parts. By transferring the idea of dimension reduction from part
to assembly level with 𝑩eq, a minimum design vector 𝒗 uniquely describes
the tolerance and alternative selection for identical parts. Fig. 46 (right)
illustrates an intermediate solution for the covers 𝑙 = 7, 15.

part l=7

10.5 0.3 0.2

2

𝒕𝒕𝟗𝟗; 𝒙𝒙𝟗𝟗 ,𝑨𝑨𝐞𝐞𝐞𝐞,𝟗𝟗: 𝒂𝒂𝟏𝟏,𝟐𝟐 = 𝟏𝟏; 𝒂𝒂𝟑𝟑,𝟒𝟒 = 𝟏𝟏
design dimension reduction

/t9,1 2,1

… 0.4 0.3 0.1 0.2 …1

𝑥𝑥9/t9,1 2,2 /t9,1 2,3 /t9,3 4,1

Substring of part l=9

t9,1,1 𝑡𝑡9,1,2 𝑡𝑡9,1,3 𝑡𝑡9,3,1t9,2,1 𝑡𝑡9,2,2 𝑡𝑡9,2,3 𝑡𝑡9,4,1

10.4 0.3 0.1 0.2 0.4 0.3 0.1 0.2

𝑥𝑥9

design dimension expansion

10.5 0.3 0.2

𝒕𝒕𝟕𝟕/𝟏𝟏𝟏𝟏; 𝒙𝒙𝟕𝟕/𝟏𝟏𝟏𝟏 ,𝑩𝑩𝐞𝐞𝐞𝐞: 𝒃𝒃𝟕𝟕,𝟏𝟏𝟏𝟏 = 𝟏𝟏
design dimension reduction

… …1

/t7 15,1,1 𝑥𝑥7 15//t7 15,1,2 /t7 15,1,3

𝑡𝑡7,1,1 𝑡𝑡7,1,2 𝑡𝑡7,1,3 𝑥𝑥7 𝑡𝑡15,1,1 𝑡𝑡15,1,2𝑡𝑡15,1,3 𝑥𝑥15

design dimension expansion

1 part l=15 2

0.5 0.3 0.2

Figure 46: Handling tolerance allocation and alternative selection with multiple identical part

features (left) and parts in an assembly (right) by design dimension reduction illustrated by

the examples from Fig. 45.
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5 Enhancing the completeness of sampling-based tolerance-cost optimization

Practical transfer and findings The proposed method is now exemplarily
applied to the wheel mounting assembly example from the previous sections
(see Fig. 47). It is extended to a 3D problem with multiple geometrical
tolerances, including several correlated tolerances to be allocated. Both
supports, part 1 and 3, are considered as equal parts 𝑏1,3 = 1 (see Eq. (85)).

Multiple feature tolerances are specified for all parts requiring additional lin-
ear inequality constraints following Eq. (50)–(51). For instance, the cylindrical
feature 𝑢 = 3 of the shaft 𝑙 = 5 is covered by two GD&T constraints:

𝑡5,3,2 < 0.5 ⋅ 𝑡5,3,3, (58)

𝑡5,3,2 < 𝑡5,3,1. (59)

In total, eight constraints are needed, which are summarized in Eq. (86). For
the parts 𝑙 = 1, 3, 5 two alternatives 𝐽𝑙 = 2 are considered to realize them.

Moreover, the size tolerances 𝑡1,3,2, 𝑡3,3,2, 𝑡4,4,1, 𝑡5,3,3 and 𝑡5,4,1 are prefixed before
optimization forming the respective clearance between the shafts and holes.
This leads to a reduction from 27 tolerances to 18 – decreased by four prefixed
size tolerances and five equally defined tolerances for part 𝑙 = 1, 3 by the
proposed dimension reduction method. Besides, the design vector 𝒗 for
optimization includes two entries for the alternative selection for parts 𝑙 = 1, 3
and 𝑙 = 5. All information on the tolerance-cost model, its freely chosen
cost coefficients, tolerance boundaries, and the individual part tolerance
probability distributions are summarized inTbl. 40. The example is described
in more detail in Appx. A.8.1.

TCVisVA is used as an MCS-based tolerance analysis tool and embedded as
a black box into the optimization workflow for iterative nc-rate evaluation.
In case of a violation of the feasibility constraints on feature level case (a),
tolerance analysis is skipped and the solution is directly penalized. More
details on using TCVisVA as tolerance analysis subroutine in batch mode for
optimization, including optimal alternative selection, are given in Appx. A.6.
The optimization is repeated 𝜂𝑟 = 10 times. Using the same random seed
when recalling TCVisVAwith 𝑛 = 10,000 inside theoptimization loop enables
the realization of the equal randomnumbers strategy presented in Sec. 4.1 (O-
2/S-3 acc. to Tbl. 6).
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Figure 47: Overview of the extended wheel mounting assembly example in 3D: parts with its

features (top), assembly structure, and tolerance specification visualized as graph (bottom).

The part tolerance specifications are further detailed in Fig. 91. Explanations on the graph

notation are given in Fig. 96.

The optimization results using mixed-integer GA (all settings are given in
Sec. A.9.2) are presented in Fig. 48. The details are summarized in Tbl. 41–43.

Sevenof the tenoptimization runswere successful in satisfying all constraints,
viz. the nc-rate limits (see Fig. 48 (right)), the individual part tolerance
limits for each tolerance as well as the additional constraints to represent
the GD&T rules. The validity of the results is exemplarily illustrated for the
best run in Fig. 49. The dimension reduction assures that all tolerances
and alternatives were chosen equally for part 𝑙 = 1, 3, which can directly be
seen when comparing the individual values for 𝑡

opt
𝑙,𝑢,𝑖 as well as 𝑥

opt
𝑙,𝑗 given in

Tbl. 43. As a result, this leads to the same cost shares 𝐶
opt
𝑙,𝑢,𝑖 for 𝑙 = 1, 3. To
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Figure 48: Overview of the optimization results for the wheel mounting assembly example

with multiple geometrical tolerances.

sum it up, the example emphasized that the proposed method first helps
to systematically structure the optimization problem by breaking it down
into assembly, part, and feature levels. Second, using equality matrices
and inequality constraints is helpful to directly integrate the tolerancing
knowledge and logic in the optimization problem. In combination with
metaheuristic optimization, standard proprietary tolerance analysis software
tools can directly be embedded as black boxes. However, this is at the expense
of the efficiency of the optimization. The average computing time for all
feasible solutions 𝜏feas is mainly dominated by the time effort necessary for
the iterative call of TCVisVAwith the updated tolerance values and the import
of the resultant quality information 𝑌 serving as the basis for the subsequent
nc-rate evaluation. For the comparatively low sample size of 𝑛 = 10,000, one
feasible optimization run already took 16.5 h on average (Tbl. 42).
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Figure 49: Details on the best run with achieving minimum cost 𝐶
opt
sum: individual cost shares

𝐶
opt
𝑙,𝑢,𝑖, optimally allocated tolerances 𝑡

opt
𝑙,𝑢,𝑖 for the wheel mounting assembly example.

Multiple tolerances per feature and part lead to correlated design vari-
ables. Additional inequality constraints and design dimension reduction
methods help to assure reliable and technical proper tolerance allocation
and alternative selection results. In addition, it enables the direct em-
bedding of proprietary tolerance analysis software in the optimization
workflow such as TCVisVA.
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6 Improving the efficiency of sampling-based

tolerance-cost optimization

In general, product development has benefited significantly from the steady
increase in computing performance (see Fig. 11 (bottom)), which gave the
efficiency of simulation- and optimization-based methods a massive boost.
In compliance with the ISO 9241-11, the efficiency is defined as the ”sources
expended in relation to the accuracy and completeness in which users achieve
goals” [565] and also referred to as an essential measure to evaluate the
optimization performance [586]. In the following, it is studied as the third
key element of the usability of tolerance-cost optimization.

The fundament of an efficient optimization routine is a thoughtful choice of
programming language and code implementation in combination with high
computing performances and advanced programming subroutines, such as
parallel and GPU-computing [130, S2]. Besides, however, the time effort
to repetitively evaluate the constraints and objective functions until the
algorithm converges mainly influences the efficiency and, thus, the final
calculation time required. As [P2, P10] conclude, the computation time for
one feasible tolerance-cost optimization run 𝜏feas mainly depends on the
repetitive application of tolerance analysis within the optimization loops (see
Fig. 12). In contrast, the computation time for the tolerance-cost analysis is
negligible. In simplified terms, the tolerance analysis-related share of the
total optimization time 𝜏sum can be estimated by

𝜏sum ≈
optimization

⏜⎴⏞⎴⏜𝜂𝑝 ⋅ 𝜂𝑔 ⋅

tolerance analysis

⏜⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⏜(𝜏samp + 𝑛 ⋅ 𝜏𝑌 + 𝜏𝑧̂), (60)

with the population size 𝜂𝑝, number of generations 𝜂𝑔, the time for the sam-
pling 𝜏samp, the time for the evaluation of all assembly response functions 𝜏𝑌
and the time for the nc-rate estimation 𝜏𝑧̂.

1 Fig. 50 visualizes the interrela-
tions given in Eq. (60) using a small optimization study as an example (see
Appx. A.9.3 for more details). The chance to find the global optimum can
be increased with high numbers of generations 𝜂𝑔 and sample size 𝑛 (see
Fig. 50 (left)). It gives the optimizer more trials to explore the whole design
and intensify the best solutions while avoiding large margins of error and
scattering effects in the acceptability constraints (see Sec. 4.1). However, the

1 Eq. (60) assumes an iterative resampling in each optimization step, under the assumption

of one tolerance analysis per individual per optimization step. In the case of reusing the

same set of random numbers, the time for the sampling has only to be invested once before

optimization (see Sec. 4.1).

103



6 Improving the efficiency of sampling-based tolerance-cost optimization

optimization time needed increases significantly. The share of the subroutine
of sampling-based tolerance analysis in the average total computing time
confirms its main contribution (see Fig. 50 (right)).
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Figure 50: Illustration of the main contributors to the scattering of cost optima expressed by

the 95%-quantile range qr
𝐶,95%

and average total computation time 𝜏feas of sampling-based

tolerance-costoptimization illustrated foranexemplary studyof thewheelmounting assembly.

Following Eq. (60), 𝜏sum can, on the one hand, be decreased by scaling
the total number of optimization iterations down through a robust
optimization problem definition, efficient algorithms, thoughtfully chosen
settings for the population size 𝜂𝑝 as well as the settings and termination
criteria influencing the total number of generations 𝜂𝑔 finally needed.2 On
the other hand, it is purposeful to reduce the total time effort for the
sampling-based tolerance-analysis through fast sampling techniques and
nc-rate estimation techniques, low sample sizes 𝑛, and time-efficient models
for evaluating the multiple assembly responses 𝑓𝑌𝑘.

3

The choice of sampling technique and the nc-rate estimation have already
been examined in Chap. 4, with a primary focus on their effectiveness, but
it secondary included the aspect of computation times due to their direct
interdependence. The following sections will present advanced sampling
methods and surrogate model-assisted optimization routines to increase the
efficiency of sampling-based tolerance-cost optimization.

2 Finding an optimal set of algorithm-specific tuning parameters is critical in metaheuristic

optimization. General rules and results fromprior, similaroptimizations are a useful starting

point for amanual adaption oroptimization of the hyperparameters. Despite its importance,

this thesis does not study the influence of optimization settings in detail since it is always

specific for a given optimization problem.
3 In the given study, the time effort to evaluate the explicitly defined assembly response

functions is comparatively low. Besides the findings from literature (see Sec. 2.2.2), the

examples shown in [P11, P14, S9] and in Sec. 5.3 emphasize that the computational effort

and the computation times can significantly increase up to several days for one optimization

run.
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6.1 Adaptive sample sizes

6.1 Adaptive sample sizes

Motivated by the proof of benefits in literature [134, 408] and an initial
implementation in [S6], the subsequent discussion focuses on the concept of
adaptive, over theoptimizationvariable sample sizes. It studies theirpotential
for increasing the efficiency of sampling-based tolerance-cost optimization
by scaling down the sample size 𝑛 (see Fig. 50).

Problem statement Oneof themain subjects of the studies in Chap. 4 is the
correlation of the accuracy of tolerance analysis and, thus, of tolerance-cost
optimization, and the sample size𝑛. Aiming toassure the accuracyof the final
nc-rate predicted for the optimal tolerance values, the number of samples 𝑛
must be consciously chosen with respect to the achievable accuracy before
optimization. Consequently, it is used for each repetitive tolerance analysis
step. For the general case of an optimization iteration with one tolerance
analysis per individual, the total number of function evaluations for each
assembly response function then approximately corresponds to:

𝜂𝐹 = 𝜂𝑝 ⋅ 𝜂𝑔 ⋅ 𝑛. (61)

A constantly high number of function evaluations is needed in each genera-
tion, significantly slowing down the optimization and being a major limiting
factor for its efficiency.

Theoretical solution Although the sample size 𝑛 for the generation 𝑔 in
which the optimization converges must be fixed for achieving reliable results,
notall thenumerous nc-constraintevaluationsmust necessarily beperformed
with the same accuracy while searching for the optimum. The basic idea
of adaptive sample sizes is to start with a smaller sample size 𝑛min and to
successively increase it over the optimization up to the last generation 𝐺 to
𝑛max. The increase of 𝑛̃ over the generations 𝑔, {𝑛̃ ∈ ℕ | 𝑛min ≤ 𝑛̃ ≤ 𝑛max} can
be defined by the fitting function 𝑓𝑛, for example a tanh-function with two
free shape parameters 𝜉1 and 𝜉2, as presented in [134], as follows:

𝑛̃ = 𝑓𝑛(𝑔) = 𝑛min + (𝑛max − 𝑛min) ⋅ 0.5 ⋅ {1+ tanh [𝜉1 ⋅ (𝑔/𝐺 − 𝜉2)]} . (62)

When applying Eq. (62), however, it must be ensured that 𝑛max is reached at
the end and prevented that the algorithm terminates already prematurely
after 𝑛(𝑔) < 𝑛max generations. This can be the case if a termination criterion,
besides the maximum number of generations 𝜂𝑔, is assigned and reached,
for example, if no improvement could be found in 𝜂𝑔,stall generations, the
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6 Improving the efficiency of sampling-based tolerance-cost optimization

so-called stall generations. A suitable remedy is to extend Eq. (62) to a
piecewise function:

𝑛̃ = {
𝑓𝑛(𝑔) for 𝑔 ∈ [1; 𝜂𝑔,stall] ,

𝑛max for 𝑔 > 𝜂𝑔,stall,
(63)

where 𝐺 = 𝜂𝑔,stall is defined in 𝑓𝑛(𝑔) acc. to Eq. (62). The interrelations of
Eq. (63) are shown for three sample size curves in Fig. 51 (left).

In doing so, the iterative improvement of the solutions by trial-and-error
mechanisms of metaheuristic optimization algorithms is exploited. In early
generations, a lower ”precision of the fitness” [134] is sufficient to identify
promising hot spots by predominant exploration steps since, despite larger
uncertainty, it allows for evaluating poor solutions as not being nearly in
the region of optimum or not being acceptable exceeding the nc-rate by far.
In later stages, the algorithm has already been able to identify the potential
areas with the aid of information from the previous generations. When
intensifying the current best solutions through exploitation becomes more
in focus and convergence approaches, higher sample sizes are required to
excludeanegative impacton theoptimizationprocess through largesampling-
induced uncertainties. Fig. 51 (right) exemplarily illustrates the decrease of
the margin of error 𝜖𝑃=0.5 with gradually increasing sample size 𝑛̃.
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Figure 51: General ideaof adaptive sample sizes for tolerance-cost optimization: three examples

of adaptive sample curves following Eq. (62) (left). Decrease of the margin of error of nc-

evaluation 𝜖𝑃=0.5 (i.e., 𝑧 = 5 ⋅ 105 ppm) over 𝑔 estimated by Eq. (11) for 𝛼 = 0.05 (right).

The tuning of 𝜉1, 𝜉2 and 𝑛min to the algorithm-specific optimization settings,
chosen with respect to the given problem complexity, is decisive for optimiza-
tion success with a significantly lower number of function evaluations. While
a too-early increase of 𝑛 leaves efficiency potential unused, a too-late increase
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can cause the total optimization to take longer in total since it gets lost in the
search space due to over-and underestimations of the constraints.

Tomitigate the latter effect, it might also be helpful to recalculate a number
of themost promising solutions of the current generation {𝑛𝑟 ∈ ℕ0 | 𝑛𝑟 ∈

[0; 𝜂𝑝]}. Hence, 𝑟𝑝 is defined as the ratio of recalculations 𝑟𝑝 =
𝑛𝑟

𝜂𝑝
. Since the

optima typically lie near or on the nc-rate constraint surface due to the trade-
off between cost and quality, the 𝑛𝑟 individuals with a minimum absolute
offset to the maximum nc-limit 𝛿𝑧 = |𝑧̂ − 𝑧max| are the most relevant ones,
influencing the ranking of the elitist solutions surviving and shaping the
next generation. The recalculation of these solutions with 𝑛max aims to avoid
under- and overestimates, leading to solutions being incorrectly evaluated as
acceptable or unacceptable. The general idea of this extension is shown in
Fig. 52 (left).
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Figure 52: Basic principle of adaptive sample sizes with recalculation of most promising

solutions and equal random numbers (left). Number of function evaluations 𝜂𝐹(𝑔) illustrated

for a constant sample size 𝜂𝑝 ⋅ 𝑛max, an adaptive sample size 𝜂𝑝 ⋅ 𝑛̃, and its raise by additional

recalculations 𝑟𝑝 ⋅ 𝜂𝑝 ⋅ 𝑛max and cumulated difference Δ𝜂𝐹,∑ acc. to Eq. (64) (right).

Lastly, it makes sense to include the strategy of equal random numbers pre-
sented in Sec. 4.1 to mitigate the scattering of the intermediate nc-estimation
results due to different samplings. MCS is valid for this purpose, as it offers
the possibility for only a partial evaluation or the addition of new random
numbers. As exemplified in Fig. 52 (left), an initially generated set of 𝑛max

uniform random variates 𝑿′ can serve as an overall set to be evaluated only
for the first 𝑛̃ random numbers in the respective generation 𝑔. In contrast,
the individual samples within LHS and QMCS are aligned with each other, re-
quiring the evaluation of all samples and complicating subsequent expansion
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6 Improving the efficiency of sampling-based tolerance-cost optimization

without sophisticated methods and effort. In contrast to these variance re-
duction methods from Sec. 4.1, the method of adaptive sample sizes is more
universally applicable for non-code-based tolerance analysis software. The
sample size can usually be controlled externally via commands in addition
to the current tolerance values and part tolerance probability distributions.
Using TCVisVA, for instance, an identical random seed, as already proposed
in Sec. 5.3, used in all optimization steps further supports the elimination of
the sampling-induced scattering and discontinuity effects (see Appx. A.6).

Finally, the cumulative difference in function evaluations in the range of
[1; 𝜂𝑔,stall] can be roughly estimated as follows:

Δ𝜂𝐹,∑ = ∑
𝜂𝑔,stall
𝑔=1 {𝑛max − [(𝑛̃(𝑔) + 𝑟𝑝(𝑔) ⋅ 𝑛max]} ⋅ 𝜂𝑝 (64)

and multiplies for multiple, separately evaluated assembly response func-
tions (see Fig. 52 (right)). However, the exact number of function evaluations
depends on the geometrical behavior model and the structure of the opti-
mization algorithm used.

Practical transfer and findings To prove the theoretically discussed poten-
tial of adaptive sample sizes for sampling-based tolerance-cost optimization,
the method is exemplarily applied to the 3D wheel mounting assembly exam-
ple presented in Sec. 5.3. For simplicity, alternative selection is neglected in
the following and all tolerances are considered normally distributed (see the
summary of tolerance-cost data in Tbl. 45). The CS algorithm, in its basic
form described in Appx. A.3.2, is adapted for handling the variable input of
adaptive sample sizes as a function of the current generation 𝑔 and to repeat
the 𝑛𝑟 promising individuals in each iteration.

The subsequent studies aim to:

1. study the influence of the shape parameters of 𝑓𝑛 on the results,
2. investigate the benefit/impact of recalculating the 𝑛𝑟 relevant individuals

by comparing the results to the ones gained by adaptive sample sizes
without repeated analysis.

Therefore, in study (1), the tolerance-cost optimization for 𝑛min = 5,000 and
𝑛max = 10,000 is performed for 𝜉1 = 7 and the three levels 𝜉2 = [0.3, 0.5, 0.7].
Each of them is performed without (𝑟𝑝 = 0) and with the proposed repetition
of tolerance analysis with final sample size 𝑛 = 10,000 (𝑟𝑝 = 0.2, 𝑛𝑟 = 5
for 𝜂𝑝 = 25) and compared to the traditional approach with a fixed sample
size. The different optimizations are repeated five times 𝜂𝑟 = 5 with the
same random numbers used for tolerance analysis in TCVisVA (O-2/S-3 acc.
to Tbl. 6). Avoiding an early convergence of the optimization algorithm,
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6.1 Adaptive sample sizes

the stall generation limit is set to 𝜂𝑔,stall = 200 and the maximum number
of generations to 𝜂𝑔 = 250. Consequently, there is no adaptive sample
size adjustment from generation 𝑔 = 201 on. The step to recalculate the
best solutions is omitted since the final sample size 𝑛 = 𝑛max is reached in
generation 𝑔 = 𝜂𝑔,stall = 200 (see Eq. (63)). In addition to Tbl. 46–47 in the
appendix, Fig. 53 and Fig. 54 contrast the main results of study (1) for the
different settings. The results are sorted by ascending average computation
time 𝜏feas, with all optimization runs satisfying the feasibility and acceptability
constraints.

(1), n = 10,000

-

109.6

109.8

MU

110.2

2,600

ppm

2,700

14.0

16.0

h

20.0

�𝑚𝑚𝐶𝐶sum
opt ,

�𝑚𝑚𝐶𝐶sum
𝑔𝑔=200

𝐶𝐶sum
𝑔𝑔=200

𝐶𝐶sum
opt

𝜏̅𝜏feas

�𝑚𝑚𝑧̂𝑧asm
opt

𝑧𝑧max

𝑟𝑟𝑝𝑝, 𝜉𝜉20 ,0.7 0 ,0.5 0 ,0.3 0.2 ,0.7 0.2 ,0.5 - 0.2 ,0.3

200

200

2

Figure 53: Optimization results with adaptive sample sizes in comparison: average computing

time 𝜏feas (top), median of the obtained intermediate and final cost optima 𝑚̃𝐶
𝑔=200
sum

and 𝑚̃𝐶
opt
sum

(center), median of the nc-values for the obtained optima 𝑚̃𝑧̂
opt
asm

(bottom) for study (1) with

𝑛 = 𝑛max = 10,000 and different settings of 𝜉2 and 𝑟𝑝 for a dynamic sample size adaption.

All optimization runs terminated in the maximum generation 𝑔 = 250,
whereas the nc-limits were mostly fully pushed to their maximum limit of
𝑧max = 2,700 ppm (see for instance the median of the nc-rate values of all five
runs for the obtained optima 𝑚̃𝑧̂

opt
asm

in Fig. 53 (bottom)). As expected, lower
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6 Improving the efficiency of sampling-based tolerance-cost optimization

𝜉2 values, leading to a faster increase in 𝑛̃ (see Fig. 51), consequently lead to
higher optimization times 𝜏feas. Moreover, an additional recalculation further
increases the required time effort (see Fig. 53 (top)). The medians of the
obtained cost optima 𝑚̃𝐶

opt
sum

in Fig. 53 (center) illustrate that the optima found
are lower than the ones for the fixed sample size. The scattering of the results,
explicitly shown in the scatter plot in Fig. 54, originates from the stochastic
optimization operations since sampling-induced uncertainties were omitted
beforehand by using the same random numbers. While a general trend of
lower values for 𝑟𝑝 = 0with lower 𝜉2 values is apparent, better results are only
partly and not directly visible for all settings using the strategy of repeating
the 𝑛𝑟 = 5 best individuals.
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Figure 54: Optimization results with adaptive sample sizes in comparison: scattering of

intermediate and final cost optima 𝐶
opt
sum and 𝐶

𝑔=200
sum for study (1).

Supplementary, study (1) is now repeated in study (2) for the same settings
but with 𝑛min = 10,000 and 𝑛max = 100,000. Due to the higher sample
sizes, the total computation time significantly increases. For this reason, the
optimization procedures are not repeated (𝜂𝑟 = 1). The results of all feasible
runs, additionally summarized in Tbl. 48, are shown in Fig. 55. In line with
study (1), the runs of the adaptive sample sizes performed at least as well
as the run with the fixed sample size (see 𝐶

opt
sum), whereas the effect on the

required computation times are strongly amplified (see 𝜏feas).

At this point, at the latest, it must be claimed that the derivation of general
statements is not possible or reasonable for several reasons. First, both stud-
ies are only investigated for one set of random numbers used in tolerance
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Figure 55: Optimization results with adaptive sample sizes in comparison: computing time

𝜏feas (top), intermediate and obtained cost optima 𝐶
opt
sum and 𝐶

𝑔=200
sum (center), nc-values for the

obtained optima 𝑧̂
opt
asm (bottom) for study (2) with 𝑛 = 𝑛max = 100,000 and different settings of

𝜉2 and 𝑟𝑝 for dynamic sample size adaption.

analysis. Second, the chosen settings might not be valid for reaching the
global optimum. On the one hand, this can be seenwhen comparing the opti-
mal values with the optimal intermediate results 𝐶

𝑔=200
sum in the last generation

of adaption, revealing that in the last 50 generations further improvement
is made for all variants. On the other hand, the nc-rates 𝑧̂

opt
asm for the optima

obtained in study (2) (see Fig. 55) show that there might still be some room
for improvement left since the maximum limit 𝑧max is not reached. Third, the
comparatively low number of repetitions further makes quantitative state-
ments difficult. At the same time, the results strongly depend on the chosen
settings, the optimization problem’s complexity, and the studied parameter.

Nonetheless, the studies demonstrate the benefits of the proposed method
for significantly lowering the necessary computation times (up to ≈ −5 h/by
≈ −26% in study (1), up to≈ −93 h/by≈ −50% in study (2)) while achieving
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6 Improving the efficiency of sampling-based tolerance-cost optimization

similar or partly better results. A fine-tuning of the parameters of 𝑓𝑛 to the re-
spective tolerance allocation problems can help to further exploit its potential.
Moreover, an additional adaption of the ratio of recalculations 𝑟𝑝 dynamically
during optimization might be profitable and is worth to be examined, where
in-depth studies on different use cases with different complexity are needed
to derive general statements on the harmonization of the settings for adaptive
sample sizes and algorithm-specific stochastic operations.

Adaptive sample sizes combined with equal random numbers can reduce
the total amount of function evaluationswhile assuring the same accuracy
of the final optimization results. The alignment of the adaptive function
and the number of recalculations of the best intermediate solutions with
the problem and the optimization settings is decisive to increase the
chance of achieving the global optimum efficiently.

6.2 Surrogatemodel-based optimization

Supporting optimization through surrogate models has gained its attention
in the last years [587, 588]. In the context of optimal tolerance allocation, they
primarily aim to accelerate the tolerance analysis subroutine and to overcome
the deficiencies in efficiency [P16]. In the following, different strategies
for using surrogate-assisted sampling-based tolerance-cost optimization, in
excerpts presented in [P10, S7, S8, P18], are introduced and discussed.

Problem statement Jointly with the sample size 𝑛, the substeps for the
statistical evaluation of the assembly responses, including part variations
modeling and their propagation on the assembly level through the behavior
model, significantly influence the total computation time (see Fig. 50). While,
for instance, vector or torsor models are far less computationally demanding
and optimizations can be solved in a few minutes or hours, depending on the
optimization problem complexity, the previous sections illustrated that the
direct integration of numerical software tools into the optimization workflow
could usually only be realized with a high investment of resources or not
at all in reasonable computation times.Which model fits best to represent
the respective assembly behavior under variations mainly depends on the
tolerance engineers’ expertise. A substitution or approximation of higher-
level geometrical and behavior models by lower ones can significantly reduce
the required computing time 𝜏𝑌 to evaluate all assembly response functions
𝑓𝑌𝑘 (see Eq. (60)). However, the resulting accuracy and completeness suffer
simulteanously from a strong (over-)simplification of reality.

Theoretical solution Instead, surrogate model-based optimization
approaches approximate the sufficiently accurately represented and not
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6.2 Surrogate model-based optimization

necessarily explicitly known models in objective and constraints [588] uti-
lizing a ”cheap-to-run” model 𝑓̃ [587]. An increase in efficiency is expected,
as the design space can be searched and the optimum can be found much
faster, ”at the expense of a (hopefully slight) loss of accuracy” [589]. Tradi-
tionally, surrogate modeling and optimization are two sequential activities
and fully decoupled. The substeps of data generation, fitting of a selected
model to these data, and its validation are preceded by optimization [587,
588]. Besides the choice of the level atwhich approximation takes place in the
sampling-based tolerance analysis, tailoring these pre-processing steps to the
different tolerance allocation problems plays an essential role in minimizing
the influence of the approximate estimates in the acceptability constraints in
the optimization.

Fig. 56 supplements the branch of the sampling-based tolerance analysis
from Fig. 12 by the findings on alternative selection (see Sec. 5.1) and multiple
assembly response functions (see Sec. 4.3) and illustrates different possible
levels of approximation.4
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Figure 56: Different strategies of theusageof surrogatemodels as black boxmodels in sampling-

based tolerance-cost optimization.

Aiming to accelerate the evaluation of the nc-rate constraints, the subsequent
black-boxing strategies are generally conceivable:

(1) regressionmodel 𝑓̃𝑌𝑘 for the 𝑘-th assembly response function 𝑓𝑌𝑘 to predict

the assembly response 𝑌̃𝑘 (=̂ 𝑦̂) for the characteristics 𝑿𝑚 (=̂ 𝑥),

4 In addition, [P10] introduces the idea of classification surrogates to quickly predict if an

assembly with the current part characteristics 𝑿 can be assembled or not. For clarity,

however, an additional evaluation of the assemblability by additional criteria, as formalized

in Eq. (23)–(24), is neglected in the following. In linewith Sec. 5.3, the subsequentdiscussion

focusesonalternative selection, but themethodsoffer thepossibilityof extending tomachine

allocation.
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6 Improving the efficiency of sampling-based tolerance-cost optimization

(2) classification model 𝑓̃
𝑐
1/0
𝑘

to check the single conformance 𝑐
1/0
𝑘 (=̂ 𝑦̂) of

the 𝑘-th assembly response function with 𝑿𝑚 (=̂ 𝑥).

(3) classification model 𝑓̃
𝑐
1/0
asm

to check the total conformance 𝑐
1/0
asm (=̂ 𝑦̂) for

all assembly response functions acc. to Eq. (23) with 𝑿𝑚 (=̂ 𝑥),
(4) regression model 𝑓̃𝑧̂ (=̂ 𝑦̂) to substitute the total tolerance analysis and

nc-rate evaluation to directly predict 𝑧̂asm for a current set of tolerance
values 𝒕 and set of chosen alternatives 𝒙 (=̂ 𝑥),

where 𝑥 and 𝑦̂ indicate the in- and outputs and 𝑓̃ the surrogate model, follow-
ing the fundamental equation of surrogate modeling with the approximation
error 𝑒: [589]

𝑦̂ = 𝑓̃(𝑥) with 𝑦 = 𝑦̂ + 𝑒. (65)

Depending on the sub-steps to be substituted, the type of output differs
between continuous values (1,4) and categories (2,3) and requires methods
for regression (1,4) or classification (2,3). As both methods are decoupled,
the data set must be created in advance, a regression model selected, its
parameters chosen, and their predictive quality evaluated (see also Fig. 88
(left) in Appx. A.5). Literature (see Sec. 2.2.2) and the findings made in [P10,
P18] confirm the positive effect of substituting assembly response functions
or additionally the nc-rate estimation (1) and (3) on the total optimization
efficiency.5

However, in case proprietary tolerance analysis software tools are used, the
applicability of the proposed strategies is limited by the insights into the
sampling routines and the outputs provided by the software [P19]. Using
TCVisVA, for instance, the assembly response values 𝒀 can be exported and
used for subsequent evaluation steps, but the user lacks the information
about the sampled characteristics 𝑿𝑚 values [P19]. For this reason, only
strategy (4) is applicable and studied in detail in the following. The general
workflow is shown in Fig. 57.

The inputs 𝑥, also called predictors, are the tolerance values and the alter-
natives, making the factors and boundaries for the DOE equal to those of
the design variables 𝒗𝑡 and 𝒗𝑥 for optimization. Therefore, limiting the
input variables 𝑥 to the set of minimum tolerance variables resulting from
the design dimension reduction method proposed in Sec. 5.3 is useful. The
choice of the DOE and the number of sample points in the first step is always
subject to a conflict of initial computation time to invest and the resulting
prediction quality mitigated by the approximation error 𝑒. Efficient sampling

5 Strategy (2) and (3) are only applicable for the nc-rate estimation with ecdf acc. to Eq. (17)

or Eq. (23), due to its sample-wise evaluation of the (non)-conformance.
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6.2 Surrogate model-based optimization

of the total design space considered in optimization is decisive. It can be
achieved systematically, e.g., by (full)-factorial DOE, or randomly, e.g., by
LHS, varying the individual input parameters between their lower and upper
boundaries at equal intervals [589]. According to the chosen DOE, the search
space of the optimization is screened and for each test point 𝑑, a tolerance
analysis is performed with 𝑛 samples taking the current tolerance values and
the probability density functions for the current alternatives into account.
The respective single nc-rate 𝑧̂ (for 𝐾 = 1) or more generally the total nc-rate
𝑧̂asm (for 𝐾 > 1) serves as output 𝑦 (see Fig. 57). The data set should cover
the total design space in optimization. However, when multiple tolerances
are assigned to one geometrical part feature, it can include combinations
of tolerances that do not conform to the GD&T inequality constraints of
Eq. (50)–(51). A subsequent data cleaning step becomes necessary. While
they are directly discarded and penalized by high nc-rates in optimization,
as the definition is not valid and tolerance analysis does and can not be per-
formed, these combinations are excluded from the data set. As a result, the
initial data with 𝐷 samples is reduced to the feasible ones 𝐷′ before the step
of surrogate model fitting.

Although general guidelines and metrics help to select a model type with its
parameters, the final assessment of their suitability, similar to metaheuristic
optimization algorithms, remains an individual decision. More simplistic
regression models can further enable the use of traditional optimization
algorithms, e.g., sequential quadratic programming [298]. However, they
may not be sufficient to model the highly nonlinear relations between the
individual in- and outputs implicitly drawn by numerical simulation. Hence,
it corresponds to an iterative process to fit and validate several models prese-
lected from the various surrogate modeling techniques developed over the
last years. The model with the best fitness is chosen as the final surrogate,
based on established metrics, such as RMSE or 𝑅2 (see Appx. A.5).

The efficiency of the whole approach depends on the time effort for the pre-
optimization steps for surrogatemodeling 𝜏PreOpt and the actual optimization
steps. 𝜏PreOpt depends significantly on the numberof points𝐷 and, depending
on the case, the downstream steps necessary to generate the required outputs
𝑦, in addition to the time to create the DOE once and the time to train the
surrogate models. Due to the approximation of the total tolerance analysis
routine in case (4), 𝜏PreOpt is significantly dominated by the 𝐷 times repeated
tolerance analysis with 𝑛 samples for data generation. The nc-rate evaluation
within each optimization iteration reduces to just one function evaluation
with 𝑓̃𝑧̂.
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Figure 57: Workflow to generate the database for regression model as surrogate for the overall

tolerance analysis (4) in line with Fig. 56.

Practical transfer and findings The average time 𝜏feas ≈ 19.5 h spent on
solving the wheel mounting assembly problem with 𝑛 = 10,000 in Sec. 6.1
emphasized the conflict in time using TCVisVA. The same allocation problem
is now used to study the potential of surrogate model-assisted tolerance-cost
optimization. In doing so, fivedifferent sample sizes fordata generation using
LHS are studied. Since all tolerances are considered normally distributed,
and alternative selection is not considered, the lower and upper tolerance
boundaries define the space for the surrogate model to be covered. In line
with Sec. 5.3, the minimum number of 18 decision variables define the pre-
dictors, while the corresponding nc-rates evaluated based on TCVisVA are
the responses for the surrogate model training. Approximately 1/3 of the
sampled tolerance combinations fulfill the GD&T constraints, leading to
the reduced amount of data 𝐷′ after data cleaning. For surrogate modeling,
Artificial Neural Networks (ANN) are taken into account based on their best
fit. A wide, single-layered ANN with rectified linear unit activation function
is chosen based on the best RMSE-values for a 20%-hold out for splitting the
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6.2 Surrogate model-based optimization

data set into training and test data.6 For all surrogate models for the five data
set sizes, optimization using CS algorithm is repeated five times (O-2/S-3
acc. to Tbl. 6), where the final tolerance values are reevaluated with the real
model, i.e., by using TCVisVA. The optimization results are illustrated in
Fig. 58 and summarized in Tbl. 49, supplemented with more details on the
study.
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Figure 58: Optimization results for the 3D wheel mounting assembly problem using surrogate

model-based tolerance-cost optimization for five different data set sizes𝐷. Nc-rates 𝑧̂
opt
asm based

on TCVisVA for optimally identified tolerances, prediction error 𝑒 = 𝑧̂
opt
asm − 𝑧̂𝑓̃𝑧̂, cost optima

𝐶
opt
sum, and prediction accuracy through RMSE vs. average time effort 𝜏feas.

At first glance, the strong correlation between the data size for surrogate
modeling and the optimization results is striking. With increasing 𝐷, the
prediction error 𝑒 between the real value 𝑧̂

opt
asm, reevaluated for the optimally

identified tolerances with TCVisVA, and 𝑧̂𝑓̃𝑧̂, obtained by the respective surro-
gate model, is decreasing. In line with the global aim of the optimization to
identify the least-cost tolerances, the optimizer tries to find the combinations
where the tolerances can be widened the most, which typically lie in regions
where the surrogate model is characterized by underestimations of the nc-
rate 𝑒 > 0. This effect can be seen in the shift of 𝑧̂

opt
asm from the nc-rate limit

𝑧̂max and is comparable to the tendency to underestimation due to sampling-
induced uncertainties, e.g., illustrated in Fig. 23, with the difference that
the inaccuracy, which the optimizer specifically exploits, originates from the

6 Refer to Appx. A.5 for more background information on surrogate modeling theory.
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6 Improving the efficiency of sampling-based tolerance-cost optimization

surrogate model. As a result, the obtained cost optima 𝐶
opt
sum converge from

below to the reference value 𝐶ref, which in this case is defined as the mean
of five optimization runs with TCVisVA. The curves are directly related to
the surrogate model accuracy, indicated by the corresponding RMSE-values.
A suitable trade-off between the size of the data set and the computation
time for its generation is decisive for achieving a beneficial increase in effi-
ciency with acceptable losses in results reliability. While doubling 𝐷 from
7,500 to 15,000 in this example has minimal impact on 𝑒, this results in a dou-
bling of computation time since the time effort for optimization is negligible
compared to data generation (see Tbl. 49).

Consequently, the main challenge in the design of the surrogate modeling
process is that it is unknown a priori where the surrogate model must be
accurate or is allowed to be inaccurate. Thus, while surrogatemodel decisions
based on a global metric such as the RMSE are suitable to evaluate the entire
optimization design space’s accuracy, it does not necessarily mean that the
chosen model must also have the highest accuracy in regions of optimality.

Regression models as surrogates are profitable tools to speed up sampling-
based tolerance-cost optimization significantly under the provision of
a use case-customized definition of the design space, the distribution
and amount of training data, surrogate model types, and their hyperpa-
rameters. Even though prediction errors can be reduced, they cannot be
entirely avoided and mitigate the reliability of the optimization results.

6.3 Adaptive surrogatemodel-based optimization

The previous section emphasizes that surrogate models, replacing the com-
putationally intensive steps of tolerance analysis, are profitable measures
to enhance the efficiency of tolerance-cost optimization. However, the fi-
nal results are always subject to prediction errors mitigating their reliability.
Inspired by successful applications in other disciplines [588], the idea of
adaptive surrogate model-based optimization is transferred on sampling-
based tolerance-cost optimization in [S8], furtherextended for its publication
in [P16], and in detail presented in the following.

Problem statement Harmonizing the design of experiment for data gen-
eration and choice of model type while approximating a usually unknown
relationship is crucial but decisive to obtain accurate enough nc-rate esti-
mates with the lowest possible amount of the representative samples (see
Sec. 6.2). By decoupling surrogate modeling and optimization and using a
static sampling [351], the prediction accuracy or error 𝑒, varying over the total
design space considered in optimization, is prefixed. Consequently, models

118



6.3 Adaptive surrogate model-based optimization

are chosen by their global best fit but can be unacceptable and inaccurate
in regions of optimality. The theory of adaptive sequential sampling tries
to reduce the prediction errors of an initially generated model by selective
resampling in areas of lower accuracy and, thus, improve the overall quality of
prognosis [590]. Although this approach is quite promising, the entire design
space is regarded as equally interesting. Similar in its fundamental idea, the
strategy of adaptive sample sizes from Sec. 6.1 reveals that an intentional
acceptance of larger prediction errors in areas of non-feasible or non-optimal
regions and the reduction of prediction errors in those near-optimal ones
is more beneficial. However, the regions worth to be resampled are usually
unknown before optimization. Otherwise, the optimal set of tolerances and
alternatives would already be known, making a cumbersome identification
by numerical optimization needless.

Theoretical solution Thoughat the beginning there is littleornodetailed in-
formation about the near-optima as interference of objective and constraints,
this situation changes by the gradual improvement of the solution while pro-
gressing through the design space by trial-and-error. To avoid the decisions
made based on results influenced by the prediction errors, it may be worth
repeating the evaluation of the most promising individuals with the real
model and substituting the approximated ones. The idea is similar to the one
for adaptive sample sizes presented in Sec. 6.1, except that the higher accuracy
is achieved using the real model instead of higher sample sizes. On the one
hand, this excludes taking non-acceptable solutions as elitist solutions. On
the other hand, it offers further potential to improve the surrogate models’
accuracy. If not only approximate solutions are generated in each generation
by surrogate models, new information about the constraint surface and near-
optimal solutions is available. However, the indirectly gained knowledge can
only be used when optimization and surrogate modeling are not decoupled.

Adaptive surrogate model-based optimization overcomes this limitation
and updates the surrogate models [591, 592] with the newly gained informa-
tion by resampling during optimization ”on the fly” in each generation [593].
In doing so, it is possible ”to quickly find the local or global optima” [594]
while mitigating the impact of uncertain surrogate estimates on the optimiza-
tion process and results. The ”zoom[ing] in the regions of interest” [592]
takes over the task of resampling, which forms the basis for the subsequent
remodeling step [587]. To use its general potential in the context of optimal
tolerance allocation, Fig. 59 introduces the concept of adaptive surrogate
models to further enhance the efficiency of sampling-based tolerance-cost
optimization. For the sake of clarity, the following discussion is limited to
case (4) (see Fig. 56), replacing the total tolerance analysis with one surrogate
model (see Sec. 6.2).
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Figure 59: General principle of adaptive surrogate model-based tolerance-cost optimization

with the substeps of resampling and remodeling. Examples of resampling and remodeling

functions ℎ1(𝑔) and ℎ2(𝑔) (top). Procedure of selective resampling of the best solutions and

remodeling of the surrogate model 𝑓̃𝑧̂ serving as new surrogate model 𝑓̃∗𝑧̂ for the next Δ𝑔

generations (bottom).

At the top of Fig. 59, the implementation of the two main mechanisms of
resampling and remodeling in the optimization process is illustrated. While
the function ℎ1(𝑔) controls the proportion of recalculations 𝑟𝑝(𝑔) ∈ [0; 1]
over the generation 𝑔, ℎ2(𝑔) serves as activation function with its image {0; 1}
deciding if a remodeling of 𝑓𝑧̂ in generation 𝑔 takes place (ℎ2(𝑔) = 1) or not
(ℎ2(𝑔) = 0). As shown at the bottom of Fig. 59 for one selected generation,
the results from the preceding resampling step 2 of 𝑛𝑟 = 𝑟𝑝 ⋅ 𝜂𝑝 identified
individuals are used to augment the database and to remodel the surrogate
model within the optimization loop in step 4 . The resulting surrogate

model 𝑓̃∗𝑧̂ replaces the previous model 𝑓̃𝑧̂ and is used for the next 𝑔 + Δ𝑔
generations until it is replaced again. As indicated in step 3 , the real values 𝑧̂
replace the nc-rates 𝑧̂𝑓̃𝑧̂ estimated by the surrogate model. In addition to the
computational effort for resampling, the iterative remodeling operations lead
to an additional time effort. The distance between two remodeling iterations
Δ𝑔 is a suitable parameter to control this time effort. Furthermore, to preserve
the overall efficiency of the method, the parameters of ℎ1 are worth to be
studied and to be selected consciously. 𝑟𝑝 is defined as constant, but an
adaption over ℎ1 over the optimization history, similar to the idea of adaptive
sample sizes, might be useful. The exponential function in Fig. 59 serves
only as an illustration. In addition to the shape of the function, the initial
sampling generating the database for the first surrogate model 𝑓̃𝑧̂ is essential.
Besides a systematic space-filling sampling before optimization (as illustrated
in Fig. 57), it is also conceivable to start with an initial random sampling in
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6.3 Adaptive surrogate model-based optimization

generation 𝑔 = 0, defined by the optimizer, and use it as a database for the
first surrogate model ̂𝑓𝑧̂.

Practical transfer and findings For studying its benefits, the proposed
adaptive surrogate model strategy is applied to the wheel mounting example
and compared to the results from the previous section. In doing so, case (a)
without surrogatemodeling and case (b)with fixedANNare supplemented by
case (c) with additional resampling and case (d) with additional resampling
and retraining. A modified version of the CS algorithm is used to integrate
the steps of surrogate modeling into the optimization workflow. The pseudo-
code is given in [P16]. Using a fixed number of resampled individuals with
ℎ1(𝑔) = 0.2, a retraining of the surrogate model with a decreasing frequency
over the optimization process is selected as follows:

ℎ2(𝑔) =

⎧
⎪

⎨
⎪
⎩

1 if 𝑔mod 1 = 0, 𝑔 ≤ 3,

1 if 𝑔mod 5 = 0, 𝑔 ≤ 25,

1 if 𝑔mod 10 = 0, 𝑔 ≤ 𝜂𝑔,

0 otherwise.

(66)

The same settings used in Sec. 6.2 for optimization, tolerance analysis, and
layout of the ANN are applied to ensure comparability between the different
approaches. The same random numbers (O-2/S-3 acc. to Tbl. 6) for the
𝜂𝑟 = 5 times repeated optimization runs provide comparability of the results.
The proposed approaches are studied for three different sizes of training data
sets 𝐷 = 300, 750, 1,500.

To begin with, Fig. 60 illustrates the effect of refining the accuracy of the
surrogate models in the regions of interest by contrasting the optimization
histories for one exemplary run (𝐷 = 300). In line with the findings from the
previous section, it can be seen that the use of the surrogate model without
taking the information on the real value by TCVisVA into account (b) leads
to huge underestimations of the nc-rate and, thus, high errors 𝑒 = 𝑧̂ − 𝑧̂𝑓̃𝑧̂.
At the same time, the difference between the real nc-rate values 𝑧̂ and the
ones obtained by 𝑓̃𝑧̂ for the intermediate best results continuously increases
over the optimization progress. In comparison, resampling the 𝑛𝑟 nearest
solutions to the constraint surface with 𝑧max = 2,700 in each optimization
iteration eliminates the prediction errors 𝑒. Case (c) avoids erroneously
taking unacceptable solutions as elitist solutions for the next generation.
Additionally, by taking the minimum distance 𝑧̂𝑓̃𝑧̂ − 𝑧max as a criterion for
the selection of the 𝑛𝑟 individuals to be resampled, tolerance combinations,
which are evaluated as infeasible by the surrogatemodel, but actually conform
with 𝑧max (𝑒 < 0), are considered within optimization.
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Figure 60: Illustration of optimization runs to solve the wheel mounting assembly allocation

problem in comparison: minimum costs 𝐶min
sum, corresponding nc-rates 𝑧̂ estimated using

TCVisVA and ANN 𝑧̂𝑓̃𝑧̂, and prediction error 𝑒 for (b) surrogate-model based, (c) surrogate

model-based with resampling, (d) adaptive surrogate model-based optimization (𝐷 = 300).
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6.3 Adaptive surrogate model-based optimization

As a result, the error 𝑒 is significantly lower, 𝑧max can be ensured by the
optimally allocated tolerances. The additional remodeling step for case (d)
can be noticed by the small error 𝑒, resulting from the increased prediction
accuracy in the regions of optimality. The exemplarily discussed effects are
reflected in the final optimization results, which are summarized in Tbl. 50
and visualized in Fig. 61.
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sum, surrogate estimates 𝑧̂
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𝑓̃𝑧̂
and real values 𝑧̂opt foroptimally allocated

tolerances, and errors of prediction 𝑒 defined as the difference between 𝑧̂
opt

𝑓̃𝑧̂
and 𝑧̂opt for three

sizes of training data 𝐷 for surrogate modeling in comparison: (a) direct embedding of

TCVisVA, (b) surrogate-model based, (c) surrogatemodel-based with resampling, (d) adaptive

surrogate-model based. The errorbars indicate the range of the obtained solutions.
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6 Improving the efficiency of sampling-based tolerance-cost optimization

The differences in the nc-rate evaluation are directly reflected in the obtained
optima: The comparatively high underestimates for (b) give additional space
to widen the tolerances and, thus, lead to the lowest costs, but obviously
non-reliable results. By remodeling the surrogate model in case (d), lower
cost optima than for case (c) can be achieved through lower errors. The
positive effect on the accuracy of the results for case (c) and (d) is at the
expense of the total optimization time.7 As Fig. 62 exemplarily illustrates
for 𝐷 = 300, the average optimization time 𝜏feas mainly increases by the
additional time effort for the resampling 𝜏ReSamp primarily defined by the
expenses for running TCVisVA, whereas the time for remodeling 𝜏ReModel is
negligible. Despite higher computation times compared to (b), the presented
method can contribute to a significant increase in efficiency compared to the
direct embedding of the tolerance analysis (a) while ensuring reliability. The
influence of the initial data set’s size, the chosen surrogate model, and its
hyperparameters on the optimization process and the final results remains.
However, adaptive remodeling can mitigate their influence by successively
augmenting the data set and refining the surrogate model.
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Figure 62: Average total optimization time 𝜏feas of sampling-based tolerance-cost optimization

without surrogate model (a), based on a fixed ANN (b), with additional resampling of best

elitist solutions (c), and additional remodeling of the surrogate model (d) to solve the wheel

mounting assembly allocation problem, data set size: 𝐷 = 300.

Based on this first proof of benefits, further studies are helpful to provide
interesting insights into a clever definition of the resampling and remodeling
functions ℎ1 and ℎ2 with their individual parameters to further increase the
overall efficiency. Switching the model type during optimization or using
several surrogate models for different sections of the design space bears
research potential.

7 Detailed information on the efficiency of the different approaches can be found in Tbl. 51.

124



6.3 Adaptive surrogate model-based optimization

Updating surrogate models with data resampled during optimization
mitigates the influence of prediction errors and speeds up the search for
the global optimum. The accuracy of the surrogate models is improved
selectively and sequentially at points of potential optima, enabling reli-
able and near-optimal tolerance allocation results in significantly lower
computation times.
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7 An optimal tolerance allocation framework

established on sampling-based

tolerance-cost optimization

So far, different aspects regarding the effectiveness, in terms of accuracy
and completeness, and the efficiency of sampling-based tolerance-cost opti-
mization were examined and the developed methods were proposed partly
separated from one another in the respective sections. In the following, it is
now the aim to unite and align them in a structured framework for optimal
tolerance allocation while considering the individual findings obtained.
The term framework refers to aligning all essential activities with their un-
derlying methods for optimal tolerance allocation using sampling-based
tolerance-cost optimization in one workflow. Fig. 63 illustrates the chrono-
logical sequence of eleven main steps, whose style is adopted from the SysML
syntax and its usage proposed in [595] to formalize variation management
processes.1 In addition to the main activities presented and the three key
main elements, viz. tolerance-cost analysis, tolerance analysis, and the defini-
tion of the optimization problem (see also Fig. 6), it illustrates the individual
flows of information. For clarity, they are limited to the main information
classes specified and explained in more detail below. Further direct, partially
manual inputs are neglected.

As emphasized at the beginning of this thesis by Fig. 3, tolerance-cost opti-
mization is usually applied in the last steps of tolerance design and, thus, in
product design, building the bridge to the subsequent process design phases.
Consequently, the given workflow presumes that the system and parameter
design phases are already completed, though they indirectly influence the
optimization and its results.2 Findings obtained by the author in [P3] thereby
prove that a robust product concept, which can be achieved, for example,
with the aid of the Axiomatic Design principles acc. to Suh [596], help to
avoid interrelated KCs and lead to less and wider tolerance values and, thus,
lower tolerance-related manufacturing costs.

1 Not only due to reasons for visualization but also to present a workflow independent from

the used software with its specific data in- and outputs, the activity diagram in Fig. 63

slightly differs from the proposed approach given in [595]. Thus, the respective sources

of information are not explicitly named. Still, they are summarized under the term pro-
cess design/product design information models following the term used in the context of

tolerancing in [173].
2 An additional harmonization of nominal values and tolerances in the sense of concurrent

parameter and tolerance design is proven in literature to be beneficial (see Sec. 2.2.4).

However, it goes beyond the scope of this thesis.
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Figure 63: Overview of the developed framework for optimal tolerance allocation based on

sampling-based tolerance-cost optimization.
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At this point, it has to be emphasized that tolerance allocation is not limited
to a specific point in product development and can be applied in the late
design phases but also in process planning steps and even when production
is already in progress. The allocation problems’ variety is discussed in more
detail in Sec. 8.3. Nonetheless, the proposed framework is generally valid.

Based on the product design, Fig. 63 starts with the identification of the
tolerance-related cost and quality requirements in step 1, represented by a
set of relevant KCs with their critical limits and acceptable nc-rates as well
as a tolerance-related cost limit, starting from the global quality and cost
requirements on the final product.

In line with Fig. 3, the succeeding tolerance specification in step 2 aims
at defining standards-compliant tolerance schemes for the individual parts
covering all critical product geometry elements. These primarily consist of
information on tolerance types and datums but are expected to include all
necessary information for a complete and unambiguous geometry product
specification (see Sec. 2.1.1). This requires detailed information on the prod-
uct design, including the assembly structure and sequence, part geometry
features with their nominal values, material properties, etc.

The tolerance specification activity is followed in step 3 by a first, but op-
tional toleranceallocation step, where initial tolerancevaluesare identified,
whether purely intuitive or using workarounds and methods far from optimal
tolerance allocation (see Sec. 2.1.1) and can, thus, not lead to cost-optimal
results. In addition to the product design information, a strong pull of pro-
cess design information is required for the definition of the tolerance-cost
model in step 4, depending on the scope and area of application of tolerance
allocation. When taking the process detailed into account, this presupposes
that the available machine/process/supplier alternatives for realizing all tol-
erances to be allocated are known. The tolerance-cost relations, as well as the
machine- or supplier-specific capability and capacity ranges, must be avail-
able in quantitative form (see also Eq. (31), Eq. (41)–(42)). Moreover, feature
and part equality information is necessary to set up the equality matrices
acc. to Eq. (52)–(56) for the proposed design dimension reduction method in
Sec. 5.3.

Afterward, the tolerance analysis model, with its submodels and meth-
ods, i.e., the geometrical model, the behavior model, and the techniques for
tolerance evaluation, has to be defined in step 5. It strongly depends on the
technical product in focus, the specified tolerances, its assembly type, and its
behavior in use in combinationwith the nature of the KCs (see also Sec. 2.2.2).
Consequently, besides the pure information about the product design itself,
primarily represented by CAD-models, product data sheets, and technical
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drawings, further informationandmodels are needed, e.g., todescribecompli-
ant or time-variant assembly behavior in fabrication and/or use. Depending
on the existing manufacturing strategy and available machine/process/sup-
plier alternatives, the methods of batch-wise sampling presented in Sec. 5.2
are required for the virtual generation of the geometrical parts and their
random or selective assembly. An essential input for the sampling is the part
tolerance probability distributions, fully specified by its type and a set of
distribution-dependent parameters, which are known or estimated based
on real measurement data or virtual data from manufacturing simulations.
Besides the sampling, tolerance evaluation modules include the techniques
for the nc-rate estimation presented in Sec. 4.2–4.3.

The succeeding step 6 aims at identifying the tolerances that contribute
to the predefined KCs, or rather do not, using sensitivity analysis methods
established in tolerancing. A helpful instrument when using sampling is
the density-based sensitivity analysis presented in [597]. It offers the pos-
sibility to determine the contributors directly via the distributions of the
individual characteristics 𝑿 and the distribution of the assembly responses 𝒀
by using the kernel density estimation technique, independent of the used
sampling procedure and part tolerance probability distributions.3 In doing
so, the search space dimensions can be reduced in advance by restricting
the optimization variables to only the function-relevant tolerance values.
This becomes further useful when using surrogate models to increase the
efficiency of tolerance-cost optimization.

In step 7, the tolerance-cost and tolerance analysis models are integrated into
the mathematical definition of the optimization problem employing
the objective function and inequality condition, which mainly depends on
the global optimization goal (cost-driven vs. quality-driven tolerance-cost op-
timization) as well as the chosen alternative selection or allocation strategies
(see Chap. 5). This further includes defining the design variables with their
lower and upper boundaries and the capacity/feasibility constraints. More-
over, incorporating general tolerancing knowledge through a set of inequality
constraints for all correlated tolerances on feature level acc. to Eq. (50)–(51)
assures the compliance of the allocated tolerances with the GD&T rules de-
fined in the respective ASME/ISO standards. Based thereon, step 8 serves to
choose an optimization algorithm and its settings, which is capable of
handling the type of variables needed, i.e., either continuous variables for

3 Proprietary tolerance analysis software tools partially preclude the application of density-

based tolerance analysis due to themissing information on the sampled inputs but generally

provide in-built methods for contributor analysis.
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problems without alternative selection or equal machine characteristics (see
Sec. 5.1) or mixed-integer variables as discussed in Sec. 5.2.

Before starting to solve the optimization problem in step 10, it is beneficial
to first evaluate in advance and, if necessary, to improve the efficiency
in step 9. Depending on the given optimization problem, the techniques
presented in Chap. 6 support the user to make improvements in the effi-
ciency and effectiveness. The obtained optimization results always have to
be critically evaluated [286], particularly concerning the technical feasibility,
acceptability, and optimality criteria presented in Sec. 2.2.3. To improve the
results, one or multiple manual iterations loops 𝐿, such as

• L1: repeating the optimization to increase the probability of finding a
technically feasible, acceptable, and finally optimal solution,

• L2: adjusting the settings or choosing another optimization algorithm with
better fitness to the given optimization problem,

• L3: reshaping the tolerance analysis model and its submodels as well as the
sampling and nc-rate estimation techniques used for tolerance evaluation,

• L4: adapting the tolerance-cost model considering additional machines
and suppliers with lower costs and/or better capabilities,

• L5: revising the tolerance specification in the sense of manual tolerance
synthesis,

• L6: verifying the cost and quality requirements, and, if possible, their
relaxation,

are needed until a satisfactory result is achieved.

The workflow ends with step 11, where, based on satisfactory optimization
results, thefinal tolerancesandalternativesare selected/allocated, com-
municating the part quality requirements from the perspective of designwith
first process design information for the subsequent downstream activities of
process planning, e.g., the considered machine characteristics and weights
(see Sec. 5.1–5.2).

The framework of Fig. 63 can serve as the basis for its technical implemen-
tation in the form of a software system. The actual realization depends
on the available, preferred, and necessary tools to solve the optimization
problems and, secondarily, perform the tolerance-cost and tolerance analysis
as realistically as needed. For the final application and evaluation of the
proposed framework, following in Chap. 8, it is exemplarily implemented in
MATLAB®4, whereas the structure of the software prototype into its single

4 The file extensions .m, .mat, and .fig are MATLAB®-specific files for scripts/functions,

formatted data, and graphic objects (see Fig. 64).
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modules for theproposedmethods in Chap. 4–6 aims toassure its adaptability
and extensibility. An overviewof the implementation is given in Fig. 64, while
Appx. A.10 provides detailed information on the workstation and software
versions used.

To guarantee its interoperability, the optimization tool is not directly inte-
grated into a CAD-system but takes advantage of the idea of model-based
definition to partially automate the workflow, as already illustrated, for in-
stance, in [394, 395] and verified in [S10], by using appropriate interfaces and
the neutral exchange formats STEP AP 242 and JT.

The CAD-software Siemens NX, as an example, supporting the model-based
tolerance specification and allocation in step 2,3 & 11 allows the semantic
mapping of the tolerance information as PMIs, which can be reused in the
subsequent steps, in particular in the definition of the tolerance-cost model
and the tolerance analysis module. Besides additionally annotated manufac-
turing information, they carry the information on the feature geometry and
type and the assembly structure of the total product. For a software-neutral
product design information exchange, the use of STEP-file interpreters, as
presented by the author in extracts in [P4], is beneficial.

Depending on the approach followed, different tolerance analysis routines
are helpful. Besides the purely programming code-based tolerance analysis
method, the previous chapters emphasized the benefits of using the com-
mercial CAT-software TCVisVA combined with the developed methods for
nc-rate estimation in MATLAB. This allows a partially automated generation
of tolerance analysis models using the information from the product data
model in JT-format and saved in the TCVisVA-specific data format PDO. For
details on the batch command usage of TCVisVA based on the exchange for-
mat TXT, please refer to its initial presentation in [P19] and its more detailed
presentation in Appx. A.6. Beyond this, the benefits of embedding CAT-tools
into the tolerance-cost optimizationworkflow such as RD&T for the tolerance
analysis of process-driven assemblies, are, for instance, emphasized in [P11].
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The exchange of the necessary manufacturing process-related data can, for
instance, be simplified via textual input files or manual inputs.5 In line
with the previous sections, GA and CS are exemplarily used as optimization
algorithms covering the range of the tolerance-cost optimization problems
focused on in this thesis.

The previously presented methods are closely linked and directly or in-
directly embedded in the tolerance-cost optimization problem. The pro-
posed framework arranges them in a coherent workflow illustrating all
necessary activities while considering the individual interrelations. Com-
bined with the illustration of the main information flows, it serves as a
guideline for a software implementation for optimal tolerance allocation
using sampling-based tolerance-cost optimization.

5 A direct coupling with PDM-/PLM-systems as well as the use of other exchange formats

might be beneficial for its practical application, but at the same time raises further and

currently open research questions on the structured acquisition, storage, and provision of

tolerancing information (see for instance [117, 158, 598]). In [S11], a SQL-based proposal

for tolerance-cost data was developed and applied. However, the representation of the

process-related information is not the focus of this thesis. It is not further discussed, despite

the importance for its final implementation in a practical tolerance allocation tool.
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8 Application and evaluation of the

developed optimal tolerance allocation

framework

To finally evaluate the presented approach and summarize the findings made
so far, the proposed tolerance allocation framework from Chap. 7 is now
applied to a case study of industrial complexity. In addition, a final discussion
on achieving the underlying research goals and potential for future research
is given.

8.1 Allocation of least-cost tolerances for an electrified

cross skate

Fostered by the increasing awareness of sustainability, the way people move
has changed in the last few years. Micro-mobility devices, for instance, elec-
trified scooters, bicycles, or skates, are widely accepted solutions for personal
transportation. Electrified cross (e-cross) skates are a newly developed solu-
tion, where a pair of single-row cross skates are electrically driven and the
skating speed is controlled via inclination sensors by the rider’s weight shift-
ing. To shorten the curve radius and enable a cornering without lifting and
replacing the skates, the front wheel axle system can be turned by a novel,
patented steering system [599] (see Fig. 65). More details on the e-cross skate
system are given in Appx. A.8.2 and Fig. 92.
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Figure 65: Overview (right) and cross section (left) of the e-cross skate’s front wheel assembly.
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8 Application and evaluation of the developed optimal tolerance allocation framework

Assuring the e-cross skate’s functionality, three KCs are considered for op-
timal tolerance allocation in the following (see Fig. 66). First, the angle
𝑌1 between the wheel and the frame should be between 88.5∘ and 91.5∘ to
ensure the inclination sensors’ functionality and not mitigate the driving
performance. Second, the tilting angle 𝑌2 and the eccentricity of the effective
axis 𝑌3, resulting from the reference points R1 and R2 where the steering
mechanism assembly is mounted, are specified to conform within [−1.5∘; 1.5∘]
and [−1.0mm; 1.0mm] (see Fig. 66). The front wheel assembly is analyzed in
the neutral wheel position, i.e., driving in a straight line, in the following. A
maximum nc-rate of 𝑧max = 2,700 ppm must be complied with.

Tilting and eccentricity of steering

Δ𝑧𝑧

Δ𝑦𝑦

𝑌𝑌3 = 𝛿𝛿𝑃𝑃𝑦𝑦

𝑃𝑃

Y2 = atan
Δz
Δ𝑦𝑦

R2

R1

xy

xz

y

z
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xz

xy

Y1

Camber of front wheel

Y2

Y2

R2R1

Figure 66: KCs considered as functionally relevant for the e-cross skate front wheel assembly.

𝑌1: camber of the front wheel, 𝑌2: tilting angle between the points of reference R1, R2 of the

front steering mechanism, 𝑌3: eccentricity of the steering.

Based on these tolerance requirements, all relevant part tolerances are speci-
fied. The result of the manual, function-oriented tolerance specification for
all parts contributing to the three KCs are summarized in Fig. 67 and Fig. 68.1

In addition, rough tolerance values are allocated as a first guess. The direct
assignment of the tolerance callouts through PMIs first supports checking
the conformity with the ASME standards and second facilitates the subse-
quent steps of tolerance analysis and cost modeling. By picking up the idea
of relative tolerance-related costs, as proposed in [203, 600], the semantic
feature and tolerance information in the form of PMIs can be directly used to
define the tolerance-cost model serving as the objective function.

In doing so, the reciprocal tolerance-cost relations are approximated by the
features’ size, type, and machinability and do not take more specific machine

1 Fig. 93 in the appendix gives a more detailed overview of the individual part features.
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or process information into account. The individual lower and upper toler-
ance limits are defined following general tolerance and reasonable experience
values. For reasons of clarity, machine selection and allocation are not in-
cluded in this example. All tolerances are assumed to be normally distributed.
The tolerance-cost data is summarized in Tbl. 52.

Based on the 3D model in JT-format, the feature-based TCVisVA-model for
tolerance analysis is defined. Using the feature information, it is possible to
represent the variations on the feature level, propagate the variations through
the assembly using virtual assembly operations, and finally evaluate their
accumulated effects on the KCs using virtual measurement operations pre-
dicting the assembly responses (see the assembly and tolerance graph in
Fig. 94–95.) In line with the previous sections, the TCVisVA-model is embed-
ded in the acceptability constraint directly or indirectly through surrogate
models. Due to multiple assembly responses, ecdf-based nc-rate estimation
acc. to Eq. (23)–(26) is applied.

Completing the optimization problem, all dimensional tolerances are first set
as fixed tolerances. In addition, the frame parts (𝑙 = 1, 27), the bearings (𝑙 =
6, 8, 12, 13), and additional elements, viz. the screws, shims, and circlips, are
supplier parts and not considered as variables within the tolerance allocation
problem. The front axle’s symmetrical assembly structure further simplifies
the optimization problem in advance by equating tolerance values for the
functional identical parts and features. With the helpof thedesigndimension
reduction method presented in Sec. 5.3, the initial problem of 80 tolerance
values is reduced to a minimum of 28 tolerances to be represented as design
variables.2 The correlations are highlighted in Fig. 67–68, the corresponding
feature and equality matrices are given in Appx. A.8.2. The objective and
nc-constraint are supplemented by eleven GD&T constraints, conforming to
the ASME Y14.5-standard, and are listed in detail in Eq. (87).

For optimization, the CS algorithm is used with a population size of 𝜂𝑝 =
25 and a maximum number of generations of 𝜂𝑔 = 250 as a compromise
of computation time and achievable results’ optimality. Optimization is
repeated five times with the same random numbers for the sampling within
TCVisVAwith a sample size of 𝑛 = 10,000 (O-2/S-3 acc. toTbl. 6), eliminating
the scattering and discontinuity effects in optimization (see Sec. 4.1).

2 The 80 tolerances are reduced by 52, the union of 35 fixed tolerances and 30 tolerances

affected by dimension reduction. Fixed tolerances can also be affected by design dimension

reduction leading to intersections in both sets.
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Figure 67: Overview of the part tolerance specifications of the e-cross skate example – I.
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Figure 68: Overview of the part tolerance specifications of the e-cross skate example – II.
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8.2 Discussion of the results

An overview of the obtained cost optima 𝐶
opt
sum, the final nc-rates 𝑧̂

opt
asm, and

the average computation times 𝜏feas are given in Fig. 69. Besides the direct
integration of TCVisVA (a), which on average took approximately twodays per
run, theadaptive sample sizes strategy (b) fromSec. 6.1 and adaptive surrogate
model-based optimization (c) from Sec. 6.3 are applied to accelerate the
sampling-based tolerance-cost optimization. All optimization runs are valid
as they meet the GD&T constraints and the nc-constraint 𝑧max = 2,700 ppm.
The use of adaptive sample sizes (b), here with 𝜉1 = 7, 𝜉2 = 0.5, 𝑛min = 5,000
and a recalculation rate of 𝑟𝑝 = 0.2, reduced the computation times by ≈ 4 h
on average while ensuring compliance with the nc-rate. Still, it does not
achieve the optima from (a).

In comparison, the adaptive surrogate model-based optimization in this
example is superior in efficiency improvement. In line with the previous
chapters, using a wide, single-layered feed-forward ANN to substitute the
time-intensive TCVisVA simulation by adaptive surrogate models helped
to roughly shorten the computation time in quarters. The results for the
two data set sizes of 𝐷 = 500 (RMSE = 5,341 ppm) (c1) and 𝐷 = 1,000
(RMSE = 3,900 ppm) (c2) with a 20%-resampling rate for dynamic retraining
of the surrogate models indicate that higher initial data set sizes lead to
optima nearer to the optimal values obtained for the direct embedding of
TCVisVA (a). Likewise the adaptive sample sizes, the increased efficiency is at
the expense of the optimality of the results, characterized by higherdifference
in the optimal results with an acceptable deviation from the final optima
of the best results of 0.82 MU (=̂ 0.13%) (c1) and 0.04 MU (=̂ 0.06%)(c2)
compared to the best results of (a). In addition, the time saving allows the
optimization to be performed several times while still taking less time than
(a), and is, thus, more likely to find the optimum.

𝑧̂𝑧asm
opt 𝜏̅𝜏feas𝐶𝐶sum

opt

(a) (b) (c1) (c2) (a) (b) (c1) (c2)

𝑧̂𝑧max

(a) (b) (c1) (c2)
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Figure 69: Overviewof the optimization results for the e-cross skate example obtained through

sampling-based tolerance-cost optimization (a), with adaptive sample sizes (b) acc. to Sec. 6.1,

and adaptive surrogate models with two different data set sizes (c1) & (c2) acc. to Sec. 6.3.
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8.2 Discussion of the results

The final costs 𝐶
opt
sum for the best run obtained in (a) are compared to the initial

expenses 𝐶init
sum in Fig. 70. The latter result for the initial tolerances more or

less randomly chosen primarily on the middle of the tolerance ranges.
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Figure 70: Nc-rates 𝑧̂
init/opt
asm and total costs 𝐶

init/opt
sum before and after tolerance-cost optimization

exemplarily illustrated for the best optimization results (see Tbl. 55). The variances of 𝑧̂
init/opt
asm

resulting from a 100-fold repetition of tolerance analysis with the initial and optimal tolerances

illustrate the sampling-induced margins of error of the final nc-rates.

Using the proposed sampling-based tolerance-cost optimization approach,
the costs are reduced by 61.10 MU (=̂ 8.94%). Besides cost reduction, the
nc-rate ranging between 7,000 and 11,500 ppm is additionally lowered to
2,700 ppm on average for the final tolerances. A 100-fold repetition of toler-
ance analysis aims to illustrate the scattering of the nc-rates for the initial and
final tolerances with different random numbers to illustrate the margins of
errors due to sampling-induced uncertainties. In this example, the approach
helped in automatically finding a tolerance design that is first possible to
fulfill the nc-requirements and second more cost-efficient than the initial
tolerance design. For comparison, the costs and nc-rates range between
𝐶max
sum = 1,499.66MU and 𝑧̂max

asm = 0 ppm for all tolerances maximal tightened
and 𝐶min

sum = 601.40 MU and 𝑧̂min
asm = 324,480 ppm for the maximal widened

ones.

The frequency distributions of the three KCs before and after optimization
for the random numbers taken into account in optimization are illustrated in
Fig. 71. Theoptimal balancing of the part tolerances narrows thedistributions
so that in sum a nc-rate of 2,700 ppm can be guaranteed. The interrelations
of the three KCs can be seen in the size of the final single nc-rates 𝑧̂1 =
1,500 ppm, 𝑧̂2 = 600 ppm, 𝑧̂3 = 1,100 ppm, which on their own are lower

than the maximum but in sum meet the maximum threshold of 𝑧̂
opt
asm =

2,700 ppm ≤ 𝑧̂max (see Tbl. 55).
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8 Application and evaluation of the developed optimal tolerance allocation framework
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Figure 71: Frequency distributions of the e-cross skate’s KCs 𝑌1,𝑌2, 𝑌3 before and after tolerance-

cost optimization obtained with a direct embedding of TCVisVA (a) for the best result.

Fig. 72 contrasts the initially chosen tolerances and the final, optimally cho-
sen tolerances. At first sight, it is apparent that the optimizer selectively
widened the major part of the tolerances, which have a minor influence on
product functionality and, thus, offer the potential to reduce costs by higher
tolerance values. The tightening of some tolerances with high impact on the
functionality, e.g., 𝑡9,7,1 = 𝑡9,9,1 of the housing 𝑙 = 9, helps to significantly
decrease the nc-ratewhile having a comparatively minor effect on costs worth
to be invested to reach the global cost optimum. Fig. 72 is further helpful to
check the tolerance values, which should be equated via the design dimen-
sion reduction method. For instance, the final tolerances for the housing
covers (𝑙 = 17, 18) and the steering connectors (𝑙 = 19, 30) share the same
tolerance values. In addition, the fixed tolerances can be easily identified by
the identical tolerance values for initial and optimal status.

In summary, the example underlines the potential of the proposed
sampling-based tolerance-cost optimization approach to find an opti-
mal balance between costs and quality for industrial complex assemblies
with multiple KCs and geometrical tolerances.
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8.2 Discussion of the results
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more details, refer to Tbl. 56).
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8 Application and evaluation of the developed optimal tolerance allocation framework

8.3 Potentials and limits

Based on the benefits and weaknesses reflected in Chap. 3, the combination
of sampling-based tolerance analysis and metaheuristic optimization was
identified at the beginning of this thesis as the basis to enhance optimal
tolerance allocation. So far, the positive impact of the proposed methods on
certain usability’s aspects of optimal tolerance allocation could be outlined.
The final evaluation in the following aims to evaluate the success of answering
the research questions and their impact on the overall research goal.

RQ1: How can the accuracy of sampling-based tolerance-cost optimiza-
tion be increased to enable a reliable and realistic consideration of
complex assemblies?

The problem-independent applicability of sampling methods enables the
analysisof complex systemsundervariations, typicallycharacterized byhighly
nonlinear assembly functions, which can only implicitly be represented via
numerical simulation. By predicting the statistical assembly responses’ distri-
bution through a number of representative samples, it is possible to evaluate
the product functionality through thewidely accepted and illustrative nc-rate
in parts-per-million for both one- and two-sided KCs. However, sampling-
based tolerance analysis induces aleatory uncertainties into the optimization
problem, leading to noise and scattering effects. In combination with the sto-
chastic approach of the metaheuristic algorithms, the reliability of the results
is significantly mitigated. If they are not considered during optimization or
when interpreting the results, the tolerances finally determined can fall short
of the required nc-rates many times over, despite adding the nc-limits as hard
acceptability constraints.

This thesis has shown that, besides the well-known suggestion to use high
sample sizes, variance reduction methods, particularly theQuasi-Monte Carlo
Sampling based on Sobol’ sequences, can significantly mitigate these effects.
Even though commercial CAT-tools are mainly based on crude Monte Carlo
Sampling procedures, it is a good alternative in code-based tolerance analysis
routines. Besides, the resulting margin of error depends on how the selected
nc-rate is derived from the resultant frequency distribution of the function-
relevant KCs. While the literature has mainly preferred non-parametric
methods, the proposed mathematical description of the estimation via the
cumulative frequency distribution of the assembly responses provides para-
metric alternatives for estimating the nc-rates. If the distribution follows
a verifiable distribution, parametric cumulative distribution function-based
nc-rate estimation leads to significantly more accurate results with the same
number of samples. However, their use only accurately applies to assem-
blies with a single KC. If several KCs are function-relevant, the occurring
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8.3 Potentials and limits

correlations can only be represented by the proposed non-parametric nc-
rate estimation. Not only the last example of the e-cross skate has shown
exemplarily that the incorporation of one overall nc-rate in the optimization
problem has a positive effect on its accuracy and avoids the disadvantages
of the common separate consideration via multiple constraints. Although
the methods above can reduce the noise in the optimization and, thus, the
final scatter in the optimization results, certain randomness remains due
to the repetitive execution of the sampling-based tolerance analysis. The
proposed idea of using the same random numbers for the inverse sampling
transforms the probabilistic problem into a deterministic one and eliminates
these effectswithin theoptimization. Asquantified, it contributes to accuracy
and stability in solving the optimization problem and to avoid a dominant
underestimation of the nc-rates.

Besides these concrete countermeasures, however, increased awareness of the
impact of sampling on the obtained cost optima and final nc-rates is essential.
Lowmaximumnc-rate limits require significantly higher sample sizes tomake
reliable statements. Initial estimates using proportion confidence intervals
and repetition of the analysis with different random numbers can be used to
estimate the error before or after optimization and to draw the appropriate
conclusions.

RQ2: How can the completeness of sampling-based tolerance-cost op-
timization be enhanced so that industrial-relevant issues are suitably
addressed?

A further essential benefit of sampling-based tolerance analysis is that any
distribution type can be virtually mimicked for the geometrical part charac-
teristics. This advantage can be exploited in sampling-based tolerance-cost
optimization to address optimal machine/supplier selection simultaneously
with tolerance allocation. The proposed mixed-integer optimization method
allows for cost-optimal decisions to be made already in the design phase at
the assembly level by mapping machine- and supplier-specific part tolerance
distributions while considering alternatives for realizing the individual parts
with their optimally allocated tolerances. Based on this, the proposedmethod
extension solves the previously existing limitation to a single choice selec-
tion by enabling the virtual mapping of distributed manufacturing to several
suppliers or machines per tolerance. The sampling-based representation of
the individual batches significantly contributes to ensuring that these can be
appropriately addressed in the optimization and determined in a least-cost
manner. In addition to pure random assembly, the novel idea also offers
opportunities for sophisticated assembly strategies such as selective assembly.
An approach for concurrent tolerance allocation and selective assembly has
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8 Application and evaluation of the developed optimal tolerance allocation framework

beendeveloped and applied in this thesis. The results indicate that they foster
the already initiated shift to a process-oriented design of tolerance allocation
by representing practical part manufacturing scenarios more realistically.

One crucial shortcoming hindering its application in industry is the lack of
focus of the methods on geometrical tolerances. A systematic structuring
of geometrical tolerances on feature, part, and assembly level is helpful to
identify occurring correlations between several components and features.
The advantages are particularly evident in larger assemblies such as the final
e-cross skate example making the problem’s complexity manageable. The
introduced method of design dimension reduction based on equality matrices
and adding further constraints to conform with the GD&T rules allow the
derivation of valid and industrially applicable tolerance values. Thus, the
presented enhancements close open gaps regarding the completeness and,
thus, increase the applicability of tolerance-cost optimization.

RQ3: How can the efficiency of sampling-based tolerance-cost opti-
mization be improved to handle complex optimization problems in
reasonable computing times?

While statistical approaches based on convolution or reliability methods
require only one function evaluation and, thus, a fraction of the computa-
tion time, several hours are standard for one single optimization run using
sampling-based tolerance analysis, significantly depending on the sample
size, as the different case studies in this thesis have shown. The presented
methods for increasing the efficiency with adaptive sample sizes and adaptive
surrogate models can demonstrably provide a remedy. A harmonized increase
of the sample size over optimization with simultaneously recalculating the
relevant solutions with the final sample size ensures the validity of the so-
lutions in lower computation times. Replacing the entire tolerance analysis
with surrogate models and continuously retraining them with the real values
of promising intermediate results can counteract the computational disad-
vantage of a repetitive evaluation of the real assembly response functions.
Consequently, adaptive surrogate model-based optimization can drastically
reduce computation times, so advanced tolerance analysis software can be
incorporated into the optimization problem. Though the concrete impact
of the method always depends on the choice of algorithms, their settings, as
well as the optimization problem’s nature and complexity, it can nevertheless
be stated that the optimization times can be reduced to an acceptable level
while simultaneously ensuring the optimality and feasibility of the results.
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8.3 Potentials and limits

Impact of the scientific findings on this thesis’ global research goal

Tolerance allocation, as one of the main activities in tolerance design, can be
performedatdifferent stageswithdifferentobjectives, boundaries, andgroups
of interests. Fig. 73 emphasizes that it can be applied in early tolerance design
stages where only little data, information, and knowledge is available but also
in the late design stages, pre-production stages, or even in production with a
strong focus on the manufacturing and assembly process when in-depth data
and information is usable. For this reason, the development of a modular
framework adaptable to the users’ needs (see Fig. 63) was preferred over a
direct implementation into a specific CAT-tool or CAD-environment. Using
sampling methods for tolerance analysis in combination with metaheuristics
provides a profound basis for its implementation as a broadly applicable
and ease of use tool for designers – although algorithms and optimization-
based workarounds ”do not completely exclude the expertise of a tolerance
designer” [192].

Tolerance design

Optimal tolerance
allocation with real,

machine-specific cost
curves, tolerance

distributions
+ machine/process/
supplier preselection

Concurrent
tolerance
allocation

Dynamic
tolerance
allocation

Optimal tolerance allocation with
assumed part tolerance distributions

and relative cost curves
Optimal tolerance allocation

+ multiple machine/supplier selection

making use of accurate, complete, and efficient
sampling-based tolerance-cost optimization methods

Optimal
tolerance allocation
+ machine allocation
+ selective assembly

Robust parameter design

ProductionProduct design Process design

Figure 73: Different stages in the product development process to perform optimal tolerance

allocation with different objectives.

Open issues and future challenges

The later sampling-based tolerance-cost optimization is applied in the prod-
uct development process, the more crucial it is that it is based on meaningful
tolerance-cost information, process limits, and part tolerance distributions.
Numerous scientific approaches already exist for systematically acquiring
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8 Application and evaluation of the developed optimal tolerance allocation framework

tolerance-cost curves, but these mostly provide for extensive preliminary
studies on suitable test specimens [P6, P7, S12]. However, initially derived
machine-specific distributions do not remain constant over lifetime but are
subject to variations. Furthermore, the simplified assumption that they are
the same for all selectable tolerance values may not reflect reality.

Instead, for reliable conclusions and approaches such as machine selection
and allocation, a large amount of up-to-date data is necessary to map the re-
spective manufacturing situations accurately. Otherwise, insufficient sample
sizes, unavoidable measurement uncertainties, and fitting errors of the part
tolerance probabilities [601] result in misleading optimization results. The
potential of directly using inspection data in tolerance design is well known
[198, 598]. Innovative approaches based on digital twins are getting attention
for tolerance allocation to gather the knowledge on part tolerance probability
distributions in production and have to be continued to obtain and provide
the necessary information ”on the fly”. From a methodological point of view,
tolerance allocation is ready for practical application. However, the general
lack of tolerance-cost information and the effort to gain it is still a significant
obstacle to its profitable application in the industry, which must finally be
tackled in future research works.

The presented methods for increasing its efficiency have proven their po-
tential. Further research, e.g., on the selection of hyperparameters in sur-
rogate modeling and optimization or the choice of the adaptive function, its
parameters, and surrogate model types for adaptive surrogate model-based op-
timization, may provide essential findings to further accelerate tolerance-cost
optimization. Moreover, thedevelopedmethods formachine selection and al-
location enable their extension by aspects of process scheduling, thus further
expanding the current context of use to the manufacturing pre-processing
and processing phases. This allows, for instance, a dynamic tolerance al-
location in ramp-up or series production to respond to variations such as
suppliers or machine capacities and availability.

The focus of this thesis was primarily on increasing the accuracy, complete-
ness, and efficiency of defining the tolerance-cost optimization problem
and solving it by metaheuristic algorithms using sampling-based tolerance
analysis techniques to statistically assure product quality. However, the
applicability of optimal tolerance allocation is also largely dictated by the
effectiveness and efficiency of all activities, particularly the preliminary pre-
processing ones, comprising the tolerance specification and the definition
of the tolerance analysis and tolerance-cost model. Although the proposed
framework can serve as an initial basis for the practical implementation of
a structured optimal tolerance allocation process, detailed studies are still
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8.3 Potentials and limits

required to assess its suitability for its application to the problems and scenar-
ios faced in the industry. Findings from prototypical benchmark tests in real
product development processes are vital to turn the methods, which have
already been thoroughly elaborated in academic research, into a practicable
tool for cost-optimal tolerance allocation and establish it as an essential part
of the product development process. Since the ease of use and users’ satisfac-
tion are essential for its usability, but highly subjective [174], representative
user studies are required to identify the need for improvement and further
research.

To conclude, the developed methods combined with the scientific know-
ledge gained help to take a further step towards a severe, practical solution
for optimal tolerance allocation capable of addressing the problems faced
in the industry. Despite its major but manageable challenge in computa-
tional efficiency, sampling-based tolerance-cost optimization bears the
potential to be the key to exploiting the largely unused cost potentials in
tolerance design while finding an optimal trade-off between the various
objectives and interests.
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9 Summary and Outlook

The challenge in tolerance allocation is to bring the tolerance values of all
individual parts into line with each other and specify them only as tight
as necessary, but as wide as possible to meet the high quality and cost re-
quirements. The method of tolerance-cost optimization picks up this merely
qualitative principle and transforms it into a mathematical optimization
problem, whereby the manual search for the quality-cost optimum can be
automated and accelerated with powerful algorithms.

Although the scientific achievements of the last five decades have contin-
uously increased the scope and performance of this optimization-based
method for tolerance allocation, it still needs to meet the requirements
for solving practical problems of industrial complexity. The synergy effects
of combining sampling methods for statistical tolerance analysis and meta-
heuristic algorithms for optimization have been recognized early in research
and practice. Promising approaches for sampling-based tolerance-cost op-
timization are already available. However, despite their potential, they cur-
rently still show major weaknesses in effectiveness and efficiency, making a
productive use difficult.

Following the global aim of improving the usability of optimization-based
tolerance allocation, this thesis emphasized the development of appropri-
ate methods to increase the accuracy, completeness, and efficiency of
sampling-based tolerance-cost optimization and their alignment in a
coherent framework (see Fig. 74).

The first part of this work has indicated that the sampling technique, the sam-
ple size, and the method for non-conformance rate estimation significantly
influence theaccuracyof thetoleranceanalysis and, thus, theoptimization.
On the one hand, the developed methods help to reduce sampling-induced
uncertainties. On the other hand, they enable a sufficiently accurate estima-
tion of the nc-rate for single and multiple interrelated assembly response
functions. The studies have proven that these countermeasures can ensure
the validity, optimality, and, thus, the reliability of the optimization results.

The second part of this work has made use of the description of geometrical
variations via probability distributions and supplemented tolerance alloca-
tion by a realistic selection and allocation of manufacturing machines and
suppliers. The expansion of the search space to include design variables for
machine selection and allocation and the definition of linear and nonlinear
constraints offer the possibility to map the manufacturing process and capac-
ity limits as well as geometrical tolerances being correlated through shared
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9 Summary and Outlook

geometrical features and multiple used parts. The preceding representation
of elements from manufacturing process planning not only contributes to
the completeness of sampling-based tolerance-cost optimization for
its application in the design phase but also provides opportunities for its
use in further product development phases, such as in the fabrication and
assembly process planning phase and production phases.

Aiming to reduce the high computational effort, which results from the itera-
tive procedure of the optimization algorithms andwhich is mainly dominated
by the sampling-caused repetition of the prediction of the accumulated part
variations in the assembly, the third part of this work dealt with the develop-
ment of methods to increase the efficiency of sampling-based tolerance-
cost optimization. It has been shown that variable sample sizes increasing
over the optimization history and the approximation of tolerance analysis
steps through surrogate models can substantially reduce the computation
time. Refining surrogate models during optimization with selectively re-
calculated intermediate results – also known in literature under the term
adaptive surrogate models – is proven to further enhance the efficiency of
tolerance-cost optimization without the need to oversimplify the tolerance
allocation problem.
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Figure 74: Main contents of the work and developed methods increasing the accuracy, com-

pleteness, and efficiency of sampling-based tolerance-cost optimization at a glance.

The application and evaluation of the developed and prototypically imple-
mented framework for optimal tolerance allocation based on sampling-based
tolerance-cost optimization in the fourth part have shown that it allows for a
cost-optimal tolerance allocation for complex assemblies. The example of a
front wheel axle assembly of an electrified cross skate showed its potential to
cope with nonlinear assemblies with several interrelated assembly response
functions and correlated geometrical tolerances. It can be performed in
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9 Summary and Outlook

reasonable computing times but without having to restrict the accuracy and
completeness of the problem too much in support of efficiency.

Nevertheless, the final evaluation of its strengths and weaknesses revealed
that there is a need for further research that goes beyond the scope of this
thesis. In addition to the enhancement of the methods for machine/supplier
allocation and selection and for increasing efficiency, there is a need for
further research in the implementation and testing of the proposed toler-
ance allocation workflow in practical product development processes gaining
insights on further shortcomings in the accuracy, completeness, and also
satisfaction. In doing so, a prerequisite for its application is the availability of
up-to-date tolerance-cost data. The manufacturing probability distributions
modeled in the sampling require comparatively large amounts of data to
provide an accurate prognosis. Therefore, their systematic acquisition, pro-
cessing, and provision must be studied in detail in further research activities.

In conclusion, the methods and findings presented in this thesis can make
an important contribution to the evolution of tolerance-cost optimization
as the key to optimal tolerance allocation, which has grown over the past
half-century. Nevertheless, further years of intensive research will still be
necessary to exploit its full potential in industrial practice.
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10 Zusammenfassung und Ausblick

Die Herausforderung in der Toleranzallokation besteht darin, die Toleranz-
werte aller Einzelbauteile aufeinander abzustimmen und lediglich so eng wie
nötig, jedoch so weit wie möglich festzulegen, um so den hohen Qualitäts-
und Kostenanforderungen gerecht zu werden. Die Methode der Toleranz-
Kosten-Optimierung greift diesen rein qualitativen Grundgedanken auf und
überführt ihn in ein mathematisches Optimierungsproblem, wodurch sich
die manuelle Suche nach dem Qualitäts-Kosten-Optimum mithilfe von Al-
gorithmen automatisieren und beschleunigen lässt.

Obgleich sich diese optimierungsbasierte Variante der Toleranzallokation
durch die wissenschaftlichen Errungenschaften der letzten fünf Jahrzehnte
kontinuierlich in Umfang und Leistungsfähigkeit steigern konnte, kann
sie den Ansprüchen zur Lösung praktischer Problemstellungen von indus-
trieller Komplexität derzeit noch nicht gerecht werden. Die Synergieeffekte,
welche sich aus der Kombination von Samplingverfahren für die statisti-
sche Toleranzanalyse und metaheuristischen Algorithmen zur Optimierung
ergeben, wurden in der Literatur und Praxis schon sehr früh erkannt. So
liegen bereits vielversprechende Ansätze für die samplingbasierte Toleranz-
Kosten-Optimierung vor. Trotz ihres Potentials zeigen diese derzeit jedoch
noch große Schwächen in Effektivität und Effizienz und erschweren dadurch
einen produktiven Einsatz.

Unter der globalen Zielsetzung, die allgemeine Anwendbarkeit der op-
timierungsbasierten Toleranzallokation zu verbessern, legte die vor-
liegende wissenschaftliche Arbeit den Schwerpunkt auf die Entwicklung
geeigneter Methoden zur Steigerung der Genauigkeit, Vollständigkeit
und Effizienz der samplingbasierten Toleranz-Kosten-Optimierung
sowie deren Abstimmung in einem Rahmenwerk (siehe Fig. 75).

Der erste Teil dieser Arbeit hat dabei gezeigt, dass das Samplingverfahren,
die Stichprobengröße und die Methode zur Ausschussratenschätzung die
Genauigkeit der Toleranzanalyse und dadurch auch der Optimierung
wesentlich beeinflussen. Die entwickelten Methoden tragen einerseits zur
Reduktion der samplinginduzierten Unsicherheiten bei, anderseits erlauben
diese eine hinreichend genaue Schätzung der Konformitätsrate für eine sowie
mehrere verknüpfte Baugruppenantwortfunktionen. Die Untersuchungen
haben unter Beweis gestellt, dass dadurch die Gültigkeit und Optimalität der
Optimierungsergebnisse sichergestellt werden kann.

Der zweite Teil dieser Arbeit hat sich die Beschreibung von Geometrieab-
weichungen über Häufigkeitsverteilungen zu Nutze gemacht und die
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10 Zusammenfassung und Ausblick

Toleranzallokation um eine realitätsnahe Vorauswahl und -allokation von
Fertigungsmaschinen bzw. Zulieferern vervollständigt. Die Ausweitung des
Suchraums auf Designvariablen zur Maschinenselektion und -allokation
sowie die Definition von linearen und nichtlinearen Nebenbedingungen er-
lauben die Abbildung von Fertigungsprozess- und -kapazitätsgrenzen sowie
geometrische, über gemeinsame Fertigungsschritte und Geometrieelemente
korrelierte Toleranzen. Die vorgelagerte Abbildung von Elementen aus der
Fertigungsprozessplanung trägt hierbei nicht nur zur Vollständigkeit der
Methode für ihre Anwendung in der Designphase bei, sondern eröffnet
darüber hinaus auch Möglichkeiten zur Nutzung in weiteren Produktentste-
hungsphasen, wie z. B. in Planungsphasen von Einzelteilfertigungs- und
Montageprozessen und während der Produktion.

Um den hohen Rechenaufwand zu reduzieren, welcher sich durch das iter-
ative Vorgehen der Optimierungsalgorithmen ergibt und dabei wesentlich
durch die samplingbedingte Wiederholung der Simulation der abweichungs-
behafteten Baugruppenzustände bestimmt wird, widmete sich der dritte
Teil dieser Arbeit der Entwicklung von Methoden zur Steigerung der Ef-
fizienz der samplingbasierten Toleranz-Kosten-Optimierung. Es hat
sich gezeigt, dass variable, überdemOptimierungsverlauf zunehmende Stich-
probengrößen sowie die Approximation von Toleranzanalyseschritten durch
Ersatzmodelle die Rechenzeiten wesentlich reduzieren können. Eine Ver-
feinerungderMetamodellewährendderOptimierungmitgezielt nachgerech-
neten Zwischenergebnissen – inder LiteraturauchunterdemNamen adaptive
surrogate models bekannt – trägt nachweislich zur weiteren Verbesserung
der Effizienz der Toleranz-Kosten-Optimierung bei, ohne dabei das Toleranz-
allokationsproblem zu sehr vereinfachen zu müssen.
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Die finale Anwendung und Evaluierung des im vierten Teil entwickelten
und prototypenhaft implementierten Ansatzes hat exemplarisch am Beispiel
einer Vorderachsbaugruppe eines elektrifizierten Cross Skates gezeigt, dass
die aufeinander abgestimmten Einzelmethoden gewährleisten, dass eine
kostenoptimale Toleranzallokation für komplexe, nichtlineare Baugruppen
mit mehreren verknüpften Baugruppenantwortfunktionen sowie voneinan-
der abhängigen Form-und Lagetoleranzen in vertretbaren Rechenzeiten
durchgeführt werden kann, ohne dabei die Genauigkeit und Vollständigkeit
der Problemstellung zugunsten der Effizienz zu stark einschränken zu
müssen.

Nichtsdestotrotz hat die abschließende Beurteilung der Stärken und
Schwächen ergeben, dass es über diese Arbeit hinaus noch Forschungsbe-
darf gibt. Neben der Weiterentwicklung der Methoden zur Maschinen-
/Zuliefererselektion und -allokation sowie zur Effizienzsteigerung gilt es,
das vorgeschlagene Rahmenwerk zur Toleranzallokation in praktische
Produktentwicklungsprozesse zu implementieren und zu erproben, um
Erkenntnisse über mögliche Defizite in der Genauigkeit, Vollständigkeit und
Benutzungszufriedenheit zu gewinnen. Voraussetzung, dass die Toleranz-
Kosten-Optimierung jedoch überhaupt angewandt werden kann, ist die
Verfügbarkeit aktueller Toleranz-Kosten-Daten. Dabei erfordern die im
Sampling abbildbaren Fertigungshäufigkeitsverteilungen vergleichsweise
große Datenmengen, um eine valide Prognose liefern zu können. Deren
systematische Erfassung, Verarbeitung und Bereitstellung muss daher in
weiteren Forschungsaktivitäten gezielt untersucht werden.

Abschließend lässt sich festhalten, dass die in dieser Arbeit vorgestellten
Methoden und Erkenntnisse einen wichtigen Beitrag zur Weiterentwicklung
der über des letzten halben Jahrhunderts gereiften Methode zur Toleranz-
Kosten-Optimierung als Schlüssel für die optimale Toleranzallokation liefern
können. Dennoch sind weitere Jahre an intensiver Forschung nötig, um ihr
Potential in der industriellenAnwendung vollständig ausschöpfen zu können.
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A.1 Terminology in the field of tolerance-cost

optimization

Several terms are used in literature presenting methods that aim to find
an optimal set of tolerance values [P1]. In this regard, they are composed
mainly of a suitable noun and one or more additional adjectives. Fig. 76
gives an overview of the used terms, identified by a screening of the database
presented in the subsequent Appx. A.2.
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Figure 76: Terms often used in literature for methods aiming to find optimal tolerance values.

Besides the product development phase in focus, the tolerance design (A),
different names of tolerancing activities (B)-(H), which are not consequently
differed in literature, areoften used interchangeably (see Sec. 2.1) to introduce
or apply optimization-based tolerance allocation techniques. The adjectives
(a)–(d) indicate the strategy or concrete aim. In addition to adjectives, which
are used to emphasize the usage of statistical (e) or sampling techniques (f)
for tolerance analysis, other words may be prefixed, for instance, dimensional
or geometrical to indicate the tolerance types in focus, the problem type, such
as non-linearity, or optimization-specific details, e.g., regarding the number
of objectives, the existence of constraints or the nature of the equations and
design variables and their permissible values [419]. Moreover, the terms
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tolerance(-cost) optimization (I), minimization (J), and enlargement (K) can
be used to emphasize the aim or strategy of the method directly.

As a consequence, numerous definitions were presented in literature over
the years to characterize the methods aiming to find the optimal tolerance
values as a compromise between cost and quality. Tab. 3 gives an overview of
different definitions and their references. In this thesis, the term tolerance-
cost optimization and its definition, given in Sec. 2.2, are preferred. In
addition, it can suitably be extended by the adjective sampling-based, thus
leading to the detailed definition for the methods focused in this thesis given
in Sec. 2.2.

Table 3: Featured definitions and descriptions of methods to identify feasible and optimal part

tolerance values.

Definition Ref.

”[Tolerance allocation is to be] asked to specify the individual components dimensional
tolerances to satisfy the total assembly tolerance which is dictated by functionality
and quality requirements.”

[179]

”Tolerance allocation involves the assignment and the distribution of the values of
tolerances and therefore is the inverse problem of tolerance analysis.”

[23]

”Tolerance allocation asks the question, given the system tolerances what should the
component tolerances be?”

[264]

”Tolerance allocation is the process to distribute or to assign proper tolerance spec-
ifications to a part or to an assembly. The distribution criteria are often based on
manufacturing costs.”

[602]

“Tolerance allocation [aims at] determining how to distribute the allowable variation
on the dimension of interest amongst all the independent contributors.”

[282]

”[Optimal tolerance selection] is a method for specifying independent functional
tolerances in an optimal least-cost manner.”

[38]

”[T]olerance allocation uses optimization techniques to assign component tolerances
such that the cost of production of an assembly is minimized.”

[129]

”Tolerance synthesis is formulated [...] as an optimization problem by treating cost
minimization as the objective function and the stack-up conditions as the constraints.”

[297]

”[T]olerance allotment becomes an optimization problem to determine the optimal
allotment of the tolerances under the constraints of the function requirements and
acceptance probability.”

[27]

”[T]olerance allocation is to distribute tolerances among relevant design constraints
to achieve the lowest overall manufacturing costs.”

[603]

”Tolerance allocation uses overall assembly tolerances and allocates component toler-
ances based on relative contributions to the assembly and production costs.”

[604]

”Tolerance allocation [...] is concerned with allocating component tolerances while
observing the total assembly tolerance in a way to minimize total manufacturing
cost.”

[498]
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– Continued from Tbl. 3 –

Definition Ref.

”Tolerance selection is a simultaneous design activity that involves the analysis of
all factors that affect product variability, over the life cycle of the product and of the
process, and their associated costs.”

[346]

”[T]olerance allocation: the values of all specified tolerances are determined by either
refining empirical tentative values or optimizing them according to cost–tolerance
functions.”

[104]

”Optimal tolerance design aims at assigning tolerances such that the functionality
requirements are achieved with minimum cost.”

[605]

”The objective of tolerance design is to determine the component tolerances such
that the requirement of assembly tolerance can be met and the assembly cost may be
minimized.”

[606]

”Tolerance allocation is closely related to the quality and cost of a product, in that
the lowest possible manufacturing cost is sought while satisfying certain quality
requirements.”

[299]

A.2 Literature review

The underlying literature review of this thesis, presented in Sec. 2.3, is an
update of the findings published in 2020 by the author in [P1], and extended
by additional categories and aspects. The general aims of the literature
review are in correspondence to [607]; first, to illustrate the general trends
of research and the historical development of tolerance-cost optimization
from 1970–2023; second, to summarize and classify the individual findings;
and, third, to reveal the current gaps based on this information. As various
terms for tolerance-cost optimization have been used interchangeably in
the past (see Appx. A.1), the research databases and engines Google Scholar,
Scopus, ResearchGate and Semantic Scholar were used for a first systematic
screening using the terms given in Appx. A.1 as search strings. The number
of identified papers was manually reduced to the relevant ones by studying
their abstracts and full texts. In a second step, the remaining articles were
screened manually for appropriate cross-references to identify the articles
which were missed out in the first run. As a result, an initial topic-related
databasewas created and served as the basis in [P1, P2]. To keep the database
up-to-date, it was further extended by recent publications1. As a result, a total

1 The literature study considers all articles published and accessible to the author until the

cut-off date of 05/01/2023 related to tolerance-cost optimization. Thus, it does and cannot

claim to be fully complete. Nonetheless, it covers the most relevant, officially published

research works.
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amount of 399 relevant papers was finally identified, mainly contributing to
the research field of tolerance-cost optimization (see Fig. 77).
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Figure 77: Number of articles published between 1970-2023 considered in the literature review.

In a further step, they were classified by the author concerning the following
aspects:

1. Type of costs: either only the manufacturing costs 𝐶 or additional costs
due to quality losses QL are defined as objective(s) and/or constraint(s)
(Cost type: 𝐶/𝐶 +QL).

2. Alternative selection: if an optimal selection of either machines and/or
processes and/or suppliers to realize a part tolerance value are considered
in addition to tolerance allocation or not (Alt. sel.: No/Yes).

3. Concurrent tolerance allocation: either only design tolerances or addi-
tional machine tolerances form the design variables (Conc.: No/Yes).

4. Type of tolerance: classifies if the values of dimensional or geometrical
and dimensional tolerances are allocated by the optimization algorithm
(Tol. type: Dim/GD&T).

5. Type of tolerance analysis method: the tolerance analysis methods used
in the optimization are classified in arithmetic, worst case, and statistical,
while statistical approaches are further classified if they are sampling-
based or not (Tol. analysis type: Arith./Stat./Samp.).

6. Type of solution procedure: the presented approaches are classified into
non-metaheuristic, i.e., mathematical optimization algorithms, search
algorithms or methods adopted from quality engineering, e.g., DOE- and
ANOVA-based approaches, and (meta-)heuristic optimization algorithms
((Meta-)heur.: No/Yes).

The results, visualized in Fig. 11 and discussed in detail in Sec. 2.3, are sum-
marized in Tbl. 4.
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Table 4: List of classified references as the basis for the literature review presented in Sec. 2.3.

Ref. Year Cost type Alt. sel. Conc. Tol. type Tol. analysis type (Meta-)heur.

𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[244, 608] 1970 x x x x x x

[126] 1970 x x x x x x

[541] 1972 x x x x x

[306] 1972 x x x x x x

[609] 1973 x x x x x x

[610] 1973 x x x x x x

[422] 1974 x x x x x

[357] 1975 x x x x x x

[611] 1975 x x x x x x

[38] 1977 x x x x x x

[127] 1978 x x x x x x

[358] 1979 x x x x x x

[540] 1980 x x x x x

[295] 1981 x x x x x x

[296] 1982 x x x x x x

[360] 1982 x x x x x x

[191] 1983 x x x x x x

[535] 1985 x x x x x x

[176] 1986 x x x x x x

[278] 1986 x x x x x x

[184] 1987 x x x x x x

[501] 1987 x x x x x x

[40] 1988 x x x x x x

[504] 1988 x x x x x x

[359] 1988 x x x x x x

[179] 1988 x x x x x x

[186] 1989 x x x x x x

[180] 1990 x x x x x x

[312] 1990 x x x x x x

[249] 1990 x x x x x

[297] 1990 x x x x x x

[123] 1990 x x x x x x

[97] 1991 x x x x x x

[438] 1992 x x x x x x

[451] 1992 x x x x x x

[44] 1992 x x x x x x

[266] 1993 x x x x x

[27] 1993 x x x x x x x

[36] 1993 x x x x x x

[200] 1993 x x x x x x

[364] 1993 x x x x x x

[93] 1993 x x x x x x

[177] 1993 x x x x x x

[612] 1994 x x x x x x

[190] 1994 x x x x x x

[613] 1994 x x x x x x

[264] 1994 x x x x x

[614] 1994 x x x x

[615] 1994 x x x x x x

[558] 1994 x x x x x x

[250] 1995 x x x x x x

[26] 1995 x x x x x x

[616] 1995 x x x x x x

[136] 1995 x x x x x x

[498] 1995 x x x x x x

[199] 1995 x x x x x x
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Ref. Year Cost type Alt. sel. Conc. Tol. type Tol. analysis type (Meta-)heur.

𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[617] 1995 x x x x x x

[9] 1995 x x x x x

[428] 1996 x x x x x x

[271] 1996 x x x x x x

[46] 1996 x x x x x x x

[436] 1996 x x x x x x

[37] 1996 x x x x x x

[618] 1996 x x x x x x x

[192] 1996 x x x x x x x

[403] 1996 x x x x x x x

[32] 1996 x x x x x x

[154] 1997 x x x x x x

[133] 1997 x x x x x x

[603] 1997 x x x x x x

[47] 1997 x x x x x

[251] 1997 x x x x x x

[258] 1997 x x x x x

[135] 1997 x x x x x x x

[221] 1997 x x x x x x

[405] 1997 x x x x x x x

[619] 1997 x x x x x x

[620] 1997 x x x x x x

[352] 1997 x x x x x x x

[232] 1997 x x x x x x

[621] 1997 x x x x x x

[452] 1998 x x x x x x

[406] 1998 x x x x x x

[363] 1998 x x x x x x

[551] 1998 x x x x x

[222] 1998 x x x x x

[622] 1998 x x x x x x

[487] 1998 x x x x x

[532] 1998 x x x x x x x

[259] 1998 x x x x x x

[623] 1998 x x x x x x

[204] 1999 x x x x x x

[129] 1999 x x x x x x

[624] 1999 x x x x x x

[265] 1999 x x x x x x

[488] 1999 x x x x x x

[387] 1999 x x x x x x x

[386] 1999 x x x x x x x

[625] 1999 x x x x x x

[626] 1999 x x x x x x x

[185] 1999 x x x x x x

[627] 1999 x x x x x x

[447] 2000 x x x x x x

[628] 2000 x x x x x

[505] 2000 x x x x x x

[606] 2000 x x x x x x

[629] 2000 x x x x x x

[630] 2000 x x x x x x x

[631] 2000 x x x x x x

[632] 2000 x x x x x x

[633] 2000 x x x x x x

[634] 2000 x x x x x x

[277] 2000 x x x x x x

[299] 2000 x x x x x x x
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Ref. Year Cost type Alt. sel. Conc. Tol. type Tol. analysis type (Meta-)heur.

𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[17] 2000 x x x x x

[231] 2001 x x x x x x x

[247] 2001 x x x x x x

[144] 2001 x x x x x

[260] 2001 x x x x x x

[635] 2001 x x x x x x

[412] 2001 x x x x x x x

[335] 2001 x x x x x x

[636] 2001 x x x x x x

[139] 2001 x x x x x x

[187] 2001 x x x x x x

[400] 2001 x x x x x x x

[365] 2002 x x x x x

[344] 2002 x x x x x x

[54] 2002 x x x x x x

[5] 2002 x x x x x x x

[489] 2002 x x x x x x x

[288] 2002 x x x x x x x

[298] 2002 x x x x x x x

[223] 2002 x x x x x x

[637] 2002 x x x x x x

[342] 2003 x x x x x x

[638] 2003 x x x x x x

[213] 2003 x x x x x x

[21] 2003 x x x x x x x

[546] 2003 x x x x x x

[281] 2003 x x x x x x

[639] 2003 x x x x x

[640] 2003 x x x x x x

[641] 2003 x x x x x

[201] 2003 x x x x x x

[424] 2004 x x x x x x

[381] 2004 x x x x x

[189] 2004 x x x x x x

[56] 2004 x x x x x x

[307] 2004 x x x x x x

[642] 2004 x x x x x x

[96] 2004 x x x x x x

[643] 2004 x x x x x x x

[369] 2005 x x x x x

[453] 2005 x x x x x x

[283] 2005 x x x x x x

[644] 2005 x x x x x x

[263] 2005 x x x x x

[645] 2005 x x x x x x

[469] 2005 x x x x x x

[646] 2005 x x x x x x

[361] 2005 x x x x x x

[647] 2005 x x x x x x

[313] 2005 x x x x x x

[497] 2005 x x x x x x

[345] 2005 x x x x x x

[648] 2006 x x x x x

[649] 2006 x x x x x x

[212] 2006 x x x x x

[233] 2006 x x x x x x

[45] 2006 x x x x x x

[464] 2006 x x x x x x
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Ref. Year Cost type Alt. sel. Conc. Tol. type Tol. analysis type (Meta-)heur.

𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[493] 2006 x x x x

[398] 2006 x x x x x x x

[456] 2006 x x x x x x

[650] 2006 x x x x x

[495] 2006 x x x x x x

[481] 2006 x x x x x x

[457] 2006 x x x x x x

[279] 2007 x x x x x x x

[389] 2007 x x x x x x

[103] 2007 x x x x x x x

[563] 2007 x x x x x x

[242] 2007 x x x x x x

[284] 2007 x x x x x x

[527] 2007 x x x x x x

[390] 2007 x x x x x x

[425] 2007 x x x x x x

[465] 2007 x x x x x x

[651] 2007 x x x x x x

[275] 2007 x x x x

[652] 2007 x x x x x x

[276] 2007 x x x x

[274] 2007 x x x x x x

[362] 2008 x x x x x

[368] 2008 x x x x x x x

[604] 2008 x x x x x x x

[496] 2008 x x x x x x

[653] 2008 x x x x x x

[196] 2008 x x x x x

[261] 2008 x x x x x x

[654] 2008 x x x x x x

[490] 2008 x x x x x x

[245] 2008 x x x x x x

[437] 2009 x x x x x x x

[655] 2009 x x x x x

[656] 2009 x x x x x x

[474] 2009 x x x x x x

[461] 2009 x x x x x x

[605] 2009 x x x x x x

[311] 2009 x x x x x x

[503] 2009 x x x x x x

[466] 2009 x x x x x

[657] 2009 x x x x x x

[658] 2009 x x x x x x

[218] 2009 x x x x x x

[257] 2009 x x x x x x

[659] 2009 x x x x x x

[458] 2009 x x x x x x

[467] 2009 x x x x x x

[502] 2009 x x x x x x

[432] 2009 x x x x x x

[506] 2009 x x x x x x

[134] 2009 x x x x x x x

[483] 2009 x x x x x x

[660] 2010 x x x x x

[661] 2010 x x x x x x x

[211] 2010 x x x x x

[291] 2010 x x x x x x

[227] 2010 x x x x x x
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Ref. Year Cost type Alt. sel. Conc. Tol. type Tol. analysis type (Meta-)heur.

𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[475] 2010 x x x x

[509] 2010 x x x x x x

[463] 2010 x x x x x x

[662] 2010 x x x x x x

[468] 2010 x x x x x x

[455] 2010 x x x x x x

[663] 2010 x x x x x

[272] 2010 x x x x x x

[664] 2011 x x x x x x

[59] 2011 x x x x x x

[665] 2011 x x x x x x

[290] 2011 x x x x x x

[404] 2011 x x x x x x x

[270] 2011 x x x x x

[454] 2011 x x x x x x

[330] 2011 x x x x x x

[462] 2011 x x x x x x

[33] 2011 x x x x x x

[500] 2011 x x x x x

[434] 2011 x x x x x x

[433] 2011 x x x x x x

[435] 2011 x x x x x x

[666] 2011 x x x x x x

[667] 2012 x x x x x x

[193] 2012 x x x x x x x

[397] 2012 x x x x x x

[668] 2012 x x x x x x

[669] 2012 x x x x x x x

[670] 2012 x x x x x x

[477] 2012 x x x x x x

[262] 2012 x x x x x x

[671] 2012 x x x x x x

[672] 2012 x x x x x x

[431] 2012 x x x x x x

[300] 2013 x x x x x x

[673] 2013 x x x x x x

[507] 2003 x x x x x x

[427] 2013 x x x x x x

[674] 2013 x x x x x x

[217] 2013 x x x x x x

[675] 2013 x x x x x x x

[676] 2013 x x x x x x

[677] 2013 x x x x x x x

[678] 2013 x x x x x x

[441] 2013 x x x x x x

[491] 2013 x x x x x x

[479] 2013 x x x x x x

[679] 2013 x x x x x x

[482] 2013 x x x x x x

[478] 2013 x x x x x

[680] 2013 x x x x x x

[303] 2014 x x x x x

[602] 2014 x x x x x x

[681] 2014 x x x x x x

[382] 2014 x x x x x x

[682] 2014 x x x x x x

[293] 2014 x x x x x x

[499] 2014 x x x x x x
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𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[31] 2014 x x x x x x

[480] 2014 x x x x x x

[683] 2014 x x x x x x

[684] 2014 x x x x x x

[289] 2014 x x x x x x

[685] 2014 x x x x x x

[686] 2015 x x x x x x x

[687] 2015 x x x x x x

[254] 2015 x x x x x x

[688] 2015 x x x x x x

[689] 2015 x x x x x x

[396] 2015 x x x x x x

[286] 2015 x x x x x x x

[690] 2015 x x x x x

[691] 2015 x x x x x

[416] 2016 x x x x x x

[459] 2016 x x x x x x x

[472] 2016 x x x x x x

[12] 2016 x x x x x

[692] 2016 x x x x x x

[693] 2016 x x x x x x

[198] 2016 x x x x x x

[694] 2016 x x x x x x

[695] 2016 x x x x x x

[287] 2016 x x x x x x x

[255] 2016 x x x x x

[273] 2016 x x x x x x

[430] 2017 x x x x x x

[243] 2017 x x x x x x x

[269] 2017 x x x x x x

[696] 2017 x x x x x x

[697] 2017 x x x x x x

[402] 2017 x x x x x x

[698] 2017 x x x x x

[699] 2017 x x x x x x

[700] 2017 x x x x x

[423] 2017 x x x x x x

[701] 2017 x x x x x

[702] 2017 x x x x x

[703] 2017 x x x x x

[408] 2017 x x x y x x x

[704] 2018 x x x x x x

[367] 2018 x x x x x x x

[415] 2018 x x x x x x x

[492] 2018 x x x x x x

[705] 2018 x x x x x x

[494] 2018 x x x x x x

[706] 2018 x x x x x

[426] 2018 x x x x x x

[366] 2018 x x x x x x x

[239] 2019 x x x x x x

[460] 2019 x x x x x x

[707] 2019 x x x x x x

[708] 2019 x x x x x

[414] 2019 x x x x x x

[559] 2019 x x x x x x

[471] 2019 x x x x x x

[709] 2019 x x x x x x x
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𝐶 𝐶 +𝑄𝐿 No Yes No Yes Dim GD&T Arith Stat Samp No Yes

[710] 2020 x x x x x x

[203] 2020 x x x x x x

[711] 2020 x x x x x x x

[564] 2020 x x x x x x

[P8] 2020 x x x x x x x

[418] 2020 x x x x x x x

[712] 2020 x x x x x x

[713] 2020 x x x x x x x

[14] 2020 x x x x x x x

[229] 2020 x x x x x

[216] 2020 x x x x x x

[301] 2021 x x x x x x

[81] 2021 x x x x x x x

[417] 2021 x x x x x x

[P3] 2021 x x x x x x x

[130] 2021 x x x x x x

[P9] 2021 x x x x x x x

[P2] 2021 x x x x x x x

[476] 2021 x x x x x x

[473] 2021 x x x x x x

[P11] 2021 x x x x x x x

[714] 2021 x x x x x

[485] 2021 x x x x x x

[715] 2021 x x x x x x

[442] 2021 x x x x x x

[399] 2021 x x x x x x x

[716] 2022 x x x x x x

[394] 2022 x x x x x x x

[P15] 2022 x x x x x x x

[P14] 2022 x x x x x x x

[717] 2022 x x x x x x

[P12] 2022 x x x x x x x

[718] 2022 x x x x

[508] 2022 x x x x x x

[214] 2022 x x x x x

[395] 2022 x x x x x x x

[600] 2022 x x x x x x

[719] 2022 x x x x x

[215] 2022 x x x x x x

[537] 2022 x x x x x x

[720] 2022 x x x x x

[721] 2022 x x x x x x

[294] 2022 x x x x x x x

[240] 2022 x x x x x x x

[722] 2022 x x x x x x

[723] 2023 x x x x x x

[724] 2023 x x x x x x x

[725] 2023 x x x x x x

[726] 2023 x x x x x x x

[727] 2023 x x x x x x x

[728] 2023 x x x x x x x

[729] 2023 x x x x x x

[730] 2023 x x x x x x

∑ = 252 144 299 92 326 73 290 75 95 281 89 202 174

The following criteria and aspectswere furtherconsidered in theclassification:
In case multiple categories fit to one article, e.g., it considers both worst-
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case and statistical tolerance analysis as constraints, the more advanced
category is chosen. However, suppose techniques are only used as a reference,
such as to benchmark a closed-form solution with Lagrange multipliers with
(meta-)heuristic optimization algorithms. In that case, the solution proposed
and focused in the article is considered. Blank spaces for single criteria
indicate that the information is not given in the paper or only incompletely,
which did not lead to a clear classification. Thus, non-mechanical products,
e.g., electronic circuits or antennas, were not considered in the category
Tol. type, as only non-geometrical tolerances are being focused on. Following
the definition in Sec. 2.2, all proposed approaches that address the costs
in the objective(s) or constraints are considered, even if the cost aspect is
only indirectly addressed. The main focus is put on tolerance allocation for
multiple-part assemblies. However, if methods are applied to single parts
and do not address tolerance charting, they are also considered. Assembly
technique selection, most relevant in process-driven tolerance allocation, is
not included in the criterion Alt. sel. as it does not influence the achievement
of an allocated part tolerance. Besidesmetaheuristic optimization algorithms,
ANNs and reinforcement learning-based approaches were also classified as
(meta-)heuristic.

A.3 Background information onmetaheuristic

optimization algorithms

Practical, real-world, technical, and scientific optimization problems are
mostlymathematically complex since the search spaces aremultidimensional
and large, they are characterized by multimodal and complex mathemat-
ical or numerical, implicit objective functions and are often strongly con-
strained [444, 484]. Most of these problems are so-called non-polynomial
(NP)-hard problems, where the problem’s complexity hinders finding a solu-
tion in polynomial time [444, 446, 731].

Since resources in timeandmoneyareoften critical [450], the need for compu-
tational resources and times have to be significantly reduced [449] excluding
theusageof exactmethods [444, 731, 732]. Instead, high quality, but only near-
optimal solutions to be found in reasonable computing times are considered a
sufficient compromise [449]. Stochastic, mostly metaheuristic optimization
algorithms have proven their suitability to solve NP-hard problems for various
applications in the past [444, 445, 449] and are, thus, often preferred over
traditional, mostly deterministic, mathematically programming-based opti-
mization algorithms [445, 446], which show severe deficits in computational
efficiency [444, 732], general applicability [446, 449], and are challenging to
implement [449].
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Based on the general principle of trial-and-error [445, 450], the group of
stochastic algorithms comprises practical, efficient, and general-purpose soft-
computing optimization techniques [444, 445, 450, 484], which are not based
on mathematical theory rather than on heuristics and experience [733]. In
this context, the term metaheuristic is used to indicate that these algorithms
are higher-level heuristic methods, better performing than heuristics [445,
446, 450], which are tailored to specific problem types and, thus, can not
easily be applied to others [449, 731].

Since both a purely random, blind-fold search and an exhaustive search
are not useful enough on their own [449, 450], metaheuristic algorithms
combine the ideas of both local and random search, also called random
walks [450]. While the latter helps to exploit a current, promising solution
in its neighborhood, randomization helps to explore the total search space
and to avoid getting stuck in local minima (see Fig. 78) [444–446, 450].
A thoughtful harmonization of exploitation, i.e., intensification, and
exploration, i.e., diversification, helps to find the global optimum for
multimodal optimization problems [449, 450, 586]. Otherwise, either the
algorithm does converge very slowly or not at all, or the global cannot be
reached [445, 449].

f(X)

Global optimum
X

Diversification

Local optima

XubX lb

Intensification

Figure 78: Principle of diversification and intensification illustrated for a multimodal function

with local and global minima.

In contrast to deterministic algorithms, metaheuristic algorithms

• do not put any requirements on the type and complexity of objective func-
tion [449],

• thus, fit a huge range of problems as black box algorithms [444, 731], even
without having to know exactly how the algorithms work [450],

• tolerate uncertain, imprecision or approximate data and functions [444],
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• and additionally show their strengths in their simple implementation and
potential to be parallelized [449, 731].

However,

• they are highly sensitive to the choice of the algorithm-specific parame-
ters controlling extrapolation and exploitation [484], which are a priori
unknown, experience-based and have to be individually defined and tai-
lored to the given problem by the user [449],

• the results are non-deterministic and scatter in different trials caused by
random elements [446, 450, 586], and

• they cannot guarantee feasibility, a certain quality, or optimality in ad-
vance [445, 449, 450].

Among the different taxonomies [445, 450], for example according to the
source of inspiration (see [731, 732]), it is useful to classify them into
trajectory-based (TB) and population-based (PB) algorithms [446, 731].
While the first group is based onagradual improvementof one single solution,
the second one uses a set, the so-called population, of multiple solutions,
which is partly or totally replaced by new solutions in each iteration [444, 731].
Despite their lack in efficiency [444], PB optimizers show their strengths in
exploration [444] and are, thus, preferably used for more complex problems
with numerous local minima.

Regardless of the nature and implementation of the algorithm, themain steps
of metaheuristic algorithms can be described in general by the pseudocode
illustrated in Algorithm 1. Initially, randomly chosen or based on problem-
specific knowledge predefined solutions serve as the starting points where
the algorithm improves the solution by algorithm-specific exploitation and
exploration operations step by step [444]. This implies selecting the current
best [445] and combining and/or modifying the previous solutions [444]
based on the fitness values obtained by the objective function while taking
the constraints into account by suitable constraint handling methods [450].
The penalty approach is widely used to transform the problem into an uncon-
strained one by adding a penalty term, typically through a simple sum, to the
fitness [21, 734, 735]:

𝑓P(𝒙) = 𝑓(𝒙) + 𝑝(𝒙) (67)

with: {
𝑝(𝒙) = 0 if 𝒙 is feasible

𝑝(𝒙) > 0 otherwise,

where the penalty function 𝑝(𝒙) can be constant or variable [735]. In doing so,
thepopulationmoves fromneighborhood toneighborhoodwhile intensifying
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potential optimal solutions [444, 449] until apredefined terminationcriterion
is met, such as a limit of total time or a number of evaluations, etc. [444, 449].

Create one (TB) or more (PB) initial solutions;
while termination criterion is not met do

if exploit then
Create new solution(s) by exploitation step;

else
Create new solution(s) by exploration step;

end
Update best-found solution;

end
Algorithm 1: Basic workflow of metaheuristic optimization acc. to [731].

Although there is nowadays a wide variety of different algorithms [731–733],
they are similar in their structure and principles [444, 445] and often only vari-
ants of already existing metaheuristics imitating successful mechanisms from
nature under a new, appealing name [444, 732]. Though it is difficult to assure
solution quality through a proper selection, implementation, and application
of an algorithm [445], there is a general lack of clear guidelines [445]. Users
often pay less attention to evaluating its suitability for the given problem
type and its performance [445, 484], which is complicated by their stochastic
behavior in any case [449].

Nonetheless, different efficiency and effectiveness measures, sometimes also
called robustness [444], help to analyze the performance and interpret the
optimization results [586]. This thesis uses the subsequently presented
measures to evaluate and compare the obtained optimization results. The
formulas are aligned to the notation given in the review in [586]. However,
the notation and symbols are slightly adapted for clarification and to fit the
symbols already introduced and used in this work. In addition, suitable
references where the metrics are used or defined are given respectively.

Feasibility rate FR: Ratio of 𝑛feas feasible runs to total number of runs
𝜂𝑟 [736]:

FR =
𝑛feas

𝜂𝑟
=

∑
𝜂𝑟
𝑟=1 𝑞feas(𝒙𝒓)

𝜂𝑟
, (68)

where 𝑞feas serves as an indicator function to assess the feasibility of the
optimization results of run 𝑟, which is given when all inequality and equality
constraints 𝑔𝑖(𝒙𝒓) and ℎ𝑗(𝒙𝒓) are satisfied within a tolerance 𝛿feas:
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𝑞feas(𝒙𝒓) = {

1 if 𝑔𝑖(𝒙𝒓) ≤ 0+ 𝛿feas; 𝑖 = 1, … , 𝐼,

ℎ𝑗(𝒙𝒓) = 0+ 𝛿feas; 𝑗 = 1, … , 𝐽.

0 otherwise.

(69)

Success rate SR: Ratio of 𝑛success successful runs to total number of runs
𝜂𝑟 [736, 737]:

SR =
𝑛success

𝜂𝑟
=

∑
𝜂𝑟
𝑟=1 𝑞feas(𝒙𝒓)⋅𝑞success(𝒙𝒓)

𝜂𝑟
, (70)

where 𝑞success serves as an indicator function to assess the success of optimiza-
tion run 𝑟, which is given when optimality is reached within the tolerance
𝛿success:

𝑞success(𝒙𝒓) = {
1 if 𝑓(𝒙𝒓) ≤ 𝑓(𝒙opt) + 𝛿success,

0 otherwise.
(71)

Convergence relation: Ratio of 𝜂
opt
𝑔 generations needed to reach the global

optimum (with a predefined tolerance) to the total number of generations
𝜂𝑔 [738]:

𝐶relation =
𝜂
opt
𝑔

𝜂𝑔
. (72)

Average number of function evaluations AFESO taking the number of
function evaluations FEVs of all 𝑛success successful optimization runs acc. to
Eq. (71) into account [739]:

AFESO =
1

𝑛success

∑
𝑛success

𝑖=1 FEVs𝑖. (73)

Average computing time 𝜏feas of all 𝑛feas feasible optimization runs with
optimization time 𝜏𝑖:

𝜏feas =
∑
𝑛feas
𝑖=1 𝜏𝑖

𝑛feas

. (74)

A.3.1 Genetic algorithm (GA)

Evolutionary computation includes numerous search and optimization al-
gorithms based on general evolutionary principles, such as Darwin’s theory
on the survival of the fittest and natural selection [734, 740]. Well-known
examples are evolutionary strategies, evolutionary programming, genetic
programming, and genetic algorithms (GA) [734, 735, 741], which show simi-
larities in structure and function, but differences in details, e.g., in the way to
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represent the decision variables2 or the used stochastic operators [734, 741].
After its introduction by Holland in 1975 [547] and its first successful applica-
tions, GA has become the most popular evolutionary PB algorithm [450, 734,
735, 740, 741] and has proven its strengths to solve awide range of applications,
not only in the field of mechanical engineering [450]. It mimics the biological
evolution following the theory of natural selection and genetics [741, 742].
A dynamic population of individuals evolves over the iterations through a
set of genetic reproduction/variation operations [21, 740, 743]. Inspired by
its biological example, a population consists of a group of chromosomes
(individual solutions) [731, 743], each characterized by a sequence of genes as
basic elements [734, 743] representing a single value, also named allele [740],
of a design variable [734] (see Fig. 79). New individuals, generated as chil-
dren from their parents for the next generation, are called the offspring [735,
743]. A portion of both parents and children form the mating pool for the
next generation [740]. Furthermore, theory differs between the genotype,
which is the pure genetic information in the form of chromosomes, and the
phenotype, which is the expression or trait of the genotype as a result of its
interaction with its environment [734, 740, 743].

Themain steps of a GA, viz. recombination,mutation and selection3 [741],
are repeated for each generation until a predefined termination criterion is
met (see Fig. 79). Since thegeneticoperators are applied on thegenotypes, i.e.,
on the coded parameter set [734, 735, 742], and selection is performed with
respect to the phenotypes [735], the representation of the genotype as well as
strategies formapping the phenotype space to the genotype space (encoding)
and vice versa (decoding) have to be defined first [21, 740]. In literature,
various strategies were presented, such as binary, octal, hexadecimal, real
number, value, and tree encoding [734].

In alignment with Appx. A.3, the GA starts with an initial, in most cases
randomly generated, population with individual chromosomes and the eval-
uation of its fitness [740], which is ”the value of an objective function for its
phenotype” [734] (see Fig. 79). In this regard, different techniques to handle
constrained optimization problems by GA have been proposed in literature.
Although strategies that either directly reject all infeasible solutions, try to
repair infeasible ones to become feasible, or modify genetic operators assure
that no infeasible individuals are part of the surviving population, it is useful,

2 Representation describes the way data is structured in the genotype space. However, the

word can also be used as the synonym for the encoding process itself. [740]
3 As emphasized in Appx. A.3, exploration and exploitation have to be balanced within a

metaheuristic optimization procedure. In GA, random search is mainly performed by the

two genetic operators for reproduction, viz. recombination (crossover) and mutation, while

the local search and its exploitation are realized by selection. [735]
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Figure 79: General workflow of GA with its stochastic operators of selection, reproduction,

and mutation based on [744].

especially for highly constrained problems, to accept a portion of infeasible
ones giving information to find the optimal solution [21, 735]. For this reason,
the penalty approach acc. to Eq. (67) is often preferred.

The obtained fitness information serves as the basis to select the most
promising parents for the subsequent reproduction steps [740] guiding the
search into regions of optimality [21] (see Fig. 79). In contrast to crossover
and mutation, the information on the individual fitness values is essen-
tial in the selection process [741]. Different techniques for parent selection
were proposed in literature, e.g., ranking selection, random selection/pair-
ing weighted random selection, well known under the term roulette wheel
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selection, tournament selection, (𝜇 + 𝜆)-/(𝜇, 𝜆)-selection, Boltzmann selec-
tion, or stochastic universal sampling [734, 740, 741, 743].

In the next step, crossover is used as a stochastic binary variation operator
to recombine the genotypical information of the chosen parents to create at
least one, mostly two, new individuals [740, 743] (see Fig. 79). Thus, genetic
material is not newlygenerated, butvaluable characteristics from theprevious
generation are inherited and passed to the offspring [21]. For GA, defining the
crossover rate or probability, which determines the likelihood that crossover
is performed or the number of applied crossover operations, is crucial [21,
740]. One-point (single-)crossover uses only one randomly chosen crossover
site and exchanges the two segments of their parents, forming two new indi-
viduals [734, 740]. In contrast, two-point and N-point (multi-)crossover use
a higher number of crossover points [734, 740]. Besides, further techniques
exist, e.g., uniform, three parent crossover, or shuffle crossover [734].

After recombination,mutation is used to slightly and randomlymodify some
individual genes of the recombined chromosomes [740, 743] (see Fig. 79). It
is a stochastic, unary variation step [740] incorporating new information [21]
and, thus, avoids getting stuck in a local minimum [731, 734]. The mutation
rate thereby defines the number of children to be modified [21] by, for in-
stance, flipping single bits, randomly swapping two genes in the chromosome
string [734], or scrambling a subset of values in the string [740]. Themutation
probability controls the proportion of mutations within a chromosome, is
typically set very low, and can be adaptive over the generations to balance
exploitation and exploration [734, 742].

Since the population size has to stay constant but may increase by new in-
dividuals through recombination, replacement selection helps to shrink
the population to its initial size [734, 740]. In contrast to stochastic parent
selection, the selection of the survivors is typically deterministic, often based
on their fitness, and, thus, along with other mechanisms, permits a certain
amount of elitism [734, 740].

Although the success of GA mainly depends on the numerous parameters
influencing the genetic operations, their choice is complex, and they cannot
be globally defined for all optimization problems, but instead have to be
adapted to the given optimization problem [735, 743]. Nonetheless, some
basic guidelines and insights from prior studies can provide the user an initial
starting point for finding a proper balance of the numerous settings, such as
the population size or mutation and crossover rate, achieving an acceptable
trade-off between efficiency and effectiveness.
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A.3.2 Cuckoo Search algorithm (CS)

The Cuckoo Search (CS) algorithm, introduced in 2009 and evolved over
the years into several variants and hybrid versions [745–747], has proven its
applicability to a wide range of optimization problems, first and foremost
to solve complex engineering problems [745, 746]. Applications of CS for
sampling-based tolerance-cost optimization can, for example, be found in
[P2, 294, 408]. CS is characterized by its efficiency [745], its comparative
simplicity, as there is a low number of required algorithm steps and, thus,
the code as well as setting parameters are manageable [748], and its good
adaptability to new optimization problems [450, 748]. For this reason, CS is
used in addition to GA in this thesis and briefly summarized in the following.

In line with GA, it is a metaheuristic, population-based optimization al-
gorithm [748]. It is inspired by the breeding parasitism of certain species
of cuckoos, viz. foisting their eggs in a host nest to be hatched by a host
cuckoo [450, 748]. The workflow of CS in its original form is illustrated in
Fig. 80.

It is assumed that cuckoos lay just one egg into one random of a fixed number
of host nests [450]. Based on an initial population of host nests, a cuckoo 𝑖 is
randomlychosen, and its fitness𝐹𝑖 is evaluated and comparedwitha randomly
chosen host nest 𝑗 [450]. The exploration of the search space is based on a

global random walk via Lévy flights getting from the current location 𝑥
(𝑠)
𝑖 to

the new location 𝑥
(𝑠+1)
𝑖 :

𝒙
(𝑠+1)
𝑖 = 𝒙

(𝑠)
𝑖 + 𝛼 ⊕ Lévy, (75)

where the step size is 𝛼 > 0 and the step length is based on the Lévy dis-
tribution [747, 748]. If the new solution 𝐹𝑖, obtained by a suitable penalty
function 𝑓P considering both objective and constraints, is superior to the
compared one 𝐹𝑗, it replaces the previous solution. In the next step, the
worst nests are abandoned according to the predefined probability rate of
discovery 𝑝a. Lévy flights help to indicate new locations for new nests, while
its fitness is used to rank the solutions and find the current best solution.
This loop is iterated until the optimization algorithm reaches a predefined
termination criterion. The step length 𝛼, the number of individuals 𝜂𝑝, and
the discovery probability 𝑝a are the three main algorithm-specific settings
and must be chosen for the given optimization problem. [748] Besides, the
total number of generations 𝜂𝑔 and additional information are required to
define the termination criteria.
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Figure 80: General workflow of CS based on the pseudo-code published in [748] and its

illustration in [746].

A.4 Background information on statistics and sampling

The following paragraphs provide an overview of the statistical principles
relevant to this work.

Pseudo-random number generation Sampling-based tolerance analysis
attempts to infer the population of the resulting assembly response from a
small number of 𝑛 randomly selected samples. For the generation of the
samples, different principles for the generation of the random variables 𝑿
can be used, such as direct, composition, acceptance-rejection, or inverse
transform methods [576, 749, 750]. This work applies the latter (see Sec. 4.1).

In the first step, 𝑛 uniformly distributed random numbers 𝑋′𝑖 ∼ 𝒰(0; 1) are
generated based on the principle of the chosen sampling technique and
random number generators [576, 750]. The latter are often based on relatively
simple algorithms used for practical reasons of repeatability, memory, and
computing time [576, 750]. Though deterministic computer algorithms can
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generate a sequence of statistically random numbers, they are computer-
generated and, thus, called pseudo-random [576].

In the second step, the generated variates𝑋′ are transformed using the inverse
cumulative distribution function (icdf) Φ−1 as follows (see Fig. 17) [749]:

Φ−1(𝑋′𝑖 ) = inf {𝑋𝑖 ∣ Φ(𝑋𝑖) ≥ 𝑋
′
𝑖 ; 𝑋′𝑖 ∈ [0, 1]}. (76)

Eq. (76) indicates that the icdf Φ−1 must explicitly be defined [751], but can
also beapproximated by similar and explicitly known functions ordetermined
numerically, for example via the secant or the Newton Raphson Method [749].
For more information on the pseudo number and continuous random variate
generation, please refer, for instance, to [576, 749–751].

Sampling techniques Statistical experimental designs are primarily used
to reduce the effort of virtual and real experiments. In the context of toler-
ancing, they are primarily used for tolerance analysis to evaluate the assembly
behavior under variations by means of the nc-rate using a small number of
representative samples. As Sec. 2.2.2 emphasizes, Monte Carlo Sampling
(MCS) is preferred for tolerance analysis.

In crude MCS, 𝑛 random samples for each variable 𝑋𝑖 are purely randomly
generated using random number generators justified by the law of large num-
bers [752]. Hence, its implementation and application are comparatively
simple, and its efficiency is determined by the used random number gener-
ators [392, 753]. However, Fig. 81 (left) exemplary illustrates that the pure
randomgeneration of the samples can lead to imbalanced sample spaces char-
acterized by gaps and clusters of samples. If the design space is divided into a
square grid, it will result in empty rows and columns and overcrowding. [392]
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Figure 81: Two-dimensional MCS (left) vs. LHS (right) with a sample size 𝑛 = 30.
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A so-called Latin square results when the samples are arranged in such a way
that only one sample point is included in each row and each column, thus
providing better coverage of the design space (see Fig. 81 (right)) [392, 754].
The extension of the Latin square to multiple dimensions for each additional
variable results in a hypercube, giving the Latin Hypercube Sampling (LHS),
a stratified sampling technique, its name [755]. Thus, the design space is first
divided into 1/𝑛 equally sized intervals according to the sample size 𝑛 [756].
Subsequently, the samples are uniformly distributed and additionally opti-
mized in such away that, for instance, the correlation or the distance between
the individual samples is minimum [757, 758]. The resulting hypercube con-
tains 𝑛 uniformly distributed sample points ranging between 0 and 1, which
are then transformed into their final distributions using the inverse transform
method [751, 754]. The order in which the samples are evaluated does not
matter; it is purely random [754]. While a generated MCS can be extended
arbitrarily and does not have to be evaluated completely, the validity of the
LHS is only given if all of the generated 𝑛 samples are evaluated. New sample
points cannot be easily added post sampling [753]. Compared to MCS, the
enhanced space filling results in a more accurate variance prediction for the
same sample size 𝑛 [752].

Besides LHS, Quasi-MCS techniques (QMCS) are used to lower the discrep-
ancy, which is ”a quantitative measure for the deviation of sampled points
from the ideal (desired) uniform distribution” [753]. Consequently, low-
discrepancy methods aim to generate the points as uniformly distributed as
possible and are called quasi-random [392, 751, 753]. Sobol’ sequences have
proven their potential in general (and also for tolerance analysis in [392])
and show strengths over other lower discrepancy sampling methods [753].4

Fig. 82 shows the difference of MCS and QMCS based on Sobol’ sequences.
Sobol’ sequences aremultidimensional sequences using the base 2 [759, 760],
where operations such as scramble, leap, and skip can be used to decrease
the correlations caused by the mechanism of sequence generation. Different
scrambling methods, for example, described in [760, 761], can be used to
shuffle and randomize the generated sequence. Skip is used to start the
sequence only from skip + 1 and discard the first skip points. Leap defines
the number of points to be ignored between the chosen ones. [762] For more
details on Sobol’ sequences, the reader is referred to [760, 763, 764].

4 Literatureproposes furthercommonlyused low-discrepancymethods forvariance reduction,

for example, the Halton or Hammersley sampling. This thesis focuses on crudeMCS, QMCS

based on Sobol’ sequences, and LHS.
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Figure 82: Two-dimensional Monte Carlo Sampling (left) vs. Quasi-MCS based on Sobol’

sequences (right) with a sample size 𝑛 = 500.

Distribution types The transformation of the uniform random numbers
𝑋′𝑖 into the variates 𝑋𝑖 following the machine-specific part tolerance distri-
butions 𝜌𝑖 as second step of inverse transform method (see Fig. 17) requires
an analytical or numerical description of their probability density function
(pdf) or inverse cumulative distribution function (icdf) [754]. Fig. 83 briefly
summarizes common distribution types with their pdfs and characteristics
used in tolerance analysis to represent the individual part variations.

The cumulative distribution function (cdf) Φ corresponds to the integral
over the respective pdf, while the inverse cumulative distribution function
(icdf) Φ−1 is the inverse of the cdf Φ [576]. The pdfs of the continuous
distributions from Fig. 83 are given as follows:

• Uniform distribution 𝒰[𝐿𝐿,𝑈𝐿]: [576]

𝑓(𝑥) = {

1

𝑈𝐿−𝐿𝐿
𝑥 ∈ [𝐿𝐿, 𝑈𝐿],

0 otherwise.
(77)

• Triangular distribution: [765]

𝑓(𝑥) =

⎧

⎨
⎩

2

𝑈𝐿−𝐿𝐿

𝑥−𝐿𝐿

𝐻−𝐿𝐿
for 𝐿𝐿 ≤ 𝑥 ≤ 𝐻,

2

𝑈𝐿−𝐿𝐿

𝑈𝐿−𝑥

𝑈𝐿−𝐻
for𝐻 ≤ 𝑥 ≤ 𝑈𝐿,

0 otherwise.

(78)

• Normal distribution𝒩(𝜇, 𝜎2): [576]

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2 for 𝑥 ∈ ℝ. (79)
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Type PDF 𝝁𝝁 𝝈𝝈2 𝜸𝜸𝟏𝟏 𝜿𝜿 *

Uniform 
(UD)

𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈
2

𝑡𝑡2

12
0 1.8

Triangular,
symmetric

(TD)

𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈
2

𝑡𝑡2

24
0 2.4

Triangular,
skewed

(TD)

𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈 +𝐻𝐻
3

1
18
⋅ [(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)2−
− 𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿 ⋅
⋅ 𝐻𝐻 − 𝐿𝐿𝐿𝐿 +
+ 𝐻𝐻 − 𝐿𝐿𝐿𝐿 2]

** 2.4

Standard
normal 

distribution
(ND),
± 3𝜎𝜎

𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈
2

𝑡𝑡2

36
0 3

Pearson
distribution

(PD)

𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈
2

𝑡𝑡2

2 ⋅ 𝑢𝑢 2 var var

t 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿

t 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿

𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿 𝐻𝐻

t 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿

t 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿

↑ 𝛾𝛾

t 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿

𝜅𝜅 < 0𝜅𝜅 > 0

** 2 ⋅ 𝐿𝐿𝐿𝐿 + 𝑈𝑈𝑈𝑈 − 2 ⋅ 𝐻𝐻 2 ⋅ 𝐿𝐿𝐿𝐿 − 𝑈𝑈𝑈𝑈 − 𝐻𝐻 𝐿𝐿𝐿𝐿 − 2 ⋅ 𝑈𝑈𝑈𝑈 + 𝐻𝐻

5 ⋅ 𝐿𝐿𝐿𝐿2 + 𝑈𝑈𝑈𝑈2 + 𝐻𝐻2 − 𝐿𝐿𝐿𝐿 ⋅ 𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿 ⋅ 𝐻𝐻 − 𝑈𝑈𝑈𝑈 ⋅ 𝐻𝐻
3
2

* traditional kurtosis 𝜅𝜅 , excess kurtosis: 𝛾𝛾2 = 𝜅𝜅 − 3

t

Figure 83: Distributions commonly considered in the context of tolerancing acc. to [576, 765,

766].

The mean value 𝜇 corresponds to the nominal dimension 𝑋𝑖,0 and a potential
mean shift Δ𝜇, the variance 𝜎2 results from the current tolerance 𝑡.

The Pearson distribution covers a family of distributions, which can be
calculated as a function of the four standardized moments mean 𝜇, vari-
ance 𝜎2, skewness 𝛾1 and excess kurtosis 𝛾2. The parameters 𝛽1 = 𝛾21 and
𝛽2 = 𝛾2 + 3 = 𝜅 can be used to determine which of the six different Pear-
son distribution types applies. Thus, a wide range of continuous probability

183



Appendix

distributions can be represented, suchas normal, Student’s -t, beta, orgamma
distribution. [767, 768]

Kernel density estimation Non-parametric, distribution-independent
estimators are helpful if the density of the underlying distribution for a given
setof randomsamples isunknownorcannotbestatisticallyproven. Since they
do not require any distribution type-specific parameters such as statistical
moments, they can estimate the density and, thus, the cdf and icdf of any
distribution. The kernel density estimator is a well-known non-parametric
estimator that can be used for univariate [578, 769] as well as multivariate
distributions [770].

Fig. 84 (left) illustrates the basic principle of kde for a univariate frequency
distribution, where the kernels are shown in scaled form. A selected kernel Κ
is evaluated 𝑛Κ times along the frequency distributions approximating the
unknown density function by a superposition of the individual kernel func-
tions representing a weighting function [771]. The bandwidth ℎΚ functions
as a smoothing parameter defining the kernel’s shape. Hence, the probability
density function 𝑓ℎ(𝑥) is the sum of all 𝑛Κ kernels at given points 𝑥𝑖: [771]:

𝑓ℎ(𝑥) =
1

𝑛Κ⋅ℎΚ
∑
𝑛Κ
𝑖=1 Κ(

𝑥−𝑥𝑖

ℎΚ
). (80)

Besides the Gaussian Kernel, exemplary used in Fig. 84, a small number of
different kernel functions have established themselves for kde, in particular
uniform, triangle, quartic, Cauchy, and Epanechnikov kernels [771]. Since the
choice of bandwidth ℎΚ, which controls the smoothing of 𝑓ℎ(𝑥), (see Fig. 84
(right)) as well as the kernel function Κ is crucial, different rules of thumb
and methods were proposed in literature to find a suitable trade-off [771].

A.5 Background information on surrogatemodeling

Data mining, aiming to ”mining [knowledge] from data” [772], comprises
various ideas to transform raw data into useful information by using sophisti-
cated algorithms [773]. The primary purpose is to analyze a given data set to
identify patterns that can either be used for data explanation/description or
prediction of unknown values [774, 775]. Therefore, it, among others, uses
theoretical fundamentals and methods from statistics, pattern recognition,
and machine learning [773]. Hence, algorithms are used to practically learn
from given training (= learning) data, either supervised or unsupervised [772,
774]. Essentially, a distinction can bemade between anomalydetection (= out-
lier analysis) [772]), clustering, learning of rules of association, visualization,
classification, and regression [775, 776] (see Fig. 85).
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Figure 84: Principle of kernel density estimation (right) and the influence of the chosen

bandwidth ℎΚ (left).

Classification and regression are used to define a predictive model based on
predefined training data sets consisting of independent input data (features)
and output data (targets) using supervised learning techniques [773, 777].
Compared to classification for categorical/discrete output variables [773, 775],
regression aims to learn a function that can predict continuous, real-valued
numeric ones for new input values [772, 773, 775].

Regression Regression models, also called meta or surrogate models, are
the approximated response function 𝑦̃ = 𝑓̃(𝑥) of the real function 𝑦 = 𝑓(𝑥)
(see Eq. (65))5, which is either unknown or (implicitly) known but too cost-
intensive for an iterative evaluation [589].

Using statistical DOE, a set of input variables is determined in advance, either
systematically (e.g., by grid search or (full)-factorial design of experiments)
or randomly, by experiments, be it real trials or numerical simulations, for the
response variables of interest 𝑦 [589]. The resulting data set is divided into
training, validation, and test data, whereby a validation data set is not always
necessary [777]. Besides different data splitting methods, for instance, the 𝑝-
fold cross-validation or the leave-𝑘-out approach, differing recommendations
on the ratio are proposed in literature [777], where their choice depends
on the given data set and the interrelationships between input and output
variables. These pre-processing steps are followed by the selection of a model
type and fitting it to the previously obtained training data [589], where it
is the challenge to find a balanced/good fit model with its parameters ”that
minimizes the error [𝑒] between the predicted and true values of the target

5 For this reason, regression techniques are also found in literature under the term response

surface methodology [589].
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Figure 85: Classification of data mining methods based on illustrations given in [776].

variable“ [773]. Quantitative criteria for model evaluation thereby help to
evaluate/validate the performance or quality [774, 775], thus help to indicate
under- and overfitting (see Fig. 86) or to provide a basis for comparison of
different models [778].

f

(a) Underfitting

test error e2
x

y
training
error e1

high

e1

low
e2

y

x

y

(b) Good fit/Balanced

f
training data

test data

high

e1

low
e2

˜
˜

(c) Overfitting
f

high

e1

low
e2

˜

x

Figure 86: Underfitting (a), good fit (b), and overfitting (c) in surrogate modeling freely

adopted from [779].

The RMSE is commonly used for the assessment of the model accuracy and
is calculated by the root of the mean squared error as the absolute difference

186



A.5 Background information on surrogate modeling

between the predicted values 𝑦̃ and the observed value 𝑦, taking𝑚 validation
points into account:

RMSE = √
∑
𝑚

𝑖=1
(𝑦𝑖−𝑦̃𝑖)

2

𝑚
. (81)

Besides, the 𝑅2-value:

𝑅2 = 1−
∑
𝑚

𝑖=1
(𝑦𝑖−𝑦̃𝑖)

2

∑
𝑚

𝑖=1(𝑦𝑖−𝜇𝑦)
2 (82)

is often used to evaluate the model quality between 0 ≤ 𝑅2 ≤ 1 [589].

Artificial Neural Network (ANN) Among others, neural networks are pow-
erful regression models mimicking the human nervous system, are adaptable
to a wide range of problems, and, thus, used for both supervised and unsu-
pervised learning [780, 781].

Following their biological analogy, ANNs are composed of a set of neurons,
modeled as threshold logic units, interconnected and arranged in layers [781]
(see Fig. 87). Neural networks are graphswhere the neurons correspond to the
vertices, and the edges are the connections, carrying a weight [781]. In feed-
forward ANNs, the ”successive layers feed into one another in the forward
direction from input to output” [780]. So they do not include any cycles or
loops compared to recurrent networks [781]. In single-layered networks, the
inputs and outputs are directly mapped [780]. Adding multiple, so-called
hidden layers leads to multilayered networks, the basis for deep learning
approaches [780].

Each neuron is characterized by its network input function 𝑓net and its acti-
vation function 𝑓act [780, 781].

6 In each neuron, the 𝑓net sums up all input
variables 𝑥 prioritized by individual weights 𝑤, while an additional constant
bias 𝑏 is useful to represent the invariant part of the prediction [780, 782].
Its scalar output serves as the input for the activation function 𝑓act, which
decides if the stimulus is larger than a threshold to be activated or not [781].
Choosing between different types of activation functions differing in their
characteristics, such as sign-, sigmoid-, tanh-, or rectified linear unit func-
tions, is decisive to assure a good fitness to the given data [780]. Moreover,
an individual adaption of the structure of an ANN defined by the number
of neurons and layers concerning the type of problem and amount of input
data is decisive in holding the prediction errors low and avoiding overfitting.

The learning/training of an ANN is based on a stepwise adaption of the
weight and bias values of the neurons as well as the thresholds [780, 781]. The

6 Literature further introduces an additional output function [781]. Since it often corresponds

to the identity function, this aspect is not further discussed here.
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global aim is to gradually improve the prediction accuracy or minimize its
corresponding error 𝑒 of the ANN [780, 781] – the overall error 𝑒 results from
the accumulation of the individual errors of all layers. As the name indicates,
error backpropagation methods propagate the effect of 𝑒 backwards through
the network, identifying the individual errors of each neuron and minimizing
them with the aid of mostly gradient-based optimization algorithms [781].

Apart from the general disadvantage that ANNs are not directly interpretable,
since they are encoded and not directly given in the form of mathematical
equations [781], they have established themselves as valuable tools to repre-
sent complex, highly nonlinear interrelations without the need to define the
model type in advance [783].

Neuron k

yX

Layers jInput Output

Activation
function

yj,k

Weights

wj,k,2

wj,k,1

wj,k,i

…

X1

Xn

Bias bi,k

Net function

fnet fact

j 2=

e.g.:
- sigmoid
- rectified linear
- hyperbolic tangent
- radial basis

function
…

∑
X2

k 2=

Figure 87: ANN’s general structure and working principles freely adopted from [780, 782].

Surrogate models in and for optimization In the field of optimization,
surrogate models are typically used, as the name indicates, as surrogates for
expensive function evaluations in objective and constraints improving the
overall optimization performance [587, 589]. Especially in the context of
metaheuristic optimization, where the global optimum is found by learning
from many trials and errors (see Appx. A.3), the time effort for a single evalu-
ation is decisive [589]. The approximation of the response surface covering
the entire design space helps to find the optimum with less computational
effort and ”(hopefully slight) loss of accuracy” [587, 589]. Thus, their inte-
gration fosters a fast design exploration considering the entire design space
and enabling parallel computation [587, 588], facilitates the definition of the
optimization problem by eliminating, combining, and modifying objectives
or constraints, and decreasing the number and ranges of the design variables
by giving insights into the problem [587, 592].

In literature, different approaches have been proposed under the name
surrogate-assisted or surrogate/meta model-based optimization [587, 588,
784]. Traditionally, surrogate modeling and optimization are separated into
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two sequential, decoupled steps (see Fig. 88 (a)). Thus, no modifications
on given optimization algorithm routines, but a typically large number of
samples to generate a sufficiently large training data set are needed, while
finding the best sample size is challenging [587, 588].

(a)
Sample design space

Build surrogate model

Validate surrogate model

Optimization on
surrogate models

Sample design space

Build surrogate model

Validate surrogate model

Optimization on
surrogate models

Sample design space

Build surrogate model

Sample towards
optimum guided by
surrogate models

(b) (c)

Figure 88: Three different strategies on surrogate model-based optimization: (a) sequential

surrogate model-based optimization,(b) adaptive surrogate model-based optimization, (c)

direct sampling approach according to [587].

To mitigate the initial DOE’s impact and avoid finding actually infeasible
optima, it is helpful to use both surrogatemodels and the real model together
in optimization [784]. In metaheuristic optimization, a controlling and
regularization of stochastic operations [588, 785] are achieved by performing
the individual resampling at generation, population, or individual level [784].
Different strategies for selecting individuals to be reevaluated, such as a
purely random selection or a selection of the best/fittest solutions, as well
as the adaption of the reevaluation frequency, can be followed [778, 784,
786]. Adaptive surrogate modeling uses both resampling and remodeling to
(re-)build the surrogate model within the optimization loop to systematically
improve the accuracy in the regions of potential optima (see Fig. 88 (b)) [587,
592].

Another strategy is to replace the optimization process by combining adap-
tive sampling and surrogate modeling (see Fig. 88 (c)). In addition, other
approaches exist, such as using multiple surrogates in different, significantly
dissimilar regions of the design space [592, 784]. However, the choice of
approach is always case-specific and mainly depends on the investment to
(fully) evaluate the original and to build the surrogate model [588].
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A.6 Embedding Teamcenter®Visualization Variation

Analysis in tolerance-cost optimization

As shown in Sec. 2.2.2 and Sec. 3, it is helpful to integrate CAT-software
for tolerance analysis as a black box model in the optimization framework.
Although the usage of metaheuristic optimization algorithms principally
enables the integration of any CAT-software, the software tool must have
features and interfaces allowing the optimization algorithm to communicate
in terms of relevant inputs, commands to perform the tolerance analysis,
and processable outputs. The tolerance analysis software Variation Analysis
(TCVisVA)7 is an application of the product lifecycle management software
Teamcenter®Visualization MockUp from Siemens PLM Inc. As TCVisVA
is one of the most common CAT-tools used in the industry for statistical
tolerance analysis, it was chosen for the evaluation studies in Chap. 8. MCS
and HLM-contributor analysis and feature-based tolerance representation
can analyze 3D assemblies while realistically considering function-relevant
aspects, such as assembly sequences, gaps and floats, and overconstrained
assembly conditions [S13].

In the following, the general working principle of sampling-based tolerance-
cost optimization using TCVisVA, based on previous applications in litera-
ture [37, P19] and further used in [S14], is explained.

Fig. 89 illustrates replacing the tolerance analysis subroutine shown in Fig. 10.
Based on current tolerance and machines/process information, represented
by 𝒕

𝑔
𝑝 and 𝒙

𝑔
𝑝, tolerance analysis is performed to predict the probability distri-

butions of the assembly responses 𝑌𝑘. A comma-separated output text file is
generated containing all virtually measured values for each sample, which
is read in by the optimizer. These values are afterward used to estimate the
nc-rate according to methods presented in Sec. 4.2. To run the tolerance
analysis within the optimization loop in the background, TCVisVA is called
per DOS command as follows:

"C:Program Files"\Siemens\Teamcenter14.2\Visualization \Products\
↪ Mockup\VPVsaBatchAutomation.exe -s <n> -import
↪ "<filepath><\filename>.txt"

The first argument indicates the executable to start the script for batch au-
tomation from the respective installation path, <n> defines the sample size,
<filepath> the path, and <filename> the name of the input file, named pro-
cess document (PDO), serving as the tolerance analysis information model.

7 Further abbreviations of the CAT-software have been used in literature and practice due to

official changes in tool names. Besides the current official term TCVisVA, it is also known

under the terms VisVSA® [328, 787] or VSA® [280, 282, 788, 789].
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A.6 Embedding Teamcenter®Visualization Variation Analysis in tolerance-cost optimization

The user must set up the latter in advance with the help of the graphical
interface of TCVisVA, where a PMI-enriched CAD-model in JT™-data for-
mat can serve as the basis to facilitate the modeling process. This model is
then exported in a comma-separated text file. The machine/supplier and
tolerance information of the current individuals is indirectly considered in
the tolerance analysis by modifying the initial tolerance analysis information
model. In doing so, the text file, containing all information in a structured
way, is searched using key-phrases8 to find and replace the relevant sections
by the currently chosen values. Although nearly any input can be overwritten
in the text file, e.g., datums9 or geometrical feature types and sizes (provided
the structure and syntax of the process document is strictly adhered), only
a limited scope is needed for tolerance-cost optimization for the specified
context of use in this work. Tab. 5 summarizes the required information and
their matching key-phrases/tags as defined in the text file.

VA𝒕𝒕𝑝𝑝
𝑔𝑔 𝒙𝒙𝑝𝑝

𝑔𝑔

PDOUpdate tolerance analysis model

Run VA via DOS-command

Results

generates

are imported
Evaluate product conformance

(see sec. 4.2)
𝑧̂𝑧𝑝𝑝
𝑔𝑔

Define initial tolerance
analysis model

Export PDO in ASCII 
formatted text file

fY

Automated workflow in tolerance-cost optimization
Manually done by tolerance

expert in advance

Optimization
module

Figure 89: Using TCVisVA as sampling-based tolerance analysis subroutine in tolerance-cost

optimization freely adopted from [37, P19].

8 In this context, the term ”key-phrase” is used for phrases consisting of single or multiple

keywords.
9 A method for optimal datum selection using TCVisVA was studied in [S14], making it

possible to reduce the nc-rates by an optimized datum system with rearranged sequences.

191



Appendix

T
ab

le
5:

O
ve

rv
ie
w

o
f
in

fo
rm

at
io

n
fo

r
to

le
ra

n
ce

-c
o
st

o
p
ti
m

iz
at

io
n
u
si
n
g
T
C
V
is
V
A

an
d
it
s
k
ey

-p
h
ra

se
s
u
se

d
in

so
ft
w
ar

e
-s
p
ec

ifi
c
in

p
u
t
fi
le

P
D
O
.

C
a
te
g
o
ry

In
fo
rm

a
ti
o
n

K
e
y-
p
h
ra
se
s

U
n
il
at
er

al
𝐿
𝐿
=
𝑋
𝑖
−
𝑡 𝑖
;
𝑈
𝐿
=
𝑋
𝑖;
𝜇
𝑖
=
𝑋
𝑖,
0
−
𝑡 𝑖
/
2

Un
il

at
er

al
0,

00
00

00
-<

t_
i>

Mi
n:

-<
t_

i>
Ma

x:
0,

00
0

𝐿
𝐿
=
𝑋
𝑖;
𝑈
𝐿
=
𝑋
𝑖
+
𝑡 𝑖
;
𝜇
𝑖
=
𝑋
𝑖,
0
+
𝑡 𝑖
/
2

Un
il

at
er

al
<t

_i
>

0,
00

00
00

Mi
n:

0,
00

0
Ma

x:
<t

_i
>

E
q
u
al

b
il
at
er

al
𝐿
𝐿
=
𝑋
𝑖,
0
−
𝑡 𝑖
/
2;
𝑈
𝐿
=
𝑋
𝑖,
0
+
𝑡 𝑖
/
2;
𝜇
𝑖
=
𝑋
𝑖,
0

Eq
ua

l
Bi

la
te

ra
l

<t
_i

>
Mi

n:
<t

_i
/2

>
Ma

x:
<t

_i
/2

>

L
in

ea
r
p
lu

s
m

in
u
s

𝐿
𝐿
=
𝑋
𝑖,
0
−
𝑡 𝑖
/
2;
𝑈
𝐿
=
𝑋
𝑖,
0
+
𝑡 𝑖
/
2;
𝜇
𝑖
=
𝑋
𝑖,
0

|
LP

M
|
±

<t
_i

/2
>

|

U
n
eq

u
al

b
il
at
er

al
𝐿
𝐿
=
𝜇
𝑖
−
𝑡 𝑖
/
2;
𝑈
𝐿
=
𝜇
𝑖
+
𝑡 𝑖
/
2;

Un
eq

ua
l

Bi
la

te
ra

l
<t

_i
_u

b>
<t

_i
_l

b>
D
im

.

𝜇
𝑖
=
𝑋
𝑖,
0
+
𝑡
u
b

𝑖
−
(|
𝑡
u
b

𝑖
−
𝑡
lb 𝑖
|)
/
2

Mi
n:

<t
_i

_l
b>

Ma
x:

<t
_i

_u
b>

S
tr
ai
g
h
tn

es
s

|
ST

R
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
|

F
la
tn

es
s

|
FL

T
|

<t
_i

>

C
yl
in

d
ri
ci
ty

|
CY

L
|

<t
_i

>
|

P
ro

fi
le

|
SP

F
|

<t
_i

>
|

A
n
g
u
la
ri
ty

|
AN

G
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
<M

od
if

ie
r>

|

P
er

p
en

d
ic
u
la
ri
ty

|
PE

R
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
<M

od
if

ie
r>

|

P
ar

al
le
li
sm

|
PA

R
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
<M

od
if

ie
r>

|

P
o
si
ti
o
n

|
PO

S
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
<M

od
if

ie
r>

|

T
o
ta

l
ru

n
o
u
t

|
TO

R
|

<t
_i

>

C
o
n
ce

n
tr
ic
it
y

|
CO

N
|

<T
ol

er
an

ce
zo

ne
>

<t
_i

>
|

T
o
le
ra

n
ce

va
lu

e
𝑡 𝑖

G
eo

m
.

S
ym

m
et

ry
|

SY
M

|
<t

_i
>

|

U
n
if
o
rm

Un
if

or
m

N
o
rm

al
No

rm
al

E
xt

re
m

e
Ex

tr
em

e

P
ea

rs
o
n

Pe
ar

so
n

<S
ke

wn
es

s>
<K

ur
to

si
s>

T
o
le
ra

n
ce

d
is
tr
ib

u
ti
o
n

T
ra

p
ez

o
id

Tr
ap

ez
oi

d
<S

hi
ft

>
<W

id
th

>

<M
od

if
ie

r>
an

d
<T

ol
er

an
ce

zo
ne

>
ar

e
o
p
ti
o
n
al
,
fi
xe

d
ar

g
u
m

en
ts

b
as

ed
o
n
th

e
sp

ec
ifi

ca
ti
o
n
s
in

th
e
in

it
ia
l
T
C
V
is
V
A
-m

o
d
el

co
n
si
d
er

in
g
fe
at

u
re

-d
ep

en
d
en

t

re
st
ri
ct
io

n
s.

<T
ol

er
an

ce
zo

ne
>:

Di
a
–
Ø
;
S

Di
a
–
S

Ø
;
<M

od
if

ie
r>

:
(L

)
–

L
,
(M

):
–

M
.
T
o
le
ra

n
ce

d
is
tr
ib

u
ti
o
n
s
ca

n
b
e
as

si
g
n
ed

to
ea

ch
o
f
th

e
th

re
e
m

ai
n
g
ro

u
p
s

o
f
si
ze

,
lo

ca
ti
o
n
/o

ri
en

ta
ti
o
n
,a

n
d
fo

rm
to

le
ra

n
ce

s
p
er

fe
at

u
re

in
d
iv
id

u
al
ly
.
T
h
e
to

le
ra

n
ce

si
g
m

a
ra

n
ge

is
a
g
lo

b
al

se
tt
in

g.

192



A.7 Comparability of probabilistic simulation and optimization

A.7 Comparability of probabilistic simulation and

optimization

On the one hand, randomness is a key mechanism of sampling-based
tolerance-cost optimization and its submethods (see Sec. 3.2). On the other
hand, however, it must be specifically controlled and aligned to the objec-
tive of the respective comparative study to avoid drawing false conclusions
from the obtained results. This is particularly important when combining
multiple probabilistic approaches, such as sampling-based tolerance analysis
and metaheuristic optimization algorithms. Otherwise, the randomnesses
superimpose. For this purpose, Tbl. 6 overviews different strategies for deal-
ing with random numbers in the context of sampling-based tolerance-cost
optimization and serves as the basis for the studies from Chap. 4–6 & Chap. 8.
A differentiation is made between random numbers for optimization (O) and
for sampling-based tolerance analysis (S) with three strategies each, where
𝑟o/s is used as the index for the 𝑟o/s-th repetition of the 𝑐o/s-th optimization
or sampling case. These cases differ in the studies in the variables to be
investigated, such as optimization settings (O) or sample sizes and different
sampling techniques (S):

• O-1/S-1: For each studied case 𝑐o/s and repetition 𝑟o/s new randomnumbers
are used. However, this requires a sufficiently large number of repetitions
𝜂𝑟o/s for statistically valid statements. Otherwise, especially in optimization,
this can lead to wrong conclusions regarding the variables under inves-
tigation based on non-optimal results and merely random optimization
phenomena.

• O-2/S-2: Using the same sequence of random numbers for different study
cases 𝑐o/s enables a direct pairwise comparison of the 𝑟o/s-th repetitions.
Similar to O-1/S-1, however, a sufficiently large total number of repetitions
𝜂𝑟o/s is required.

• O-3/S-3: By using the same random numbers for all cases and repetitions,
the influence of randomness is eliminated. Hence, the results of the cases
are deterministic and directly comparable. However, this excludes making
statements about their behavior under repetition.
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Table 6: Overview of different strategies for handling random numbers in the context of

sampling-based tolerance-cost optimization.

Random numbers (𝒓𝒏) used in metaheuristic optimization operations

Optimization repetition/run: 𝑟o = [1; 𝜂𝑟o], Optimization case: 𝑐o = [1; 𝜂𝑐o]

(O-1) Random–Random: (O-2) Equal–Random: (O-3) Equal–Equal:

Purely random for all

optimization repetitions 𝑟o
and cases 𝑐o

Same random number

sequences of all repetitions

for all optimization case 𝑐o

Same random numbers for

all optimization repetitions

𝑟o and cases 𝑐o

𝑟𝑛
𝑐o
𝑟o ≠ 𝑟𝑛

𝐶o

𝑅𝑜
𝑟𝑛

𝑐o
𝑟o = 𝑟𝑛

𝐶o
𝑟o ; 𝑟𝑛

𝑐o
𝑟o ≠ 𝑟𝑛

𝑐o
𝑅o

𝑟𝑛
𝑐o
𝑟o = 𝑟𝑛

𝐶o

𝑅o

∀ 𝑟o, 𝑅o = 1, … , 𝜂𝑟o ; ∀ 𝑐o, 𝐶o = 1, … , 𝜂𝑐o; 𝑐o ≠ 𝐶o 𝑟o ≠ 𝑅o

Random numbers (𝒓𝒏) used in sampling-based tolerance analysis

Resampling: 𝑟s = [1; 𝜂𝑟s]: Sampling case: 𝑐s = [1; 𝜂𝑐s]

(S-1) Random–Random: (S-2) Equal–Random: (S-3) Equal–Equal:

Purely random for each

sampling repetition 𝑟s, and

each 𝑐s

Same random number

sequences of all sampling

repetitions 𝑟s for all

sampling cases 𝑐s

Same random numbers for

each sampling repetition 𝑟s
and 𝑐s

𝑟𝑛
𝑐s
𝑟s ≠ 𝑟𝑛

𝐶s

𝑅s
𝑟𝑛

𝑐s
𝑟s = 𝑟𝑛

𝐶s
𝑟s ; 𝑟𝑛

𝑐s
𝑟s ≠ 𝑟𝑛

𝑐s
𝑅s

𝑟𝑛
𝑐s
𝑟s = 𝑟𝑛

𝐶s

𝑅s

∀ 𝑟s, 𝑅s = 1, … , 𝜂𝑟s ; ∀ 𝑐s, 𝐶s = 1, … , 𝜂𝑐s; 𝑐s ≠ 𝐶s 𝑟s ≠ 𝑅s
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A.8 Case studies

The case studies are presented in a general form below to serve as a basis
for the optimization studies. All simplifications, extensions, or modifica-
tions necessary to address aspects that are the main subject of the individual
studies are noted in their descriptions in the respective sections. The re-
sults are summarized in Appx. A.9. All examples follow the GD&T rules acc.
to ASME Y.14.5-2009, setting the envelope principle concerning rule#1 as
default [50]. All dimensions are in mm units.

A.8.1 Case Study 1: Wheel mounting assembly

The commonly used wheel mounting assembly example, initially presented
as tolerance allocation problem in [5], serves as the basis for the individual
studies on the accuracy, completeness, and efficiency in Chap. 4–6. While
sampling-based machine selection and allocation for single dimensional
tolerances are introduced in Sec. 5.1–Sec. 5.2 using a 1D vector loop model, a
3D TCVisVA-model is defined for Sec. 5.3 and Chap. 6 to extend the methods
to geometrical and multiple tolerances per part.

1D vector loopmodel

In the given case study (see Fig. 90), the two interrelated gaps 𝑌1 and 𝑌2 are
considered as critical [307]:

𝑌1 = 𝑓𝑌1
(𝑿) = 𝑋2 − 𝑋4, (83)

𝑌2 = 𝑓𝑌2
(𝑿) = −𝑋1 − 𝑋2 − 𝑋3 + 𝑋5. (84)

The specification limits 𝐿𝑆𝐿, 𝑈𝑆𝐿, the maximum nc-rate 𝑧max, and the
tolerance-cost curve parameters and part tolerance distributions are defined
individually to establish suitable use cases and scenarios. The tolerance-cost
functions follow an exponential approach while the parameters are adopted
from [307]. All information is given in the description of the respective
optimization studies in Appx. A.9.

3D feature-based TCVisVA model

The wheel mounting example from literature is extended to a 3D example
with multiple dimensional and geometrical tolerances, serving as the case
study for Sec. 5.3 and Sec. 6.1–6.3. The distance between the wheel and the
support 2 𝑌1, as well as the tilting of the wheel 𝑌2, function as assembly
responses and are represented by virtual measurements in TCVisVA. Fig. 91
gives an overview of the assembly with 𝑌1, 𝑌2 and the specified part tolerances
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𝑓𝑓𝑌𝑌1 :
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Y1

X4

𝑓𝑓𝑌𝑌2 :

X5

Y2

X2

X1

X3

wheel

Figure 90: Overview of the wheel mounting assembly example with its part characteristics 𝑋𝑖
(left) and two assembly response functions 𝑓𝑌𝑘

(right) acc. to [5, 307].

following the introduced feature notation in Sec. 5.3. The corresponding
assembly and tolerance graph is given in Fig. 47.

As shown in Fig. 91 (top), the assembly consists of two identical supports
𝑙 = 1, 𝑙 = 3. Following Eq. (56):

𝑩eq =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0 0

0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

← support 1

← spacer

← support 2

← wheel

← shaft

(85)

Although the bottom and top planar features 𝑢 = 1 and 𝑢 = 2 of thewheel 𝑙 =
4 aregeometrically identical, theyare considered independent in this example
since they contribute differently to the KCs due to the defined assembly
conditions.

The subsequent set of constraints is set here to complywith the general GD&T
rules as well as the rule #1 acc. to Eq. (50)–(51), the default envelope principle,
acc. to ASME Y14.5-2009 [50] within optimization:

𝑡1,2,2 < 𝑡1,2,1 ; 𝑡3,2,2 < 𝑡3,2,1 ; 𝑡4,2,2 < 𝑡4,2,1 ; 𝑡5,3,2 < 𝑡5,3,1

𝑡2,2,2 < 𝑡2,2,1 ; 𝑡4,1,2 < 𝑡4,1,1 ; 𝑡5,2,2 < 𝑡5,2,1 ; 𝑡5,3,2 <
𝑡5,3,3

2

(86)

Besides further informationon thegeometrical dimensions, thepart tolerance
specifications and the assembly graph (see Fig. 47 and Fig. 91) are used for
the part feature and assembly operation definition in TCVisVA. The clearance
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fits of the shafts and holes are considered fixed. The tolerance-cost data for
the studies are summarized in Chap. A.9.

z
3

Y1

⏊ Y2 z4167
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spacer2

⏥
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𝑡!,#,#
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z y
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Figure 91: Overview of the wheel mounting assembly considered as a case study in Sec. 5.3 and

Chap. 6 (top). Part tolerance specifications following the ASME Y14.5-2009 [50] (bottom).
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A.8.2 Case Study 2: Electrified cross skate

To verify the findings and finally apply and evaluate the comprehensive frame-
work with its single methods presented in Chap. 7, a more complex assembly
of an electrified cross skate is used in Chap. 8.

The e-cross skate was developed at the Institute of Engineering Design at
the Friedrich-Alexander-Universität Erlangen-Nürnberg as a micro-mobility
solution for the last mile problem in personal transportation. It is based on
thegeneral ideaof cross-skating. Like inline skates, cross skates are single-row
roller skates. However, only two, usually pneumatic tire wheels are arranged
in front of and behind the shoe (see Fig. 92). The skates are driven electrically
via the rear wheel axle and the skating speed is controlled via inclination
sensors by the rider’s weight shifting. The steerable front axle, with the wheel
pivoted on a fixed axle pin, leads to a shortening of the curve radius and
enables cornering without lifting and replacing the skates, as it is typical, for
example, in cross-country skiing. [599] More information on its fundamental
principle, the different driving modes, and the technical details are given
in [599, 790].

R1 R2

Axle clamped
in frame

Front wheel rotatably
journaled around
housing via roller

bearings

y

z

x

Figure 92: Overview of one electrified cross skate with its subassembly of the front tire.

In this thesis, the front wheel assembly is considered as a tolerance allocation
problem (see Fig. 65, Fig. 92). Based on the overview of all relevant parts
with their features given in Fig. 93, Fig. 67–68, given in Sec. 8.1, show the part
tolerance specifications. A TCVisVA-model is set up following the assembly
and tolerance graph of Fig. 94–95, while its notation is further explained in
Fig. 96. The camber of the front wheel 𝑌1 is directly represented as a virtual
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measurement of the angle between the center plane of the rim and the frame.
In contrast, the inclination and eccentricity of the steering are defined by
and calculated using the point measurement information of the reference
points R1 and R2 (see Fig. 66).

As it can be seen in Fig. 65, there are several identical parts. The equality
matrix 𝑩eq from Sec. 5.3 is useful to describe the interrelations within the
entire assembly and to define the tolerance allocation problem. Only the
relevant, non-zeroentries𝑏𝑙, ̄𝑙 = 1 are listed below forclarity. Forcompleteness,
all parts are considered, including those that do not contribute to the KCs.

𝑏1,27 = 𝑏27,1 = 1, 𝑏3,28 = 𝑏28,3 = 1, 𝑏6,8 = 𝑏8,6 = 1

𝑏12,13 = 𝑏13,12 = 1, 𝑏14,15 = 𝑏15,14 = 1, 𝑏17,18 = 𝑏18,17 = 1,

𝑏19,20 = 𝑏20,19 = 1, 𝑏21,22 = 𝑏22,21 = 1,

𝑏23,24 = 𝑏23,25 = 𝑏23,26 = 𝑏24,23 = 𝑏24,25 = 𝑏24,26 = 𝑏25,23 = 𝑏25,24 = 𝑏25,26 =

= 𝑏26,23 = 𝑏26,24 = 𝑏26,25.

The feature equality matrices 𝑨eq,𝑙 of the relevant e-cross skate parts used for
design dimension reduction for optimization are shown in the following:

𝑢

𝑢
1 2 3 4 5 6 7

1 1 → 𝑡2,1,1 = 𝑡2,3,2

2 1 → 𝑡2,2,1/2 = 𝑡2,4,1/2

3 1

4 1

5 1 → 𝑡2,5,1 = 𝑡2,7,1

6

𝑨eq,𝑙=2 =

7 1

𝑢

𝑢
1 2 3 4

1

2 1 → 𝑡4,2,1 = 𝑡4,3,1

3 1
𝑨eq,𝑙=4 =

4
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𝑢

𝑢
1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4 1 → 𝑡9,4,2/3 = 𝑡9,5,2/3

5 1

6 1 → 𝑡9,6,1/2/3 = 𝑡9,8,1/2/3

7 1 → 𝑡9,7,1 = 𝑡9,9,1

8 1

9 1

10

11 1 → 𝑡9,11,1/2 = 𝑡9,12,1/2

𝑨eq,𝑙=9 =

12 1

𝑢

𝑢
1 2 3 4 5

1 1 → 𝑡11,1,2 = 𝑡11,3,1, 𝑡11,1,3 = 𝑡11,3,2

2 1 → 𝑡11,2,1 = 𝑡11,4,1

3 1

4 1

𝑨eq,𝑙=11 =

5

As introduced for the wheel mounting assembly example, a set of nonlinear
inequality constraints is applied for the e-cross skate example to assure the
GD&T rules, including the envelope principle for the features with multiple
tolerances acc. to Eq. (50)–(51):

𝑡9,4,2 < 𝑡9,4,1; 𝑡9,4,2 <
𝑡9,4,3

2
; 𝑡9,5,2 < 𝑡9,5,1; 𝑡9,5,2 <

𝑡9,5,3

2
;

𝑡9,6,2 < 𝑡9,6,1; 𝑡9,6,2 <
𝑡9,6,3

2
; 𝑡9,8,2 < 𝑡9,8,1; 𝑡9,8,2 <

𝑡9,8,3

2
;

𝑡11,1,2 < 𝑡11,1,1; 𝑡11,1,2 <
𝑡11,1,3

2
; 𝑡11,3,1 < 𝑡11,3,2

(87)

All information on the tolerance-cost data used is summarized in Tbl. 52.
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Figure 93: Overview of the parts of the e-cross skate assembly with its features and indices

contributing to the focused KCs given in Fig. 65.
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Figure 94: Overview of the part tolerance specifications of the e-cross skate example – I.
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Figure 95: Overview of the part tolerance specifications of the e-cross skate example – II.
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Figure 96: Notation of the assembly graph representation given in Fig. 47 and Fig. 94–95.
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A.9 Details on optimization studies and results

The subsequent sections summarize the relevant settings and the main op-
timization results obtained in this thesis. While Tbl. 7 presents the main
information of the different studies at a glance, further information on the
studies and results are given in detail in the respective paragraphs.

In Chap. 4, a reference value to evaluate the results obtained by sampling
with respect to their accuracy is needed. Under the assumption that all
characteristics𝑋𝑖 followa normal distribution, thegeneral statistical equation
can be used to estimate the resulting tolerance 𝑇Stat of the yield with the aid
of all single variances 𝜎2𝑖 [766, 791]:

𝑇Stat = 2 ⋅ 𝑢 ⋅ √∑
𝐼

𝑖=1 (
𝜕𝑓𝑌

𝜕𝑋𝑖
)
2

⋅ 𝜎2i ≤ 𝑇max, (88)

making use of the linearization of the assembly response function 𝑓𝑌.

If 𝑡𝑖 = ±3𝜎𝑖 and 𝑢 = 3, Eq. (88) leads to the well-known RSS formula [40]:

𝑇RSS = √∑
𝐼

𝑖=1 (
𝜕𝑓𝑌

𝜕𝑋𝑖
)
2

𝑡2𝑖 ≤ 𝑇RSS,max. (89)

Hence, for linear assembly response functions, Eq. (88) can suitably be used
to calculate 𝑇Stat and to define the specification limits LSL = 𝑌0 − 0.5 ⋅ 𝑇Stat
and USL = 𝑌0 + 0.5 ⋅ 𝑇Stat, where the assembly response 𝑌0 = 𝑓𝑌(𝑿0) at its
nominal and the sigma level 𝑢 define the width of the conformance region.
For the cases studied, where all tolerances do have the same contribution on

𝑓𝑌 with | (𝜕𝑓𝑌/𝜕𝑋𝑖) | = 1, it can be used to define the specification limits for

a multiple of 𝑢, so it will lead to the nc-rate 𝑧max = 𝑓(𝑢), where 𝑢 and 𝑧max

are directly related over the standard normal distribution and can either be
derived with the aid of its cumulative distribution or be found in tables for
all standard values [571]. In contrast to pure analysis studies, where 𝑡𝑖 are
defined and fixed, the optimally allocated tolerance values depend on their
sensitivity to cost and quality [287]. By defining the cost curves equally for all
tolerances 𝑓𝐶𝑖 = 𝑓𝐶, the optimum values are predefined at 𝑡𝑖 = 𝑡

opt ∀𝑖 = 1, … , 𝐼
and can be used to define the specification limits inversely. In doing so, it
helps to shape the optimum problem in advance, so the reference optimum
is given at 𝑡opt when the real value of 𝑧max = 𝑓(𝑢) is met.
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Appendix

A.9.1 Accuracy studies

The tolerance-cost data is adopted from the data given in [307] and adapted
to define suitable scenarios in the different studies. An exponential tolerance-
cost function 𝐶𝑖 = 𝑓𝐶𝑖(𝑡𝑖) = 𝑎𝑖 + 𝑏𝑖 ⋅ 𝑒

−𝑐𝑖⋅𝑡𝑖 is applied for all tolerances (see
Tbl. 1).

Table 8: Tolerance-cost data of wheel mounting assembly example used in the studies in

Chap. 4.

𝒊 𝑿𝒊,0 Costs Limits Characteristics of 𝝆𝒊

𝒂𝒊 𝒃𝒊 𝒄𝒊 𝒕lb𝒊 𝒕ub𝒊 𝑻𝒚𝒑𝒆 𝜟𝝁𝒊 𝝈𝒊

1, 2, 3, 4, 5 ∗ 28.2 241 55.8 0.01 0.11 ND 0 𝑡𝑖/6

* 𝑋1,0 = 10, 𝑋2,0 = 25, 𝑋3,0 = 10, 𝑋4,0 = 23, 𝑋5,0 = 48.

- 𝑋𝑖,0, 𝑡
lb
𝑖 , 𝑡

ub
𝑖 in mm.

- Type of 𝜌𝑖: ND, standard normal distribution with mean 𝜇𝑖 = 𝑋𝑖,0 + Δ𝜇𝑖, and standard deviation 𝜎𝑖.
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A.9 Details on optimization studies and results

Sec. 4.1: Estimation of themargin of error

• Specification limits:

• 𝑓𝑌2
, Eq. (84):

LSL2 = 𝑌0 −
𝑢

3 ⋅ 2
∗ √4 ⋅ 0.052, (90)

USL2 = 𝑌0 +
𝑢

3 ⋅ 2
∗ √4 ⋅ 0.052, (91)

with 𝑢 = 3: LSL = LSL2 = 2.950 mm;USL = USL2 = 3.050 mm
• Number of repetitions: 𝜂𝑟 = 250

Table 9: Summary of the results from Sec. 4.1: Estimation of margin of error.

Sample size (× 103)

10 25 50 100 250 500 1,000

𝑞𝑧,97.5% 3,717.07 3,343.25 3,154.85 3,021.63 2,903.41 2,843.84 2,801.71
𝑞𝑧̂,97.5% 3,800 3,410 3,205 3,055 2,903 2,833.50 2,797
𝑞𝑧,2.5% 1,682.93 2,056.75 2,245.15 2,378.37 2,496.590 2,556.16 2,598.29
𝑞𝑧̂,2.5% 1,700 2,120 2,255 2,357 2,492 2,566 2,579

Sec. 4.1: Variance reductionmethods
(1) Analysis study:

• Specification limits: for 𝑓𝑌2
, see Eq. (90)–(91)

• with 𝑢 = 4: LSL = LSL2 = 2.933 mm;USL = USL2 = 3.067 mm
• with 𝑢 = 3: LSL = LSL2 = 2.950 mm;USL = USL2 = 3.050 mm
• with 𝑢 = 2: LSL = LSL2 = 2.967 mm;USL = USL2 = 3.033 mm

• Sampling:

• QMCS: skip = 0, leap = 0, scramble method: linear scramble combined
with random digital shift acc. to [762, 792]

• LHS: 5-fold repetition of each sampling finding the best design under
the criterion of the maximum of minimum distance between the sample
points (see Chap. A.4)

• Number of repetitions: 𝜂𝑟 = 100
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Appendix

Table 10: Summary of the analysis study (1) in Sec. 4.1: Variance reduction methods.

𝒖 Sampling Measure Sample size (× 103)

10 25 50 100 250

±4𝜎

MCS
𝑚̃𝑧̂ 0 40 60 60 64
qr
𝑧̂,95%

200 160 120 110 68

𝛿𝑧̂,95% 215.96 152.76 100.00 84.20 53.71

LHS
𝑚̃𝑧̂ 50 40 60 60 64
qr
𝑧̂,95%

300 200 160 100 56

𝛿𝑧̂,95% 215.96 152.76 121.17 73.78 47.39

QMCS
𝑚̃𝑧̂ 0 80 60 70 64
qr
𝑧̂,95%

200 160 80 70 40

𝛿𝑧̂,95% 215.96 152.76 68.40 57.98 32.70

±3𝜎

MCS
𝑚̃𝑧̂ 2,800 2,680 2,690 2735 2,696
qr
𝑧̂,95%

2,000 1,440 820 610 456

𝛿𝑧̂,95% 37.04 26.67 15.19 12.04 8.59

LHS
𝑚̃𝑧̂ 2,750 2,640 2,680 2,690 2,700
qr
𝑧̂,95%

1,900 1,320 760 630 408

𝛿𝑧̂,95% 37.04 24.44 14.44 11.67 7.56

QMCS
𝑚̃𝑧̂ 2,650 2,720 2,720 2,685 2,708
qr
𝑧̂,95%

1,100 920 480 420 204

𝛿𝑧̂,95% 20.37 16.30 8.89 7.78 4.07

±2𝜎

MCS
𝑚̃𝑧̂ 45,300 45,560 45,550 45,560 45,440
qr
𝑧̂,95%

8,200 5,960 4,080 2,480 1,400

𝛿𝑧̂,95% 8.35 6.15 4.42 2.73 1.53

LHS
𝑚̃𝑧̂ 45,450 45,400 45,440 45,560 45,442
qr
𝑧̂,95%

6,800 4,440 3,280 2,350 1,720

𝛿𝑧̂,95% 8.24 5.05 3.60 2.58 1.89

QMCS
𝑚̃𝑧̂ 45,600 45,400 45,460 45,475 45,534
qr
𝑧̂,95%

4,300 2,240 1,480 920 592

𝛿𝑧̂,95% 4.73 2.51 1.76 1.02 0.63

- 𝑚̃𝑧̂, qr𝑧̂,95% in ppm, 𝛿𝑧̂,95% = qr
95%

(|𝑧̂ − 𝑧ref|)/𝑧ref in %.

(2) Optimization study:

• Tolerance-cost information acc. to Tbl. 8
• Specification limits: see Eq. (90)–(91) with 𝑢 = 3
• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 500, 𝜂𝑔,stall = inf with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Sampling information: see analysis study (1) in Sec. 4.1: Variance reduction
methods

• Number of repetitions: 𝜂𝑟 = 50
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A.9 Details on optimization studies and results

Table 11: Summary of the results of the optimization study (2) in Sec. 4.1: Variance reduction

methods.

Sampling 𝒎𝑪 𝒒𝒓𝑪,95% 𝒎𝒛̂ 𝒒𝒓𝒛̂,95% 𝑭𝑹 𝝉feas

MCS 164.74 3.12 4,325.20 2,700 1.0 57.52
LHS 164.72 3.27 4,312.04 2,600 1.0 2,509.34
QMCS 166.94 2.37 3,749.30 1,700 1.0 97.08

- qr
𝐶,95%

,𝑚𝐶 in MU; qr
𝑧̂,95%

,𝑚𝑧̂ in ppm; 𝜏feas in s.

- Flag = 0 for all runs, i.e., the maximum number of generations 𝜂𝑔 is reached.

Sec. 4.1: Reevaluation of elitist solutions

• Tolerance-cost information: see Tbl. 8
• Specification limits: see Eq. (90)–(91) with 𝑢 = 3
• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 200, 𝜂𝑔,stall = inf with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 10
• Studied cases:

(a) Elitist individuals are reevaluated in the next generation with new
random numbers in sampling-based tolerance analysis

(b) Reevaluation is discarded, and tolerance analysis results from the
previous run are used

Table 12: Summary of obtained optimal solutions for the optimization study presented in

Sec. 4.1: Reevaluation of elitist solution.

𝒓 (a) (b)

𝑪
opt
sum 𝒛̂opt 𝑪relation 𝒒feas 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂opt 𝑪relation 𝒒feas 𝑭𝒍𝒂𝒈∗

1 170.87 2,700 0.21 1 0 166.75 2,600 0.37 1 0
2 171.08 2,500 0.25 1 0 167.27 2,600 0.35 1 0
3 170.32 2,700 0.04 1 0 167.43 2,500 0.18 1 0
4 171.53 2,700 0.31 1 0 165.07 2,500 0.23 1 0
5 170.70 2,700 0.27 1 0 164.91 2,700 0.39 1 0
6 170.57 2,700 0.20 1 0 165.70 2,400 0.19 1 0
7 169.84 2,700 0.26 1 0 166.73 2,500 0.34 1 0
8 170.83 2,600 0.33 1 0 166.72 2,700 0.34 1 0
9 170.97 1,900 0.14 1 0 165.75 2,400 0.43 1 0
10 172.11 2,600 0.17 1 0 165.95 2,700 0.22 1 0

* Flag = 0: Maximum number of generations 𝜂𝑔 is reached.

- 𝐶
opt
sum in MU, 𝑧̂opt in ppm.
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Sec. 4.1: Equal random numbers

• Tolerance-cost information: see Tbl. 8
• Specification limits: see Eq. (90)–(91) with 𝑢 = 3
• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 500, 𝜂𝑔,stall = inf with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Sampling information: see analysis study (1) in 4.1: Variance reduction
methods

• Number of repetitions: 𝜂𝑟 = 50
• Studied cases:

(a) Iterative resampling with a newly generated set of random
numbers for each individual

(b) Reuseof the same, initially generated randomnumbers for repetitive
tolerance analysis

Table 13: Summary of the results of the optimization study in Sec. 4.1: Equal random numbers.

Case 𝒏 𝒎𝑪 𝒒𝒓𝑪,95% 𝒎𝒛̂ 𝒒𝒓𝒛̂,95% 𝑭𝑹 𝝉feas

(a)
10,000 164.73 2.95 4,340.66 2,700 1 49.25
50,000 168.63 1.55 3,364.72 1,080 1.0 185.11
100,000 169.64 0.99 3,148 725 1.0 352.30

(b)
10,000 170.05 13.57 3,219.80 3,500 1 51.26
50,000 171.19 4.69 2,887.99 1,240 1.0 168.88
100,000 171.60 3.64 2,798.20 920 1.0 312.84

- qr
𝐶,95%

,𝑚𝐶 in MU; qr
𝑧̂,95%

,𝑚𝑧̂ in ppm; 𝜏feas in s.

- Flag = 0 for all runs, i.e., the maximum number of generations 𝜂𝑔 is reached.

Sec. 4.2: Nc-rate estimation
(1) Analysis:

• Tolerance-cost information: see Tbl. 8
• Specification limits: see Eq. (90)–(91) with 𝑢 = 2, 3, 4
• Sampling information: see analysis study (1) in Sec. 4.1: Variance reduction
methods

• Kernel density estimation: kernel type Κ: Gaussian kernel, bandwidth ℎΚ:
optimal settings for estimating normal density acc. to [579] (see Chap. A.4)

• Number of repetitions: 𝜂𝑟 = 100
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• Studied cases:
(a) empirically estimated cdf (ecdf)
(b) cdf based on kernel density estimation (kde-cdf)
(c) cdf for normal distribution𝒩(𝜇, 𝜎2) (ncdf)

Table 14: Summary of the results of the analysis study in Sec. 4.2, 𝑢 = 4.

Samp- Nc-rate Measure Sample size (× 103)

ling technique 10 25 50 100 250

MCS

(a) ecdf
𝑚̃𝑧̂ 0.00 40.00 60.00 60.00 56.00

qr
𝑧̂,95%

300.00 160.00 140.00 90.00 52.00

𝛿𝑧̂,95% 215.96 100.00 110.58 65.88 43.13

(b) kde-cdf
𝑚̃𝑧̂ 57.38 74.77 71.59 65.36 64.58

qr
𝑧̂,95%

207.80 159.22 126.46 82.18 50.48

𝛿𝑧̂,95% 176.83 151.95 103.63 76.17 40.81

(c) ncdf
𝑚̃𝑧̂ 64.43 63.42 63.02 62.75 63.27

qr
𝑧̂,95%

27.65 16.89 14.15 8.43 5.88

𝛿𝑧̂,95% 22.09 14.60 11.18 7.46 4.64

LHS

(a) ecdf
𝑚̃𝑧̂ 0.00 40.00 60.00 60.00 64.00

qr
𝑧̂,95%

300.00 160.00 100.00 110.00 60.00

𝛿𝑧̂,95% 215.96 152.76 89.57 78.99 47.39

(b) kde-cdf
𝑚̃𝑧̂ 58.55 71.13 63.40 66.59 67.95

qr
𝑧̂,95%

185.40 181.25 118.42 88.00 47.48

𝛿𝑧̂,95% 162.48 145.44 111.01 69.09 40.69

(c) ncdf
𝑚̃𝑧̂ 62.71 63.04 63.63 63.50 63.27

qr
𝑧̂,95%

28.35 20.37 12.05 7.99 5.36

𝛿𝑧̂,95% 21.60 14.19 9.24 6.58 4.38

QMCS

(a) ecdf
𝑚̃𝑧̂ 0.00 40.00 60.00 60.00 64.00

qr
𝑧̂,95%

200.00 200.00 80.00 70.00 44.00

𝛿𝑧̂,95% 215.96 184.36 68.40 52.61 32.70

(b) kde-cdf
𝑚̃𝑧̂ 71.03 76.99 70.48 71.41 68.37

qr
𝑧̂,95%

185.58 129.43 74.52 48.23 44.00

𝛿𝑧̂,95% 186.21 110.83 60.67 46.61 29.72

(c) ncdf
𝑚̃𝑧̂ 63.35 63.38 63.35 63.35 63.34

qr
𝑧̂,95%

1.06 0.52 0.30 0.15 0.04

𝛿𝑧̂,95% 0.83 0.49 0.29 0.17 0.10

- 𝑚̃𝑧̂, 𝑞𝑧̂,95% in ppm, 𝛿𝑧̂,95% in %.
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Table 15: Summary of the results of the analysis study in Sec. 4.2, 𝑢 = 3.

Samp- Nc-rate Measure Sample size (× 103)

ling technique 10 25 50 100 250

MCS

(a) ecdf
𝑚̃𝑧̂ 2,600.00 2,640.00 2,680.00 2,700.00 2,698.00

qr
𝑧̂,95%

2,200.00 1,520.00 1,020.00 600.00 404.00

𝛿𝑧̂,95% 40.74 28.15 17.41 11.30 7.19

(b) kde-cdf
𝑚̃𝑧̂ 2,967.53 2,982.75 2,865.09 2,838.93 2,809.90

qr
𝑧̂,95%

1,858.44 1,093.61 892.78 509.58 398.65

𝛿𝑧̂,95% 40.62 32.04 22.01 14.74 9.51

(c) ncdf
𝑚̃𝑧̂ 2,687.72 2,690.79 2,687.96 2,697.07 2,698.25

qr
𝑧̂,95%

681.94 487.10 348.20 234.79 127.98

𝛿𝑧̂,95% 12.63 9.02 6.76 4.49 2.37

LHS

(a) ecdf
𝑚̃𝑧̂ 2,650.00 2,720.00 2,680.00 2,685.00 2,712.00

qr
𝑧̂,95%

1,900.00 1,320.00 1,020.00 590.00 424.00

𝛿𝑧̂,95% 35.19 25.19 17.04 10.93 7.78

(b) kde-cdf
𝑚̃𝑧̂ 3,119.72 2,972.68 2,903.83 2,852.47 2,813.41

qr
𝑧̂,95%

1,604.04 1,204.54 747.83 535.43 374.67

𝛿𝑧̂,95% 38.78 29.31 21.03 13.75 10.48

(c) ncdf
𝑚̃𝑧̂ 2,707.24 2,698.13 2,701.43 2,698.26 2,699.73

qr
𝑧̂,95%

602.38 455.27 315.46 180.64 136.41

𝛿𝑧̂,95% 11.16 8.43 5.57 3.45 2.48

QMCS

(a) ecdf
𝑚̃𝑧̂ 2,650.00 2,720.00 2,680.00 2,685.00 2,712.00

qr
𝑧̂,95%

1,900.00 1,320.00 1,020.00 590.00 424.00

𝛿𝑧̂,95% 35.19 25.19 17.04 10.93 7.78

(b) kde-cdf
𝑚̃𝑧̂ 3,119.72 2,972.68 2,903.83 2,852.47 2,813.41

qr
𝑧̂,95%

1,604.04 1,204.54 747.83 535.43 374.67

𝛿𝑧̂,95% 38.78 29.31 21.03 13.75 10.48

(c) ncdf
𝑚̃𝑧̂ 2,707.24 2,698.13 2,701.43 2,698.26 2,699.73

qr
𝑧̂,95%

602.38 455.27 315.46 180.64 136.41

𝛿𝑧̂,95% 11.16 8.43 5.57 3.45 2.48

- 𝑚̃𝑧̂, qr𝑧̂,95% in ppm, 𝛿𝑧̂,95% in %.
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Table 16: Summary of the results of the analysis study in Sec. 4.2, 𝑢 = 2.

Samp- Nc-rate Measure Sample size (× 103)

ling technique 10 25 50 100 250

MCS

(a) ecdf
𝑚̃𝑧̂ 45,250.00 45,440.00 45,340.00 45,515.00 45,562.00

qr
𝑧̂,95%

8,000.00 5,000.00 3,660.00 2,650.00 1,632.00

𝛿𝑧̂,95% 9.23 5.45 4.07 2.88 1.78

(b) kde-cdf
𝑚̃𝑧̂ 48,418.84 47,576.36 47,281.98 46,632.34 46,361.88

qr
𝑧̂,95%

6,907.32 4,978.29 3,379.80 2,135.13 1,380.82

𝛿𝑧̂,95% 13.87 9.46 6.92 4.88 3.14

(c) ncdf
𝑚̃𝑧̂ 45,451.79 45,604.85 45,468.58 45,637.04 45,481.45

qr
𝑧̂,95%

5,739.09 3,565.72 2,580.54 1,684.00 1,230.43

𝛿𝑧̂,95% 6.91 3.82 2.72 2.02 1.37

LHS

(a) ecdf
𝑚̃𝑧̂ 45,650.00 45,380.00 45,560.00 45,460.00 45,538.00

qr
𝑧̂,95%

8,300.00 5,000.00 2,940.00 2,560.00 1,468.00

𝛿𝑧̂,95% 9.01 5.49 3.30 2.79 1.61

(b) kde-cdf
𝑚̃𝑧̂ 48,900.29 47,521.32 47,014.45 46,727.74 46,378.83

qr
𝑧̂,95%

6,478.73 4,205.85 2,907.30 2,264.28 1,505.68

𝛿𝑧̂,95% 12.73 8.78 6.06 4.29 3.07

(c) ncdf
𝑚̃𝑧̂ 45,191.47 45,510.66 45,535.29 45,515.20 45,517.66

qr
𝑧̂,95%

6,081.21 3,132.44 2,484.57 1,618.03 999.78

𝛿𝑧̂,95% 7.05 3.71 2.70 1.75 1.15

QMCS

(a) ecdf
𝑚̃𝑧̂ 45,400.00 45,480.00 45,480.00 45,460.00 45,496.00

qr
𝑧̂,95%

3,900.00 2,120.00 1,860.00 1,090.00 484.00

𝛿𝑧̂,95% 4.73 2.37 2.04 1.20 0.53

(b) kde-cdf
𝑚̃𝑧̂ 48,540.69 47,612.12 47,129.81 46,730.98 46,326.01

qr
𝑧̂,95%

2,064.86 1,333.28 882.30 607.06 338.48

𝛿𝑧̂,95% 8.76 5.81 4.36 3.28 2.19

(c) ncdf
𝑚̃𝑧̂ 45,508.63 45,508.37 45,501.54 45,502.04 45,500.14

qr
𝑧̂,95%

234.43 115.87 49.50 28.34 8.39

𝛿𝑧̂,95% 0.26 0.13 0.06 0.03 0.01

- 𝑚̃𝑧̂, qr𝑧̂,95% in ppm, 𝛿𝑧̂,95% in %.
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Figure 97: Summary of results for study (1) presented in Sec. 4.2, investigating the influence of

the nc-rate estimation technique on the nc-rates 𝑧̂ taking three different sampling strategies

MCS, LHS and QMCS, different sample sizes, and sigma levels into account.
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(2) Optimization study:

• Tolerance-cost information: see Tbl. 8
• Specification limits: see Eq. (90)–(91) with 𝑢 = 3
• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 500, 𝜂𝑔,stall = inf with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Sampling and kernel density estimation are identical to the settings defined
in study (1) performed in Sec. 4.2: Nc-rate estimation

• Number of repetitions: 𝜂𝑟 = 50
• Studied cases:

(a) empirically estimated cdf (ecdf)
(b) cdf based on kernel density estimation (kde-cdf)
(c) cdf for normal distribution𝒩(𝜇, 𝜎2) (ncdf)

Table 17: Summary of the results of the optimization study in Sec. 4.2.

Nc-tech. 𝒏 𝒎𝑪 𝒒𝒓𝑪,95% 𝒎𝒛̂ 𝒒𝒓𝒛̂,95% 𝑭𝑹 𝝉feas

(a)
10,000 170.20 13.53 3,205.08 3,400.00 1.0 123.91
50,000 171.44 5.21 2,861.48 1,290.00 1.0 406.13
100,000 171.39 3.38 2,826.32 880.00 1.0 526.93

(b)
10,000 174.37 11.75 2,756.81 2,576.11 1.0 130.11
50,000 173.26 5.50 2,713.08 1,148.71 1.0 623.79
100,000 172.79 3.20 2,728.98 793.89 1.0 995.65

(c)
10,000 171.75 5.20 2,758.37 1,179.64 1.0 44.72
50,000 172.01 2.15 2,701.48 478.41 1.0 193.63
100,000 171.93 1.63 2,712.82 356.45 1.0 359.93

- 𝑚𝐶, 𝑞𝐶,95% in MU; qr
𝑧̂,95%

, 𝑚𝑧̂ in ppm. 𝜏feas in s.

- Flag = 0 for all runs, i.e., maximum number of generations 𝜂𝑔 is reached.
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Sec. 4.3: Multiple assembly responses

• Tolerance-cost data, nominal dimensions, tolerance limits, and part toler-
ance probability distribution information follow the information given in
Tbl. 8

• Specification limits:

• 𝑓𝑌1
, Eq. (83) : LSL1 = 𝑌0 − 0.5 ⋅ √2 ⋅ 0.052 mm = 1.965 mm

• 𝑓𝑌1
, Eq. (83): USL1 = 𝑌0 + 0.5 ⋅ √2 ⋅ 0.052 mm = 2.035 mm

• 𝑓𝑌2
, Eq. (84): LSL2 = 𝑌0 − 0.5 ⋅ √4 ⋅ 0.052 mm = 2.950 mm

• 𝑓𝑌2
, Eq. (84): USL2 = 𝑌0 + 0.5 ⋅ √4 ⋅ 0.052 mm = 3.050 mm

• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 200, 𝜂𝑔,stall = 50 with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 10

• Studied cases:

(a) Non-conformance requirement represented by 𝐾 nc-constraints

(b) Non-conformance requirement represented by one overall
nc-constraint

Table 18: Summary of obtained optimal solutions for the optimization study presented in

Sec. 4.3.

𝒓 (a) (b)

𝑪
opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗

1 212.58 5,340 2,690 2,650 0 224.23 2,680 1,040 1,640 0
2 212.62 5,400 2,700 2,700 0 223.54 2,700 920 1,780 0
3 212.42 5,360 2,680 2,680 0 224.20 2,700 1,060 1,640 0
4 212.58 5,210 2,530 2,680 0 223.85 2,660 990 1,670 0
5 212.65 5,270 2,580 2,690 0 225.34 2,690 1,280 1,410 1
6 213.22 5,360 2,690 2,690 0 223.95 2,660 930 1,730 0
7 214.59 5,310 2,620 2,690 1 224.02 2,690 1,020 1,670 0
8 213.69 4,900 2,210 2,690 0 223.82 2,700 950 1,750 0
9 212.74 5,320 2,700 2,620 0 223.74 2,700 930 1,770 0
10 212.43 5,370 2,680 2,690 0 224.05 2,700 1,150 1,550 0

* Flag = 0: Maximum number of generations 𝜂𝑔 is reached.

- 𝐶
opt
sum in MU; 𝑧̂1, 𝑧̂2, 𝑧̂

opt
asm in ppm.
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Table 19: Performance measures for the optimization study presented in Sec. 4.3.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a) 1.0 0.8 0.74 10,000 150.50
(b) 1.0 0.9 0.60 10,000 153.90

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 20).

Table 20: Least-cost tolerances obtained in the best runs presented in Sec. 4.3.

Case 𝒓 𝒗∗ 𝒊

1 2 3 4 5

(a) 3 𝑡𝑖 0.0515 0.0441 0.0518 0.0544 0.0534
(b) 2 𝑡𝑖 0.0500 0.0420 0.0505 0.0486 0.0508

* 𝑡𝑖 part tolerances in mm.
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A.9.2 Completeness studies

All additional information and results are given below. In Sec. 5.1–5.2, an
exponential tolerance-cost function 𝐶𝑖,𝑗 = 𝑓𝐶𝑖,𝑗(𝑡𝑖,𝑗) = 𝑎𝑖,𝑗 + 𝑏𝑖,𝑗 ⋅ 𝑒

−𝑐𝑖,𝑗⋅𝑡𝑖,𝑗 is

applied for all tolerances 𝑡𝑖,𝑗 (see Tbl. 1).

Sec. 5.1: Machine/supplier selection Study (1):

• Tolerance-cost information: see Tbl. 21

• Specification limits:

• 𝑓𝑌1
, Eq. (83): LSL1 = 1.96 mm; USL1 = 2.04 mm

• 𝑓𝑌2
, Eq. (84): LSL2 = 2.95 mm; USL2 = 3.05 mm

• Optimization settings: 𝜂𝑝 = 𝑣𝑎𝑟, 𝜂𝑔 = 500, 𝜂𝑔, stall = 50 with a fitness
tolerance of 1e-03 (decimals to be relevant for fitness improvement evalua-
tion), penalty approach for constraint handling. Further GA optimization
parameters and settings, such as elite count, crossover and migration frac-
tion, and crossover and selection strategy, are set to the proposed default
values in MATLAB®. For more information, see [793].

• Number of repetitions: 𝜂𝑟 = 10

• Studied cases:

(a) minimum-cost curve approach

(b) mixed-integer optimization

Table 21: Tolerance-cost data of wheel mounting assembly example used in study (1) in Sec. 5.1.

𝒊 𝑿𝒊,0 𝒋 Costs Limits Characteristics of 𝝆𝒊,𝒋

𝒂𝒊,𝒋 𝒃𝒊,𝒋 𝒄𝒊,𝒋 𝒕lb𝒊,𝒋 𝒕ub𝒊,𝒋 𝑻𝒚𝒑𝒆 𝜟𝝁𝒊,𝒋 𝝈𝒊,𝒋

1, 2, 3 *

1 28.2 241 55.8 0.006 0.08 𝑁𝐷 0 𝑡𝑖/6
2 29.80 260 52 0.008 0.08 ND 0 𝑡𝑖/6
3 25.82 286.4 59.5 0.006 0.09 ND 0 𝑡𝑖/6
4 23 271.5 57.64 0.008 0.1 ND 0 𝑡𝑖/6

4 23
1 42.2 312.84 105.66 0.002 0.08 𝑁𝐷 0 𝑡𝑖/6
2 35. 352.43 92.7 0.002 0.1 ND 0 𝑡𝑖/6

5 48

1 22.5 208.25 62.45 0.01 0.1 𝑁𝐷 0 𝑡𝑖/6
2 20.2 240.43 66.7 0.01 0.12 ND 0 𝑡𝑖/6
3 25.05 211.42 40.05 0.02 0.11 ND 0 𝑡𝑖/6
4 27 214.16 58.82 0.03 0.12 ND 0 𝑡𝑖/6

* 𝑋1,0 = 𝑋3,0 = 10, 𝑋2,0 = 25.

- 𝑋𝑖,0, 𝑡
lb
𝑖,𝑗, 𝑡

ub
𝑖,𝑗 in mm.

- Type of 𝜌𝑖,𝑗: ND, standard normal distribution with mean 𝜇𝑖,𝑗 = 𝑋𝑖,0 + Δ𝜇𝑖,𝑗, and standard deviation

𝜎𝑖,𝑗 (see Fig. 83).
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Table 22: Summary of obtained optimal solutions for optimization study (1) in Sec. 5.1.

𝒓 (a), 𝜼𝒑 = 50 (a), 𝜼𝒑 = 100

𝑪
opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗

1 185.69 670 2,020 2,680 1 182.75 300 2,400 2,690 1
2 182.42 360 2,360 2,700 1 182.35 430 2,290 2,700 1
3 186.06 400 2,310 2,700 1 182.9 330 2,370 2,690 1
4 184.29 250 2,460 2,700 1 183.2 420 2,300 2,700 1
5 183.58 500 2,230 2,700 1 182.64 370 2,340 2,700 1
6 182.27 430 2,290 2,700 1 182.23 390 2,320 2,700 1
7 188.09 440 2,270 2,700 1 182.32 390 2,310 2,690 1
8 182.95 440 2,280 2,700 1 182.34 480 2,240 2,700 1
9 183.06 700 2,030 2,700 1 183.09 420 2,290 2,700 1
10 182.92 330 2,380 2,700 1 182.16 440 2,280 2,700 1

𝒓 (b), 𝜼𝒑 = 50 (b), 𝜼𝒑 = 100

𝑪
opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗ 𝐶

opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗

1 183.66 270 2,440 2,700 1 182.26 390 2,320 2,700 1
2 183.25 400 2,320 2,700 1 182.08 390 2,320 2,700 1
3 184.47 490 2,220 2,700 1 182.25 440 2,280 2,700 1
4 182.39 430 2,290 2,700 1 182.39 390 2,320 2,700 1
5 182.92 300 2,410 2,700 1 182.79 400 2,310 2,700 1
6 184.12 230 2,480 2,700 1 182.45 430 2,290 2,700 1
7 184.13 390 2,320 2,700 1 182.52 410 2,300 2,700 1
8 183.37 340 2,370 2,700 1 182.52 410 2,300 2,700 1
9 184.86 530 2,180 2,700 1 182.57 340 2,370 2,700 1
10 183.81 430 2,290 2,700 1 182.39 440 2,280 2,700 1

* Flag = 1: Average change in the penalty fitness value is less than the fitness tolerance and constraint
violation is less than constraint tolerance.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.

Table 23: Performance measures for the optimization study (1) in Sec. 5.1.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a), 𝜂𝑝 = 50 1.0 0.5 0.78 3,155 69.72
(a), 𝜂𝑝 = 100 1.0 0.8 0.58 5,829 132.48

(b), 𝜂𝑝 = 50 1.0 0.3 0.90 2,890 49.40
(b), 𝜂𝑝 = 100 1.0 1.0 0.54 6,242 96.36

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 24).
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Table 24: Least-cost tolerances obtained in the best runs for optimization study (1) in Sec. 5.1.

Case 𝒓 𝒗∗ 𝒊

1 2 3 4 5

(a), 𝜂𝑝 = 50 6
𝑡𝑖 0.0503 0.0500 0.0521 0.0482 0.0470
𝑗 for 𝑥𝑖,𝑗 = 1 4 4 4 2 2

(a), 𝜂𝑝 = 100 10
𝑡𝑖 0.0516 0.0488 0.0534 0.0498 0.0453
𝑗 for 𝑥𝑖,𝑗 = 1 4 4 4 2 2

(b), 𝜂𝑝 = 50 4
𝑡𝑖 0.0519 0.0501 0.0495 0.0480 0.0482
𝑗 for 𝑥𝑖,𝑗 = 1 4 4 4 2 2

(b), 𝜂𝑝 = 100 2
𝑡𝑖 0.0529 0.0477 0.0529 0.0501 0.0457
𝑗 for 𝑥𝑖,𝑗 = 1 4 4 4 2 2

* 𝑡𝑖 part tolerances in mm.

Study (2):

• Tolerance-cost information: see Tbl. 25

• Specification limits:

• 𝑓𝑌1
, Eq. (83): LSL1 = 1.94 mm; USL1 = 2.06 mm

• 𝑓𝑌2
, Eq. (84): LSL2 = 2.90 mm; USL2 = 3.10 mm

• Optimization settings: see study (1)

• Number of repetitions: 𝜂𝑟 = 10

• Studied cases:

(a) minimum-cost curve approach

(b) mixed-integer optimization
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Table 25: Tolerance-cost data of wheel mounting assembly example used in study (2) in Sec. 5.1.

𝒊 𝑿𝒊,0 𝒋 Costs Limits Characteristics of 𝝆𝒊,𝒋

𝒂𝒊,𝒋 𝒃𝒊,𝒋 𝒄𝒊,𝒋 𝒕lb𝒊,𝒋 𝒕ub𝒊,𝒋 𝑻𝒚𝒑𝒆 𝝈𝒊,𝒋 𝜸𝒊,𝒋 𝜿𝒊,𝒋

1, 3 *

1 28.20 241 55.80 0.006 0.1 PD 𝑡𝑖/6 0.5 3.05
2 29.80 260 52 0.008 0.13 PD 𝑡𝑖/6 −0.2 2.9
3 25.82 286.4 59.5 0.006 0.14 PD 𝑡𝑖/6 0.1 2.8
4 23.00 271.5 57.64 0.008 0.15 ND 𝑡𝑖/6 − −

2 25

1 Fixed: 𝐶𝑖,𝑗 = 42.2 0.02 0.02 ND 𝑡𝑖/6 0.5 3.05
2 Fixed: 𝐶𝑖,𝑗 = 35.80 0.05 0.05 PD 𝑡𝑖/6 −0.2 2.9
3 Fixed: 𝐶𝑖,𝑗 = 23.00 0.06 0.06 ND 𝑡𝑖/6 − −

4 Fixed: 𝐶𝑖,𝑗 = 22.00 0.1 0.1 UD 𝑡𝑖/6 − −

4 23
1 42.2 312.84 105.66 0.002 0.08 ND 𝑡𝑖/6 − −

2 35.00 352.43 92.7 0.002 0.1 PD 𝑡𝑖/6 0.3 3.1

5 48

1 22.50 208.25 62.45 0.01 0.1 PD 𝑡𝑖/6 −0.2 2.9
2 20.20 240.43 66.7 0.02 0.12 ND 𝑡𝑖/6 − −

3 25.05 211.42 40.05 0.02 0.11 PD 𝑡𝑖/6 −0.1 3
4 300.00 214.16 58.82 0.03 0.12 ND 𝑡𝑖/6 − −

* 𝑋1,0 = 𝑋3,0 = 10.

- 𝑋𝑖,0 𝑡
lb
𝑖,𝑗, 𝑡

ub
𝑖,𝑗 in mm.

- Type of 𝜌𝑖,𝑗: UD, Uniform Distribution with 𝜇𝑖,𝑗 =𝑖,0 +Δ𝜇𝑖,𝑗 ND, standard normal distribution with

mean 𝜇𝑖,𝑗 = 𝑋𝑖,0 + Δ𝜇𝑖,𝑗, Δ𝜇𝑖,𝑗 = 0 ∀𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽𝑖, standard deviation 𝜎𝑖,𝑗.; PD: Pearson

distribution with mean 𝜇𝑖,𝑗 =𝑖,0 +Δ𝜇𝑖,𝑗, standard deviation 𝜎𝑖𝑗, skewness 𝜏𝑖,𝑗, and kurtosis 𝛾𝑖,𝑗 (see

Fig. 83).
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Table 26: Summary of obtained optimal solutions for optimization study (2) in Sec. 5.1.

𝒓 (a), 𝜼𝒑 = 50 (a), 𝜼𝒑 = 100

𝑪
opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗

1 149.78 1,520 1,180 2,700 1 150.01 1,420 1,280 2,700 1
2 149.6441 1,860 840 2,700 1 150.10 1,380 1,320 2,700 1
3 150.10 1,830 870 2,700 1 149.85 1,520 1,180 2,700 1
4 150.14 1,650 1,050 2,700 1 152.22 2,240 460 2,700 1
5 150.60 1,030 1,670 2,700 1 149.71 1,480 1,220 2,700 1
6 150.61 1,290 1,410 2,700 1 149.71 1,930 770 2,700 1
7 151.92 2,210 490 2,700 1 149.65 1,860 840 2,700 1
8 154.6 2,360 340 2,700 1 150.57 1,030 1,670 2,700 1
9 151.04 960 1,740 2,700 1 150.18 1,180 1,520 2,700 1
10 153.06 1,910 780 2,690 1 149.47 1,860 840 2,700 1

𝒓 (b), 𝜼𝒑 = 50 (b), 𝜼𝒑 = 100

𝑪
opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗

1 129.77 1,700 1,050 2,700 1 137.95 280 2,420 2,700 1
2 129.68 1,660 1,090 2,700 1 130.06 1,850 880 2,700 1
3 129.88 1,620 1,130 2,700 1 129.78 1,850 890 2,700 1
4 129.68 1,660 1,090 2,700 1 129.85 1,710 1,020 2,680 1
5 129.71 1,710 1,040 2,700 1 130.06 1,880 850 2,690 1
6 129.72 1,670 1,080 2,700 1 129.76 1,670 1,070 2,690 1
7 129.78 1,840 910 2,700 1 129.94 1,850 890 2,700 1
8 130.05 1,670 1,080 2,700 1 129.72 1,660 1,080 2,700 1
9 138.04 310 2,390 2,700 1 129.77 1,830 910 2,700 1
10 129.78 1,710 1,040 2,700 1 129.76 1,700 1,050 2,700 1

* Flag = 1: Average change in the penalty fitness value is less than the fitness tolerance and constraint
violation is less than constraint tolerance.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.

Table 27: Performance measures for the optimization study (2) in Sec. 5.1.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a), 𝜂𝑝 = 50 1.0 0.4 0.72 2,650 579.00
(a), 𝜂𝑝 = 100 1.0 0.8 0.47 5,211 1,019.90

(b), 𝜂𝑝 = 50 1.0 0.9 0.13 2,790 1,121.24
(b), 𝜂𝑝 = 100 1.0 0.9 0.50 5,858 2,738.33

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 28).
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Table 28: Least-cost tolerances obtained in the best runs for optimization study (2) in Sec. 5.1.

Case 𝒓 𝒗∗ 𝒊

1 2 3 4 5

(a), 𝜂𝑝 = 50 2
𝑡𝑖 0.06984 0.1000 0.0737 0.0335 0.0722
𝑗 for 𝑥𝑖,𝑗 4 4 4 2 2

(a), 𝜂𝑝 = 100 10
𝑡𝑖 0.0726 0.1000 0.0721 0.0335 0.0708
𝑗 for 𝑥𝑖,𝑗 4 4 4 2 2

(b), 𝜂𝑝 = 50 4
𝑡𝑖 0.0948 0.0600 0.0978 0.0543 0.0812
𝑗 for 𝑥𝑖,𝑗 4 3 4 2 2

(b), 𝜂𝑝 = 100 8
𝑡𝑖 0.0929 0.0600 0.0964 0.0542 0.0841
𝑗 for 𝑥𝑖,𝑗 4 3 4 2 2

* 𝑡𝑖 part tolerances in mm.

Sec. 5.2.1: Machine/supplier allocation with random assembly

• Tolerance-cost information: see Tbl. 29

• Specification limits:

• 𝑓𝑌1
, Eq. (83): LSL1 = 1.94 mm; USL1 = 2.06 mm

• 𝑓𝑌2
, Eq. (84): LSL2 = 2.90 mm; USL2 = 3.10 mm

• Optimization settings: 𝜂𝑝 = 250, 𝜂𝑔 = 1,000, 𝜂𝑔,stall = 1,000 with a fitness
tolerance of 1e-03 (decimals to be relevant for fitness improvement evalua-
tion), penalty approach for constraint handling. Further settings are set to
the proposed default values.

• Number of repetitions: 𝜂𝑟 = 10

• Studied cases:

(a) 𝑡𝑖,𝑗 = 𝑡𝑖

(b) 𝑡𝑖,𝑗 = var
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Table 29: Tolerance-cost data of wheel mounting assembly example for optimization study in

Sec. 5.2.1.

𝒊 𝑿𝒊,0 𝒋 Costs Limits Characteristics of 𝝆𝒊,𝒋 𝒘ub
𝒊,𝒋

𝒂𝒊,𝒋 𝒃𝒊,𝒋 𝒄𝒊,𝒋 𝒕lb𝒊,𝒋 𝒕ub𝒊,𝒋 𝑻𝒚𝒑𝒆 𝜸𝒊,𝒋 𝜿𝒊,𝒋

1,

*

1 28.2 241 55.8 0.006 0.1 PD 0.5 3.05 0.50
2, 2 29.8 260 52 0.008 0.13 PD −0.2 2.9 0.05
3 3 25.82 286.4 59.5 0.006 0.14 PD 0.1 2.8 0.20

4 23 271.5 57.64 0.008 0.15 ND − − 0.70

4 23
1 42.2 312.84 105.66 0.002 0.08 ND − − 0.8
2 35 352.43 92.7 0.002 0.1 PD 0.3 3.1 0.50

5 48

1 22.5 208.25 62.45 0.01 0.1 PD −0.2 2.9 0.4
2 20.2 240.43 66.7 0.02 0.12 ND − − 0.35
3 25.05 211.42 40.05 0.02 0.11 PD −0.1 3 0.40
4 300 214.16 58.82 0.03 0.12 ND − − 0.80

* 𝑋1,0 = 𝑋3,0 = 10, 𝑋2,0 = 25.

- 𝑋𝑖,0, 𝑡
lb
𝑖,𝑗, 𝑡

ub
𝑖,𝑗 in mm.

- Type of 𝜌𝑖,𝑗: ND, standard normal distribution with mean Δ𝜇𝑖,𝑗 = 𝑋𝑖,0, ∀𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽𝑖, standard

deviation 𝜎𝑖,𝑗 = 𝑡𝑖,𝑗/6.
- PD: Pearson distribution with mean Δ𝜇𝑖,𝑗 = 𝑋𝑖,0, , ∀𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽𝑖, standard deviation

𝜎𝑖,𝑗 = 𝑡𝑖,𝑗/6, skewness 𝜏𝑖,𝑗 and kurtosis 𝛾𝑖,𝑗 (see Fig. 83).

- 𝑤ub
𝑖,𝑗 : Maximum weight of machine 𝑗 to realize tolerance 𝑡𝑖,𝑗, 𝑤

lb
𝑖,𝑗 = 0, ∀𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽𝑖.

Table 30: Summary of obtained optimal solutions for optimization study in Sec. 5.2.1.

𝒓 (a) (b)

𝑪
opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
1 𝒛̂

opt
2 𝒛̂

opt
asm 𝑭𝒍𝒂𝒈∗

1 143.15 2,190 520 2,700 1 142.13 1,070 1,640 2,700 1
2 142.56 1,880 490 2,360 1 142.71 1,660 880 2,510 1
3 142.63 1,950 700 2,610 1 140.91 1,630 1,060 2,670 1
4 141.99 2,210 430 2,630 1 140.35 1,200 1,480 2,680 1
5 142.07 2,030 550 2,580 1 141.73 520 2,120 2,640 1
6 143.34 2,050 520 2,560 1 140.13 700 2,010 2,690 1
7 141.91 2,050 560 2,600 1 141.58 1,410 1,170 2,560 1
8 142.09 1,820 560 2,380 1 141.31 1,300 1,290 2,590 1
9 143.00 1,990 640 2,620 1 142.86 880 1,450 2,300 1
10 142.86 2,110 580 2,680 1 142.14 930 1,610 2,530 1

* Flag = 1: Average change in the penalty fitness value is less than the fitness tolerance and constraint
violation is less than constraint tolerance.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.
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Table 31: Performance measures for the optimization study in Sec. 5.2.1.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a) 1.0 0.5 0.65 91,003 13,417.72
(b) 1.0 0.2 0.72 148,725 13,843.93

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 32).

Table 32: Least-cost tolerances obtained in the best runs for optimization study in Sec. 5.2.1.

𝒊 𝒋 Case

(a), 𝒓 = 7 (b), 𝒓 = 6

𝒕𝒊,𝒋 𝒘𝒊,𝒋 𝒕𝒊,𝒋 𝒘𝒊,𝒋

1

1 0.0933 0.2707 0.0901 0.1049
2 0.0933 0.0075 0.0780 0.0000
3 0.0933 0.0226 0.1266 0.1958
4 0.0933 0.6992 0.1044 0.6993

2

1 0.0851 0.1000 0.0791 0.0839
2 0.0851 0.0000 0.0749 0.0210
3 0.0851 0.2000 0.0865 0.1958
4 0.0851 0.7000 0.0834 0.6993

3

1 0.0847 0.2657 0.0911 0.3007
2 0.0847 0.0280 0.1023 0.0000
3 0.0847 0.0070 0.1148 0.0000
4 0.0847 0.6993 0.1128 0.6993

4
1 0.0681 0.5026 0.0604 0.5000
2 0.0681 0.4974 0.0680 0.5000

5

1 0.0973 0.3333 0.0798 0.3333
2 0.0973 0.3333 0.0878 0.3333
3 0.0973 0.3333 0.1009 0.3333
4 0.0973 0.0000 0.1021 0.0000

* 𝑡𝑖,𝑗 part tolerances in mm.
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Sec. 5.2.2: Machine/supplier allocation with selective assembly

• Tolerance-cost information: see Tbl. 33

• Specification limits:

• 𝑓𝑌1
, Eq. (83): LSL1 = 1.94 mm; USL1 = 2.06 mm

• 𝑓𝑌2
, Eq. (84): LSL2 = 2.90 mm; USL2 = 3.10 mm

• 𝑁𝐶 = (
3!

(3−2)!
)
4

∗ (2!/(2− 2)!) ⋅
1

2!
= 1296 acc. to Eq. (47) with 𝐽min = 2 for

𝑗 = 4 and 𝐽𝑖 = 3 for 𝑖 = 1, 2, 3, 5 (see Tbl. 33)

• Optimization settings: 𝜂𝑝 = 250, 𝜂𝑔 = 2,000, 𝜂𝑔, stall = 200 with a fitness
tolerance of 1e-03 (decimals to be relevant for fitness improvement evalua-
tion), penalty approach for constraint handling. Further settings are set to
the proposed default values.

• Number of repetitions: 𝜂𝑟 = 10

• Studied cases:

(a) random assembly

(b) selective assembly

Table 33: Tolerance-cost data of wheel mounting assembly example used in Sec. 5.2.2.

𝒊 𝒋 Costs Limits Characteristics of 𝝆𝒊,𝒋 𝒘ub
𝒊,𝒋

𝒂𝒊,𝒋 𝒃𝒊,𝒋 𝒄𝒊,𝒋 𝒕lb𝒊,𝒋 𝒕ub𝒊,𝒋 𝑻𝒚𝒑𝒆 𝜟𝝁𝒊,𝒋 𝝈𝒊,𝒋 𝒑𝒊,𝒋

1, 2, 3
1 100.00 271.506 57.64 0.02 0.10 TD 0 − 0.3 0.75
2 29.80 260.00 52.00 0.03 0.06 TD 0 − 0.7 0.75
3 28.20 241.00 55.80 0.03 0.06 TD 0 − 0.3 0.75

4
1 42.20 312.84 105.66 0.01 0.06 UD 0.1 − − 0.75
2 35.00 352.43 92.70 0.01 0.08 ND −0.1 𝑡𝑖,𝑗/6 − 0.75

5
1 100.00 208.25 62.45 0.01 0.08 UD 0 − − 0.75
2 20.20 240.43 66.70 0.01 0.08 UD 0 − − 0.75
3 25.05 211.42 40.05 0.01 0.10 ND 0 𝑡𝑖,𝑗/6 − 0.75

* 𝑋1,0 = 10, 𝑋2,0 = 25, 𝑋3,0 = 10, 𝑋4,0 = 23, 𝑋5,0 = 48.

- 𝑋𝑖,0, 𝑡
lb
𝑖,𝑗, 𝑡

ub
𝑖,𝑗 in mm.

- Type of 𝜌𝑖,𝑗: UD, Uniform Distribution with 𝜇𝑖,𝑗 =𝑖,0 +Δ𝜇𝑖,𝑗 ND, standard normal distribution with

mean 𝜇𝑖,𝑗 = 𝑋𝑖,0 + Δ𝜇𝑖,𝑗, standard deviation 𝜎𝑖,𝑗.; TD: where peak location 𝐻𝑖,𝑗 is defined by

𝑋𝑖,0 + (𝑝𝑖,𝑗 − 0.5) ⋅ 𝑡𝑖,𝑗/2 (see Tbl. 83).

- 𝑤ub
𝑖,𝑗 : Maximum weight of machine 𝑗 to realize tolerance 𝑡𝑖,𝑗, 𝑤

lb
𝑖,𝑗 = 0, ∀𝑖 = 1, … , 𝐼; 𝑗 = 1, … , 𝐽𝑖) for study

(2).
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Table 34: Summary of obtained optimal solutions for optimization study (1) in Sec. 5.2.2.

𝒓 (a) (b) (b*)

𝑪
opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗ 𝒛̂

opt
asm

1 315.19 2,700 0 2,700 1 302.09 2,700 0 2,700 1 17,100
2 314.45 2,700 0 2,700 1 303.15 2,600 100 2,700 1 17,400
3 314.21 2,700 0 2,700 1 301.39 2,700 0 2,700 1 26,000
4 313.37 2,700 0 2,700 1 301.15 2,700 0 2,700 1 17,500
5 315.16 2,700 0 2,700 1 300.74 2,700 0 2,700 1 19,100
6 315.51 2,700 0 2,700 1 302.65 2,700 0 2,700 1 17,400
7 316.48 2,700 0 2,700 1 302.51 2,700 0 2,700 1 17,600
8 314.85 2,700 0 2,700 1 305.45 2,700 0 2,700 1 12,600
9 315.56 2,700 0 2,700 1 302.56 2,600 100 2,700 1 17,200
10 314.61 2,700 0 2,700 1 302.15 2,700 0 2,700 1 17,900

* Flag = 1: Average change in the penalty fitness value is less than the fitness tolerance and constraint
violation is less than constraint tolerance.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.

- (b*): 𝑧̂
opt
asm results when tolerance values obtained for selective assembly (b) are used for random

assembly illustrating the effect of selective assembly on reducing the total non-conformance rate
without tightening the tolerances.

Table 35: Performance measures for optimization study (1) in Sec. 5.2.2.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a) 1.0 0.5 1.0 244,667 2,558.84
(b) 1.0 0.5 0.25 103,841 1,305.12

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 36).
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Table 36: Least-cost tolerances obtained in the best runs for optimization study (1) in Sec. 5.2.2.

𝒊 𝒋 Case

(a), 𝒓 = 4 (b), 𝒓 = 5

𝒕𝒊,𝒋 𝒘𝒊,𝒋 𝒑𝒊,𝒋 𝒕𝒊,𝒋 𝒘𝒊,𝒋

1
1 0.0997 0.3333 3 0.0942 0.3333
2 0.0599 0.3333 2 0.0598 0.3333
3 0.0599 0.3333 1 0.0595 0.3333

2
1 0.0365 0.3333 2 0.0307 0.3333
2 0.0356 0.3333 1 0.0594 0.3333
3 0.0370 0.3333 3 0.0415 0.3333

3
1 0.0996 0.3333 1 0.0963 0.3333
2 0.0599 0.3333 2 0.0599 0.3333
3 0.0599 0.3333 3 0.0591 0.3333

4
1 0.0598 0.5000 1 0.0552 0.5000
2 0.0251 0.5000 2 0.0298 0.5000

5
1 0.0797 0.3333 3 0.0737 0.3333
2 0.0797 0.3333 2 0.0787 0.3333
3 0.0999 0.3333 1 0.0988 0.3333

* 𝑡𝑖,𝑗 part tolerances in mm.

Table 37: Summary of obtained optimal solutions for optimization study (2) in Sec. 5.2.2.

𝒓 (a) (b) (b*)

𝑪
opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗ 𝑪

opt
sum 𝑧̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗ 𝒛̂

opt
asm

1 205.76 2,700 0 2,700 1 198.14 2,700 0 2,700 1 10,600
2 206.93 2,700 0 2,700 0 197.32 2,600 0 2,600 1 9,600
3 219.68 2,700 0 2,700 0 207.11 2,700 0 2,700 1 6,900
4 204.16 2,700 0 2,700 0 199.51 2,700 0 2,700 1 7,900
5 206.97 2,700 0 2,700 1 199.27 2,700 0 2,700 1 10,300
6 206.29 2,700 0 2,700 1 210.39 2,700 0 2,700 1 8,000
7 204.2 2,700 0 2,700 0 199.3 2,700 0 2,700 1 8,700
8 215.99 2,700 0 2,700 0 203.03 1,700 0 1,700 0 13,900
9 216.55 2,700 0 2,700 0 203.76 2,700 0 2,700 1 12,800
10 205.75 2,700 0 2,700 1 203.85 2,700 0 2,700 1 8,700

* Flag = 0: Maximum number of generations is reached; Flag = 1: Average change in the penalty fitness
value is less than the fitness tolerance and constraint violation is less than constraint tolerance.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.

- (b*): 𝑧̂
opt
asm results when tolerance values obtained for selective assembly (b) are used for random

assembly illustrating the effect of selective assembly on reducing the total non-conformance rate
without tightening the tolerances.
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Table 38: Performance measures for optimization study (2) in Sec. 5.2.2.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

(a) 1.0 0.2 0.845 487,257 4,791.30
(b) 1.0 0.2 0.003 355,125 4,614.26

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 39).

Table 39: Least-cost tolerances obtained in the best runs for optimization study (2) in Sec. 5.2.2.

𝒊 𝒋 Case

(a), 𝒓 = 4 (b), 𝒓 = 2

𝒕𝒊,𝒋 𝒘𝒊,𝒋 𝒑𝒊,𝒋 𝒕𝒊,𝒋 𝒘𝒊,𝒋

1
1 0.0761 0.0000 3 0.0330 0.0000
2 0.0600 0.2500 2 0.0596 0.2562
3 0.0600 0.7500 1 0.0568 0.7438

2
1 0.0765 0.0000 1 0.0201 0.0000
2 0.0404 0.2500 2 0.0305 0.2500
3 0.0402 0.7500 3 0.0549 0.7500

3
1 0.0832 0.0000 3 0.0754 0.0000
2 0.0600 0.2500 2 0.0583 0.2500
3 0.0600 0.7500 1 0.0575 0.7500

4
1 0.0600 0.7500 1 0.0498 0.7500
2 0.0250 0.2500 2 0.0349 0.2500

5
1 0.0625 0.0000 1 0.0561 0.0000
2 0.0800 0.7500 2 0.0750 0.7477
3 0.1000 0.2500 3 0.0987 0.2523

* 𝑡𝑖,𝑗 part tolerances in mm.

Sec. 5.3: Multiple part tolerances

• Tolerance-cost information: summarized in Tbl. 40, following a reciprocal
tolerance-cost function approach (see Tbl. 1) presented in [203, 600] and
adapted to the given use case:

𝐶𝑙,𝑢,𝑖 = 𝑎𝑙,𝑢,𝑖 +
𝑏𝑙,𝑢,𝑖

𝑡𝑘𝑙,𝑢,𝑖
= 𝑎𝑙,𝑢,𝑖 +

𝑓M𝑙,𝑢,𝑖,𝑗
⋅𝑓F𝑙,𝑢,𝑖,𝑗⋅𝑓A𝑙,𝑢,𝑖,𝑗⋅𝛽⋅𝑋

𝑘/3
𝑙,𝑢,𝑖

𝑡𝑘𝑙,𝑢,𝑖
, (92)

where 𝑎𝑙,𝑢,𝑖 indicate the fixed costs, 𝑓M𝑙,𝑢,𝑖,𝑗
, 𝑓F𝑙,𝑢,𝑖,𝑗 , 𝑓A𝑙,𝑢,𝑖,𝑗

, 𝑘 and 𝛽 are feature-
and material-dependent cost coefficients, 𝑋𝑙,𝑢,𝑖 is the nominal value of the
relevant feature dimension.
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• Specification limits:

• 𝑓𝑌1
: LSL1 = 0 mm, USL1 = 2.0 mm

• 𝑓𝑌2
: LSL2 = 86.5∘, USL2 = 93.5∘

• Optimization settings: 𝜂𝑝 = 50, 𝜂𝑔 = 1,000, 𝜂𝑔,stall = 50 with a fitness toler-
ance of 1e-06 (decimals to be relevant for fitness improvement evaluation),
penalty approach for constraint handling. Further settings are set to the
proposed default values.

• Number of repetitions: 𝜂𝑟 = 10

Table 40: Tolerance-cost data of wheel mounting assembly example used in Sec. 5.3.

Part Feat. Tol. Alt. Coefficients of 𝒇𝑪 Boundaries 𝝆𝒍,𝒖,𝒊,𝒋

𝒍 𝒖 𝒊 𝒋 𝒇F𝒍,𝒖,𝒊,𝒋 𝒇A𝒍,𝒖,𝒊,𝒋 𝒇M𝒍,𝒖,𝒊,𝒋
𝑿𝒍,𝒖,𝒊,𝒋 𝒕lb𝒍,𝒖,𝒊,𝒋 𝒕ub𝒍,𝒖,𝒊,𝒋 𝜸𝒍,𝒖,𝒊,𝒋 𝜿𝒍,𝒖,𝒊,𝒋

1

1 1
1 850 1.5 1 42 0.005 0.200 0.1 3.1
2 850 1.5 1.5 42 0.005 0.200 0 3

2
1

1 850 1.5 1 3 0.004 0.200 −0.1 2.9
2 850 1.5 1.5 3 0.004 0.200 0 3

2
1 850 1.5 1 42 0.010 0.200 −0.1 3
2 850 1.5 1.5 42 0.010 0.200 0 3

3
2

1 57 11.4 1 6 0.012 0.012 0.2 3.1
2 57 11.4 1.5 6 0.012 0.012 0 3

1
1 57 11.4 1 3 0.024 0.400 −0.1 2.8
2 57 11.4 1.5 3 0.024 0.400 0 3

2

1 1 1 212 1.5 1 26.9 0.005 0.200 0 3

2
1 1 212 1.5 1 10.5 0.008 0.400 0 3

2 1 212 1.5 1 26.9 0.010 0.200 0 3

3 1 1 198 11.4 1 10 0.050 0.400 0 3

3

1 1
1 850 1.5 1 42 0.005 0.200 0.1 3.1
2 850 1.5 1.5 42 0.005 0.200 0 3

2
1

1 850 1.5 1 3 0.004 0.200 −0.1 2.9
2 850 1.5 1.5 3 0.004 0.200 0 3

2
1 850 1.5 1 42 0.010 0.200 −0.1 3
2 850 1.5 1.5 42 0.010 0.200 0 3

3
2

1 57 11.4 1 6 0.012 0.012 0.2 3.1
2 57 11.4 1.5 6 0.012 0.012 0 3

1
1 57 11.4 1 3 0.024 0.400 −0.1 2.8
2 57 11.4 1.5 3 0.024 0.400 0 3

4

1
1 1 522 1 1 4.5 0.005 0.200 0 3
2 1 19 1 1 22 0.010 0.200 0 3

2
1 1 522 1 1 4.5 0.005 0.200 0 3
2 1 19 1 1 22 0.010 0.200 0 3

3 1 1 522 1 1 9 0.050 0.400 0 3
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𝒍 𝒖 𝒊 𝒋 𝒇F𝒍,𝒖,𝒊,𝒋 𝒇A𝒍,𝒖,𝒊,𝒋 𝒇M𝒍,𝒖,𝒊,𝒋
𝑿𝒍,𝒖,𝒊,𝒋 𝒕lb𝒍,𝒖,𝒊,𝒋 𝒕ub𝒍,𝒖,𝒊,𝒋 𝜸𝒍,𝒖,𝒊,𝒋 𝜿𝒍,𝒖,𝒊,𝒋

4 1 1 142 12.3 1 5.5 0.030 0.030 0 3

5

1 1
1 22 1 1 3.5 0.050 0.400 −0.1 3.1
2 22 1 1.5 3.5 0.050 0.400 0 3

2
1

1 5 1 1 3.5 0.004 0.200 0.1 3
2 5 1 1.5 3.5 0.004 0.200 0 3

2
1 5 1 1 6 0.010 0.100 −0.1 3.1
2 5 1 1.5 6 0.010 0.100 0 3

3

3
1 173 1 1 5.5 0.075 0.075 0 3.1
2 173 1 1.5 5.5 0.075 0.075 0 3

1
1 173 1 1 10 0.005 0.200 0.1 2.8
2 173 1 1.5 10 0.005 0.200 0 3

2
1 173 1 1 10 0.003 0.100 −0.1 3.1
2 173 1 1.5 10 0.003 0.100 0 3

4 1
1 66 1 1 6 0.008 0.008 −0.1 2.9
2 66 1 1.5 6 0.008 0.008 0 3

- 𝑋𝑙,𝑢,𝑖, 𝑡
lb/ub
𝑙,𝑢,𝑖,𝑗 in mm.

- 𝑓Al,u,i,j: coefficient related to the surface area of feature 𝑢 in mm2.
- 𝑓F𝑙,𝑢,𝑖,𝑗: coefficient related to the feature type of feature 𝑢.

- 𝑓M𝑙,𝑢,𝑖,𝑗
: coefficient related to the material used and its machining difficulty. This thesis interprets it as a

general difficulty factor to differ between different process alternatives.
- 𝑎𝑙,𝑢,𝑖 = 0, 𝑘 = 0.55, 𝛽 = 1.0 ⋅ 10−3 for all tolerances.
- Type of 𝜌𝑙,𝑢,𝑖,𝑗: all tolerances follow a Pearson distribution with Δ𝜇𝑙,𝑢,𝑖,𝑗 = 0, standard deviation

𝜎𝑙,𝑢,𝑖,𝑗 = 𝑡𝑙,𝑢,𝑖,𝑗/6, skewness 𝜏𝑙,𝑢,𝑖,𝑗, and kurtosis 𝛾𝑙,𝑢,𝑖,𝑗 (see Tbl. 83).

Table 41: Summary of obtained optimal solutions for the optimization study presented in

Sec. 5.3.

𝒓 𝑪
opt
sum 𝒛̂

opt
asm 𝒛̂

opt
1 𝒛̂

opt
2 𝑭𝒍𝒂𝒈∗

1 124.18 1,200 1,500 2,700 1
2 123.78 600 2,100 2,700 1
3 125.22 1,000 1,700 2,700 1
4 123.37 1,000 1,700 2,700 1
5 155.81 0 7,800 7,800 −2
6 125.23 700 2,000 2,700 1
7 156.45 0 18,500 18,500 −2
8 190.50 0 3,500 3,500 −2
9 123.40 300 2,400 2,700 1
10 123.19 700 2,000 2,700 1

* Flag = 1: Average change in the penalty fitness value is less than the fitness tolerance and constraint
violation is less than constraint tolerance. Flag = −2: No feasible point found.

- 𝐶
opt
sum in MU, 𝑧̂

opt
1 , 𝑧̂

opt
2 , 𝑧̂

opt
asm in ppm.
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Table 42: Performance measures for the optimization study presented in Sec. 5.3.

𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝑨𝑭𝑬𝑺𝑶∗∗ 𝝉
∗
feas in s

0.7 0.4 0.66 9,718 59,507.60

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 43).

Table 43: Least-cost tolerances obtained in the best runs for the optimization study presented

in Sec. 5.3.

𝒓 𝒍 𝒖 𝒊 𝒕𝒍,𝒖,𝒊 𝒋 for 𝒙𝒍,𝒖,𝒊 = 1

10

1

1 1 0.200 2

2
1 0.198 2
2 0.197 2

3
2 0.012 2
1 0.127 2

2

1 1 0.133 1

2
1 0.360 1
2 0.132 1

3 1 0.368 1

3

1 1 0.200 2

2
1 0.198 2
2 0.197 2

3
2 0.012 2
1 0.127 2

4

1
1 0.200 1
2 0.027 1

2
1 0.190 1
2 0.190 1

3 1 0.339 1

4 1 0.030 1

5

1 1 0.360 1

2
1 0.168 1
2 0.036 1

3
3 0.075 1
1 0.180 1
2 0.037 1

4 1 0.008 1

* 𝑡𝑙,𝑢,𝑖 part tolerance 𝑖 for feature 𝑢 of part 𝑙 in mm.
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A.9.3 Efficiency studies

Initial study on themain contributors to the efficiency

• Tolerance-cost data, nominal dimensions, tolerance limits, and part toler-
ance probability distribution information follow the information given in
Tbl. 8.

• Specification limits: Study considers only 𝑓𝑌 = 𝑓𝑌2
as functional relevant.

• 𝑓𝑌 = 𝑓𝑌2
, Eq. (84): LSL = LSL2 = 𝑌0 − 0.5 ⋅ √4 ⋅ 0.052 mm = 2.950 mm

• 𝑓𝑌 = 𝑓𝑌2
, Eq. (84): USL = USL2 = 𝑌0 + 0.5 ⋅ √4 ⋅ 0.052 mm = 3.050 mm

• Optimization settings: 𝜂𝑝 = 50, 𝜂𝑔 = var, 𝜂𝑔,stall = inf with a fitness toler-
ance of 1e-04 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 100

Table 44: Summary of results for Chap. 6: Main contributors to the efficiency.

𝒒𝒓𝑪,95% in MU

Sample size (× 103)

𝒏 = 10 𝒏 = 25 𝒏 = 50 𝒏 = 100 𝒏 = 250

𝜂𝑔 = 50 8.8341 6.5196 6.4819 5.4710 4.6412
𝜂𝑔 = 100 4.7033 3.2156 2.9348 2.6655 2.2456
𝜂𝑔 = 150 3.4507 2.4478 1.7995 1.5540 1.5963

𝝉feas in s

𝜂𝑔 = 50 9.2796 18.1310 36.4013 53.8687 71.3512
𝜂𝑔 = 100 23.9998 43.7850 87.5755 134.4843 175.2458
𝜂𝑔 = 150 98.3651 140.7616 245.3145 392.9127 499.8576

- Flag = 0 for all runs, i.e., maximum number of generations 𝜂𝑔 is reached.
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Table 45: Tolerance-cost data of wheel mounting assembly example used in Sec. 6.1–6.3.

Part Feat. Tol. Coefficients of 𝒇𝑪 Boundaries

𝒍 𝒖 𝒊 𝒇F𝒍,𝒖,𝒊 𝒇A𝒍,𝒖,𝒊 𝒇M𝒍,𝒖,𝒊
𝑿𝒍,𝒖,𝒊 𝒕lb𝒍,𝒖,𝒊 𝒕ub𝒍,𝒖,𝒊

1

1 1 850 1.5 1 42 0.005 0.200

2
1 850 1.5 1 3 0.100 0.100
2 850 1.5 1 42 0.010 0.100

3
2 57 11.4 1 6 0.012 0.012
1 57 11.4 1 3 0.024 0.400

2

1 1 212 1.5 1 26.9 0.005 0.200

2
1 212 1.5 1 10.5 0.200 0.200
2 212 1.5 1 26.9 0.010 0.200

3 1 198 11.4 1 10 0.050 0.400

3

1 1 850 1.5 1 42 0.005 0.200

2
1 850 1.5 1 3 0.100 0.100
2 850 1.5 1 42 0.010 0.100

3
2 57 11.4 1 6 0.012 0.012
1 57 11.4 1 3 0.024 0.400

4

1
1 522 1 1 4.5 0.100 0.100
2 19 1 1 22 0.010 0.100

2
1 522 1 1 4.5 0.100 0.100
2 19 1 1 22 0.010 0.100

3 1 522 1 1 9 0.050 0.400

4 1 142 12.3 1 5.5 0.030 0.030

5

1 1 22 1 1 3.5 0.050 0.400

2
1 5 1 1 3.5 0.100 0.100
2 5 1 1 6 0.010 0.100

3
3 173 1 1 5.5 0.075 0.075
1 173 1 1 10 0.005 0.200
2 173 1 1 10 0.003 0.100

4 1 66 1 1 6 0.008 0.008

- 𝑋𝑙,𝑢,𝑖, 𝑡
lb/ub
𝑙,𝑢,𝑖 in mm.

- 𝑓A𝑙,𝑢,𝑖: coefficient related to the surface area of feature 𝑢 in mm2.

- 𝑓F𝑙,𝑢,𝑖: coefficient related to the feature type of feature 𝑢.

- 𝑓M𝑙,𝑢,𝑖
: coefficient related to the material used and its machining difficulty.

- 𝑎𝑙,𝑢,𝑖 = 0, 𝑘 = 0.55, 𝛽 = 1.0 ⋅ 10−3 for all tolerances.
- Type of 𝜌𝑙,𝑢,𝑖: all tolerances follow a standard normal distribution with Δ𝜇𝑙,𝑢,𝑖 = 0, standard deviation
𝜎𝑙,𝑢,𝑖 = 𝑡𝑙,𝑢,𝑖/6.
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Sec. 6.1: Adaptive sample sizes

• Tolerance-cost information: see Tbl. 45.

• Specification limits:

• 𝑓𝑌1
: LSL1 = 0 mm, USL1 = 1.5 mm

• 𝑓𝑌2
: LSL2 = 87.5∘, USL2 = 92.5 ∘

• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 250, 𝜂𝑔,stall = 200 with a fitness toler-
ance of 1e-06 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 5 for 𝑛 = 10,000 (1); 𝜂𝑟 = 1 for 𝑛 = 100,000 (2)

Table 46: Overview of obtained optimal solutions for the optimization study (1) presented in

Sec. 6.1.

𝒓 →

𝒓𝒑 𝝃2 1 2 3 4 5

0

0.7
𝐶
𝑔=200
sum 109.85 110.72 110.13 110.22 110.09

𝐶
opt
sum 109.75 110.21 109.93 109.64 109.90

𝑧̂
opt
asm 2,700 2,700 2,700 2,600 2,500

0.5
𝐶
𝑔=200
sum 109.88 110.57 110.23 110.02 110.38

𝐶
opt
sum 109.54 109.92 109.61 109.80 109.90

𝑧̂
opt
asm 2,700 2,700 2,600 2,600 2,700

0.3
𝐶
𝑔=200
sum 109.95 110.10 109.98 110.09 110.01

𝐶
opt
sum 109.65 109.92 109.66 109.76 109.70

𝑧̂
opt
asm 2,700 2,600 2,700 2,700 2,700

0.2

0.7
𝐶
𝑔=200
sum 109.86 110.18 110.71 109.93 110.08

𝐶
opt
sum 109.64 110.06 110.31 109.68 109.85

𝑧̂
opt
asm 2,700 2,600 2,700 2,700 2,600

0.5
𝐶
𝑔=200
sum 109.94 110.59 110.29 109.59 110.14

𝐶
opt
sum 109.62 110.21 109.92 109.49 109.73

𝑧̂
opt
asm 2,500 2,600 2,700 2,600 2,600

0.3
𝐶
𝑔=200
sum 109.71 110.31 109.97 110.03 110.26

𝐶
opt
sum 109.67 110.01 109.78 109.91 110.13

𝑧̂
opt
asm 2,700 2,600 2,700 2,700 2,700

𝑛 = const −−

𝐶
𝑔=200
sum 110.05 110.38 110.17 110.35 110.21

𝐶
opt
sum 109.84 110.15 110.03 109.92 109.88

𝑧̂
opt
asm 2,500 2,700 2,600 2,700 2,600

- 𝐶
opt
sum, 𝐶

𝑔=200
sum in MU, 𝑧̂

opt
asm in ppm.
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Table 47: Summary of the optimization study (1) presented in Sec. 6.1.

𝒓𝒑 = 0 𝒓𝒑 = 0.2 𝒏 = const

𝝃2 = 0.7 0.5 0.3 0.7 0.5 0.3

𝑚̃
𝐶
𝑔=200
sum

110.13 110.23 110.01 110.08 110.14 110.03 110.21

𝑚̃
𝐶
opt
sum

110 109.80 109.70 109.854 109.73 109.91 109.92

𝑚̃𝑧̂asm
2,700 2,700 2,700 2,700 2,600 2,700 2,600

FR∗ 1.0 1.0 1.0 1.0 1.0 1.0 1.0

𝜏
∗
feas 14.25 16 17.08 17.51 18.90 20.33 19.66

* with 𝛿feas acc. to the defined constraint tolerance.
- Flag = 0: maximum number of generations 𝜂𝑔 in all runs is reached.
- 𝑚̃

𝐶
opt
sum

, 𝑚̃
𝐶
𝑔=200
sum

in MU, 𝑚̃𝑧̂asm
in ppm, 𝜏feas in h.

Table 48: Summary of the optimization study (2) presented in Sec. 6.1.

𝒓𝒑 = 0 𝒓𝒑 = 0.2 𝒏 = const

𝝃2 = 0.7 0.5 0.3 0.7 0.5 0.3

𝐶
𝑔=200
sum 110.61 110.81 110.53 110.48 110.54 110.18 110.64

𝐶
opt
sum 110.40 110.53 110.29 110.41 110.40 110.07 110.49

𝑧̂
opt
asm 2660 2680 2620 2630 2670 2650 2650
𝑞∗feas 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Flag

∗∗
0 0 0 0 0 0 0

𝜏∗feas 92.51 118.39 144.52 121.71 147.33 174.80 186.01

* with 𝛿feas acc. to the defined constraint tolerance.
** Flag = 0: maximum number of generations 𝜂𝑔 is reached.

- 𝐶
opt
sum, 𝐶

𝑔=200
sum in MU, 𝑧̂

opt
asm in ppm, 𝜏feas in h.

Sec. 6.2: Surrogatemodeling

• Tolerance-cost information: summarized in Tbl. 45

• Specification limits: see A.9.3, Sec. 6.1

• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 250, 𝜂𝑔,stall = 200 with a fitness toler-
ance of 1e-06 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 50

• ANN training settings: Wide, single-layered feed-forward ANN, 𝑓act: recti-
fied linear unit function; layer size: 100
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Table 49: Summary of obtained optimal solutions for the optimization study presented in

Sec. 6.2.

𝑫

300 1,500 3,000 7,500 15,000

𝑫′

96 487 988 2,460 4,943

RMSE 3,091.91 2,596.89 1,829.95 1,465.65 1,365.81
𝑚𝐶 107.873617 108.916254 109.085649 109.891632 109.940416
qr
𝐶,95%

0.903 1.083 0.677 0.561 0.908

𝑚𝑧̂asm
10,358 5,526 4,446 3,066 2,984

qr
𝑧̂,95%

4,875 2,500 2,025 1,100 1,425

𝑚𝑒 7,850 3,034 1893.88268 425.09162 370.087729
qr
𝑒,95%

4,678 2,738 1,965 1,124 1,317

FR∗ 1 1 1 1 1
𝜏PreOpt 524.13 2,639.80 5,328.92 13,230.83 26,481.89
𝜏feas 571.91 2,688.01 5,419.06 13,321.34 26,573.09

* with 𝛿feas acc. to the defined constraint tolerance.
- Flag = 0 for all runs, i.e., maximum number of generations 𝜂𝑔 is reached.
- 𝑚𝐶, qr𝐶,95% in MU, RMSE,𝑚𝑧̂asm

, qr
𝑧̂,95%

,𝑚𝑒, qr𝑒,95%in ppm, 𝜏feas, 𝜏PreOpt in s.

Sec. 6.3: Adaptive surrogatemodel-based optimization

• Tolerance-cost information: summarized in Tbl. 45

• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 250, 𝜂𝑔,stall = 200 with a fitness toler-
ance of 1e-06 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 5

• Surrogate modeling: ANN layout and settings are identical to study of
Sec. 6.2

• Studied cases:

(a) direct embedding of TCVisVA

(b) surrogate model-based optimization

(c) surrogate model-based optimization with resampling

(d) adaptive surrogate model-based optimization
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Table 50: Summary of computation times for the study presented in Sec. 6.3.

𝑭𝑹∗ 𝑫 𝝉
∗∗
feas 𝝉∗∗train 𝝉

∗∗
resamp 𝝉

∗∗
retrain

(a) 1 70,773 0 0 0

(b) 1
300

558
524

0 0
(c) 1 14,347 13,789 0
(d) 1 14,392 13,780 55

(b) 1
500

1,348
1,314

0 0
(c) 1 14,838 13,491 0
(d) 1 14,912 13,502 62

(b) 1
1,500

2,674
2,640

0 0
(c) 1 16,571 13,898 0
(d) 1 16,604 13,858 72

* with 𝛿feas acc. to the defined constraint tolerance.
** 𝜏feas, 𝜏train, 𝜏resamp, 𝜏retrain in s.

Table 51: Performance measures for the optimization study presented in Sec. 6.3.

𝒓 →

Case 𝑫 1 2 3 4 5

(a) /
𝐶
opt
sum 109.84 110.15 110.03 109.92 109.88

𝑧̂
opt
asm 2,500 2,700 2,600 2,700 2,600
𝜏feas 69,783 70,532 73,839 69,687 70,026

(b)

300

𝐶
opt
sum 107.79 108.03 108.06 107.46 108.00

𝑧̂
opt

𝑓̃𝑧̂
2,587 2,541 2,670 2,550 2,595

𝑧̂
opt
asm 10,700 8,900 10,900 11,500 9,300
𝑒 8,113 6,359 8,230 8,950 6,705

𝜏feas 562 558 557 558 558

750

𝐶
opt
sum 108.81 108.93 108.83 108.73 108.68

𝑧̂
opt

𝑓̃𝑧̂
2,412 2,218 2,623 2,559 2,654

𝑧̂
opt
asm 7,400 5,300 4,600 4,600 6,500
𝑒 4,988 3,082 1,977 2,041 3,846

𝜏feas 1,349 1,347 1,347 1,347 1,347

1,500

𝐶
opt
sum 109.47 109.41 108.95 108.82 109.08

𝑧̂
opt

𝑓̃𝑧̂
2,646 2,570 2,693 2,440 2,691

𝑧̂
opt
asm 4,900 6,400 7,000 8,100 5,100
𝑒 2,254 3,830 4,307 5,660 2,409

𝜏feas 2,676 2,673 2,673 2,673 2,673

(c) 300

𝐶
opt
sum 110.93 110.24 110.47 110.31 110.52

𝑧̂
opt

𝑓̃𝑧̂
3,086 3,081 2,239 1,731 3,086

𝑧̂
opt
asm 2,000 2,600 2,500 2,400 2,700
𝑒 −1,086 −481 261 669 −386

𝜏feas 14,321 14,351 14,358 14,358 14,348
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𝒓 →

Case 𝑫 1 2 3 4 5

(c)

750

𝐶
opt
sum 110.49 110.31 109.87 110.19 110.06

𝑧̂
opt

𝑓̃𝑧̂
2,527 3,035 2,411 2,351 2,451

𝑧̂
opt
asm 2,700 2,700 2700 2,700 2,600
𝑒 173 −335 289 349 149

𝜏feas 14,834 14,855 14,835 14,842 14,826

1,500

𝐶
opt
sum 109.82 110.75 110.02 110.58 110.12

𝑧̂
opt

𝑓̃𝑧̂
2,623 1,942 2,795 2,217 3,217

𝑧̂
opt
asm 2,700 2,400 2,700 2,400 2,600
𝑒 77 458 −95 183 −617

𝜏feas 16,552 16,569 16,554 16,590 16,589

(d)

300

𝐶
opt
sum 109.72 109.91 110.11 110.10 109.91

𝑧̂
opt

𝑓̃𝑧̂
2,712 2,607 3,000 2,514 2,703

𝑧̂
opt
asm 2,700 2,700 2,600 2,600 2,600
𝑒 −12 93 −400 86 −103

𝜏feas 14,435 14,385 14,371 14,383 14,385

750

𝐶
opt
sum 109.88 109.98 109.78 109.62 109.62

𝑧̂
opt

𝑓̃𝑧̂
2,846 2,796 2,742 2,674 2,669

𝑧̂
opt
asm 2,600 2,700 2,600 2,600 2,500
𝑒 −246 −96 −142 −74 −169

𝜏feas 14,909 14,910 14,914 14,903 14,925

1,500

𝐶
opt
sum 109.78 109.66 110.02 109.81 109.80

𝑧̂
opt

𝑓̃𝑧̂
2,868 2,731 2,624 2,662 2,720

𝑧̂
opt
asm 2,700 2,600 2,700 2,600 2,500
𝑒 −168 −131 76 −62 −220

𝜏feas 16,670 16,640 16,578 16,572 16,561

- Prediction error 𝑒 = 𝑧̂
opt
asm − 𝑧̂

opt

𝑓̃𝑧̂
.

- 𝐶
opt
sum in MU, 𝑧̂

opt
asm, 𝑧̂

opt

𝑓̃𝑧̂
in ppm, 𝜏feas in s.

- Flag = 0: maximum number of generations 𝜂𝑔 is reached for all optimization iterations.
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A.9.4 Evaluation studies

• Tolerance-cost information: see Tbl. 52, reciprocal tolerance-cost approach
acc. to Eq. (92)

• Specification limits:

• 𝑓𝑌1
: LSL1 = 88.5∘, USL1 = 91.5∘

• 𝑓𝑌2
: LSL2 = −1.5

∘, USL2 = 1.5∘

• 𝑓𝑌3
: LSL3 = −1.0 mm, USL3 = 1.0 mm

• Optimization settings: 𝜂𝑝 = 25, 𝜂𝑔 = 250, 𝜂𝑔,stall = 200 with a fitness toler-
ance of 1e-06 (decimals to be relevant for fitness improvement evaluation),
𝑝a = 0.25

• Number of repetitions: 𝜂𝑟 = 5

• Studied cases:

(a) direct embedding of TCVisVA

(b) adaptive sample sizes including resampling, 𝜉1 = 7, 𝜉2 = 0.5,
𝑛min = 5,000

(c) surrogate model-based optimization inclusive resampling

• ANN training settings for (c): Wide, single-layered feed-forward ANN, 𝑓act:
rectified linear unit function; layer size: 100

Table 52: Tolerance-cost data for the e-cross skate example studied in Sec. 8.2.

Part Feat. Tol. Coefficients of 𝒇𝑪 Boundaries

𝒍 𝒖 𝒊 𝒇F𝒍,𝒖,𝒊,𝒋 𝒇A𝒍,𝒖,𝒊,𝒋 𝒇M𝒍,𝒖,𝒊,𝒋
𝑿𝒍,𝒖,𝒊,𝒋 𝒕lb𝒍,𝒖,𝒊,𝒋 𝒕ub𝒍,𝒖,𝒊,𝒋

1

1 1 0 0 0 530 0.300 0.300

2
2 0 0 0 12.8 0.018 0.018
1 0 0 0 45 0.300 0.300

3 1 0 0 0 4.5 0.100 0.100

2

1 1 1,218 1 1 12.8 0.011 0.011

2 1 95 1 1 12.8 0.010 0.400

3
2 1,218 1 1 12.8 0.011 0.011
1 1,218 1 1 30 0.006 0.200

4 1 95 1 1 12.8 0.010 0.400

5 1 250 1 1 14 0.010 0.400

6
2 476 12 1 12 0.018 0.018
1 476 12 1 14 0.008 0.600
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7 1 250 1 1 14 0.010 0.400

4

1 1 920 1 1 12 0.011 0.011

2 1 142 1 1 18 0.010 0.200

3 1 142 1 1 18 0.010 0.200

4
2 378 1 1 12 0.011 0.011
1 378 1 1 10 0.006 0.100

6
1 1 0 0 0 12 0.008 0.008

2 1 0 0 0 32 0.011 0.011

8
1 1 0 0 0 12 0.008 0.008

2 1 0 0 0 32 0.011 0.011

9

1 1 139 1.25 1 32 0.010 0.200

2
2 1,030 1.25 1 32 0.025 0.025
1 1,030 1.25 1 10 0.011 0.400

3
2 828 1.25 1 32 0.025 0.025
1 828 1.25 1 7.5 0.025 0.200

4
3 1,287 1 1 45 0.016 0.016
1 1,287 1 1 11.9 0.008 0.200
2 1,287 1 1 11.9 0.003 0.008

5
3 1,287 1 1 45 0.016 0.016
1 1,287 1 1 9.2 0.020 0.200
2 1,287 1 1 11.9 0.003 0.008

6
3 399 1.25 1 36 0.016 0.016
1 399 1.25 1 4 0.008 0.200
2 399 1.25 1 4 0.003 0.008

7 1 367 1.25 1 36 0.010 0.400

8
3 399 1.5 1 36 0.016 0.016
1 399 1.25 1 4 0.008 0.200
2 399 1.25 1 4 0.003 0.008

9 1 267 1.25 1 36 0.010 0.400

10 1 449 1.5 1 37.5 0.005 0.200

11
2 84 18 1 4 0.200 0.200
1 84 18 1 10.5 0.006 0.400

12
2 84 18 1 4 0.200 0.200
1 84 18 1 10.5 0.006 0.400

11

1
3 1,496 1.25 1 68 0.030 0.030
1 1,496 1.25 1 7 0.008 0.200
2 1,496 1.25 1 7 0.003 0.015

2 1 415 1.25 1 60 0.010 0.200

3
2 1,496 1.25 1 68 0.030 0.030
1 1,496 1.25 1 7 0.003 0.015

4 1 415 1.25 1 60 0.010 0.400

5 1 10,741 1 1 60 0.010 0.400
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12
1 1 0 0 0 45 0.012 0.012

2 1 0 0 0 68 0.013 0.013

13
1 1 0 0 0 45 0.012 0.012

2 1 0 0 0 68 0.013 0.013

17

1 1 526 1 1 36 0.016 0.016

2 1 299 1 1 10.5 0.010 0.400

3 1 27 26 1 4 0.018 0.018

4 1 99 1.5 1 18.5 0.011 0.200

5 1 13 1.5 1 12.6 0.008 0.400

18

1 1 526 1 1 36 0.016 0.016

2 1 299 1 1 10.5 0.010 0.400

3 1 27 26 1 4 0.018 0.018

4 1 99 1.5 1 18.5 0.011 0.200

5 1 26 1.5 1 12.6 0.008 0.400

19

1 1 89 1.5 1 18 0.005 0.100

2 1 44 1.5 1 4.5 0.010 0.400

3 1 54 1.5 1 10.8 0.009 0.200

4 1 51 32 1 4 0.005 0.400

20

1 1 89 1.5 1 18 0.005 0.100

2 1 44 1.5 1 4.5 0.010 0.400

3 1 54 1.5 1 10.8 0.009 0.200

4 1 51 32 1 4 0.005 0.400

27

1 1 0 0 0 530 0.300 0.300

2
2 0 0 0 12.8 0.018 0.018
1 0 0 0 45 0.300 0.300

3 1 0 0 0 4.5 0.100 0.100

- 𝑋𝑙,𝑢,𝑖, 𝑡
lb/ub
𝑙,𝑢,𝑖 in mm.

- 𝑓A𝑙,𝑢,𝑖: coefficient related to the surface area of feature 𝑢 in mm2.

- 𝑓F𝑙,𝑢,𝑖: coefficient related to the feature type of feature 𝑢.

- 𝑓M𝑙,𝑢,𝑖
: coefficient related to the material used and its machining difficulty.

- 𝑎𝑙,𝑢,𝑖 = 0, 𝑘 = 0.55, 𝛽 = 1.0 ⋅ 10−3 for all tolerances.
- Type of 𝜌𝑙,𝑢,𝑖: all tolerances follow a standard normal distribution with Δ𝜇𝑙,𝑢,𝑖 = 0, standard deviation
𝜎𝑙,𝑢,𝑖 = 𝑡𝑙,𝑢,𝑖/6.
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Table 53: Summary of optimal solutions for the optimization study presented in Sec. 8.2.

𝒓 →

Case RMSE 1 2 3 4 5

(a) /
𝐶
opt
sum 624.18 623.67 623.23 622.66 622.63

𝑧̂
opt
asm 2,400 2,600 2,400 2,700 2,700
𝜏feas 170,878 170,864 169,014 169,773 170,558

(b) /
𝐶
opt
sum 626.03 627.86 624.84 626.03 626.03

𝑧̂
opt
asm 2,500 2,700 2,600 2,500 2,500
𝜏feas 156,490 155,864 152,442 155,256 155,189

(c1), 𝐷 = 500 5,341

𝐶
opt
sum 625.82 624.21 625.50 624.46 623.44

𝑧̂
opt

𝑓̃𝑧̂
2,500 2,600 2,600 2,300 2,600

𝑧̂
opt
asm 2,553 2,820 2,647 2,768 2,622
𝑒 53 220 47 468 22
𝜏feas 41,403 41,722 41,400 42,215 42,221

(c2), 𝐷 = 1,000 3,900

𝐶
opt
sum 623.79 626.62 623.15 625.76 622.67

𝑧̂
opt

𝑓̃𝑧̂
2,600 2,500 2,600 2,400 2,700

𝑧̂
opt
asm 2,649 2,692 2,725 2,596 2,847
𝑒 49 192 125 196 147
𝜏feas 48,141 48,134 48,159 47,192 47,140

- Flag = 0 for all runs, i.e., maximum number of generations 𝜂𝑔 is reached.

- 𝐶
opt
sum in MU, RMSE, 𝑧̂

opt
asm, 𝑧̂

opt

𝑓̃𝑧̂
, 𝑒 in ppm, 𝜏feas in s.

Table 54: Performance measures for the optimization study presented in Sec. 8.2.

Case 𝑭𝑹∗ 𝑺𝑹∗∗ 𝑪relation 𝝉
∗
feas in h

(a) 1 1 0.996 47.28
(b) 1 0.20 1.000 43.07
(c1) 1 0.80 1.000 11.61
(c2) 1 0.60 1.000 13.26

* with 𝛿feas acc. to the defined constraint tolerance.
** with 𝛿success = 0.005 ⋅ 𝐶sum (𝒕opt), where 𝒕opt are the solutions obtained for the best runs (see Tbl. 55).

Table 55: Comparison of costs and nc-rates for initially and optimally allocated tolerances for

the optimization study presented in Sec. 8.2 .

𝑪sum 𝒛̂asm 𝒛̂1 𝒛̂2 𝒛̂3

Initial 683.73 8,000 3,900 3,400 4,700
Optimal, (𝑎) 𝑟 = 5 622.63 2,700 1,500 600 1,100

- 𝐶
opt
sum in MU, 𝑧̂1, 𝑧̂2, 𝑧̂3, 𝑧̂asm in ppm.
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Table 56: Least-cost tolerances obtained in the best runs for the study in Sec. 8.2.

𝒍 𝒖 𝒊 𝒕init𝒍,𝒖,𝒊 𝒕
opt
𝒍,𝒖,𝒊

1

1 1 0.300 0.300

2
2 0.018 0.018
1 0.300 0.300

3 1 0.100 0.100

2

1 1 0.018 0.018

2 1 0.300 0.240

3
2 0.011 0.011
1 0.103 0.200

4 1 0.205 0.240

5 1 0.205 0.078

6
2 0.018 0.018
1 0.304 0.226

7 1 0.205 0.078

4

1 1 0.011 0.011

2 1 0.105 0.200

3 1 0.105 0.200

4
2 0.011 0.011
1 0.053 0.096

6
1 1 0.008 0.008

2 1 0.011 0.011

8
1 1 0.008 0.008

2 1 0.011 0.011

9

1 1 0.105 0.200

2
2 0.025 0.025
1 0.206 0.096

3
2 0.025 0.025
1 0.113 0.200

4
3 0.016 0.016
1 0.104 0.200
2 0.006 0.008

5
3 0.016 0.016
1 0.110 0.114
2 0.006 0.008

6
3 0.016 0.016
1 0.104 0.090
2 0.006 0.008

7 1 0.205 0.314

8
3 0.016 0.016
1 0.104 0.090
2 0.006 0.008

9 1 0.205 0.314

10 1 0.103 0.194

11
2 0.200 0.200
1 0.203 0.393

12
2 0.200 0.200
1 0.203 0.393
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11

1
3 0.030 0.030
1 0.104 0.163
2 0.009 0.015

2 1 0.105 0.186

3
2 0.030 0.030
1 0.009 0.015

4 1 0.105 0.186

5 1 0.205 0.400

12
1 1 0.012 0.012

2 1 0.013 0.013

13
1 1 0.012 0.012

2 1 0.013 0.013

17

1 1 0.016 0.016

2 1 0.205 0.400

3 1 0.018 0.018

4 1 0.106 0.170

5 1 0.204 0.218

18

1 1 0.016 0.016

2 1 0.205 0.400

3 1 0.018 0.018

4 1 0.106 0.170

5 1 0.204 0.218

19

1 1 0.053 0.073

2 1 0.205 0.027

3 1 0.105 0.200

4 1 0.203 0.389

20

1 1 0.053 0.073

2 1 0.205 0.027

3 1 0.105 0.200

4 1 0.203 0.389

27

1 1 0.300 0.300

2
2 0.018 0.018
1 0.300 0.300

3 1 0.100 0.100

- 𝑡
init/opt
𝑙,𝑢,𝑖 : initial/optimal part tolerance 𝑖 for feature 𝑢 of part 𝑙 in mm.
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A.10 Information on used software and working systems

Software:

• MathWorks®MATrix LABoratory (MATLAB®) R2022b: Programming lan-
guage and computing environment used for the analysis and optimization
studies and implementation and application of the total framework

• Siemens Teamcenter®Visualization MockUp Version 14.2 including Varia-
tion Analysis (TCVisVA) application: MCS-based tolerance analysis soft-
ware

• Siemens NX™ Version 2008: CAD/CAM/CAE-system used to create part
and assembly models using PMI and export it in JT™-data format serving
as an input for TCVisVA

Optimization algorithms:

• Genetic algorithm (GA): Global Optimization Toolbox
• Cuckoo Search algorithm (CS): Modified implementation of code published
in [450]

Workstations:
OS: Windows 10 Enterprise 21H2, 64-Bit
CPU: Intel®Core ™i5-9400 CPU @ 2.90GHz
RAM: 16 GB
Graphics card: Nividia® Quadro P400

A.11 Image credits

• Cover figure: The DNA-helix is inspired by a picture freely shared by Pub-
licDomainPictures on Pixabay: https://pixabay.com/de/illustrations/dna-
biologie-wissenschaft-dna-helix-163710/. Accessed on: 30.09.2022.

• Fig. 29: Knuckle joint assembly adopted from [203], racing seat mounting
assembly adopted from [183].

• Fig. 45(b): Tolerance specification of shaft adopted from [794].
• Fig. 45(c): Example of slurry pump inspired by [795].
Accessed on: 05.12.2022.
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tungslasern unter Einsatz von 
adaptiven Optiken 
LFT, 140 Seiten, 64 Bilder, 3 Tab. 
1998. ISBN 3-87525-106-7. 

Band 82: Armando Walter Co-
lombo 
Development and Implementation 
of Hierarchical Control Structures 
of Flexible Production Systems Us-
ing High Level Petri Nets 
FAPS, 216 Seiten, 86 Bilder. 1998. 
ISBN 3-87525-109-1. 

Band 83: Otto Meedt 
Effizienzsteigerung bei Demontage 
und Recycling durch flexible De-
montagetechnologien und opti-
mierte Produktgestaltung 
FAPS, 186 Seiten, 103 Bilder. 1998. 
ISBN 3-87525-108-3. 

Band 84: Knuth Götz 
Modelle und effiziente Modellbil-
dung zur Qualitätssicherung in der 
Elektronikproduktion 
FAPS, 212 Seiten, 129 Bilder, 24 
Tab. 1998. ISBN 3-87525-112-1. 

Band 85: Ralf Luchs 
Einsatzmöglichkeiten leitender 
Klebstoffe zur zuverlässigen Kon-
taktierung elektronischer Bauele-
mente in der SMT 
FAPS, 176 Seiten, 126 Bilder, 30 
Tab. 1998. ISBN 3-87525-113-7. 

Band 86: Frank Pöhlau 
Entscheidungsgrundlagen zur Ein-
führung räumlicher spritzgegosse-
ner Schaltungsträger (3-D MID) 
FAPS, 144 Seiten, 99 Bilder. 1999. 
ISBN 3-87525-114-8. 

Band 87: Roland T. A. Kals 
Fundamentals on the miniaturiza-
tion of sheet metal working pro-
cesses 
LFT, 128 Seiten, 58 Bilder, 11 Tab. 
1999. ISBN 3-87525-115-6. 

Band 88: Gerhard Luhn 
Implizites Wissen und technisches 
Handeln am Beispiel der Elektro-
nikproduktion 
FAPS, 252 Seiten, 61 Bilder, 1 Tab. 
1999. ISBN 3-87525-116-4. 

Band 89: Axel Sprenger 
Adaptives Streckbiegen von Alu-
minium-Strangpreßprofilen 
LFT, 114 Seiten, 63 Bilder, 4 Tab. 
1999. ISBN 3-87525-117-2. 

Band 90: Hans-Jörg Pucher 
Untersuchungen zur Prozeßfolge 
Umformen, Bestücken und Laser-
strahllöten von Mikrokontakten 
LFT, 158 Seiten, 69 Bilder, 9 Tab. 
1999. ISBN 3-87525-119-9. 

Band 91: Horst Arnet 
Profilbiegen mit kinematischer Ge-
stalterzeugung 
LFT, 128 Seiten, 67 Bilder, 7 Tab. 
1999. ISBN 3-87525-120-2. 

Band 92: Doris Schubart 
Prozeßmodellierung und Techno-
logieentwicklung beim Abtragen 
mit CO2-Laserstrahlung 
LFT, 133 Seiten, 57 Bilder, 13 Tab. 
1999. ISBN 3-87525-122-9. 

Band 93: Adrianus L. P. 
Coremans 
Laserstrahlsintern von Metallpul-
ver - Prozeßmodellierung, System-
technik, Eigenschaften laserstrahl-
gesinterter Metallkörper  
LFT, 184 Seiten, 108 Bilder, 12 Tab. 
1999. ISBN 3-87525-124-5. 

Band 94: Hans-Martin Biehler 
Optimierungskonzepte für Quali-
tätsdatenverarbeitung und Infor-
mationsbereitstellung in der Elekt-
ronikfertigung  
FAPS, 194 Seiten, 105 Bilder. 1999. 
ISBN 3-87525-126-1. 

Band 95: Wolfgang Becker 
Oberflächenausbildung und tribo-
logische Eigenschaften excimerla-
serstrahlbearbeiteter Hochleis-
tungskeramiken  
LFT, 175 Seiten, 71 Bilder, 3 Tab. 
1999. ISBN 3-87525-127-X. 

Band 96: Philipp Hein 
Innenhochdruck-Umformen von 
Blechpaaren: Modellierung, Pro-
zeßauslegung und Prozeßführung  
LFT, 129 Seiten, 57 Bilder, 7 Tab. 
1999. ISBN 3-87525-128-8. 

Band 97: Gunter Beitinger 
Herstellungs- und Prüfverfahren 
für thermoplastische Schaltungs-
träger 
FAPS, 169 Seiten, 92 Bilder, 20 Tab. 
1999. ISBN 3-87525-129-6. 

Band 98: Jürgen Knoblach 
Beitrag zur rechnerunterstützten 
verursachungsgerechten Ange-
botskalkulation von Blechteilen 
mit Hilfe wissensbasierter Metho-
den 
LFT, 155 Seiten, 53 Bilder, 26 Tab. 
1999. ISBN 3-87525-130-X. 

Band 99: Frank Breitenbach 
Bildverarbeitungssystem zur Erfas-
sung der Anschlußgeometrie 
elektronischer SMT-Bauelemente 
LFT, 147 Seiten, 92 Bilder, 12 Tab. 
2000. ISBN 3-87525-131-8. 

Band 100: Bernd Falk 
Simulationsbasierte Lebensdauer-
vorhersage für Werkzeuge der 
Kaltmassivumformung  
LFT, 134 Seiten, 44 Bilder, 15 Tab. 
2000. ISBN 3-87525-136-9. 

Band 101: Wolfgang Schlögl 
Integriertes Simulationsdaten-Ma-
nagement für Maschinenentwick-
lung und Anlagenplanung 
FAPS, 169 Seiten, 101 Bilder, 20 
Tab. 2000. ISBN 3-87525-137-7. 

Band 102: Christian Hinsel  
Ermüdungsbruchversagen hart-
stoffbeschichteter Werkzeugstähle 
in der Kaltmassivumformung  
LFT, 130 Seiten, 80 Bilder, 14 Tab. 
2000. ISBN 3-87525-138-5. 

Band 103: Stefan Bobbert 
Simulationsgestützte Prozessausle-
gung für das Innenhochdruck-Um-
formen von Blechpaaren 
LFT, 123 Seiten, 77 Bilder. 2000. 
ISBN 3-87525-145-8. 



Band 104: Harald Rottbauer 
Modulares Planungswerkzeug zum 
Produktionsmanagement in der 
Elektronikproduktion 
FAPS, 166 Seiten, 106 Bilder. 2001. 
ISBN 3-87525-139-3. 

Band 105: Thomas Hennige 
Flexible Formgebung von Blechen 
durch Laserstrahlumformen  
LFT, 119 Seiten, 50 Bilder. 2001. 
ISBN 3-87525-140-7. 

Band 106: Thomas Menzel 
Wissensbasierte Methoden für die 
rechnergestützte Charakterisie-
rung und Bewertung innovativer 
Fertigungsprozesse 
LFT, 152 Seiten, 71 Bilder. 2001. 
ISBN 3-87525-142-3. 

Band 107: Thomas Stöckel 
Kommunikationstechnische In-
tegration der Prozeßebene in Pro-
duktionssysteme durch Middle-
ware-Frameworks  
FAPS, 147 Seiten, 65 Bilder, 5 Tab. 
2001. ISBN 3-87525-143-1. 

Band 108: Frank Pitter 
Verfügbarkeitssteigerung von 
Werkzeugmaschinen durch Ein-
satz mechatronischer Sensorlösun-
gen  
FAPS, 158 Seiten, 131 Bilder, 8 Tab. 
2001. ISBN 3-87525-144-X. 

Band 109: Markus Korneli 
Integration lokaler CAP-Systeme 
in einen globalen Fertigungsdaten-
verbund 
FAPS, 121 Seiten, 53 Bilder, 11 Tab. 
2001. ISBN 3-87525-146-6. 

Band 110: Burkhard Müller 
Laserstrahljustieren mit Excimer-
Lasern - Prozeßparameter und 
Modelle zur Aktorkonstruktion 
LFT, 128 Seiten, 36 Bilder, 9 Tab. 
2001. ISBN 3-87525-159-8. 

Band 111: Jürgen Göhringer 
Integrierte Telediagnose via Inter-
net zum effizienten Service von 
Produktionssystemen 
FAPS, 178 Seiten, 98 Bilder, 5 Tab. 
2001. ISBN 3-87525-147-4. 

Band 112: Robert Feuerstein 
Qualitäts- und kosteneffiziente In-
tegration neuer Bauelementetech-
nologien in die Flachbaugruppen-
fertigung 
FAPS, 161 Seiten, 99 Bilder, 10 Tab. 
2001. ISBN 3-87525-151-2. 

Band 113: Marcus Reichenberger  
Eigenschaften und Einsatzmög-
lichkeiten alternativer Elektronik-
lote in der Oberflächenmontage 
(SMT) 
FAPS, 165 Seiten, 97 Bilder, 18 Tab. 
2001. ISBN 3-87525-152-0. 

Band 114: Alexander Huber 
Justieren vormontierter Systeme 
mit dem Nd:YAG-Laser unter Ein-
satz von Aktoren 
LFT, 122 Seiten, 58 Bilder, 5 Tab. 
2001. ISBN 3-87525-153-9. 

Band 115: Sami Krimi 
Analyse und Optimierung von 
Montagesystemen in der Elektro-
nikproduktion 
FAPS, 155 Seiten, 88 Bilder, 3 Tab. 
2001. ISBN 3-87525-157-1. 

Band 116: Marion Merklein 
Laserstrahlumformen von Alumi-
niumwerkstoffen - Beeinflussung 
der Mikrostruktur und der mecha-
nischen Eigenschaften 
LFT, 122 Seiten, 65 Bilder, 15 Tab. 
2001. ISBN 3-87525-156-3. 

Band 117: Thomas Collisi 
Ein informationslogistisches Ar-
chitekturkonzept zur Akquisition 
simulationsrelevanter Daten  
FAPS, 181 Seiten, 105 Bilder, 7 Tab. 
2002. ISBN 3-87525-164-4. 

Band 118: Markus Koch 
Rationalisierung und ergonomi-
sche Optimierung im Innenausbau 
durch den Einsatz moderner Auto-
matisierungstechnik 
FAPS, 176 Seiten, 98 Bilder, 9 Tab. 
2002. ISBN 3-87525-165-2. 

Band 119: Michael Schmidt 
Prozeßregelung für das Laser-
strahl-Punktschweißen in der 
Elektronikproduktion 
LFT, 152 Seiten, 71 Bilder, 3 Tab. 
2002. ISBN 3-87525-166-0. 

Band 120: Nicolas Tiesler 
Grundlegende Untersuchungen 
zum Fließpressen metallischer 
Kleinstteile 
LFT, 126 Seiten, 78 Bilder, 12 Tab. 
2002. ISBN 3-87525-175-X. 

Band 121: Lars Pursche 
Methoden zur technologieorien-
tierten Programmierung für die  
3D-Lasermikrobearbeitung 
LFT, 111 Seiten, 39 Bilder, 0 Tab. 
2002. ISBN 3-87525-183-0. 

Band 122: Jan-Oliver Brassel 
Prozeßkontrolle beim Laserstrahl-
Mikroschweißen 
LFT, 148 Seiten, 72 Bilder, 12 Tab. 
2002. ISBN 3-87525-181-4. 

Band 123: Mark Geisel 
Prozeßkontrolle und -steuerung 
beim Laserstrahlschweißen mit 
den Methoden der nichtlinearen 
Dynamik 
LFT, 135 Seiten, 46 Bilder, 2 Tab. 
2002. ISBN 3-87525-180-6. 

Band 124: Gerd Eßer 
Laserstrahlunterstützte Erzeugung 
metallischer Leiterstrukturen auf 
Thermoplastsubstraten für die 
MID-Technik 
LFT, 148 Seiten, 60 Bilder, 6 Tab. 
2002. ISBN 3-87525-171-7. 

Band 125: Marc Fleckenstein 
Qualität laserstrahl-gefügter 
Mikroverbindungen elektronischer 
Kontakte 
LFT, 159 Seiten, 77 Bilder, 7 Tab. 
2002. ISBN 3-87525-170-9. 

Band 126: Stefan Kaufmann 
Grundlegende Untersuchungen 
zum Nd:YAG- Laserstrahlfügen 
von Silizium für Komponenten der 
Optoelektronik 
LFT, 159 Seiten, 100 Bilder, 6 Tab. 
2002. ISBN 3-87525-172-5. 

Band 127: Thomas Fröhlich 
Simultanes Löten von Anschluß-
kontakten elektronischer Bauele-
mente mit Diodenlaserstrahlung 
LFT, 143 Seiten, 75 Bilder, 6 Tab. 
2002. ISBN 3-87525-186-5. 



Band 128: Achim Hofmann 
Erweiterung der Formgebungs-
grenzen beim Umformen von Alu-
miniumwerkstoffen durch den 
Einsatz prozessangepasster Plati-
nen  
LFT, 113 Seiten, 58 Bilder, 4 Tab. 
2002. ISBN 3-87525-182-2. 

Band 129: Ingo Kriebitzsch 
3 - D MID Technologie in der Au-
tomobilelektronik 
FAPS, 129 Seiten, 102 Bilder, 10 
Tab. 2002. ISBN 3-87525-169-5. 

Band 130: Thomas Pohl 
Fertigungsqualität und Umform-
barkeit laserstrahlgeschweißter 
Formplatinen aus Aluminiumle-
gierungen 
LFT, 133 Seiten, 93 Bilder, 12 Tab. 
2002. ISBN 3-87525-173-3. 

Band 131: Matthias Wenk 
Entwicklung eines konfigurierba-
ren Steuerungssystems für die fle-
xible Sensorführung von Industrie-
robotern 
FAPS, 167 Seiten, 85 Bilder, 1 Tab. 
2002. ISBN 3-87525-174-1. 

Band 132: Matthias Negendanck 
Neue Sensorik und Aktorik für Be-
arbeitungsköpfe zum Laserstrahl-
schweißen 
LFT, 116 Seiten, 60 Bilder, 14 Tab. 
2002. ISBN 3-87525-184-9. 

Band 133: Oliver Kreis 
Integrierte Fertigung - Verfahrens-
integration durch Innenhoch-
druck-Umformen, Trennen und 
Laserstrahlschweißen in einem 
Werkzeug sowie ihre tele- und 
multimediale Präsentation  
LFT, 167 Seiten, 90 Bilder, 43 Tab. 
2002. ISBN 3-87525-176-8. 

Band 134: Stefan Trautner 
Technische Umsetzung produkt-
bezogener Instrumente der Um-
weltpolitik bei Elektro- und Elekt-
ronikgeräten 
FAPS, 179 Seiten, 92 Bilder, 11 Tab. 
2002. ISBN 3-87525-177-6. 

Band 135: Roland Meier 
Strategien für einen produktorien-
tierten Einsatz räumlicher spritz-
gegossener Schaltungsträger (3-D 
MID) 
FAPS, 155 Seiten, 88 Bilder, 14 Tab. 
2002. ISBN 3-87525-178-4. 

Band 136: Jürgen Wunderlich 
Kostensimulation - Simulationsba-
sierte Wirtschaftlichkeitsregelung 
komplexer Produktionssysteme 
FAPS, 202 Seiten, 119 Bilder, 17 Tab. 
2002. ISBN 3-87525-179-2. 

Band 137: Stefan Novotny 
Innenhochdruck-Umformen von 
Blechen aus Aluminium- und Mag-
nesiumlegierungen bei erhöhter 
Temperatur 
LFT, 132 Seiten, 82 Bilder, 6 Tab. 
2002. ISBN 3-87525-185-7. 

Band 138: Andreas Licha 
Flexible Montageautomatisierung 
zur Komplettmontage flächenhaf-
ter Produktstrukturen durch ko-
operierende Industrieroboter 
FAPS, 158 Seiten, 87 Bilder, 8 Tab. 
2003. ISBN 3-87525-189-X. 

Band 139: Michael Eisenbarth 
Beitrag zur Optimierung der Auf-
bau- und Verbindungstechnik für 
mechatronische Baugruppen 
FAPS, 207 Seiten, 141 Bilder, 9 Tab. 
2003. ISBN 3-87525-190-3. 

Band 140: Frank Christoph 
Durchgängige simulationsge-
stützte Planung von Fertigungs-
einrichtungen der Elektronikpro-
duktion  
FAPS, 187 Seiten, 107 Bilder, 9 Tab. 
2003. ISBN 3-87525-191-1. 

Band 141: Hinnerk Hagenah 
Simulationsbasierte Bestimmung 
der zu erwartenden Maßhaltigkeit 
für das Blechbiegen 
LFT, 131 Seiten, 36 Bilder, 26 Tab. 
2003. ISBN 3-87525-192-X. 

Band 142: Ralf Eckstein 
Scherschneiden und Biegen metal-
lischer Kleinstteile - Materialein-
fluss und Materialverhalten 
LFT, 148 Seiten, 71 Bilder, 19 Tab. 
2003. ISBN 3-87525-193-8. 

Band 143: Frank H. Meyer-
Pittroff  
Excimerlaserstrahlbiegen dünner 
metallischer Folien mit homoge-
ner Lichtlinie 
LFT, 138 Seiten, 60 Bilder, 16 Tab. 
2003. ISBN 3-87525-196-2. 

Band 144: Andreas Kach 
Rechnergestützte Anpassung von 
Laserstrahlschneidbahnen  
an Bauteilabweichungen 
LFT, 139 Seiten, 69 Bilder, 11 Tab. 
2004. ISBN 3-87525-197-0. 

Band 145: Stefan Hierl 
System- und Prozeßtechnik für das 
simultane Löten mit Diodenlaser-
strahlung von elektronischen Bau-
elementen  
LFT, 124 Seiten, 66 Bilder, 4 Tab. 
2004. ISBN 3-87525-198-9. 

Band 146: Thomas Neudecker 
Tribologische Eigenschaften kera-
mischer Blechumformwerkzeuge- 
Einfluss einer Oberflächenendbe-
arbeitung mittels Excimerlaser-
strahlung  
LFT, 166 Seiten, 75 Bilder, 26 Tab. 
2004. ISBN 3-87525-200-4. 

Band 147: Ulrich Wenger 
Prozessoptimierung in der Wickel-
technik durch innovative maschi-
nenbauliche und regelungstechni-
sche Ansätze  
FAPS, 132 Seiten, 88 Bilder, 0 Tab. 
2004. ISBN 3-87525-203-9. 

Band 148: Stefan Slama 
Effizienzsteigerung in der Montage 
durch marktorientierte Monta-
gestrukturen und erweiterte Mitar-
beiterkompetenz  
FAPS, 188 Seiten, 125 Bilder, 0 Tab. 
2004. ISBN 3-87525-204-7. 

Band 149: Thomas Wurm 
Laserstrahljustieren mittels Akto-
ren-Entwicklung von Konzepten 
und Methoden für die rechnerun-
terstützte Modellierung und Opti-
mierung von komplexen Aktorsys-
temen in der Mikrotechnik 
LFT, 122 Seiten, 51 Bilder, 9 Tab. 
2004. ISBN 3-87525-206-3. 



Band 150: Martino Celeghini 
Wirkmedienbasierte Blechumfor-
mung: Grundlagenuntersuchun-
gen zum Einfluss von Werkstoff 
und Bauteilgeometrie 
LFT, 146 Seiten, 77 Bilder, 6 Tab. 
2004. ISBN 3-87525-207-1. 

Band 151: Ralph Hohenstein 
Entwurf hochdynamischer Sensor- 
und Regelsysteme für die adapti-
veLaserbearbeitung 
LFT, 282 Seiten, 63 Bilder, 16 Tab. 
2004. ISBN 3-87525-210-1. 

Band 152: Angelika Hutterer 
Entwicklung prozessüberwachen-
der Regelkreise für flexible Form-
gebungsprozesse 
LFT, 149 Seiten, 57 Bilder, 2 Tab. 
2005. ISBN 3-87525-212-8. 

Band 153: Emil Egerer 
Massivumformen metallischer 
Kleinstteile bei erhöhter Prozess-
temperatur 
LFT, 158 Seiten, 87 Bilder, 10 Tab. 
2005. ISBN 3-87525-213-6. 

Band 154: Rüdiger Holzmann 
Strategien zur nachhaltigen Opti-
mierung von Qualität und Zuver-
lässigkeit in der Fertigung hochin-
tegrierter Flachbaugruppen 
FAPS, 186 Seiten, 99 Bilder, 19 Tab. 
2005. ISBN 3-87525-217-9. 

Band 155: Marco Nock 
Biegeumformen mit Elastomer-
werkzeugen Modellierung, Pro-
zessauslegung und Abgrenzung 
des Verfahrens am Beispiel des 
Rohrbiegens 
LFT, 164 Seiten, 85 Bilder, 13 Tab. 
2005. ISBN 3-87525-218-7. 

Band 156: Frank Niebling 
Qualifizierung einer Prozesskette 
zum Laserstrahlsintern metalli-
scher Bauteile  
LFT, 148 Seiten, 89 Bilder, 3 Tab. 
2005. ISBN 3-87525-219-5. 

Band 157: Markus Meiler  
Großserientauglichkeit trocken-
schmierstoffbeschichteter Alumi-
niumbleche im Presswerk Grund-
legende Untersuchungen zur Tri-
bologie, zum Umformverhalten 
und Bauteilversuche  
LFT, 104 Seiten, 57 Bilder, 21 Tab. 
2005. ISBN 3-87525-221-7. 

Band 158: Agus Sutanto 
Solution Approaches for Planning 
of Assembly Systems in Three-Di-
mensional Virtual Environments 
FAPS, 169 Seiten, 98 Bilder, 3 Tab. 
2005. ISBN 3-87525-220-9. 

Band 159: Matthias Boiger 
Hochleistungssysteme für die Fer-
tigung elektronischer Baugruppen 
auf der Basis flexibler Schaltungs-
träger 
FAPS, 175 Seiten, 111 Bilder, 8 Tab. 
2005. ISBN 3-87525-222-5. 

Band 160: Matthias Pitz 
Laserunterstütztes Biegen höchst-
fester Mehrphasenstähle 
LFT, 120 Seiten, 73 Bilder, 11 Tab. 
2005. ISBN 3-87525-223-3. 

Band 161: Meik Vahl 
Beitrag zur gezielten Beeinflussung 
des Werkstoffflusses beim Innen-
hochdruck-Umformen von Ble-
chen 
LFT, 165 Seiten, 94 Bilder, 15 Tab. 
2005. ISBN 3-87525-224-1. 

Band 162: Peter K. Kraus 
Plattformstrategien - Realisierung 
einer varianz- und kostenoptimier-
ten Wertschöpfung 
FAPS, 181 Seiten, 95 Bilder, 0 Tab. 
2005. ISBN 3-87525-226-8. 

Band 163: Adrienn Cser 
Laserstrahlschmelzabtrag - Pro-
zessanalyse und -modellierung 
LFT, 146 Seiten, 79 Bilder, 3 Tab. 
2005. ISBN 3-87525-227-6. 

Band 164: Markus C. Hahn 
Grundlegende Untersuchungen 
zur Herstellung von Leichtbauver-
bundstrukturen mit Aluminium-
schaumkern  
LFT, 143 Seiten, 60 Bilder, 16 Tab. 
2005. ISBN 3-87525-228-4. 

Band 165: Gordana Michos 
Mechatronische Ansätze zur Opti-
mierung von Vorschubachsen 
FAPS, 146 Seiten, 87 Bilder, 17 Tab. 
2005. ISBN 3-87525-230-6. 

Band 166: Markus Stark 
Auslegung und Fertigung hochprä-
ziser Faser-Kollimator-Arrays 
LFT, 158 Seiten, 115 Bilder, 11 Tab. 
2005. ISBN 3-87525-231-4. 

Band 167: Yurong Zhou 
Kollaboratives Engineering Ma-
nagement in der integrierten virtu-
ellen Entwicklung der Anlagen für 
die Elektronikproduktion 
FAPS, 156 Seiten, 84 Bilder, 6 Tab. 
2005. ISBN 3-87525-232-2. 

Band 168: Werner Enser 
Neue Formen permanenter und 
lösbarer elektrischer Kontaktie-
rungen für mechatronische Bau-
gruppen  
FAPS, 190 Seiten, 112 Bilder, 5 Tab. 
2005. ISBN 3-87525-233-0. 

Band 169: Katrin Melzer 
Integrierte Produktpolitik bei 
elektrischen und elektronischen 
Geräten zur Optimierung des Pro-
duct-Life-Cycle 
FAPS, 155 Seiten, 91 Bilder, 17 Tab. 
2005. ISBN 3-87525-234-9. 

Band 170: Alexander Putz 
Grundlegende Untersuchungen 
zur Erfassung der realen Vorspan-
nung von armierten Kaltfließpress-
werkzeugen mittels Ultraschall 
LFT, 137 Seiten, 71 Bilder, 15 Tab. 
2006. ISBN 3-87525-237-3. 

Band 171: Martin Prechtl 
Automatisiertes Schichtverfahren 
für metallische Folien - System- 
und Prozesstechnik 
LFT, 154 Seiten, 45 Bilder, 7 Tab. 
2006. ISBN 3-87525-238-1. 

Band 172: Markus Meidert 
Beitrag zur deterministischen Le-
bensdauerabschätzung von Werk-
zeugen der Kaltmassivumformung 
LFT, 131 Seiten, 78 Bilder, 9 Tab. 
2006. ISBN 3-87525-239-X. 

Band 173: Bernd Müller 
Robuste, automatisierte Montage-
systeme durch adaptive Prozess-
führung und montageübergrei-
fende Fehlerprävention am Bei-
spiel flächiger Leichtbauteile 
FAPS, 147 Seiten, 77 Bilder, 0 Tab. 
2006. ISBN 3-87525-240-3. 

Band 174: Alexander Hofmann 
Hybrides Laserdurchstrahlschwei-
ßen von Kunststoffen 
LFT, 136 Seiten, 72 Bilder, 4 Tab. 
2006. ISBN 978-3-87525-243-9. 



Band 175: Peter Wölflick 
Innovative Substrate und Prozesse 
mit feinsten Strukturen für blei-
freie Mechatronik-Anwendungen 
FAPS, 177 Seiten, 148 Bilder, 24 
Tab. 2006.  
ISBN 978-3-87525-246-0. 

Band 176: Attila Komlodi 
Detection and Prevention of Hot 
Cracks during Laser Welding of 
Aluminium Alloys Using Advanced 
Simulation Methods  
LFT, 155 Seiten, 89 Bilder, 14 Tab. 
2006. ISBN 978-3-87525-248-4. 

Band 177: Uwe Popp 
Grundlegende Untersuchungen 
zum Laserstrahlstrukturieren von 
Kaltmassivumformwerkzeugen 
LFT, 140 Seiten, 67 Bilder, 16 Tab. 
2006. ISBN 978-3-87525-249-1. 

Band 178: Veit Rückel 
Rechnergestützte Ablaufplanung 
und Bahngenerierung Für koope-
rierende Industrieroboter 
FAPS, 148 Seiten, 75 Bilder, 7 Tab. 
2006. ISBN 978-3-87525-250-7. 

Band 179: Manfred Dirscherl 
Nicht-thermische Mikrojustier-
technik mittels ultrakurzer Laser-
pulse 
LFT, 154 Seiten, 69 Bilder, 10 Tab. 
2007. ISBN 978-3-87525-251-4. 

Band 180: Yong Zhuo 
Entwurf eines rechnergestützten 
integrierten Systems für Konstruk-
tion und Fertigungsplanung räum-
licher spritzgegossener Schal-
tungsträger (3D-MID)  
FAPS, 181 Seiten, 95 Bilder, 5 Tab. 
2007. ISBN 978-3-87525-253-8. 

Band 181: Stefan Lang 
Durchgängige Mitarbeiterinforma-
tion zur Steigerung von Effizienz 
und Prozesssicherheit in der Pro-
duktion 
FAPS, 172 Seiten, 93 Bilder. 2007. 
ISBN 978-3-87525-257-6. 

Band 182: Hans-Joachim Krauß 
Laserstrahlinduzierte Pyrolyse prä-
keramischer Polymere 
LFT, 171 Seiten, 100 Bilder. 2007. 
ISBN 978-3-87525-258-3. 

Band 183: Stefan Junker 
Technologien und Systemlösungen 
für die flexibel automatisierte Be-
stückung permanent erregter Läu-
fer mit oberflächenmontierten 
Dauermagneten 
FAPS, 173 Seiten, 75 Bilder. 2007. 
ISBN 978-3-87525-259-0. 

Band 184: Rainer Kohlbauer 
Wissensbasierte Methoden für die 
simulationsgestützte Auslegung 
wirkmedienbasierter Blechum-
formprozesse 
LFT, 135 Seiten, 50 Bilder. 2007. 
ISBN 978-3-87525-260-6. 

Band 185: Klaus Lamprecht 
Wirkmedienbasierte Umformung 
tiefgezogener Vorformen unter be-
sonderer Berücksichtigung maßge-
schneiderter Halbzeuge 
LFT, 137 Seiten, 81 Bilder. 2007. 
ISBN 978-3-87525-265-1. 

Band 186: Bernd Zolleiß 
Optimierte Prozesse und Systeme 
für die Bestückung mechatroni-
scherBaugruppen 
FAPS, 180 Seiten, 117 Bilder. 2007. 
ISBN 978-3-87525-266-8. 

Band 187: Michael Kerausch 
Simulationsgestützte Prozessausle-
gung für das Umformen lokal wär-
mebehandelter Aluminiumplati-
nen 
LFT, 146 Seiten, 76 Bilder, 7 Tab. 
2007. ISBN 978-3-87525-267-5. 

Band 188: Matthias Weber 
Unterstützung der Wandlungsfä-
higkeit von Produktionsanlagen 
durch innovative Softwaresysteme 
FAPS, 183 Seiten, 122 Bilder, 3 Tab. 
2007. ISBN 978-3-87525-269-9. 

Band 189: Thomas Frick 
Untersuchung der prozessbestim-
menden Strahl-Stoff-Wechselwir-
kungen beim Laserstrahlschwei-
ßen von Kunststoffen 
LFT, 104 Seiten, 62 Bilder, 8 Tab. 
2007. ISBN 978-3-87525-268-2. 

Band 190: Joachim Hecht 
Werkstoffcharakterisierung und 
Prozessauslegung für die wirk-
medienbasierte Doppelblech-Um-
formung von Magnesiumlegierun-
gen 
LFT, 107 Seiten, 91 Bilder, 2 Tab. 
2007. ISBN 978-3-87525-270-5. 

Band 191: Ralf Völkl 
Stochastische Simulation zur 
Werkzeuglebensdaueroptimierung 
und Präzisionsfertigung in der 
Kaltmassivumformung 
LFT, 178 Seiten, 75 Bilder, 12 Tab. 
2008. ISBN 978-3-87525-272-9. 

Band 192: Massimo Tolazzi 
Innenhochdruck-Umformen ver-
stärkter Blech-Rahmenstrukturen 
LFT, 164 Seiten, 85 Bilder, 7 Tab. 
2008. ISBN 978-3-87525-273-6. 

Band 193: Cornelia Hoff 
Untersuchung der Prozesseinfluss-
größen beim Presshärten des 
höchstfesten Vergütungsstahls 
22MnB5  
LFT, 133 Seiten, 92 Bilder, 5 Tab. 
2008. ISBN 978-3-87525-275-0. 

Band 194: Christian Alvarez 
Simulationsgestützte Methoden 
zur effizienten Gestaltung von Löt-
prozessen in der Elektronikpro-
duktion 
FAPS, 149 Seiten, 86 Bilder, 8 Tab. 
2008. ISBN 978-3-87525-277-4. 

Band 195: Andreas Kunze 
Automatisierte Montage von mak-
romechatronischen Modulen zur 
flexiblen Integration in hybride 
Pkw-Bordnetzsysteme 
FAPS, 160 Seiten, 90 Bilder, 14 Tab. 
2008.  
ISBN 978-3-87525-278-1. 

Band 196: Wolfgang Hußnätter 
Grundlegende Untersuchungen 
zur experimentellen Ermittlung 
und zur Modellierung von Fließ-
ortkurven bei erhöhten Tempera-
turen  
LFT, 152 Seiten, 73 Bilder, 21 Tab. 
2008. ISBN 978-3-87525-279-8. 



Band 197: Thomas Bigl 
Entwicklung, angepasste Herstel-
lungsverfahren und erweiterte 
Qualitätssicherung von einsatzge-
rechten elektronischen Baugrup-
pen 
FAPS, 175 Seiten, 107 Bilder, 14 Tab. 
2008.  
ISBN 978-3-87525-280-4. 

Band 198: Stephan Roth 
Grundlegende Untersuchungen 
zum Excimerlaserstrahl-Abtragen 
unter Flüssigkeitsfilmen 
LFT, 113 Seiten, 47 Bilder, 14 Tab. 
2008. ISBN 978-3-87525-281-1. 

Band 199: Artur Giera 
Prozesstechnische Untersuchun-
gen zum Rührreibschweißen me-
tallischer Werkstoffe 
LFT, 179 Seiten, 104 Bilder, 36 Tab. 
2008. ISBN 978-3-87525-282-8. 

Band 200: Jürgen Lechler 
Beschreibung und Modellierung 
des Werkstoffverhaltens von press-
härtbaren Bor-Manganstählen 
LFT, 154 Seiten, 75 Bilder, 12 Tab. 
2009. ISBN 978-3-87525-286-6. 

Band 201: Andreas Blankl 
Untersuchungen zur Erhöhung der 
Prozessrobustheit bei der Innen-
hochdruck-Umformung von flä-
chigen Halbzeugen mit vor- bzw. 
nachgeschalteten Laserstrahlfüge-
operationen 
LFT, 120 Seiten, 68 Bilder, 9 Tab. 
2009. ISBN 978-3-87525-287-3. 

Band 202: Andreas Schaller 
Modellierung eines nachfrageori-
entierten Produktionskonzeptes 
für mobile Telekommunikations-
geräte 
FAPS, 120 Seiten, 79 Bilder, 0 Tab. 
2009. ISBN 978-3-87525-289-7. 

Band 203: Claudius Schimpf 
Optimierung von Zuverlässigkeits-
untersuchungen, Prüfabläufen und 
Nacharbeitsprozessen in der Elekt-
ronikproduktion 
FAPS, 162 Seiten, 90 Bilder, 14 Tab. 
2009.  
ISBN 978-3-87525-290-3. 

Band 204: Simon Dietrich 
Sensoriken zur Schwerpunktslage-
bestimmung der optischen Prozes-
semissionen beim Laserstrahltief-
schweißen 
LFT, 138 Seiten, 70 Bilder, 5 Tab. 
2009. ISBN 978-3-87525-292-7. 

Band 205: Wolfgang Wolf 
Entwicklung eines agentenbasier-
ten Steuerungssystems zur Materi-
alflussorganisation im wandelba-
ren Produktionsumfeld 
FAPS, 167 Seiten, 98 Bilder. 2009. 
ISBN 978-3-87525-293-4. 

Band 206: Steffen Polster  
Laserdurchstrahlschweißen trans-
parenter Polymerbauteile 
LFT, 160 Seiten, 92 Bilder, 13 Tab. 
2009. ISBN 978-3-87525-294-1. 

Band 207: Stephan Manuel Dörf-
ler 
Rührreibschweißen von walzplat-
tiertem Halbzeug und Aluminium-
blech zur Herstellung flächiger 
Aluminiumschaum-Sandwich-Ver-
bundstrukturen  
LFT, 190 Seiten, 98 Bilder, 5 Tab. 
2009. ISBN 978-3-87525-295-8. 

Band 208: Uwe Vogt 
Seriennahe Auslegung von Alumi-
nium Tailored Heat Treated 
Blanks 
LFT, 151 Seiten, 68 Bilder, 26 Tab. 
2009. ISBN 978-3-87525-296-5. 

Band 209: Till Laumann 
Qualitative und quantitative Be-
wertung der Crashtauglichkeit von 
höchstfesten Stählen 
LFT, 117 Seiten, 69 Bilder, 7 Tab. 
2009. ISBN 978-3-87525-299-6. 

Band 210: Alexander Diehl 
Größeneffekte bei Biegeprozessen- 
Entwicklung einer Methodik zur 
Identifikation und Quantifizierung  
LFT, 180 Seiten, 92 Bilder, 12 Tab. 
2010. ISBN 978-3-87525-302-3. 

Band 211: Detlev Staud 
Effiziente Prozesskettenauslegung 
für das Umformen lokal wärmebe-
handelter und geschweißter Alu-
miniumbleche 
LFT, 164 Seiten, 72 Bilder, 12 Tab. 
2010. ISBN 978-3-87525-303-0. 

Band 212: Jens Ackermann 
Prozesssicherung beim Laser-
durchstrahlschweißen thermoplas-
tischer Kunststoffe 
LPT, 129 Seiten, 74 Bilder, 13 Tab. 
2010. ISBN 978-3-87525-305-4. 

Band 213: Stephan Weidel 
Grundlegende Untersuchungen 
zum Kontaktzustand zwischen 
Werkstück und Werkzeug bei um-
formtechnischen Prozessen unter 
tribologischen Gesichtspunkten  
LFT, 144 Seiten, 67 Bilder, 11 Tab. 
2010. ISBN 978-3-87525-307-8. 

Band 214: Stefan Geißdörfer 
Entwicklung eines mesoskopi-
schen Modells zur Abbildung von 
Größeneffekten in der Kaltmassiv-
umformung mit Methoden der FE-
Simulation 
LFT, 133 Seiten, 83 Bilder, 11 Tab. 
2010. ISBN 978-3-87525-308-5. 

Band 215: Christian Matzner 
Konzeption produktspezifischer 
Lösungen zur Robustheitssteige-
rung elektronischer Systeme gegen 
die Einwirkung von Betauung im 
Automobil 
FAPS, 165 Seiten, 93 Bilder, 14 Tab. 
2010. ISBN 978-3-87525-309-2. 

Band 216: Florian Schüßler 
Verbindungs- und Systemtechnik 
für thermisch hochbeanspruchte 
und miniaturisierte elektronische 
Baugruppen 
FAPS, 184 Seiten, 93 Bilder, 18 Tab. 
2010. 
ISBN 978-3-87525-310-8. 

Band 217: Massimo Cojutti 
Strategien zur Erweiterung der 
Prozessgrenzen bei der Innhoch-
druck-Umformung von Rohren 
und Blechpaaren 
LFT, 125 Seiten, 56 Bilder, 9 Tab. 
2010. ISBN 978-3-87525-312-2. 

Band 218: Raoul Plettke 
Mehrkriterielle Optimierung kom-
plexer Aktorsysteme für das Laser-
strahljustieren 
LFT, 152 Seiten, 25 Bilder, 3 Tab. 
2010. ISBN 978-3-87525-315-3. 



Band 219: Andreas Dobroschke 
Flexible Automatisierungslösun-
gen für die Fertigung wickeltechni-
scher Produkte 
FAPS, 184 Seiten, 109 Bilder, 18 
Tab. 2011. 
ISBN 978-3-87525-317-7. 

Band 220: Azhar Zam 
Optical Tissue Differentiation for 
Sensor-Controlled Tissue-Specific 
Laser Surgery 
LPT, 99 Seiten, 45 Bilder, 8 Tab. 
2011. ISBN 978-3-87525-318-4. 

Band 221: Michael Rösch 
Potenziale und Strategien zur Op-
timierung des Schablonendruck-
prozesses in der Elektronikpro-
duktion  
FAPS, 192 Seiten, 127 Bilder, 19 Tab. 
2011. 
ISBN 978-3-87525-319-1. 

Band 222: Thomas Rechtenwald 
Quasi-isothermes Laserstrahlsin-
tern von Hochtemperatur-Ther-
moplasten - Eine Betrachtung 
werkstoff-prozessspezifischer As-
pekte am Beispiel PEEK  
LPT, 150 Seiten, 62 Bilder, 8 Tab. 
2011. ISBN 978-3-87525-320-7. 

Band 223: Daniel Craiovan 
Prozesse und Systemlösungen für 
die SMT-Montage optischer Bau-
elemente auf Substrate mit inte-
grierten Lichtwellenleitern 
FAPS, 165 Seiten, 85 Bilder, 8 Tab. 
2011. ISBN 978-3-87525-324-5. 

Band 224: Kay Wagner 
Beanspruchungsangepasste Kalt-
massivumformwerkzeuge durch 
lokal optimierte Werkzeugoberflä-
chen 
LFT, 147 Seiten, 103 Bilder, 17 Tab. 
2011. ISBN 978-3-87525-325-2. 

Band 225: Martin Brandhuber 
Verbesserung der Prognosegüte 
des Versagens von Punktschweiß-
verbindungen bei höchstfesten 
Stahlgüten 
LFT, 155 Seiten, 91 Bilder, 19 Tab. 
2011. ISBN 978-3-87525-327-6. 

Band 226: Peter Sebastian Feu-
ser 
Ein Ansatz zur Herstellung von 
pressgehärteten Karosseriekompo-
nenten mit maßgeschneiderten 
mechanischen Eigenschaften: 
Temperierte Umformwerkzeuge. 
Prozessfenster, Prozesssimuation 
und funktionale Untersuchung 
LFT, 195 Seiten, 97 Bilder, 60 Tab. 
2012. ISBN 978-3-87525-328-3. 

Band 227: Murat Arbak 
Material Adapted Design of Cold 
Forging Tools Exemplified by Pow-
der Metallurgical Tool Steels and 
Ceramics 
LFT, 109 Seiten, 56 Bilder, 8 Tab. 
2012. ISBN 978-3-87525-330-6. 

Band 228: Indra Pitz 
Beschleunigte Simulation des La-
serstrahlumformens von Alumini-
umblechen 
LPT, 137 Seiten, 45 Bilder, 27 Tab. 
2012. ISBN 978-3-87525-333-7. 

Band 229: Alexander Grimm 
Prozessanalyse und -überwachung 
des Laserstrahlhartlötens mittels 
optischer Sensorik 
LPT, 125 Seiten, 61 Bilder, 5 Tab. 
2012. ISBN 978-3-87525-334-4. 

Band 230: Markus Kaupper 
Biegen von höhenfesten Stahl-
blechwerkstoffen - Umformverhal-
ten und Grenzen der Biegbarkeit 
LFT, 160 Seiten, 57 Bilder, 10 Tab. 
2012. ISBN 978-3-87525-339-9. 

Band 231: Thomas Kroiß 
Modellbasierte Prozessauslegung 
für die Kaltmassivumformung un-
ter Brücksichtigung der Werk-
zeug- und Pressenauffederung 
LFT, 169 Seiten, 50 Bilder, 19 Tab. 
2012. ISBN 978-3-87525-341-2. 

Band 232: Christian Goth 
Analyse und Optimierung der Ent-
wicklung und Zuverlässigkeit 
räumlicher Schaltungsträger (3D-
MID) 
FAPS, 176 Seiten, 102 Bilder, 22 
Tab. 2012. 
ISBN 978-3-87525-340-5. 

Band 233: Christian Ziegler 
Ganzheitliche Automatisierung 
mechatronischer Systeme in der 
Medizin am Beispiel Strahlenthe-
rapie 
FAPS, 170 Seiten, 71 Bilder, 19 Tab. 
2012. ISBN 978-3-87525-342-9. 

Band 234: Florian Albert 
Automatisiertes Laserstrahllöten 
und -reparaturlöten elektronischer 
Baugruppen 
LPT, 127 Seiten, 78 Bilder, 11 Tab. 
2012. ISBN 978-3-87525-344-3. 

Band 235: Thomas Stöhr 
Analyse und Beschreibung des me-
chanischen Werkstoffverhaltens 
von presshärtbaren Bor-Mangan-
stählen 
LFT, 118 Seiten, 74 Bilder, 18 Tab. 
2013. ISBN 978-3-87525-346-7. 

Band 236: Christian Kägeler 
Prozessdynamik beim Laserstrahl-
schweißen verzinkter Stahlbleche 
im Überlappstoß 
LPT, 145 Seiten, 80 Bilder, 3 Tab. 
2013. ISBN 978-3-87525-347-4. 

Band 237: Andreas Sulzberger 
Seriennahe Auslegung der Prozess-
kette zur wärmeunterstützten Um-
formung von Aluminiumblech-
werkstoffen 
LFT, 153 Seiten, 87 Bilder, 17 Tab. 
2013. ISBN 978-3-87525-349-8. 

Band 238: Simon Opel 
Herstellung prozessangepasster 
Halbzeuge mit variabler Blechdi-
cke durch die Anwendung von 
Verfahren der Blechmassivumfor-
mung 
LFT, 165 Seiten, 108 Bilder, 27 Tab. 
2013. ISBN 978-3-87525-350-4. 

Band 239: Rajesh Kanawade 
In-vivo Monitoring of Epithelium 
Vessel and Capillary Density for 
the Application of Detection of 
Clinical Shock and Early Signs of 
Cancer Development 
LPT, 124 Seiten, 58 Bilder, 15 Tab. 
2013. ISBN 978-3-87525-351-1. 

Band 240: Stephan Busse 
Entwicklung und Qualifizierung 
eines Schneidclinchverfahrens 
LFT, 119 Seiten, 86 Bilder, 20 Tab. 
2013. ISBN 978-3-87525-352-8. 



Band 241: Karl-Heinz Leitz 
Mikro- und Nanostrukturierung 
mit kurz und ultrakurz gepulster 
Laserstrahlung 
LPT, 154 Seiten, 71 Bilder, 9 Tab. 
2013. ISBN 978-3-87525-355-9. 

Band 242: Markus Michl 
Webbasierte Ansätze zur ganzheit-
lichen technischen Diagnose 
FAPS, 182 Seiten, 62 Bilder, 20 Tab. 
2013. 
ISBN 978-3-87525-356-6. 

Band 243: Vera Sturm 
Einfluss von Chargenschwankun-
gen auf die Verarbeitungsgrenzen 
von Stahlwerkstoffen 
LFT, 113 Seiten, 58 Bilder, 9 Tab. 
2013. ISBN 978-3-87525-357-3. 

Band 244: Christian Neudel 
Mikrostrukturelle und mecha-
nisch-technologische Eigenschaf-
ten widerstandspunktgeschweiß-
ter Aluminium-Stahl-Verbindun-
gen für den Fahrzeugbau 
LFT, 178 Seiten, 171 Bilder, 31 Tab. 
2014. ISBN 978-3-87525-358-0. 

Band 245: Anja Neumann 
Konzept zur Beherrschung der 
Prozessschwankungen im Press-
werk 
LFT, 162 Seiten, 68 Bilder, 15 Tab. 
2014. ISBN 978-3-87525-360-3. 

Band 246: Ulf-Hermann Quen-
tin 
Laserbasierte Nanostrukturierung 
mit optisch positionierten Mikro-
linsen 
LPT, 137 Seiten, 89 Bilder, 6 Tab. 
2014. ISBN 978-3-87525-361-0. 

Band 247: Erik Lamprecht 
Der Einfluss der Fertigungsverfah-
ren auf die Wirbelstromverluste 
von Stator-Einzelzahnblechpake-
ten für den Einsatz in Hybrid- und 
Elektrofahrzeugen 
FAPS, 148 Seiten, 138 Bilder, 4 Tab. 
2014. ISBN 978-3-87525-362-7. 

Band 248: Sebastian Rösel 
Wirkmedienbasierte Umformung 
von Blechhalbzeugen unter An-
wendung magnetorheologischer 
Flüssigkeiten als kombiniertes 
Wirk- und Dichtmedium 
LFT, 148 Seiten, 61 Bilder, 12 Tab. 
2014. ISBN 978-3-87525-363-4. 

Band 249: Paul Hippchen 
Simulative Prognose der Geomet-
rie indirekt pressgehärteter Karos-
seriebauteile für die industrielle 
Anwendung 
LFT, 163 Seiten, 89 Bilder, 12 Tab. 
2014. ISBN 978-3-87525-364-1. 

Band 250: Martin Zubeil 
Versagensprognose bei der Pro-
zesssimulation von Biegeumform- 
und Falzverfahren 
LFT, 171 Seiten, 90 Bilder, 5 Tab. 
2014. ISBN 978-3-87525-365-8. 

Band 251: Alexander Kühl 
Flexible Automatisierung der Sta-
torenmontage mit Hilfe einer uni-
versellen ambidexteren Kinematik 
FAPS, 142 Seiten, 60 Bilder, 26 Tab. 
2014. 
ISBN 978-3-87525-367-2. 

Band 252: Thomas Albrecht 
Optimierte Fertigungstechnolo-
gien für Rotoren getriebeintegrier-
ter PM-Synchronmotoren von 
Hybridfahrzeugen 
FAPS, 198 Seiten, 130 Bilder, 38 
Tab. 2014. 
ISBN 978-3-87525-368-9. 

Band 253: Florian Risch 
Planning and Production Concepts 
for Contactless Power Transfer 
Systems for Electric Vehicles 
FAPS, 185 Seiten, 125 Bilder, 13 Tab. 
2014. 
ISBN 978-3-87525-369-6. 

Band 254: Markus Weigl 
Laserstrahlschweißen von Misch-
verbindungen aus austenitischen 
und ferritischen korrosionsbestän-
digen Stahlwerkstoffen 
LPT, 184 Seiten, 110 Bilder, 6 Tab. 
2014. ISBN 978-3-87525-370-2. 

Band 255: Johannes Noneder 
Beanspruchungserfassung für die 
Validierung von FE-Modellen zur 
Auslegung von Massivumform-
werkzeugen 
LFT, 161 Seiten, 65 Bilder, 14 Tab. 
2014. ISBN 978-3-87525-371-9. 

Band 256: Andreas Reinhardt 
Ressourceneffiziente Prozess- und 
Produktionstechnologie für fle-
xible Schaltungsträger 
FAPS, 123 Seiten, 69 Bilder, 19 Tab. 
2014. ISBN 978-3-87525-373-3. 

Band 257: Tobias Schmuck 
Ein Beitrag zur effizienten Gestal-
tung globaler Produktions- und 
Logistiknetzwerke mittels Simula-
tion 
FAPS, 151 Seiten, 74 Bilder. 2014. 
ISBN 978-3-87525-374-0. 

Band 258: Bernd Eichenhüller 
Untersuchungen der Effekte und 
Wechselwirkungen charakteristi-
scher Einflussgrößen auf das Um-
formverhalten bei Mikroumform-
prozessen 
LFT, 127 Seiten, 29 Bilder, 9 Tab. 
2014. ISBN 978-3-87525-375-7. 

Band 259: Felix Lütteke 
Vielseitiges autonomes Transport-
system basierend auf Weltmo-
dellerstellung mittels Datenfusion 
von Deckenkameras und Fahr-
zeugsensoren 
FAPS, 152 Seiten, 54 Bilder, 20 Tab. 
2014. 
ISBN 978-3-87525-376-4. 

Band 260: Martin Grüner 
Hochdruck-Blechumformung mit 
formlos festen Stoffen als Wirkme-
dium 
LFT, 144 Seiten, 66 Bilder, 29 Tab. 
2014. ISBN 978-3-87525-379-5. 

Band 261: Christian Brock 
Analyse und Regelung des Laser-
strahltiefschweißprozesses durch 
Detektion der Metalldampffackel-
position 
LPT, 126 Seiten, 65 Bilder, 3 Tab. 
2015. ISBN 978-3-87525-380-1. 

Band 262: Peter Vatter 
Sensitivitätsanalyse des 3-Rollen-
Schubbiegens auf Basis der Finite 
Elemente Methode 
LFT, 145 Seiten, 57 Bilder, 26 Tab. 
2015. ISBN 978-3-87525-381-8. 

Band 263: Florian Klämpfl 
Planung von Laserbestrahlungen 
durch simulationsbasierte Opti-
mierung 
LPT, 169 Seiten, 78 Bilder, 32 Tab. 
2015. ISBN 978-3-87525-384-9. 



Band 264: Matthias Domke 
Transiente physikalische Mecha-
nismen bei der Laserablation von 
dünnen Metallschichten 
LPT, 133 Seiten, 43 Bilder, 3 Tab. 
2015. ISBN 978-3-87525-385-6. 

Band 265: Johannes Götz 
Community-basierte Optimierung 
des Anlagenengineerings 
FAPS, 177 Seiten, 80 Bilder, 30 Tab. 
2015. 
ISBN 978-3-87525-386-3. 

Band 266: Hung Nguyen 
Qualifizierung des Potentials von 
Verfestigungseffekten zur Erweite-
rung des Umformvermögens aus-
härtbarer Aluminiumlegierungen 
LFT, 137 Seiten, 57 Bilder, 16 Tab. 
2015. ISBN 978-3-87525-387-0. 

Band 267: Andreas Kuppert 
Erweiterung und Verbesserung 
von Versuchs- und Auswertetech-
niken für die Bestimmung von 
Grenzformänderungskurven 
LFT, 138 Seiten, 82 Bilder, 2 Tab. 
2015. ISBN 978-3-87525-388-7. 

Band 268: Kathleen Klaus 
Erstellung eines Werkstofforien-
tierten Fertigungsprozessfensters 
zur Steigerung des Formgebungs-
vermögens von Alumi-niumlegie-
rungen unter Anwendung einer 
zwischengeschalteten Wärmebe-
handlung 
LFT, 154 Seiten, 70 Bilder, 8 Tab. 
2015. ISBN 978-3-87525-391-7. 

Band 269: Thomas Svec 
Untersuchungen zur Herstellung 
von funktionsoptimierten Bautei-
len im partiellen Presshärtprozess 
mittels lokal unterschiedlich tem-
perierter Werkzeuge 
LFT, 166 Seiten, 87 Bilder, 15 Tab. 
2015. ISBN 978-3-87525-392-4. 

Band 270: Tobias Schrader 
Grundlegende Untersuchungen 
zur Verschleißcharakterisierung 
beschichteter Kaltmassivumform-
werkzeuge 
LFT, 164 Seiten, 55 Bilder, 11 Tab. 
2015. ISBN 978-3-87525-393-1. 

Band 271: Matthäus Brela 
Untersuchung von Magnetfeld-
Messmethoden zur ganzheitlichen 
Wertschöpfungsoptimierung und 
Fehlerdetektion an magnetischen 
Aktoren 
FAPS, 170 Seiten, 97 Bilder, 4 Tab. 
2015. ISBN 978-3-87525-394-8. 

Band 272: Michael Wieland 
Entwicklung einer Methode zur 
Prognose adhäsiven Verschleißes 
an Werkzeugen für das direkte 
Presshärten 
LFT, 156 Seiten, 84 Bilder, 9 Tab. 
2015. ISBN 978-3-87525-395-5. 

Band 273: René Schramm 
Strukturierte additive Metallisie-
rung durch kaltaktives Atmosphä-
rendruckplasma 
FAPS, 136 Seiten, 62 Bilder, 15 Tab. 
2015. ISBN 978-3-87525-396-2. 

Band 274: Michael Lechner 
Herstellung beanspruchungsange-
passter Aluminiumblechhalbzeuge 
durch eine maßgeschneiderte Va-
riation der Abkühlgeschwindigkeit 
nach Lösungsglühen 
LFT, 136 Seiten, 62 Bilder, 15 Tab. 
2015. ISBN 978-3-87525-397-9. 

Band 275: Kolja Andreas 
Einfluss der Oberflächenbeschaf-
fenheit auf das Werkzeugeinsatz-
verhalten beim Kaltfließpressen 
LFT, 169 Seiten, 76 Bilder, 4 Tab. 
2015. ISBN 978-3-87525-398-6. 

Band 276: Marcus Baum 
Laser Consolidation of ITO Nano-
particles for the Generation of 
Thin Conductive Layers on Trans-
parent Substrates 
LPT, 158 Seiten, 75 Bilder, 3 Tab. 
2015. ISBN 978-3-87525-399-3. 

Band 277: Thomas Schneider 
Umformtechnische Herstellung 
dünnwandiger Funktionsbauteile 
aus Feinblech durch Verfahren der 
Blechmassivumformung 
LFT, 188 Seiten, 95 Bilder, 7 Tab. 
2015. ISBN 978-3-87525-401-3. 

Band 278: Jochen Merhof 
Sematische Modellierung automa-
tisierter Produktionssysteme zur 
Verbesserung der IT-Integration 
zwischen Anlagen-Engineering 
und Steuerungsebene 
FAPS, 157 Seiten, 88 Bilder, 8 Tab. 
2015. ISBN 978-3-87525-402-0. 

Band 279: Fabian Zöller 
Erarbeitung von Grundlagen zur 
Abbildung des tribologischen Sys-
tems in der Umformsimulation 
LFT, 126 Seiten, 51 Bilder, 3 Tab. 
2016. ISBN 978-3-87525-403-7. 

Band 280: Christian Hezler 
Einsatz technologischer Versuche 
zur Erweiterung der Versagensvor-
hersage bei Karosseriebauteilen 
aus höchstfesten Stählen 
LFT, 147 Seiten, 63 Bilder, 44 Tab. 
2016. ISBN 978-3-87525-404-4. 

Band 281: Jochen Bönig 
Integration des Systemverhaltens 
von Automobil-Hochvoltleitungen 
in die virtuelle Absicherung durch 
strukturmechanische Simulation 
FAPS, 177 Seiten, 107 Bilder, 17 Tab. 
2016. 
ISBN 978-3-87525-405-1. 

Band 282: Johannes Kohl 
Automatisierte Datenerfassung für 
diskret ereignisorientierte Simula-
tionen in der energieflexibelen 
Fabrik 
FAPS, 160 Seiten, 80 Bilder, 27 Tab. 
2016. 
ISBN 978-3-87525-406-8. 

Band 283: Peter Bechtold 
Mikroschockwellenumformung 
mittels ultrakurzer Laserpulse 
LPT, 155 Seiten, 59 Bilder, 10 Tab. 
2016. ISBN 978-3-87525-407-5. 

Band 284: Stefan Berger 
Laserstrahlschweißen thermoplas-
tischer Kohlenstofffaserverbund-
werkstoffe mit spezifischem Zu-
satzdraht 
LPT, 118 Seiten, 68 Bilder, 9 Tab. 
2016. ISBN 978-3-87525-408-2. 



Band 285: Martin Bornschlegl 
Methods-Energy Measurement - 
Eine Methode zur Energieplanung 
für Fügeverfahren im Karosserie-
bau 
FAPS, 136 Seiten, 72 Bilder, 46 Tab. 
2016. 
ISBN 978-3-87525-409-9. 

Band 286: Tobias Rackow 
Erweiterung des Unterneh-
menscontrollings um die Dimen-
sion Energie 
FAPS, 164 Seiten, 82 Bilder, 29 Tab. 
2016. 
ISBN 978-3-87525-410-5. 

Band 287: Johannes Koch 
Grundlegende Untersuchungen 
zur Herstellung zyklisch-symmet-
rischer Bauteile mit Nebenform-
elementen durch Blechmassivum-
formung 
LFT, 125 Seiten, 49 Bilder, 17 Tab. 
2016. ISBN 978-3-87525-411-2. 

Band 288: Hans Ulrich Vierzig-
mann 
Beitrag zur Untersuchung der tri-
bologischen Bedingungen in der 
Blechmassivumformung - Bereit-
stellung von tribologischen Mo-
dellversuchen und Realisierung 
von Tailored Surfaces  
LFT, 174 Seiten, 102 Bilder, 34 Tab. 
2016. ISBN 978-3-87525-412-9. 

Band 289: Thomas Senner 
Methodik zur virtuellen Absiche-
rung der formgebenden Operation 
des Nasspressprozesses von Ge-
lege-Mehrschichtverbunden 
LFT, 156 Seiten, 96 Bilder, 21 Tab. 
2016. ISBN 978-3-87525-414-3. 

Band 290: Sven Kreitlein 
Der grundoperationsspezifische 
Mindestenergiebedarf als Refe-
renzwert zur Bewertung der Ener-
gieeffizienz in der Produktion 
FAPS, 185 Seiten, 64 Bilder, 30 Tab. 
2016. 
ISBN 978-3-87525-415-0. 

Band 291: Christian Roos 
Remote-Laserstrahlschweißen ver-
zinkter Stahlbleche in Kehlnahtge-
ometrie 
LPT, 123 Seiten, 52 Bilder, 0 Tab. 
2016. ISBN 978-3-87525-416-7. 

Band 292: Alexander Kahrima-
nidis 
Thermisch unterstützte Umfor-
mung von Aluminiumblechen 
LFT, 165 Seiten, 103 Bilder, 18 Tab. 
2016. ISBN 978-3-87525-417-4. 

Band 293: Jan Tremel 
Flexible Systems for Permanent 
Magnet Assembly and Magnetic 
Rotor Measurement / Flexible Sys-
teme zur Montage von Permanent-
magneten und zur Messung mag-
netischer Rotoren 
FAPS, 152 Seiten, 91 Bilder, 12 Tab. 
2016. ISBN 978-3-87525-419-8. 

Band 294: Ioannis Tsoupis 
Schädigungs- und Versagensver-
halten hochfester Leichtbauwerk-
stoffe unter Biegebeanspruchung 
LFT, 176 Seiten, 51 Bilder, 6 Tab. 
2017. ISBN 978-3-87525-420-4. 

Band 295: Sven Hildering 
Grundlegende Untersuchungen 
zum Prozessverhalten von Silizium 
als Werkzeugwerkstoff für das 
Mikroscherschneiden metallischer 
Folien 
LFT, 177 Seiten, 74 Bilder, 17 Tab. 
2017. ISBN 978-3-87525-422-8. 

Band 296: Sasia Mareike Hert-
weck 
Zeitliche Pulsformung in der La-
sermikromaterialbearbeitung – 
Grundlegende Untersuchungen 
und Anwendungen 
LPT, 146 Seiten, 67 Bilder, 5 Tab. 
2017. ISBN 978-3-87525-423-5. 

Band 297: Paryanto 
Mechatronic Simulation Approach 
for the Process Planning of En-
ergy-Efficient Handling Systems 
FAPS, 162 Seiten, 86 Bilder, 13 Tab. 
2017. ISBN 978-3-87525-424-2. 

Band 298: Peer Stenzel 
Großserientaugliche Nadelwickel-
technik für verteilte Wicklungen 
im Anwendungsfall der E-Trakti-
onsantriebe 
FAPS, 239 Seiten, 147 Bilder, 20 
Tab. 2017. 
ISBN 978-3-87525-425-9. 

Band 299: Mario Lušić 
Ein Vorgehensmodell zur Erstel-
lung montageführender Werkerin-
formationssysteme simultan zum 
Produktentstehungsprozess 
FAPS, 174 Seiten, 79 Bilder, 22 Tab. 
2017. 
ISBN 978-3-87525-426-6. 

Band 300: Arnd Buschhaus 
Hochpräzise adaptive Steuerung 
und Regelung robotergeführter 
Prozesse 
FAPS, 202 Seiten, 96 Bilder, 4 Tab. 
2017. ISBN 978-3-87525-427-3. 

Band 301: Tobias Laumer 
Erzeugung von thermoplastischen 
Werkstoffverbunden mittels si-
multanem, intensitätsselektivem 
Laserstrahlschmelzen 
LPT, 140 Seiten, 82 Bilder, 0 Tab. 
2017. ISBN 978-3-87525-428-0. 

Band 302: Nora Unger 
Untersuchung einer thermisch un-
terstützten Fertigungskette zur 
Herstellung umgeformter Bauteile 
aus der höherfesten Aluminiumle-
gierung EN AW-7020 
LFT, 142 Seiten, 53 Bilder, 8 Tab. 
2017. ISBN 978-3-87525-429-7. 

Band 303: Tommaso Stellin 
Design of Manufacturing Processes 
for the Cold Bulk Forming of Small 
Metal Components from Metal 
Strip 
LFT, 146 Seiten, 67 Bilder, 7 Tab. 
2017. ISBN 978-3-87525-430-3. 

Band 304: Bassim Bachy 
Experimental Investigation, Mode-
ling, Simulation and Optimization 
of Molded Interconnect Devices 
(MID) Based on Laser Direct 
Structuring (LDS) / Experimentelle 
Untersuchung, Modellierung, Si-
mulation und Optimierung von 
Molded Interconnect Devices 
(MID) basierend auf Laser Direkt-
strukturierung (LDS) 
FAPS, 168 Seiten, 120 Bilder, 26 
Tab. 2017. 
ISBN 978-3-87525-431-0. 

Band 305: Michael Spahr 
Automatisierte Kontaktierungsver-
fahren für flachleiterbasierte Pkw-
Bordnetzsysteme 
FAPS, 197 Seiten, 98 Bilder, 17 Tab. 
2017. ISBN 978-3-87525-432-7. 



Band 306: Sebastian Suttner 
Charakterisierung und Modellie-
rung des spannungszustandsab-
hängigen Werkstoffverhaltens der 
Magnesiumlegierung AZ31B für die 
numerische Prozessauslegung 
LFT, 150 Seiten, 84 Bilder, 19 Tab. 
2017. ISBN 978-3-87525-433-4. 

Band 307: Bhargav Potdar 
A reliable methodology to deduce 
thermo-mechanical flow behaviour 
of hot stamping steels 
LFT, 203 Seiten, 98 Bilder, 27 Tab. 
2017. ISBN 978-3-87525-436-5. 

Band 308: Maria Löffler 
Steuerung von Blechmassivum-
formprozessen durch maßge-
schneiderte tribologische Systeme 
LFT, viii u. 166 Seiten, 90 Bilder, 5 
Tab. 2018. ISBN 978-3-96147-133-1. 

Band 309: Martin Müller 
Untersuchung des kombinierten 
Trenn- und Umformprozesses 
beim Fügen artungleicher Werk-
stoffe mittels Schneidclinchverfah-
ren 
LFT, xi u. 149 Seiten, 89 Bilder, 6 
Tab. 2018.  
ISBN: 978-3-96147-135-5. 

Band 310: Christopher Kästle 
Qualifizierung der Kupfer-Draht-
bondtechnologie für integrierte 
Leistungsmodule in harschen Um-
gebungsbedingungen 
FAPS, xii u. 167 Seiten, 70 Bilder, 18 
Tab. 2018.  
ISBN 978-3-96147-145-4. 

Band 311: Daniel Vipavc 
Eine Simulationsmethode für das 
3-Rollen-Schubbiegen 
LFT, xiii u. 121 Seiten, 56 Bilder, 17 
Tab. 2018. ISBN 978-3-96147-147-8. 

Band 312: Christina Ramer 
Arbeitsraumüberwachung und au-
tonome Bahnplanung für ein si-
cheres und flexibles Roboter-Assis-
tenzsystem in der Fertigung 
FAPS, xiv u. 188 Seiten, 57 Bilder, 9 
Tab. 2018.  
ISBN 978-3-96147-153-9. 

Band 313: Miriam Rauer 
Der Einfluss von Poren auf die Zu-
verlässigkeit der Lötverbindungen 
von Hochleistungs-Leuchtdioden 
FAPS, xii u. 209 Seiten, 108 Bilder, 
21 Tab. 2018.  
ISBN 978-3-96147-157-7. 

Band 314: Felix Tenner 
Kamerabasierte Untersuchungen 
der Schmelze und Gasströmungen 
beim Laserstrahlschweißen ver-
zinkter Stahlbleche 
LPT, xxiii u. 184 Seiten, 94 Bilder, 7 
Tab. 2018.  
ISBN 978-3-96147-160-7. 

Band 315: Aarief Syed-Khaja 
Diffusion Soldering for High-tem-
perature Packaging of Power Elec-
tronics 
FAPS, x u. 202 Seiten, 144 Bilder, 32 
Tab. 2018.  
ISBN 978-3-87525-162-1.  

Band 316: Adam Schaub 
Grundlagenwissenschaftliche Un-
tersuchung der kombinierten Pro-
zesskette aus Umformen und Ad-
ditive Fertigung 
LFT, xi u. 192 Seiten, 72 Bilder, 27 
Tab. 2019.  
ISBN 978-3-96147-166-9.  

Band 317: Daniel Gröbel 
Herstellung von Nebenformele-
menten unterschiedlicher Geomet-
rie an Blechen mittels Fließpress-
verfahren der Blechmassivumfor-
mung 
LFT, x u. 165 Seiten, 96 Bilder, 13 
Tab. 2019. ISBN 978-3-96147-168-3.  

Band 318: Philipp Hildenbrand 
Entwicklung einer Methodik zur 
Herstellung von Tailored Blanks 
mit definierten Halbzeugeigen-
schaften durch einen Taumelpro-
zess 
LFT, ix u. 153 Seiten, 77 Bilder, 4 
Tab. 2019. ISBN 978-3-96147-174-4.  

Band 319: Tobias Konrad 
Simulative Auslegung der Spann- 
und Fixierkonzepte im Karosserie-
rohbau: Bewertung der Baugrup-
penmaßhaltigkeit unter Berück-
sichtigung schwankender Einfluss-
größen 
LFT, x u. 203 Seiten, 134 Bilder, 32 
Tab. 2019.  
ISBN 978-3-96147-176-8.  

Band 320: David Meinel 
Architektur applikationsspezifi-
scher Multi-Physics-Simulations-
konfiguratoren am Beispiel modu-
larer Triebzüge 
FAPS, xii u. 166 Seiten, 82 Bilder, 
25 Tab. 2019.  
ISBN 978-3-96147-184-3.  

Band 321: Andrea Zimmermann 
Grundlegende Untersuchungen 
zum Einfluss fertigungsbedingter 
Eigenschaften auf die Ermüdungs-
festigkeit kaltmassivumgeformter 
Bauteile 
LFT, ix u. 160 Seiten, 66 Bilder, 5 
Tab. 2019.  
ISBN 978-3-96147-190-4. 

Band 322: Christoph Amann 
Simulative Prognose der Geomet-
rie nassgepresster Karosseriebau-
teile aus Gelege-Mehrschichtver-
bunden 
LFT, xvi u. 169 Seiten, 80 Bilder, 13 
Tab. 2019.  
ISBN 978-3-96147-194-2.  

Band 323: Jennifer Tenner 
Realisierung schmierstofffreier 
Tiefziehprozesse durch maßge-
schneiderte Werkzeugoberflächen 
LFT, x u. 187 Seiten, 68 Bilder, 13 
Tab. 2019.  
ISBN 978-3-96147-196-6. 

Band 324: Susan Zöller 
Mapping Individual Subjective 
Values to Product Design 
KTmfk, xi u. 223 Seiten, 81 Bilder, 
25 Tab. 2019.  
ISBN 978-3-96147-202-4. 

Band 325: Stefan Lutz 
Erarbeitung einer Methodik zur 
semiempirischen Ermittlung der 
Umwandlungskinetik durchhär-
tender Wälzlagerstähle für die 
Wärmebehandlungssimulation 
LFT, xiv u. 189 Seiten, 75 Bilder, 32 
Tab. 2019.  
ISBN 978-3-96147-209-3. 

Band 326: Tobias Gnibl 
Modellbasierte Prozesskettenab-
bildung rührreibgeschweißter Alu-
miniumhalbzeuge zur umform-
technischen Herstellung höchst-
fester Leichtbau-strukturteile 
LFT, xii u. 167 Seiten, 68 Bilder, 17 
Tab. 2019.  
ISBN 978-3-96147-217-8. 



Band 327: Johannes Bürner 
Technisch-wirtschaftliche Optio-
nen zur Lastflexibilisierung durch 
intelligente elektrische Wärme-
speicher 
FAPS, xiv u. 233 Seiten, 89 Bilder, 
27 Tab. 2019.  
ISBN 978-3-96147-219-2. 

Band 328: Wolfgang Böhm 
Verbesserung des Umformverhal-
tens von mehrlagigen Alumini-
umblechwerkstoffen mit ultrafein-
körnigem Gefüge 
LFT, ix u. 160 Seiten, 88 Bilder, 14 
Tab. 2019.  
ISBN 978-3-96147-227-7. 

Band 329: Stefan Landkammer 
Grundsatzuntersuchungen, mathe-
matische Modellierung und Ablei-
tung einer Auslegungsmethodik 
für Gelenkantriebe nach dem Spin-
nenbeinprinzip 
LFT, xii u. 200 Seiten, 83 Bilder, 13 
Tab. 2019.  
ISBN 978-3-96147-229-1. 

Band 330: Stephan Rapp 
Pump-Probe-Ellipsometrie zur 
Messung transienter optischer Ma-
terialeigen-schaften bei der Ultra-
kurzpuls-Lasermaterialbearbei-
tung 
LPT, xi u. 143 Seiten, 49 Bilder, 2 
Tab. 2019.  
ISBN 978-3-96147-235-2. 

Band 331: Michael Scholz 
Intralogistics Execution System 
mit integrierten autonomen, ser-
vicebasierten Transportentitäten 
FAPS, xi u. 195 Seiten, 55 Bilder, 11 
Tab. 2019.  
ISBN 978-3-96147-237-6. 

Band 332: Eva Bogner 
Strategien der Produktindividuali-
sierung in der produzierenden In-
dustrie im Kontext der Digitalisie-
rung 
FAPS, ix u. 201 Seiten, 55 Bilder, 28 
Tab. 2019.  
ISBN 978-3-96147-246-8. 

Band 333: Daniel Benjamin Krü-
ger 
Ein Ansatz zur CAD-integrierten 
muskuloskelettalen Analyse der 
Mensch-Maschine-Interaktion 
KTmfk, x u. 217 Seiten, 102 Bilder, 7 
Tab. 2019.  
ISBN 978-3-96147-250-5. 

Band 334: Thomas Kuhn 
Qualität und Zuverlässigkeit laser-
direktstrukturierter mechatronisch 
integrierter Baugruppen (LDS-
MID) 
FAPS, ix u. 152 Seiten, 69 Bilder, 12 
Tab. 2019.  
ISBN: 978-3-96147-252-9. 

Band 335: Hans Fleischmann 
Modellbasierte Zustands- und Pro-
zessüberwachung auf Basis sozio-
cyber-physischer Systeme 
FAPS, xi u. 214 Seiten, 111 Bilder, 18 
Tab. 2019.  
ISBN: 978-3-96147-256-7. 

Band 336: Markus Michalski 
Grundlegende Untersuchungen 
zum Prozess- und Werkstoffver-
halten bei schwingungsüberlager-
ter Umformung 
LFT, xii u. 197 Seiten, 93 Bilder, 11 
Tab. 2019.  
ISBN: 978-3-96147-270-3. 

Band 337: Markus Brandmeier 
Ganzheitliches ontologiebasiertes 
Wissensmanagement im Umfeld 
der industriellen Produktion 
FAPS, xi u. 255 Seiten, 77 Bilder, 33 
Tab. 2020.  
ISBN: 978-3-96147-275-8. 

Band 338: Stephan Purr 
Datenerfassung für die Anwen-
dung lernender Algorithmen bei 
der Herstellung von Blechformtei-
len 
LFT, ix u. 165 Seiten, 48 Bilder, 4 
Tab. 2020.  
ISBN: 978-3-96147-281-9. 

Band 339: Christoph Kiener 
Kaltfließpressen von gerad- und 
schrägverzahnten Zahnrädern 
LFT, viii u. 151 Seiten, 81 Bilder, 3 
Tab. 2020.  
ISBN 978-3-96147-287-1. 

Band 340: Simon Spreng 
Numerische, analytische und em-
pirische Modellierung des Heißcr-
impprozesses 
FAPS, xix u. 204 Seiten, 91 Bilder, 
27 Tab. 2020.  
ISBN 978-3-96147-293-2. 

Band 341: Patrik Schwingen-
schlögl 
Erarbeitung eines Prozessver-
ständnisses zur Verbesserung der 
tribologischen Bedingungen beim 
Presshärten 
LFT, x u. 177 Seiten, 81 Bilder, 8 
Tab. 2020.  
ISBN 978-3-96147-297-0. 

Band 342: Emanuela Affronti 
Evaluation of failure behaviour of 
sheet metals 
LFT, ix u. 136 Seiten, 57 Bilder, 20 
Tab. 2020.  
ISBN 978-3-96147-303-8. 

Band 343: Julia Degner 
Grundlegende Untersuchungen 
zur Herstellung hochfester Alumi-
niumblechbauteile in einem kom-
binierten Umform- und Ab-
schreckprozess 
LFT, x u. 172 Seiten, 61 Bilder, 9 
Tab. 2020.  
ISBN 978-3-96147-307-6. 

Band 344: Maximilian Wagner 
Automatische Bahnplanung für die 
Aufteilung von Prozessbewegun-
gen in synchrone Werkstück- und 
Werkzeugbewegungen mittels 
Multi-Roboter-Systemen 
FAPS, xxi u. 181 Seiten, 111 Bilder, 15 
Tab. 2020.  
ISBN 978-3-96147-309-0. 

Band 345: Stefan Härter 
Qualifizierung des Montagepro-
zesses hochminiaturisierter elekt-
ronischer Bauelemente 
FAPS, ix u. 194 Seiten, 97 Bilder, 28 
Tab. 2020.  
ISBN 978-3-96147-314-4. 

Band 346: Toni Donhauser 
Ressourcenorientierte Auftragsre-
gelung in einer hybriden Produk-
tion mittels betriebsbegleitender 
Simulation 
FAPS, xix u. 242 Seiten, 97 Bilder, 
17 Tab. 2020.  
ISBN 978-3-96147-316-8. 



Band 347: Philipp Amend 
Laserbasiertes Schmelzkleben von 
Thermoplasten mit Metallen 
LPT, xv u. 154 Seiten, 67 Bilder. 
2020. ISBN 978-3-96147-326-7. 

Band 348: Matthias Ehlert  
Simulationsunterstützte funktio-
nale Grenzlagenabsicherung 
KTmfk, xvi u. 300 Seiten, 101 Bil-
der, 73 Tab. 2020.  
ISBN 978-3-96147-328-1. 

Band 349: Thomas Sander 
Ein Beitrag zur Charakterisierung 
und Auslegung des Verbundes von 
Kunststoffsubstraten mit harten 
Dünnschichten 
KTmfk, xiv u. 178 Seiten, 88 Bilder, 
21 Tab. 2020.  
ISBN 978-3-96147-330-4. 

Band 350: Florian Pilz 
Fließpressen von Verzahnungsele-
menten an Blechen 
LFT, x u. 170 Seiten, 103Bilder, 4 
Tab. 2020.  
ISBN 978-3-96147-332-8. 

Band 351: Sebastian Josef 
Katona 
Evaluation und Aufbereitung von 
Produktsimulationen mittels ab-
weichungsbehafteter Geometrie-
modelle 
KTmfk, ix u. 147 Seiten, 73 Bilder, 
11 Tab. 2020.  
ISBN 978-3-96147-336-6. 

Band 352: Jürgen Herrmann 
Kumulatives Walzplattieren. Be-
wertung der Umformeigenschaften 
mehrlagiger Blechwerkstoffe der 
ausscheidungshärtbaren Legierung 
AA6014 
LFT, x u. 157 Seiten, 64 Bilder, 5 
Tab. 2020.  
ISBN 978-3-96147-344-1. 

Band 353: Christof Küstner 
Assistenzsystem zur Unterstüt-
zung der datengetriebenen Pro-
duktentwicklung 
KTmfk, xii u. 219 Seiten, 63 Bilder, 
14 Tab. 2020.  
ISBN 978-3-96147-348-9. 

Band 354: Tobias Gläßel 
Prozessketten zum Laserstrahl-
schweißen von flachleiterbasierten 
Formspulenwicklungen für auto-
mobile Traktionsantriebe 
FAPS, xiv u. 206 Seiten, 89 Bilder, 
11 Tab. 2020.  
ISBN 978-3-96147-356-4. 

Band 355: Andreas Meinel  
Experimentelle Untersuchung der 
Auswirkungen von Axialschwin-
gungen auf Reibung und Ver-
schleiß in Zylinderrol-lenlagern  
KTmfk, xii u. 162 Seiten, 56 Bilder, 
7 Tab. 2020.  
ISBN 978-3-96147-358-8. 

Band 356: Hannah Riedle 
Haptische, generische Modelle 
weicher anatomischer Strukturen 
für die chirurgische Simulation 
FAPS, xxx u. 179 Seiten, 82 Bilder, 
35 Tab. 2020.  
ISBN 978-3-96147-367-0. 

Band 357: Maximilian Landgraf 
Leistungselektronik für den Ein-
satz dielektrischer Elastomere in 
aktorischen, sensorischen und in-
tegrierten sensomotorischen Sys-
temen 
FAPS, xxiii u. 166 Seiten, 71 Bilder, 
10 Tab. 2020.  
ISBN 978-3-96147-380-9. 

Band 358: Alireza Esfandyari 
Multi-Objective Process Optimiza-
tion for Overpressure Reflow Sol-
dering in Electronics Production 
FAPS, xviii u. 175 Seiten, 57 Bilder, 
23 Tab. 2020.  
ISBN 978-3-96147-382-3. 

Band 359: Christian Sand  
Prozessübergreifende Analyse 
komplexer Montageprozessketten 
mittels Data Mining 
FAPS, XV u. 168 Seiten, 61 Bilder, 
12 Tab. 2021.  
ISBN 978-3-96147-398-4. 

Band 360: Ralf Merkl 
Closed-Loop Control of a Storage-
Supported Hybrid Compensation 
System for Improving the Power 
Quality in Medium Voltage Net-
works 
FAPS, xxvii u. 200 Seiten, 102 Bil-
der, 2 Tab. 2021.  
ISBN 978-3-96147-402-8. 

Band 361: Thomas Reitberger 
Additive Fertigung polymerer opti-
scher Wellenleiter im Aerosol-Jet-
Verfahren 
FAPS, xix u. 141 Seiten, 65 Bilder, 11 
Tab. 2021.  
ISBN 978-3-96147-400-4. 

Band 362: Marius Christian 
Fechter 
Modellierung von Vorentwürfen in 
der virtuellen Realität mit natürli-
cher Fingerinteraktion 
KTmfk, x u. 188 Seiten, 67 Bilder, 
19 Tab. 2021.  
ISBN 978-3-96147-404-2. 

Band 363: Franziska Neubauer 
Oberflächenmodifizierung und 
Entwicklung einer Auswerteme-
thodik zur Verschleißcharakteri-
sierung im Presshärteprozess 
LFT, ix u. 177 Seiten, 42 Bilder, 6 
Tab. 2021.  
ISBN 978-3-96147-406-6. 

Band 364: Eike Wolfram Schäf-
fer 
Web‐ und wissensbasierter Engi-
neering‐Konfigurator für roboter-
zentrierte Automatisierungslösun-
gen 
FAPS, xxiv u. 195 Seiten, 108 Bilder, 
25 Tab. 2021.  
ISBN 978-3-96147-410-3. 

Band 365: Daniel Gross 
Untersuchungen zur kohlenstoff-
dioxidbasierten kryogenen Mini-
malmengenschmierung 
REP, xii u. 184 Seiten, 56 Bilder, 18 
Tab. 2021.  
ISBN 978-3-96147-412-7. 

Band 366: Daniel Junker 
Qualifizierung laser-additiv gefer-
tigter Komponenten für den Ein-
satz im Werkzeugbau der Massiv-
umformung 
LFT, vii u. 142 Seiten, 62 Bilder, 5 
Tab. 2021.  
ISBN 978-3-96147-416-5. 

Band 367: Tallal Javied 
Totally Integrated Ecology Man-
agement for Resource Efficient and 
Eco-Friendly Production 
FAPS, xv u. 160 Seiten, 60 Bilder, 13 
Tab. 2021.  
ISBN 978-3-96147-418-9. 



Band 368: David Marco Hoch-
rein 
Wälzlager im Beschleunigungsfeld 
– Eine Analysestrategie zur Be-
stimmung des Reibungs-, Axial-
schub- und Temperaturverhaltens 
von Nadelkränzen – 
KTmfk, xiii u. 279 Seiten, 108 Bil-
der, 39 Tab. 2021.  
ISBN 978-3-96147-420-2. 

Band 369: Daniel Gräf 
Funktionalisierung technischer 
Oberflächen mittels prozessüber-
wachter aerosolbasierter Druck-
technologie 
FAPS, xxii u. 175 Seiten, 97 Bilder, 
6 Tab. 2021.  
ISBN 978-3-96147-433-2. 

Band 370: Andreas Gröschl 
Hochfrequent fokusabstandsmo-
dulierte Konfokalsensoren für die 
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Kurzfassung

Die Einschränkung fertigungsbedingter Einzelteilabweichungen mithilfe von
Maß-, Form- und Lagetoleranzen hat primär die Sicherstellung der Baugrup-
penqualität zum Ziel. Zugleichwerden dadurch jedoch bereits in der Produkt-
entwicklung die Randbedingungen für die Fertigung und somit implizit die
Herstellungskosten festgelegt. Die Methode der samplingbasierten Toleranz-
Kosten-Optimierung, eine Kombination aus statistischer Toleranzanalyse auf
Basis von Samplingverfahren und metaheuristischen Optimierungsalgorith-
men, ermöglicht hierbei eine optimale Festlegung der Toleranzwerte und löst
so automatisiert den Zielkonflikt zwischen Kosten und Qualität. Allerdings
stehen Einschränkungen in Effektivität und Effizienz einem gewinnbringen-
den Einsatz zur Lösung komplexer, praxisrelevanter Problemstellungen und
somit einer Ausschöpfung verborgener Kostenpotentiale bislang noch im
Wege.

Um die aktuellen Forschungslücken zu schließen, werden in dieser Arbeit
die beteiligten Einzelmethoden, insbesondere das Sampling, die Ausschuss-
ratenschätzung und die Optimierung auf Basis von Ersatzmodellen, gezielt
(weiter-)entwickelt und in einem Gesamtansatz aufeinander abgestimmt,
sodass verlässliche Optimierungsergebnisse in adäquaten Rechenzeiten
erzielt werden können. Dessen Erweiterung zur simultanen Maschinense-
lektion und –allokation mit unterschiedlichen Losgrößen und selektiver
Montage unter Berücksichtigung von maschinenspezifischen Fertigungs-
verteilungen und geometrischen, sich gegenseitig bedingenden Toleranzen
trägt hierbei wesentlich zur Ausweitung des Anwendungskontextes um pra-
xisrelevante Aspekte bei. Eine abschließende Evaluation des entwickelten
Gesamtrahmenwerks stellt dessen Potential für eine produktive Anwendung
an praxisnahen Problemstellungen unter Beweis und dient der Identifikation
weiterer Forschungspotentiale.
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Martin Roth

Sampling-based Tolerance-Cost 
Optimization: The Key to
Optimal Tolerance Allocation

Limiting manufacturing-caused part variations by size, location, orientation, and form 
tolerances primarily aims to assure the total assembly quality. At the same time, however, 
the manufacturing conditions and, thus, the manufacturing costs are already predefined 
in the product development phase. The method of sampling-based tolerance-cost 
optimization, a combination of statistical tolerance analysis based on sampling techniques 
and metaheuristic optimization algorithms, enables an automated and optimal allocation 
of tolerance values and, thus, solves the conflict of objectives between costs and quality. 
However, limitations in effectiveness and efficiency still prevent its profitable application 
for solving complex, industry-relevant problems and exploiting hidden cost potentials.

To close the current research gaps, the individual methods involved, in particular the 
sampling, non-conformance rate estimation and surrogate model-based optimization, 
are (further) developed and harmonized in one common approach, ensuring that reliable 
optimization results can be obtained in adequate computing times. Its extension to 
simultaneous machine selection and allocation with different batch sizes and selective 
assembly, considering machine-specific part tolerance distributions and geometrical, 
mutually dependent tolerances, significantly expands the context of use to practical 
aspects. A final evaluation of the developed framework proves its potential for a profitable 
application to practical problems and serves to identify further research potentials.
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