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Zusammenfassung

Die kardiovaskuläre Magnetresonanztomografie (MRT) hat sich zur Standardmethode für
die Beurteilung von Herzfunktion, -volumen und -masse sowie für die Charakterisierung der
Zusammensetzung des Herzmuskelgewebes entwickelt. Im Vergleich zu anderen bildgebenden
Verfahren ist die kardiovaskuläre MRT einzigartig in ihrer Fähigkeit, die Zusammensetzung
des Herzmuskelgewebes ohne ionisierende Strahlung zu charakterisieren.
Aktuelle kardiovaskuläre MRT-Techniken liefern in der Regel qualitative T1-gewichtete Bilder,
die in willkürlichen, von Studie zu Studie variierenden Einheiten dargestellt werden und für die
es keine Referenzwerte gibt. Mithilfe von T1-Mapping kann die quantitative T1-Relaxationszeit
jedes Voxels innerhalb des Sichtfeldes bestimmt werden, indem mehrere T1-gewichtete Bilder
aufgenommen werden. Auf diese Weise lassen sich veränderte Gewebemerkmale erkennen,
die mit Krankheiten wie Ödemen, Fibrosen und infiltrativen Erkrankungen einhergehen. T1-
Mapping hat das Potenzial, sowohl fokale als auch diffuse Erkrankungen zu erkennen und
frühe asymptomatische Gewebeumwandlungen zu beurteilen. Jedoch schränken die lange
Untersuchungszeit, die geringe räumliche Auflösung entlang der Schichtcodierrichtung und die
begrenzte räumliche Abdeckung die klinische Anwendung ein.
In dieser Arbeit wurden neue Methoden entwickelt, um diese Beschränkungen zu überwinden
und eine hochaufgelöste, dreidimensionale kardiovaskuläre T1-Karte des ganzen Herzens in
einer kurzen Aufnahmezeit von drei Minuten zu rekonstruieren. Dazu wurden zweidimensionale
Schichten mit einer schnellen, kontinuierlichen Golden-radial-Winkel-Sequenz mit einer hohen
Auflösung in der Ebene, aber einer geringen Auflösung entlang der Schichtcodierrichtung
aufgenommen. Anschließend wurden dreidimensionale hochaufgelöste Schichten aus den niedrig
aufgelösten Daten mit einem Super-Resolution-Rekonstruktionsverfahren (SRR) rekonstruiert.
Eine radiale SRR-Akquisitionsgeometrie der niedrig aufgelösten Datensätze ermöglichte eine
Abdeckung des gesamten Herzens. Kleine Strukturen wie Teile der Vorhofwände oder der
rechten Ventrikelwand konnten mithilfe einer k-raum basierten SRR aufgelöst werden. Die
vorgestellten Techniken wurden in Simulations- und Phantomexperimenten evaluiert und die
erfolgreiche Anwendung an gesunden Probanden gezeigt.
Die in dieser Arbeit vorgeschlagene Methode ist vielversprechend, um hochauflösende T1 Karten
von Herzgewebe in kurzer Aufnahmezeit zu erhalten. Dieser Ansatz ist vielseitig und könnte
in zukünftigen Studien zur schnellen Erfassung mehrerer quantitativer Parameter-Karten
gleichzeitig, wie beispielsweise der T1- und T2-Kartierung des gesamten Herzens verwendet
werden.





Abstract

Cardiovascular magnetic resonance imaging (MRI) has become the standard method for
assessing cardiac function, volumes, and mass and characterizing myocardial tissue composition.
Compared to other imaging techniques, cardiac MRI is unique in its ability to accurately
characterize the composition of myocardial tissue without any ionizing radiation.
Current cardiac MRI techniques typically obtain qualitative images, which commonly only
allow for the detection of focal pathologies and are difficult to compare between different scans
or institutions. To address this issue, T1 mapping can be used, which yields quantitative
T1 relaxation times of each voxel within the field of view. This allows for the identification
of altered tissue characteristics associated with oedema, fibrosis, and infiltrative diseases.
T1 mapping has the potential to detect both focal and diffuse diseases and to assess early
asymptomatic tissue remodelling. However, the lengthy examination time, low spatial through-
plane resolution, and limited spatial coverage limit its clinical application.
In this thesis, new methods were developed to address these limitations and obtain a whole-
heart high-resolution (HR) three-dimensional cardiac T1 map in a short acquisition time of
three minutes. For that, two-dimensional slices were acquired using a fast, continuous Golden-
radial angle sequence with a high in-plane but low through-plane resolution. A k-space-based
super-resolution reconstruction (SRR) approach was then used to reconstruct three-dimensional
HR slices from the acquired low-resolution (LR) data. A radial SRR acquisition geometry of
the LR datasets allowed a whole-heart coverage. Small structures, such as the atrial or right
ventricular walls, could be visualized. The presented techniques were evaluated in simulation
and phantom experiments, and feasibility was shown in healthy volunteers.
The imaging approaches proposed in this thesis show promise for obtaining HR parameter
maps of cardiac tissues in a short acquisition time. This approach is versatile and could be
used to quickly acquire multiple quantitative parameter maps, such as simultaneous T1 and T2

mapping of the entire heart in future studies.
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1
Introduction

Cardiovascular diseases are the major cause of death worldwide and also cause significant
healthcare expenses [1, 2]. Advancements in noninvasive methods to diagnose cardiac and
vascular structure and function have provided valuable insights into the early stages of
cardiovascular diseases. This knowledge has helped to understand disease prevalence and
development, and in some cases, has enabled pre-symptomatic screening, early diagnosis, and
potentially life-saving interventions [2].
Cardiovascular imaging plays an important role in diagnosing and treating cardiovascular
diseases, thereby contributing to an increase in overall health, reduced morbidity, and enhanced
quality of life for the population [3]. Cardiovascular imaging allows physicians to observe
the structure and function of the heart, enabling them to identify a range of different heart
abnormalities, such as reduced blood circulation, regulation of volumetric output of blood,
valve function, plaque buildup in arteries, and more.
Common methods for cardiovascular imaging include X-ray, computed tomography (CT),
magnetic resonance imaging (MRI), ultrasound-based echocardiogram, PET/SPECT, and
catheterisation [3]. Cardiovascular MRI has emerged as the gold standard for evaluating
cardiac function, volumes, and mass. Among the imaging modalities used in cardiovascular
diseases, its ability to characterise myocardial tissue composition is unique [4].
Cardiovascular MRI is increasingly used to evaluate myocardial structure and function
noninvasively without exposing the patient to ionising radiation [5]. Cardiovascular MRI
provides excellent contrast of soft tissues, enabling the assessment of myocardial function and
the characterisation of myocardial structure [6, 7].
Qualitative images such as T1 weighted images are typically obtained in cardiovascular MRI.
These rely on the relative difference in the relaxation properties between different heart
tissues [7]. The observed image contrast is determined by various scan-specific parameters,
such as sequence parameters, RF coil proximity, receiver chain efficiency, or magnetic field
inhomogeneities [8]. These factors vary across different studies, lacking reference values.
However, the quantitative relaxation time T1 is independent of these hardware and sequence
parameters. Hence, T1 mapping can be used to obtain an objective indicator of tissue condition,
making it valuable in assessing tissue disorders. Healthy myocardium has a specific T1 relaxation
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1. Introduction

time, but this can be altered in the presence of diseases such as oedema [9], fibrosis [10], or
infiltrative diseases [11]. T1 mapping can be used to detect both focal and diffuse diseases,
as well as assess early, asymptomatic tissue remodelling that may not be evident with other
noninvasive techniques [5].
Although there is a significant potential for cardiovascular T1 mapping, its utilisation in clinical
practice is still limited. The primary obstacles in implementing T1 mapping include the lengthy
duration of the examination, low spatial through-plane resolution, and limited spatial coverage.
These three challenges need to be addressed for the successful integration of T1 mapping into
routine clinical procedures:

1. Cardiovascular T1 mapping is time-consuming for medical staff and patients. Additionally,
the long acquisition time can lead to motion artefacts, resulting in a decrease in image
quality [12]. This often necessitates additional examinations and further reduces patient
comfort and the economic efficiency of the procedure [13].

2. Commonly, T1 mapping suffers from low through-plane resolution and is mainly used in
the left ventricle. While this allows midventricular imaging, the imaging of the apex is
challenging due to partial volume effects [14, 15]. Next to that, low-resolution (LR) T1

mapping offers only limited value for thin-walled structures [14] such as the atria and
the right ventricle [15, 16].

3. Pathological changes in the myocardium can be very localised, depending on the specific
type of cardiovascular disease. When dealing with cardiovascular diseases involving focal
heterogeneity, it is necessary to analyse the regional characteristics of the myocardial
tissue to gain insight into the underlying causes of the pathology. The detection of focal
diseases might be overseen by covering only parts of the myocardium with a few slices.
So there is a clinical need for whole heart T1 mapping techniques that can provide a
comprehensive assessment of the complex regional distribution patterns of the disease
[15].

Therefore, fast, high-resolution (HR) and whole-heart T1 mapping techniques need to be
developed to provide accurate and precise T1 quantification. So far, whole-heart T1 mapping
with high isotropic resolution (below or equals 1.5 mm) is only possible with long acquisition
times (more than nine minutes) [17–23].

1.1 Scope of the thesis

The work presented in this thesis aims to develop an approach for fast HR whole-heart
cardiovascular T1 mapping by using a motion-corrected k-space-based super-resolution
reconstruction (SRR) approach. The individual components dedicated and required to acquire
a HR whole-heart cardiovascular T1 map in a short acquisition time are the following:

1. A SRR approach is investigated, combining multiple LR multi-slice stacks with reliable
T1 values to achieve a HR T1 map and allowing an efficient use of scan time. The aim is
to provide a HR volume with reproducible T1 estimates and a short acquisition time.
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1.2 Outline

2. Good visualisation of small structures such as the right ventricular wall in a 3D HR T1

map is aimed at using a motion-corrected k-space-based SRR approach. This would
allow the reconstruction of the HR T1 map directly from the acquired k-space data.

3. Whole heart coverage needs to be achieved with appropriate scan plane orientations.
For that, radially overlapping long-axis stacks are investigated. This could improve the
overall image quality and the visualisation of small structures while providing precise T1

values.

1.2 Outline

This thesis is divided into eight chapters:

Chapter 2: Basics of the cardiovascular anatomy are summarised, and common imaging
methods are described. The principle of T1 relaxation and techniques to quantify T1 for
cardiovascular applications are presented. Next to that, existing research on SRR is summarised.

Chapter 3: T1 mapping of a single cardiovascular multi-slice stack is proposed. Due to
limited breath hold (BH) length and overall acquisition time, the acquisition time for one
single LR stack is minimised. Cardiac motion correction and a model-based T1 reconstruction
are used for that. Sequence parameters such as the inversion pulse and the gap between the
slices are investigated to provide accurate T1 estimates. The influence of the slice thickness
and acquisition time for a single LR slice on the signal-to-noise ratio (SNR) is evaluated
experimentally for quantitative T1 maps.

Chapter 4: A model-based SRR optimisation scheme adapted for quantitative
cardiovascular imaging is proposed and tested with simulated data. For that, differently shifted
LR stacks in short-axis orientation (SAX) are acquired. The performance of the proposed
SRR with respect to resolving small structures is evaluated. The influence of different parts of
the acquisition model, such as motion and slice profile accuracy, are investigated with respect
to the accuracy of the T1 values provided by the SRR.

Chapter 5: The model-based SRR optimization scheme is tested in vivo and in phantom
measurements. A motion correction approach is proposed to align LR stacks obtained in
different BH positions. The performance of the resulting approach is evaluated in four healthy
volunteers.

Chapter 6: The field of view (FOV) is evaluated for whole-heart applications by adapting
the SRR geometry. Instead of differently shifted LR stacks, the LR stacks are rotated to one
another, and cardiovascular long-axis images are acquired instead of SAX images. For that,
the sequence parameters are adapted to provide accurate T1 estimates for the long-axis images.
The rotated SRR geometry is optimised for cardiovascular imaging to obtain accurate and
precise cardiovascular T1 estimates and whole-heart coverage. The influence of the adapted
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SRR geometry with respect to resolving small structures is evaluated.

Chapter 7: A k-space-based SRR approach is proposed and compared to an image-space-
based approach. By that, undersampling artefacts in the reconstructed LR dynamics might
no longer propagate into the SRR result. Its effect on the visualisation of small structures is
investigated. The resulting approach is tested in ten healthy volunteers. The performance of
the proposed approach with respect to providing precise T1 values of the whole heart with a
high spatial resolution in a low acquisition time is evaluated.

Chapter 8: Main findings are summarised, and future research improvements are discussed.
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2. Cardiac MRI

2
Cardiac MRI

2.1 Cardiac anatomy

Figure 2.1: Frontal section of the heart (source: Shutterstock/ilusmedical)
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2.1 Cardiac anatomy

The myocardium consists of four chambers: the right and left atrium and the right and left
ventricle. The atria are divided by the interatrial septum, and the ventricles are separated by
the interventricular septum (see Figure 2.1).
While the atria gather the blood, the ventricles press it into the body. The right atrium opens
into the right ventricle, pumping blood into the pulmonary trunk. The oxygen-rich blood
returns from the lungs and is received by the left atrium. The left atrium opens into the left
ventricle, pumping the blood into the systemic circuit.
At the beginning of the cardiac cycle, both the atria and ventricles are relaxed (atrial and
ventricular diastole), as shown in Figure 2.2, allowing blood to flow into the atria. During
atrial systole, the muscles in the atria contract, forcing blood into the ventricles. Atrial systole
lasts for around 100 ms and concludes before ventricular systole, as the atrial muscles return
to their relaxed state. Following atrial systole, ventricular systole begins. This is characterised
by the contraction of the ventricular muscles, pumping blood out of the heart. The entire
ventricular systole phase lasts for approximately 270 ms. After contraction, the ventricles relax
for about 430 ms (ventricular diastole) before the contraction in the next cardiac cycle [24].

Figure 2.2: Relationship between the cardiac cycle and the electrocardiogram (based on [24])

The left and right ventricles contain two and three papillary muscles, respectively [25].
Papillary muscles are elongated muscles originating from the inner wall of the ventricles and
attached to the edges of the atrioventricular valves. During contraction of the ventricles, these
muscles prevent the atrioventricular valve leaflets from being inverted or leaking since the
pressure in the ventricular cavity is rising during systole [26].
While the left ventricular wall is relatively thick with about 7 mm [27], the thickness
of the right ventricle is below 5 mm [28]. The atrial walls are even thinner, with a wall
thickness of approximately 2 mm in the left atria and approximately 3 mm in the right atria [29].

While the assessment of the left ventricular chamber is performed routinely in clinical
cardiovascular MRI, imaging of the right ventricle or the atrial walls experiences challenges since
the spatial resolution of the MRI scans often limits their visualisation, as in late gadolinium
enhancement imaging [30] or parametric mapping techniques [15].
However, function, size and morphology of the right ventricle strongly influence morbidity
and mortality in various cardiac diseases, for example, congenital heart disease, myocardial
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infarction [31], or pulmonary hypertension [32]. Right ventricular fibrosis may be important
in diseases such as arrhythmogenic right ventricular dysplasia [33]. However, characterising
the right ventricle with cardiovascular MRI is challenging and often done using an invasive
endomyocardial biopsy [32].
The use of MRI has recently become a promising tool for understanding the changes in the
structure of the atrial wall [34]. However, due to the limited spatial resolution of MRI scans,
there is a risk that the classification of the left atrial wall will be impaired due to partial
volume effects. This effect occurs if a voxel covers different tissue types, and only an average
of the tissue signal can be visualised. This is especially problematic when the atrial wall is in
the order of the voxel size due to partial volume effects [35].

2.2 Cardiac acquisition geometries

(a) SAX (b) 4CH (c) 2CH

(d) SAX (e) 4CH (f) 2CH

Figure 2.3: Cardiac acquisition geometries. The upper row shows the positioning of the imaging
plane in the heart anatomy while the second row shows a pictogram of the respective resulting slice
(images based on: Shutterstock/decade3d - anatomy online (a-c) and Shutterstock/noonin (e-f))

The myocardium is mainly analysed by acquiring a stack of parallel SAX slices [36]. For
global diseases, optionally, a single long-axis map is acquired, while for a patchy disease,
the acquisition of at least one long-axis map is mandatory [15]. A long-axis map is usually
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acquired in a four-chamber (4CH) or a two-chamber orientation (2CH). How these different
orientations are placed in the heart is shown in Figure 2.3.

The segmentation of the left ventricle is easier in the SAX compared to the long-axis
orientation due to its simpler shape [37]. Next to that, with the SAX, through-plane partial
volume effects can be minimised [15].
However, the SAX is quite inefficient with respect to the heart coverage: Due to the geometry
of the heart, a long-axis orientation covers more of the heart with its FOV compared to a
SAX and therefore might be more time-efficient [38]. Next to that, due to the partial volume
effect, SAX images of the apex only have limited value [15]. Long-axis views, however, provide
well-defined basal and apical borders of the myocardium [39].

Another acquisition scheme consisting of radial long-axis views that are rotated around the
central longitudinal axis of the left ventricle was proposed in [40] (see Figure 2.4). This allows
for a rapid calculation of the left ventricular volume, as it is often challenging for volume
quantification of the left ventricle to determine the most basal left ventricular SAX slice.

Figure 2.4: Rotated long-axis acquisition geometry as proposed in [40]
.

2.3 T1 relaxation

MRI relies on the alignment of nuclear spins in an external magnetic field and their stimulation
by radio frequency (RF) pulses. By measuring the reaction of the nuclear spins to this external
stimulus, information about the underlying tissue can be obtained.
When the RF field is turned off, the spin system returns to its original equilibrium state.
This process is known as T1 or longitudinal relaxation. During this relaxation process, the
nuclear spins exchange energy with the surrounding lattice. This process is also referred to as
spin-lattice relaxation. The duration of this process varies based on, for example, the chemical
properties of the molecules.
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2.4 Cardiac T1 mapping

Healthy myocardial tissue consists of three main parts: the intracellular, intravascular,
and interstitial compartments. The largest component of the intracellular compartment
is mainly composed of myocytes. The intravascular compartment contains the blood,
while the interstitial compartment supports the myocytes and transmits mechanical forces.
The interstitial compartment, together with the intravascular compartment, is known as
extracellular volume (ECV). In various cardiovascular diseases, such as oedema or fibrosis, the
ECV expands, primarily due to the enlargement of the interstitial component [5].
T1 relaxation time is a characteristic tissue property and contributes to the image contrast
between different soft tissues in MRI. Commonly, T1 weighted images are obtained, whose
image intensities depend on relaxation times as well as sequence and hardware parameters.
In recent years, T1 mapping has been translated into clinical application as an important
quantitative approach to differentiate different cardiac tissue types [4, 6, 41–43]. T1 mapping
allows measuring the T1 relaxation time in each tissue voxel.
The T1 relaxation time of the myocardium is influenced by alterations in the relative sizes of the
intracellular volume and ECV. In the case of oedema or fibrotic conditions, the extracellular
space, where water is less restricted in motion, expands, leading to higher native T1 values.
Infiltrative diseases such as Anderson–Fabry and iron overload cause the accumulation of short
T1 lipids and iron in the extracellular space, resulting in lower native T1 values [5].

Several sequences were proposed to measure the T1 value based on inversion or saturation
pulses. After applying an inversion or saturation pulse, spins in a MRI system are flipped by
180° or 90° respectively and then gradually return to their equilibrium state. To calculate
the T1 relaxation time in each voxel of an image, conventional T1 mapping techniques acquire
multiple images at different times after the inversion or saturation pulse, called inversion
recovery (IR) times or saturation recovery (SR) times respectively, and calculate the underlying
relaxation time by fitting a signal model to the obtained data.
In clinical routine, mostly IR (modified Look-Locker inversion recovery (MOLLI) [44], ShMOLLI
[45]) or SR (SASHA [46]) preparation pulses or a combination of the two (SAPPHIRE [47])
are used [15].
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2.4 Cardiac T1 mapping

(a) sequence diagram. "INV" describes the application of an inversion pulse, and "IMG" describes the time point
of image acquisition

(b) magnetisation curve of the measured signal intensity
S(t) over the IR time

Figure 2.5: Cardiac T1 mapping strategy: MOLLI

The MOLLI sequence was the first technique developed for mapping T1 values in the heart.
As shown in Figure 2.5, it involves acquiring several single-shot balanced steady-state free
precession (bSSFP) [48] images after an inversion pulse during end diastole in consecutive
cardiac cycles. The timing between these images is based on multiples of the R-R interval.
Multiple sets of single-shot bSSFP images, known as Look-Locker sets, are acquired with their
own inversion pulses to sample the relaxation curve at different time points. To allow for
complete recovery of the longitudinal magnetisation before the next inversion pulse, periods
without data acquisition are included between these sets of data.
The MOLLI sampling scheme is described using a specific nomenclature, such as, for example,
3(3)3(3)5 for the original publication, where the number without brackets indicates the number
of images in one acquisition set. The number of cardiac cycles used for waiting time is indicated
by the numbers in brackets. Each set samples different points of the relaxation curve, but all
in the same cardiac motion state. A cardiac T1 map resulting from a MOLLI acquisition is
shown in Figure 2.6.
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Figure 2.6: Cardiac T1 map acquired using a MOLLI sequence
.

The read-outs lead the relaxation process to occur more rapidly and to stabilise at a steady
state M∗

0 , smaller than the equilibrium magnetisation M0. This read-out effect leads to an
apparent recovery time referred to as T ∗

1 , representing an apparent recovery time shorter than
the actual longitudinal recovery time T1 [14]. To account for this effect, a three-parameter
exponential signal model was proposed, where the measured signal intensity values S(t) at IR
time point t can be used to estimate the parameters A, B, and T ∗

1 :

S(t) = A − B ∗ exp(−t/T ∗
1 ) (2.1)

These parameters can then be used to approximate T1 by calculating a correction factor,
also known as the "Look-Locker" correction [49]:

T1 = T ∗
1 (B/A − 1) (2.2)

MOLLI is frequently used in cardiac T1 mapping due to its high precision [15] and high
SNR [5]. However, it is known that MOLLI tends to underestimate T1 values [5] due to
various factors such as T2 relaxation time [50], magnetisation transfer [51], magnetic field
heterogeneities [5], off-resonance effects [52], and the efficiency of inversion pulses [14]. Next
to that, the traditional MOLLI technique involves holding the breath for 17 cardiac cycles,
which can be difficult for some patients.
To address this challenge, a modified version called ShMOLLI was created. ShMOLLI requires
only nine heartbeats and follows a 5(1)1(1)1 pattern. However, because there is only one
heartbeat for recovery between sets, special data analysis is necessary: data from the last two
sets are only used for very short T1 times, such that a full recovery within only one heartbeat
is possible.
The accuracy of the MOLLI technique can be strongly affected due to its high dependency
on heart rate, as higher heart rates may prevent the longitudinal magnetisation from fully
recovering to its initial state in the cardiac cycles used for waiting time. Modifications to
the original MOLLI protocol have been proposed [52, 14] to provide accurate and precise T1
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estimates independent of the heart rate. For that, the waiting periods are based on seconds
instead of R-R intervals. A 5(3s)5 acquisition scheme would indicate a three-second waiting
period between the acquisition sets, while the recovery periods are approximated to the closest
multiple of the R-R period to provide adequate electrocardiogram (ECG) triggering.

(a) sequence diagram. "SAT" describes the application of a saturation pulse, and "IMG" describes the time
point of image acquisition

(b) magnetisation curve of the measured signal intensity
S(t) over the SR time

Figure 2.7: Cardiac T1 mapping strategy: SASHA.

The SASHA sequence is composed of obtaining 10 ECG-gated single-shot bSSFP images
in consecutive cardiac cycles, as shown in figure Figure 2.7. The first image does not involve
any magnetisation preparation, while the subsequent nine images are collected after applying
nine saturation pulses with varying SR times.
Different from MOLLI, saturation pulses have the advantage of making each measurement
independent. When the recovery begins from a saturated state, any prior influence of inversion
pulses is eliminated. Therefore, no recovery periods between consecutive measurements are
needed [14]. The absence of a need for pause cycles in image acquisition results in greater
scan efficiency compared to the MOLLI technique. Compared to MOLLI, SASHA is more
accurate and less influenced by factors such as heart rate. However, compared to IR, SR has a
reduced dynamic range since only signal intensities from 0 to M0 are acquired compared to
the range from −M0 to M0 as for IR. Consequently, SASHA generally has lower T1 precision
compared to IR sequences such as MOLLI [46].
An alternative technique called SAPPHIRE (SAturation Pulse Prepared Heart rate-independent
Inversion REcovery) [47] has been suggested to merge the independent image properties of
SR methods with the enhanced dynamic range of IR. For that, a saturation pulse is applied
immediately after the ECG R-wave. This pulse nulls the entire magnetisation in the volume
and removes the influence of the longitudinal magnetisation on signal recovery from previous
R-R intervals. Subsequently, a conventional inversion pulse is applied after the saturation pulse.
The T1 values obtained using the SAPPHIRE method were comparable to those obtained
using SASHA, with a level of precision between the MOLLI and the SASHA technique [5].
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All these mapping sequences, however, are limited by acquiring data only in a small part of
the cardiac cycle to minimise cardiac motion artefacts. This leads to long acquisition times:
Assuming a heart frequency of 60 beats per minute, MOLLI takes 17 seconds, ShMOLLI 9
seconds, SASHA 10 seconds, and SAPPHIRE 9 seconds for a single slice. Next to that, all of
the proposed sequences provide only low through-plane resolution, with a slice thickness of 8
mm for MOLLI, ShMOLLI and SASHA and even 10 mm for SAPPHIRE.

(a) Sequence diagram. "INV" describes the application
of an inversion pulse, and "IMG" describes the time
point of image acquisition

(b) magnetisation curve

Figure 2.8: Cardiac T1 mapping strategy: Continuous Golden angle radial

Kerkering et al. [53–55] proposed a model-based T1 mapping sequence (see Figure 2.8),
which was able to provide a T1 map within a 2.3 seconds scan with improved precision compared
to cardiac-triggered data. For that, an inversion pulse was applied, and the T1 relaxation
curve was continuously sampled using a Golden angle radial trajectory. The application of
read-out pulses leads to a constant loss of longitudinal magnetisation Mz(t) at time point t

after each application of the read-out pulses. Consequently, the signal intensities relax towards
M∗

0 instead of the equilibrium magnetisation M0 and with an effective relaxation time of T ∗
1 ,

smaller than T1. This effect was considered using a three-parameter (M0, α, T1) signal model
to describe the signal behaviour of the continuous data acquisition after the inversion pulse,
with α describing the flip angle of the read-out pulses. This was based on the evolution of S(t)
after the inversion, as described by the following equations [49]:
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S(t) = M∗
0 − (M0 + M∗

0 ) ∗ exp(−t/T ∗
1 ) (2.3)

M∗
0 = M0

T ∗
1

T1
(2.4)

T ∗
1 = [1/T1 − (1/TR)ln(cos(α))]−1 (2.5)

TR thereby describes the repetition time.

For the reconstruction of the acquired k-space data, a model-based iterative scheme was
introduced [54]. For that, a specific cardiac phase was chosen by retrospectively gating the
k-space data based on the acquired ECG signal. After interpolation onto a cartesian grid,
images were reconstructed using an inverse FFT. The magnitude images obtained at different
inversion times were voxel-wise fitted to the magnitude of the model function described above.
Based on the determined quantitative parameters, dynamics were calculated voxel-wise using
the model function for each inversion time point. These images were then used to calculate
k-space spokes. The model predictions were substituted with the acquired k-space data to
ensure data consistency. The consistent k-spaces were then used as input for the next iteration.
Next to that, cardiac motion correction was incorporated into the model-based reconstruction
[53], allowing the use of all the acquired data during the cardiac cycle for the reconstruction,
except for 30% of systole due to through-plane motion. The method is composed of three
primary steps. The first step involves reconstructing dynamics with a high temporal resolution
to capture cardiac motion. Additionally, a preliminary diastolic T1 map is created using
only images taken during a specified diastolic window to ensure consistency in the cardiac
phase. In the second step, the preliminary diastolic T1 map is used to calculate synthetic
dynamics that exhibit the same contrast characteristics as the reconstructed dynamics but
without any cardiac motion. Non-rigid motion estimation is then performed between the
reconstructed and the synthetic dynamics to determine the extent of cardiac motion. Lastly,
in the third and final step of the method, the calculated cardiac motion fields are applied
in the motion-corrected model-based image reconstruction to obtain the final T1 map. The
determination of the systolic and diastolic times is based on the heart rate using a calculation
method based on [56] in combination with a detection of the positions of the R-Peak in the
ECG. An exemplary cardiac T1 map resulting from the described technique acquisition is
shown in Figure 2.9.
Nonetheless, the image resolution from the model-based T1 mapping sequence was compromised
by partial volume effects due to a slice thickness of 8 mm. This can impair the accurate
detection of subtle fibrosis in the myocardium and restrict the ability to differentiate myocardial
injury within the thin myocardial wall of young patients.
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Figure 2.9: Cardiac T1 map acquired using a continuous Golden angle radial acquisition scheme
as presented in [53–55]

.

Instead of acquiring multiple 2D slices, a 3D volume can be acquired directly. However,
the acquisition time for such a 3D volume is often too long for a single BH. An alternative is,
therefore, to use a 3D navigated free-breathing sequence.
For motion navigated sequences, no BH is necessary, but the breathing state of the patient
is tracked (using pneumatic bellows, navigator echoes, or novel methods such as the Pilot
Tone [57]). This motion information can then be used either for a motion-corrected sequence,
adapting the slice position accordingly, or for a gated sequence, acquiring data only in the
desired motion state.
For example, [19] used a free-running 3D golden angle radial read-out interleaved with IR and
T2-preparation pulses for that. Together with translational respiratory motion and non-rigid
cardiac motion correction, a 3D whole heart T1 and T2 map could be reconstructed with an
isotropic resolution of 2 mm in approximately 3.3 min acquisition time. Similar results were
achieved in [58, 17–23].
The acquisition time for 3D cardiac imaging, however, strongly depends on the performance of
the navigator. Next to that, inaccuracies in the motion navigator might also deteriorate the
overall 3D scan and introduce image artefacts.
So far, whole-heart T1 mapping with high isotropic resolution is only possible for long acquisition
times (isotropic resolution of 1.5 mm and reconstruction time of 9.5 minutes [22]). Others
achieved a short acquisition time of up to 3.3 minutes, however, they achieved, at best, an
isotropic resolution of 2 mm [58, 17–23].

2.5 Super-resolution reconstruction

The quality of MRI images is often restricted by various factors, including the movement of
subjects during scanning and acquisition time constraints. SNR is another limiting factor due
to the non-linear relationship between acquisition time and slice thickness, as described in the
following equation [59, 60]:
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SNR ∝ ∆z
√

N (2.6)

with N denoting the number of phase-encoding (PE) lines or radial spokes for radial
imaging and ∆z the slice thickness .
Hence, the SNR can be increased by increasing the slice thickness or the number of PE lines.
However, to double the SNR, for example, either the slice thickness can be doubled, or four
times the number of PE lines need to be acquired, which is associated with a quadrupling of
the acquisition time. This often leads to the acquisition of slices with a high slice thickness, so
poor through-plane resolution.
Studies [59] have demonstrated the advantages of using SRR reconstruction methods over
direct HR acquisition: They have shown that, for a given acquisition time, SRR reconstructed
images have higher SNR compared to images obtained directly at the same high resolution.

SRR algorithms were first introduced in the early 1980s and were initially used in video
processing to enhance the resolution of image sequences [61–63]. The basic concept behind
SRR is to merge multiple LR observations of the same object to reconstruct a HR image.
In video sequences, a HR frame can be generated by combining consecutive frames that
capture the object with subpixel movement, such as a simple translation [64]. If the geometric
transformation of the objects in the frames (translation, rotation, deformation) is known or
accurately estimated with subpixel precision, it becomes possible to combine LR slices and
obtain a HR volume. This ability to retrieve aliasing content gives SRR an advantage over
standard interpolation techniques.

The MRI framework is particularly well suited for applying SRR techniques due to
the control over the acquisition process. With the flexibility to choose any scanning plane
orientation, acquiring multiple distinct LR observations of the subject is possible, even when
no subject motion is involved.
In MRI imaging, there are two different types of SRR: in-plane SRR and through-plane SRR.
[65, 66] have investigated improving the resolution in the in-plane direction. This was achieved
by acquiring several scans with subpixel shifts in the FOV in the in-plane directions. SRR
was then applied to generate a HR volume, which showed improved resolution in the in-plane
dimension and a higher SNR. However, concerns were raised [67–69] about the theoretical
basis of the in-plane resolution improvement: MRI data is acquired in the frequency domain
called k-space. Subpixel FOV shifts in the in-plane dimension correspond to a linear phase
modulation in the k-space, as long as the FOV and digital resolution remain constant across
the scans. Under these conditions, the acquired k-space data is the same for all the scans, and
no new frequency content is acquired. [67] suggested that similar results could be obtained by
combining the same number of scans without introducing any shifts. [68] demonstrated that
similar in-plane resolution improvement could be achieved using zero-padding interpolation.
According to these researchers, the resolution improvement was only a result of noise reduction,
leading to an improvement in SNR.
However, the anisotropy of the voxels in multislice MRI scans has prompted many authors
to use SRR algorithms to improve the resolution in the through-plane direction. In 2D slice
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stacks, each individual slice is Fourier encoded. However, in the direction perpendicular to the
slices, there are no natural restrictions on the range of frequencies, allowing the possibility of
recovering aliased frequencies. The extent of aliasing is influenced by the shape of the slice
profile, which ideally should be a rectangular function for non-overlapping slices. However, the
slice profile depends on the RF pulse and due to hardware limitations, a perfect rectangular
shape is usually not achieved. Due to the aliasing that arises when the object is convolved
with the slice profile, it becomes possible to perform slice profile recovery with shifts along or
different orientations of the slice encoding (SE) direction [59].

SRR techniques can again be categorised into two main categories: multi-image SRR and
single-image SRR.
In single-image SRR, only one LR image is given and based on that, a HR image is supposed
to be calculated. For that, often example-based methods are used, using Deep learning to
establish relationships between LR images and their HR counterparts. The learned relationship
between them is then applied to a new LR image to generate its most likely HR version. This
is, for example, used in [70], while the interested reader is forwarded to [71] for an overview of
the Deep Learning methods that have been used for SRR.
In the multi-image approach, a HR volume is reconstructed by combining multiple LR images
of the same scene. In this work, multi-image SRR is used.
The estimation of a HR volume from multiple LR slices using SRR can be described by the
following inverse problem:

γs =
NS∑︂
s=1

As ∗ Γ + n (2.7)

with the index s being the index of the LR multi-slice stack (s = 1, ..., NS and NS being
the number of stacks) and A describing the transformation of the HR volume Γ to the LR slice
γ. The variable n denotes the noise in the LR slices, which can be assumed to be additive,
white and Gaussian when the SNR > 3 [72].
Solving the inverse problem corresponds to recovering Γ given γs and As. The problem can be
formulated as an ordinary least squares problem:

min
Γ

NS∑︂
s=1

||γs − As ∗ Γ||22 (2.8)

The acquisition model A is application-specific but generally decomposes into the geometric
transform between the LR stacks and the downsampling operator between the LR slices and
the HR volume.
The slice profile can describe the downsampling part of the acquisition model [64].
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(a) parallel stacks (b) orthogonal stacks

(c) rotated stacks

Figure 2.10: SRR geometries

The geometric transform describes the different points of view from the single LR stacks,
for which three different sorts of geometries are most common: Parallel, orthogonal and rotated
stacks acquisition (see Figure 2.10):

• Parallel stacks: Multiple parallel LR stacks are obtained and shifted along the SE
direction by a known distance that is smaller than the slice thickness. To achieve isotropic
resolution, a minimum of N LR stacks are required [64], where N is the ratio between the
resolution in the through-plane dimension over the resolution in the in-plane dimension.
This approach was used in [73, 68, 74].

• Orthogonal stacks: Three different stacks are acquired, each taken in orthogonal
orientations, such as sagittal, transverse, and coronal. For each LR direction of one stack,
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two other stacks compensate for it with their HR along that direction. This has been
used in [75–83].

• Rotated stacks: This is an extended version of the orthogonal acquisition method,
where several LR stacks are acquired, which are rotated around one common encoded
axes. This approach was used in [84–88].

The geometric transform in stationary objects involves introducing artificial motion by
shifting or rotating the scanning plane by a predetermined amount. In the case of a moving
subject, however, part of this transformation comes from the motion generated by the subject
itself, which cannot necessarily be controlled. Motion estimation, therefore, plays a crucial
role in SRR and is a major factor influencing the quality of the reconstruction [64]. Especially
in the context of SRR application on fetal imaging, motion correction plays an important role
[89–91, 75, 77].
To account for motion in between the LR stacks, the motion can either be detected once
before the SRR and the geometric transform updated accordingly or the motion detection and
correction can be incorporated into the SRR problem. [92, 78] compensated for motion by
adjusting the transformation parameters of the motion operator before estimating the HR T1

maps. These adjusted parameters were then fixed and used in the subsequent SRR routine.
However, fixing the motion parameters could introduce inaccuracies in the SRR result, as
there was no feedback mechanism to correct any incorrect estimation of motion parameters.
Alternatively, motion detection and correction can be incorporated into the SRR problems, as
[83–85, 93] proposed a SRR with joint motion estimation.

For quantitative relaxometry MRI, there are two different approaches for reconstructing
a HR quantitative map: In the first approach, SRR is used to reconstruct HR dynamics
independently from a group of LR images with equal contrast weighting and the quantitative
parameters are calculated by applying a parametric quantitative MRI signal model to these
reconstructed HR dynamics voxel by voxel [77]. The second approach, however, incorporates
the quantitative MRI signal model into the SRR [88, 94, 84, 85], called "model-based SRR".
This allows for direct estimation of the HR parameter map volume from the LR dynamics
without the need to first reconstruct individual HR dynamics. Furthermore, the signal model
introduces prior knowledge into the optimisation problem and serves as a regularisation.

Commonly, SRR is image-space-based, so the acquired k-space data is reconstructed
in a preprocessing step, and the resulting images then serve as input for the SRR. Errors
happening during that preprocessing step, then, however, propagate into the SRR result.
As an alternative, SRR can also be applied to the raw k-space data, as proposed with a
k-space-based reconstruction in [94, 93]. This improved the visualisation of small structures
compared to an image-space-based reconstruction.

The application of SRR on the heart [95–98, 93, 76, 78, 79] has so far only been shown for
qualitative imaging. For T1 mapping, SRR taking into account different motion states of the
individual LR stacks has so far only been applied on the brain [88, 85, 84].
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2.5 Super-resolution reconstruction

Table 2.1 gives an overview over the existing literature on multi-image SRR, marked which
publication used motion correction, a k-space-based SRR, applied SRR on cardiac applications
and performed quantitative parameter estimation with SRR.

cardiac quantitative
motion

correction
k-space
based

proposed approach x x x x
[93] x x x

[92, 79, 76, 81, 78] x x
[84, 85, 88] x x

[94] x x
[96, 97] x
[77, 82] x

[99–103, 75, 89–91] x

Table 2.1: Existing literature on multi-image SRR. Crosses in the appropriate column indicate
which topics were covered by the respective research paper.
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3
T1 mapping of a single cardiac

multi-slice stack

3.1 Introduction

In cardiac T1 mapping, a significant challenge is the limitation of spatial resolution caused by
respiratory and cardiac motion, low SNR, and limited acquisition time. In clinical routine, T1

maps are typically obtained using a 2D acquisition method with a high resolution within the
image plane but a low through-plane resolution [54]. With the work proposed in [53–55], a
single cardiac 2D LR T1 map with a spatial resolution of 1.3 x 1.3 x 8.0 mm3 with accurate T1

estimates could be acquired in 2.3 seconds. However, the spatial resolution is still compromised
by partial volume effects, which can hinder the accurate detection of subtle fibrosis in the
myocardium and the differentiation of myocardial injury, for example, in young patients with
thin myocardial walls.
SRR has been suggested as a potential solution to improve the trade-off between spatial
resolution, acquisition time, and SNR [59]. SRR calculates a HR volume based on several LR
multi-slice stacks, where the LR stacks are, for example, shifted to one another by a sub-voxel
shift along the SE direction. The HR volume then profits from the high SNR of the LR slices.
The acquisition time for the SRR result consists of the sum of the acquisition times of the
single multi-slice LR stacks. So, for the HR volume to be acquired in a fast acquisition time,
the acquisition time for a single multi-slice LR stack needs to be minimised while still providing
accurate values.
With the method proposed in [53–55], a single cardiac 2D LR T1 map with accurate T1

estimates could be acquired, however, a non-selective inversion pulse was used. With the
use of a non-selective inversion pulse in a multi-slice sequence, all slices of the stack would
be inverted, and waiting times between the slices would be necessary to get an accurate T1

estimate of all slices.
In this chapter, the use of a slice-selective inversion pulse will be investigated to avoid waiting
times between the slices. The sequence parameters for a multi-slice acquisition, such as
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3. T1 mapping of a single cardiac multi-slice stack

the width of the inversion pulse and the gap between the slices, will be adapted to provide
independence between the slices and an accurate inversion of the whole slice. Next to that, for
the LR multi-slice stack to provide accurate T1 estimates in a low acquisition time, high SNR
of the slices needs to be ensured. Therefore, the relationship between slice thickness, number
of spokes and SNR will be investigated for the proposed T1 mapping sequence. The precision
and accuracy of the acquisition of a LR multi-slice stack with the proposed parameters will
be evaluated in phantom and in vivo experiments using a model-based T1 reconstruction and
cardiac motion correction.

3.2 Methods

An acquisition and reconstruction technique of a single multi-slice stack is investigated in
the following. For each slice of the multi-slice stack, a slice-selective inversion pulse with
experiment-specific width is applied, followed by a Golden-angle radial readout, as described
in [54, 55]. The respective data is then reconstructed using a model-based T1 reconstruction
and cardiac motion correction [53].

3.2.1 Cardiac motion correction

Cardiac motion correction is performed as described in [53]. For that, dynamic cardiac
motion-resolved images are reconstructed. Spatial and temporal total variation regularisation
is applied to suppress undersampling artefacts [104]. A subject-specific rectangular region of
interest ROI interest covering both ventricles is selected to accelerate the motion estimation.
Iteratively, the non-rigid cardiac motion fields are estimated using the MIRTK Toolkit [105].

3.2.2 Model-based T1 reconstruction

T1 maps are reconstructed directly from the acquired k-space data using an iterative model-
based T1 reconstruction scheme [54, 55]. A Look-Locker model q is used in an iterative
reconstruction scheme to estimate the parameter maps γm with the quantitative parameter m =
[p, α, T1] and the T1-weighted images (dynamics) χ. p denotes the equilibrium magnetisation
and α the readout flip angle. γm has the dimensions Nx x Ny, and χ the dimensions NT x Nx

x Ny (with Nx and Ny being the number of voxels in the image and NT being the number of
dynamics).
The primary focus in the following is on the T1 parameter as it is clinically the most relevant,
so γT1 will be referred to as γ in the following.

3.2.3 In vivo T1 mapping

The proposed motion estimation and correction scheme can only correct for motion within
the imaging plane. However, during the peak systole phase, when the heart muscle contracts,
there can be significant motion in the through-plane direction. To avoid inaccuracies in the
T1 estimation, data acquired during peak systole, respective to 30% of the systole phase, are
excluded for the cardiac motion estimation, as described in [53]. The regularisation parameters
along time and space were set to 0.5.
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3.3 Experiments

3.3 Experiments

3.3.1 Data acquisition

Data was acquired using a Golden-angle radial sampling scheme. After a RF inversion pulse,
data was continuously acquired with the following parameters: flip angle α=9°, in-plane
resolution of 1.3×1.3 mm2, experiment-specific slice thickness, in-plane FOV 320×320 mm2,
echo time (TE) / repetition time (TR): 2.19/4.9 ms. Data was acquired using a 3 Tesla MRI
scanner (Verio, Siemens Healthineers, Erlangen, Germany).
For multi-slice acquisitions, the slices were acquired in an interleaved order to avoid interferences
between them. For example, for the acquisition of six slices, an interleaved sequence acquires
their positions in the following order: 1, 3, 5, 2, 4, 6. As a consequence, the spatial distance
between the acquisition of two consecutive slices is maximised.
For cardiac motion correction, dynamic cardiac motion-resolved images were reconstructed
with a temporal resolution of 51.3 ms (1 spoke = 5.7 ms). A sliding window approach with a
50% overlap was used. For the model-based T1 reconstruction, a temporal resolution of 83.3
ms was used.

Simulation
Simulated data was generated using the XCAT phantom [106]. A dataset refXCAT,orig with a
voxel size of 1.3 x 1.3 x 1.5 mm3 was generated. From this, one LR multi-slice stack with five
slices in SAX was simulated with a slice thickness of 4 mm and a gap between the LR slices of
14 mm.
The default settings of the XCAT phantom were used to simulate the motion of the heart.
Multiple receiver coils were used to simulate the data acquisition, and zero-mean noise was
added. This allowed the application of the model-based T1 reconstruction and cardiac motion
correction on the simulated k-space data.
In the simulations, a T1 time of 1300 ms was assigned to the myocardium, 400 ms to fat, 800
ms to the liver and 900 ms to muscle. Blood was simulated with an apparent T1 time of 350
ms to match the experimental results. The underestimation of blood can be attributed to the
in-flow effect as a consequence of the slice-selective inversion pulse [107], as will be further
explained in section 3.5.

Phantom
The proposed approach was assessed in phantom measurements, using the "T1MES-phantom"
with nine tubes with different T1 times developed for cardiac imaging [108]. Phantom data
was acquired with a 16-channel head coil.
To evaluate the accuracy of the estimated T1 values, an IR spin-echo reference scan refIRSE

was acquired, in the orthogonal direction to the LR slices with seven TIs between 25 and 4800
ms (TE/TR: 12/8000 ms, FOV: 143 × 160 mm2, spatial resolution: 0.8 × 0.8 × 5 mm3).

In vivo
To evaluate the proposed approach in in vivo measurements, data was obtained from one
healthy subject with a commercial 32-channel cardiac coil. The subject gave written informed
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3. T1 mapping of a single cardiac multi-slice stack

consent before participation in accordance with the institution’s ethical committee. One LR
stack consisting of five slices in SAX with a slice thickness ∆z = 4 mm and a gap between the
slices of 14 mm was acquired.

3.3.2 SNR in quantitative T1 maps

As mentioned previously, high SNR needs to be made sure to provide accurate T1 estimates.
As set up in Equation 2.6, the SNR in qualitative MRI scales linearly to the voxel size and the
square root of the number of radial spokes. However, this relationship neither considers the
non-linear signal model nor the continuous readout of the proposed T1 mapping sequence. The
following chapter, therefore, evaluates the influence of N and ∆z on the SNR experimentally
for different ∆z and N using the proposed T1 mapping sequence.
The acquired k-space data was reconstructed using a non-uniform FFT [109, 110] to avoid
regularisation effects of the model-based reconstruction.
The SNR is approximated by one over the standard deviation (SD) in a ROI of the fitted T1

values in the phantom tubes:

SNR = 1
SD(T1) (3.1)

The experimental results were compared to the theoretical SNR relationship between N

and ∆z based on Equation 2.6. For this, the values predicted by the model were normalised to
the first experimentally determined SNR value, thus predicting the course of this SNR value
corresponding to the model.

3.3.3 Inversion pulse

As mentioned previously, a slice-selective inversion pulse is used to avoid waiting times between
the slices of the multi-slice stack. To achieve a rectangular slice profile, an infinitely long
sinc-shaped RF would need to be used. As this is not possible in a limited acquisition time,
the effective slice profile is usually an approximated rectangle and might not achieve accurate
inversion along the entire slice profile. For accurate T1 mapping, however, the width of the
slice-selective inversion pulse needs to be broad enough to invert the whole slice. In addition,
through-plane motion can also lead to a mismatch between the inverted and the imaged slice.
To optimise the parameters for the inversion pulse, a phantom experiment was performed:
A multi-slice stack consisting of six parallel slices with ∆z = 6 mm and a gap in between
the slices of 6 mm was acquired once using a non-selective inversion pulse and once using
a slice-selective inversion pulse with w = 3. The respective T1 accuracy was evaluated and
compared.

In a further experiment, six LR stacks were acquired, each consisting of one slice with a
different width w of the inversion pulse in the range of w = [1, ...5] next to an acquisition with
a non-selective inversion pulse. The factor w thereby denotes the width of the inversion pulse
normalised by the slice thickness:

w = thickness of slice selective inversion pulse
∆z

(3.2)
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This experiment was performed for two different ∆z (4 mm and 8 mm). The mean error
of the fitted T1 values in a ROI in each phantom tube with respect to a non-selective inversion
was then calculated. For each ∆z, the experiment was performed for two scenarios: Once for
a static case, and once motion was simulated, for example, in the case of a non-consistent
BH. A moving phantom was used to mimic breathing motion, as described in [57], where
the T1MES-phantom was placed onto a moving wagon. To mimic the natural movement
of breathing, the wagon moved in a sinusoidal pattern along the head-feet direction of the
scanner. With that, the phantom moved with a speed of 1 cm/s along the SE direction during
the acquisition.
As mentioned above, the acquired k-space data was reconstructed using a non-uniform FFT
[109, 110] to avoid the regularisation effects of the model-based reconstruction.

3.3.4 Gap in between LR slices

With a certain inversion pulse width, the slice-selective inversion pulses influence neighbouring
slices. Gaps might reduce potential interferences between slices within one stack in between
the LR slices. The necessity of gaps in between the LR slices was therefore investigated in
phantom experiments to provide accurate T1 values.
Different acquisitions with six slices per stack with a thickness of ∆z = 6 mm and gaps in the
range of [0, 6] mm between the slices were performed to evaluate that. The error of the fitted
T1 values in a ROI of the phantom tubes compared to refIRSE was calculated over all tubes
and all slices.
As mentioned above, the acquired k-space data was reconstructed using a non-uniform FFT
[109, 110] to avoid the regularisation effects of the model-based reconstruction.
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3. T1 mapping of a single cardiac multi-slice stack

3.4 Results

3.4.1 SNR in quantitative T1 maps

Figure 3.1: T1 maps acquired in phantom scans with different slice thickness ∆z and number of
spokes N

Figure 3.1 shows the T1 maps acquired in phantom scans for different ∆z and different number
of spokes (N). The T1 maps resulting from ∆z = 2 mm visually appear more noisy compared
to ∆z = 8 mm.

Figure 3.2: Influence of the slice thickness ∆z and the number of radial spokes N on the SNR
for the measured experiments and the simplified model

In Figure 3.2, the respective comparison between the calculated SNR of the fitted T1 values
in the phantom tubes and the one predicted by Equation 3.1 is plotted. The measured results
for the SNR in the quantitative maps matched the non-linear relationship between N and ∆z

as predicted from the model. Doubling N and halving ∆z led to a decrease in the SNR.
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However, the measured SNR values decreased more slowly than predicted. While doubling
N and halving ∆z led to a predicted reduction of the SNR of a factor of

√
2/2 ≈ 0.71, the

measured SNR was only reduced by a factor of 0.82 ± 0.08 in that case.

3.4.2 Inversion pulse

Figure 3.3: Comparison of a multi-slice phantom stack acquisition of five slices with a
non-selective inversion pulse and a slice-selective inversion pulse with w = 3. The superscript of γ

indicates the acquisition order of the slices. The values in the phantom tubes in the lower row
indicate the SD over the slices of the respective tube.

In Figure 3.3, the acquisition of a multi-slice stack in a phantom experiment with a non-selective
and a slice-selective inversion pulse (w = 3) is shown. The T1 values in the slices using a
non-selective inversion pulse showed a high SD in their T1 values between the slices of 111.48
± 61.35 ms. The T1 values using a slice-selective inversion pulse were more precise, with a
mean SD between the slices of 7.67 ± 4.09 ms.
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3. T1 mapping of a single cardiac multi-slice stack

Figure 3.4: T1 maps of phantom experiments with different inversion pulse width with ∆z = 8
mm. The upper row shows the static phantom, while the lower row shows the phantom placed

onto a moving phantom mimicking breathing motion.

Figure 3.5: Influence of the width w of the slice selective inversion pulse on the T1 estimation
error for ∆z = 4 mm and ∆z = 8 mm compared to the use of a non-selective inversion pulse. The

results using a moving phantom are shown in blue, while the static results are shown in green.
The error bars indicate the SD over the phantom tubes.

In Figure 3.4 the resulting T1 maps from phantom scans with different w are shown with
and without motion for ∆z = 8 mm. Figure 3.5 shows the respective error of the T1 times
over different w for ∆z = 4 mm and ∆z = 8 mm. The static case is shown in green, while a
moving phantom was used for the blue plot. In both cases, a factor of w = 1 was not sufficient
to provide accurate T1 values (T1 error of 350.04 ± 292.53 ms for the static phantom and
of 438.09 ± 375.16 ms for the moving case over both ∆z). With ∆z = 8 mm, in both the
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static and moving case, a factor of w ≥ 2 decreased the error to 29.4 ± 47.01 ms. With a slice
thickness of ∆z = 4 mm, in the case of motion, a width of w ≥ 3 was necessary for accurate
T1 quantification. The error over both motion states and all tubes decreased with w ≥ 3 to
32.37 ± 56.35 ms for ∆z = 4 mm.

3.4.3 Gap in between the LR slices

Figure 3.6: T1 maps of phantom experiments for different slice gaps with w = 3 and ∆z = 6 mm

In Figure 3.6, one T1 map of each multi-slice stack acquired in phantom acquisitions with
different gaps in between the LR slices is shown. The respective error of the T1 times compared
to refIRSE is plotted in Figure 3.7. This shows the mean T1 error compared to refIRSE of
the phantom tubes over different gaps between the slices of the stack. The error decreased by
59.59 ± 25.17 % to 9.82 ± 6.38 ms when introducing a gap of at least 4 mm compared to no
gap.

Figure 3.7: Influence of slice gap on T1 estimation error with w = 3 and ∆z = 6 mm

31



3. T1 mapping of a single cardiac multi-slice stack

3.4.4 Cardiac motion correction and model-based T1 reconstruction

Figure 3.8 shows the effect of the cardiac motion correction on both the dynamics and the
resulting T1 maps. Three exemplary dynamics at different time points during the cardiac
cycle are shown next to a spatial-temporal plot along the blue line over the dynamics. In
the original images, the heart motion is visible as temporal changes of the septum and the
ventricular walls. Motion correction ensured that all images were in the same cardiac phase.
In the respective T1 map, cardiac motion correction improved the distinction between the
papillary muscle and blood, as highlighted by the arrow.

Figure 3.8: The effect of cardiac motion correction on three exemplary dynamics χ at different
time points during the data acquisition next to a spatiotemporal plot over the values along the

blue line. The respective T1 map γ reconstructed by the model-based T1 reconstruction is plotted
in the lower row. Artefacts could be reduced using motion correction, as highlighted by the arrow.
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3.4.5 In vivo T1 mapping

Figure 3.9: Comparison of a multi-slice in vivo stack acquisition of five slices with a non-selective
inversion pulse and a slice-selective inversion pulse with w = 3. The superscript of gamma

indicates the scan order.
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In Figure 3.9, the acquisition of a multi-slice stack with five slices in a single BH in vivo is
compared between the use of a slice-selective inversion pulse with w = 3 and a non-selective
one. The superscript of the different rows indicates the scan order of the slices, which is
interleaved, as explained in subsection 3.3.1.
With the use of a non-selective inversion pulse, interference between the slices could be seen:
While the mean T1 value between the first (γ0) and the second (γ1) acquired slice varied by
43.65 ms with a slice-selective inversion pulse, these slices varied by 132.67 ms when using a
non-selective inversion pulse. These results match the results from the phantom experiment as
shown with Figure 3.3.
Blood could not be quantified due to a slice-selective inversion pulse.

3.5 Discussion

In this chapter, the acquisition of a multi-slice stack was optimised for maximum SNR and
accurate T1 values of a multi-slice stack of six slices in an acquisition time of 17 seconds for a
stack with six slices.
A slice selective inversion pulse was used to avoid waiting times and slice interference. An
inversion width factor of w = 1 was not sufficient due to the non-rectangular shape of the
inversion pulse. A factor of w = 2 inverted the whole slice and provided accurate T1 times in
the static case. In the case of motion with a velocity of 1 cm/s, the width of the inversion
pulse needed to be broader (w = 3) to avoid non-inverted tissue emerging into the slice during
the acquisition.
However, a factor of w ≥ 1 might lead to interference between the slices, even though a slice-
selective inversion pulse is used, as adjacent slices to the inverted one might also experience
some inversion. Due to the interleaved acquisition order, not the directly adjacent slice is
acquired afterwards but one with a greater distance along the SE direction, so there are 5.6
seconds between the excitation of two neighbouring slices. However, after the application of an
inversion pulse, for the myocardium with a T1 time of approximately T1 = 1.3 seconds and a
sequence with α = 5° and TR= 0.0049 seconds, it takes about 6.9 seconds for its longitudinal
magnetisation to have recovered to 99% of M0. With a time delay of only 5.6 seconds between
two neighbouring slices, however, 1.3 seconds are still left, in which the longitudinal slice of
this directly neighbouring slice might not have yet recovered to M0. An accurate T1 estimate
of all slices made a slice gap of at least 4 mm necessary to avoid interference between the slices,
as shown experimentally.
Due to hardware limitations, the inconsistent BH motion was simulated with a speed of 1
cm/s. However, this is slower than the velocities reported in the literature [111], with 1.7
and 1.5 cm/s for diaphragmatic inspiratory and expiratory velocities, respectively, in women
and 1.8 and 1.5 cm/s, respectively, for men. The motion experiment did not involve cardiac
motion simulation since this follows a more complex pattern compared to inconsistent BH
motion. Therefore, a broadening motion buffer of the inversion-pulse width combined with
gaps between the LR slices should be used to account for various in vivo motion effects not
considered in the proposed experiment.
The blood spins within the excited slice were the only ones affected by the slice-selective
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inversion pulse. Throughout the cardiac cycle, these spins were replaced by incoming, non-
inverted blood spins, which led to an apparent shortening of the T1 value of the blood [107].
As a consequence, blood could not be quantified. To still be able to calculate the ECV, the
necessary information about the blood pool T1 values could be obtained with a further fast
acquisition of a single LR slice with a global inversion pulse.
The relationship between the number of radial spokes and the slice thickness on the SNR
of the proposed T1 mapping approach matched the non-linear relationship described in the
literature [60, 59]. A decrease in SNR in the proposed approach smaller than predicted by the
model could be attributed to the influence of the non-linear signal model and the signal model
fit being robust to a certain extent with respect to noise in the dynamics and serving as a sort
of regulariser. A ∆z of 8 mm resulted in the highest SNR.
The implementation of cardiac motion correction allowed using approximately 85% of the
cardiac cycle data for the calculation of the T1 map. The cardiac motion correction led to an
improved distinction between ventricles and blood. As mentioned in section 2.1, the ventricular
and atrial systole are offset in time. However, the cardiac motion correction scheme used in
the proposed work was optimised for the application on the ventricles. For the application of
the proposed cardiac motion correction scheme on the atria, this offset needs to be considered
to also provide accurate T1 estimates of the atrial walls.

3.6 Conclusion

In this chapter, the sequence parameters for the acquisition of a single multi-slice LR stack
were optimised to provide accurate T1 times and minimise the acquisition time to 17 seconds
per stack of six slices. For this, a slice selective inversion pulse was used with a specific
width, under consideration of its non-rectangular shape as well as the effect of a potentially
non-consistent BH. Cardiac motion correction was applied. Next to that, it was shown that
an increase in slice thickness also leads to an increase in SNR for quantitative T1 mapping,
motiving the use of SRR to reconstruct a HR volume out of several LR stacks, as discussed in
the next chapter.
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Model-based SRR T1 mapping of the

ventricles

4.1 Introduction

In the previous chapter, the acquisition of a multi-slice stack within one BH was shown.
However, the acquired slices had a low through-plane resolution. With SRR, a HR volume can
be reconstructed from multiple LR stacks, profiting from their high SNR and low acquisition
time. For quantitative imaging, the quantitative signal model can be incorporated into the
SRR to improve the accuracy of the parameter estimates of the SRR result with respect to
the root mean squared error (RMSE) to the reference [88].
The acquisition model must be described accurately for a successful SRR. This model consists,
among other things, of the relationship between a LR and HR slice, which can be described by
the slice profile [64]. Due to hardware limitations, the slice profile that is ultimately applied
during the MRI scan may differ from the one originally planned. In the literature, the slice
profile is often modelled by a Gaussian function with a FWHM of the slice thickness [68, 102],
a smoothed box function [112, 113, 88] while only some measured the slice profile [114]. [115]
has shown that inconsistencies between the slice profile used for the forward model and the
one used for the reconstruction lead to errors in the SRR result.
Next to that, the acquisition geometry between the LR stacks needs to be known. Unknown
motion between the stacks can significantly affect the quality of the SRR [64].
So far, model-based SRR has not been applied to cardiac T1 mapping, posing further challenges
due to breathing and cardiac motion. Different BH positions of the single LR stacks might
deteriorate the SRR result. Next to that, the influence of slice profile inaccuracies and motion
in between the LR stacks has not yet been evaluated for cardiac quantitative imaging.
In this chapter, a model-based SRR approach for quantitative cardiac T1 mapping is introduced.
Furthermore, the influence of slice profile inaccuracies and motion on the accuracy of the
provided T1 estimates is investigated.
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Parts of this chapter were published in J1.

4.2 Methods

In this chapter, a model-based SRR approach for cardiac T1 mapping is presented,
reconstructing a HR T1 map from the dynamics of the LR stacks and thereby considering the
T1 signal model in the reconstruction. For this, an optimisation problem is set up, which is
solved using a variable splitting approach.

4.2.1 Model-based SRR

As mentioned previously, for SRR, several LR stacks acquired with an offset to each other
are combined to an HR volume. To estimate that HR volume, LR slices are predicted, and
the difference between the acquired LR dynamics χ and the predicted ones is minimised. LR
slices are predicted from a HR volume using A. As is a matrix describing the relationship
between a HR slice with respect to a LR slice of stack s (with s = 1, . . . , NS and NS being the
number of stacks). To also make sure the predicted LR slices still match the T1 signal model q,
model-based SRR is used. qt calculates dynamics from given parameter maps at inversion time
t (with t = 1, . . . , NT and NT being the number of inversion times). The model-based SRR
incorporates q into SRR to, at the end, obtain a HR parameter volume Γ from the acquired
LR dynamics.
The SRR is implemented as a functional based on the sum of the differences between the
predicted LR dynamics and χ, together with a total variation-based regularisation term. This
functional is minimised, which can be described by the following minimisation problem:

min
Γ

NT∑︂
t=1

NS∑︂
s=1

||χt,s − As ∗ qt(Γ)||22 + κ∥G ∗ Γ||1 (4.1)

Regularisation is used to make the solution of the optimisation problem unique, with κ

describing the regularisation parameter and G corresponding to the forward finite differences
operator. Γ has the dimensions Nx x Ny x Nz (with Nx and Ny being the number of voxels in
the image and Nz being the number HR slices)

4.2.2 Variable splitting approach

Since solving problem 4.1 directly is challenging due to the non-smoothness of the L1-norm as
well as the non-linear function q, a variable splitting [116, 94, 93] approach is used. This allows
for splitting the original problem into several sub-problems and solving them with suitable
algorithms. By introducing auxiliary variables xt := qt(Γ) for all t and u := Γ, the problem is
reformulated as a joint minimisation problem. These equalities are relaxed by including two
quadratic penalty terms, weighted by λ and µ, yielding:

min
Γ,x,u

NT∑︂
t=1

NS∑︂
s=1

||χt,s − As ∗ xt||22 + λ||xt − qt(Γ)||22 + µ||u − Γ||22 + κ||G ∗ u||1 (4.2)
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The solution of problem 4.2 is approached by alternating the minimisation of 4.2 with respect
to one of the variables and keeping the other two fixed.

For fixed Γ, u, updating x corresponded to solving

min
x

NT∑︂
t=1

NS∑︂
s=1

||χt,s − As ∗ xt||22 + λ||xt − qt(Γ)||22 (4.4.1)

Solving 4.4.1 involves solving a linear system for which a conjugate gradient approach is used.
Ten iterations were used per alternation.

For fixed Γ, x, updating u corresponds to solving

min
u

µ

κ
||u − Γ||22 + ||G ∗ u||1 (4.4.2)

Subproblem 4.4.2 is solved using the iterative algorithm proposed in [117].

For fixed u and x, updating Γ corresponds to solving

min
Γ

NT∑︂
t=1

λ||xt − qt(Γ)||22 + µ||u − Γ||22 (4.4.3)

In this work, the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm [118] is used
to solve the non-linear problem 4.4.3. Four iterations were used per alternation.

To solve Equation 4.2, the subproblems are alternated eight times and the solution of
Equation 4.2 is referred to as Γfinal.
As initialization Γ0 of the SRR, LR maps γ are calculated from χ using a voxel-wise three-
parameter T1 fit and combined using the weight Ah,l

s of HR slice h with respect to LR slice l

in stack s (with h = 1, ..., NH , l= 1,..., NL and NH and NL being the number of HR-slices
and the number of LR-slices, respectively)

Γh
0 =

NS∑︂
s=1

NL∑︂
l=1

NH∑︂
h=1

Ah,l
s γl

s (4.3)

4.3 Experiments

4.3.1 Data acquisition

Similar to subsection 3.3.1, data was acquired using a continuous Golden angle radial sampling
scheme after applying a slice-selective inversion pulse. A flip angle α = 5° was used.
Simulated data was generated using the XCAT phantom [106]. A dataset refXCAT,orig with a
voxel size of 1.3 x 1.3 x 1.5 mm3 was generated. From this, eight LR stacks with each six SAX
slices were simulated with a slice thickness of 6 mm, a gap between the LR slices of 6 mm to
cover the whole ventricles and an offset between the stacks of 1.5 mm along the SE direction.
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4. Model-based SRR T1 mapping of the ventricles

Using this, simulated k-space data was generated. From this, dynamics were reconstructed,
cardiac motion was estimated, and T1 maps were reconstructed, as described in subsection 3.3.1.
As a reference, LR dynamics were simulated from refXCAT,orig by applying q on the LR stacks
and convolving them with a slice profile with FWHM of 1.5 mm along the SE direction. These
convolved dynamics were fitted using a voxel-wise three-parameter T1 fit, resulting in refXCAT .

4.3.2 Assessment of image resolution

Two cubical fibrotic structures with a T1 value of 1800 ms were simulated in refXCAT,orig in the
septum along the SE direction to evaluate the performance of the proposed SRR approach with
respect to the resolution of small structures. They were separated by an experiment-specific
gap of healthy myocardium. Different thicknesses of fibrotic structures and the respective gap
in between them were simulated in the range of one to five times the HR slice thickness, so in
the range of [1.5, ..., 7.5] mm.
To separate the effect of the SRR from any inaccuracies due to incomplete cardiac motion
correction and the model-based T1 reconstruction, this evaluation was carried out using a
simplified simulation of LR data, with SRR performed directly on the LR dynamics. Zero-mean
noise was added.
The detectability d between the simulated fibrosis and the surrounding healthy myocardium
was measured using the following formula:

d = µstructure − µnextStructure

σbackground
(4.4)

Where the mean T1 value µstructure was measured in a ROI within the fibrosis and the
mean T1 value µnextStructure was calculated in a ROI within the healthy myocardium between
the two fibrotic structures. The placement of the ROI was based on the position of the
simulated fibrotic structures in refXCAT,orig. The SD σbackground was calculated from a ROI
in the healthy myocardium.

4.3.3 Influence of slice profile accuracy on SRR

In SRR, the result of the optimisation problem depends on the known relationship between a
LR and a HR slice, which can be described by the slice profile of a single LR slice [64]. Bloch
equations were used to calculate a realistic profile based on the RF pulse of the proposed
sequence [119, 120]. With this, LR slices were simulated.
To assess the influence of the slice profile accuracy on the SRR result, this profile was
approximated using once a Gaussian and once a rectangular approximation. These slice
profiles were approximated in such a way as to match the FWHM of the correct slice profile.
The different results of the SRR using the different slice profiles were compared.
The effect of inaccuracies in the slice profile on the results of SRR was evaluated quantitatively
by calculating and comparing the RMSE of the T1 values in three different ROI in the septum,
the apex, and the midventricular lateral part of the ventricle compared to refXCAT .
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4.4 Results

As already mentioned above, this evaluation was carried out using a simplified simulation of
LR data, with SRR performed directly on the LR dynamics. Zero-mean noise was added.

4.3.4 Influence of motion on SRR

To investigate the influence of motion in between the LR stacks on the SRR result, different
BH positions were simulated by translational shifts of the stacks. Different degrees of motion
m were compared, while m described the maximum number of HR voxels the LR stacks were
shifted to one another. For example, in the case of m = 2, the stacks were shifted to one
another by a maximum of two voxels with respect to the reference state. So with m = 2,
they were shifted, for example, by +2 or −2 HR voxel, so +2∗ or −2∗ (1.3 x 1.3 x 1.5) mm3.
Factors of m in the range of [0, 4] were compared. Once, the motion was not corrected and
once the motion was corrected by using the inverse of the simulated motion, simulating a
perfect motion correction. For quantitative evaluation, the detectability of simulated fibrosis
with a thickness of 6 mm was measured and compared.
As already mentioned above, this evaluation was carried out using a simplified simulation of
LR data, with SRR performed directly on the LR dynamics. Zero-mean noise was added.

4.4 Results

To assess through-plane resolution, images in this publication are often presented orthogonally
from the side, resulting in a 4CH view even though images were always acquired in SAX.
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4. Model-based SRR T1 mapping of the ventricles

4.4.1 Model-based SRR

Figure 4.1: Model-based SRR applied on simulated data. The combination of the LR stacks γ0
and γ3, the SRR initialization Γ0 and the result Γfinal are shown and compared to refXCAT .

Cardiac motion was simulated and corrected. No BH motion was simulated. Two fibrotic
structures with a thickness of each 6 mm and a gap in between of 6 mm were simulated (arrow).
The line plot shows the T1 values in the septum in SE direction in brown along the line, compared

to the reference values in green.

Figure 4.1 shows the results of the numerical simulations assuming perfect BH positions and,
therefore, no unknown motion in between the LR stacks. The two fibrotic structures could not
be distinguished along the SE direction in the LR stacks. The apex was inaccurately depicted
in Γ0. Its visualisation improved after SRR. d of the fibrosis increased from 0.03 in Γ0 to 4.38
in Γfinal, so increased from 0.38% of d in refXCAT in Γ0 to 48.63% in Γfinal.
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4.4 Results

Figure 4.2: Influence of SRR on the visualisation of small structures for different thicknesses of
fibrosis as well as a zoom-in for the visualisation of the fibrosis for a thickness of 6 mm.

As also shown in Figure 4.2, SRR could increase the detectability of small structures by
645.02 ± 927.46%. While structures smaller than 4 mm could only partially be recovered, the
visualisation of structures bigger than 4 mm improved using SRR.
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4. Model-based SRR T1 mapping of the ventricles

4.4.2 Influence of slice profile accuracy on SRR

Figure 4.3: Influence of slice profile accuracy on SRR: The results of SRR using the correct slice
profile (shown in blue) are compared to two SRR results using approximations (shown in black).

The mean T1 values in the green ROI are calculated for evaluation.

In Figure 4.3, Γfinal assuming different slice profiles for the SRR is shown. While the first row
shows the SRR result, the second row shows the correct slice profile used for the simulation of
the LR slices in blue and the profile used for the optimisation in black. The RMSE of the
T1 values of the ROI in Γfinal compared to refXCAT increased by 12.61% using the Gaussian
approximated compared and by 23.39% when using a box-approximated profile.

4.4.3 Influence of motion on SRR

Figure 4.4: Influence of motion between the LR stacks on SRR. m describes the maximum
number of HR voxels the LR stacks were shifted. Without any motion correction (moco), strong

motion artefacts were visible. Using a perfect moco minor artefacts were still visible using a
perfect moco, for example, at the simulated fibrosis (arrow).

Figure 4.4 shows the effect of motion in between the LR stacks on the SRR result. Uncorrected
motion larger than one voxel strongly deteriorated the SRR result, while motion in the range
of one voxel had only a minor effect.
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4.5 Discussion

When correcting the motion perfectly, still minor artefacts could be seen compared to no
motion (see arrow). The detectability of fibrotic structures decreased by 15.73% for m = 4
compared to m = 0 when using a perfect motion correction.

4.5 Discussion

In this chapter, a model-based SRR scheme was presented for cardiac T1 mapping and applied
to simulated data. The proposed model-based SRR scheme improved the visibility of small
structures. The detectibility of simulated fibrotic tissue increased by 645.02 ± 927.46% using
the proposed SRR scheme. Furthermore, anatomic information, which was impaired in some
LR stacks due to partial volume effects, for example, the apex, was successfully recovered by
the proposed SRR approach.
Slice profile inaccuracies impaired the accuracy of the quantitative SRR result, which is in
accordance with [115].
Accurate modelling of the acquisition geometry has shown to have a strong effect on the SRR
result, while especially the knowledge about the LR stack positioning strongly affected the
SRR result, which is in agreement with previous work on SRR in the brain [101]. Motion in
between the LR stacks strongly impaired the SRR result, indicating a need for accurate motion
estimation and correction for a successful SRR. The simulation of different BH positions was
simplified by translational shifts of the overall image. However, realistic motion between BH
positions might also lead to more complex motion and tissue deformation, which was not
considered in this work.
Even perfect motion correction, however, impaired the performance of the SRR, as the motion
between the stacks disturbs the original geometrical composition of the stacks. The stacks
were planned such that they overlapped with each other by 1.5 mm. As each stack was
obtained in a different BH position, the original distribution of stacks was impaired, even if
the respiratory motion was correctly estimated and corrected. Hence, some HR positions were
lacking information from the LR stacks, and for some HR positions, more than needed LR
information was available.

4.6 Conclusion

In this chapter, a model-based SRR scheme was presented for cardiac T1 mapping and
successfully applied to simulated data, improving the visualisation of small structures. It could
be shown that accurate modelling of the acquisition model is essential for accurate SRR results.
Especially unknown motion between the LR stacks should be corrected, which will be further
investigated in the following chapter.

45





5
In vivo application of SRR with residual

breath hold motion correction

5.1 Introduction

In the previous chapter, SRR could successfully be applied to simulated data and improve the
visualisation of small structures. However, the presented approach has not yet been applied to
in vivo data, which is more challenging due to cardiac and respiratory motion.
The principle of SRR is based on knowledge about the geometric relationship between different
LR datasets. As also shown experimentally in the previous chapter, motion, for example,
due to different BH positions, can lead to misalignment between the different stacks and
strongly impair the achievable image quality of SRR [64]. The application of SRR on the
heart [95, 96, 93, 76, 78, 79, 97, 98] has so far only been shown for qualitative imaging. For T1

mapping, SRR taking into account different motion states of the individual LR stacks has so
far only been applied on the brain [88, 85, 84].
In this chapter, a motion-corrected model-based SRR for cardiac T1 mapping is presented.
Cardiac and residual respiratory motion was corrected. The motion correction approach was
evaluated in native T1 mapping in numerical simulations and phantom experiments, and
feasibility was demonstrated in four healthy volunteers.

Parts of this chapter were published in J1.
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5. In vivo application of SRR with residual breath hold motion correction

5.2 Methods

5.2.1 Model-based cardiac SRR

Figure 5.1: Comparison of the proposed motion-corrected model-based SRR workflow and the
common approach. Data is acquired over eight BH in this schematic comparison. One slice can be
reconstructed per BH in the common approach. In the proposed approach, one stack per BH with
six 2D slices each are acquired. The cardiac motion is estimated and included in the model-based
T1 reconstruction of the k-space data k yielding the dynamics χ and the parameter maps γ of the
LR stacks. Then, the different stacks are registered to each other. The motion-corrected γ are

used to calculate the first estimate of the HR map Γ0 and SRR yields the 3D HR map Γfinal. In
this example, the proposed approach leads to six times more slices with the same number of BH,
with a slice thickness reduced by a factor of four compared to the common approach. (source of

parts: Shutterstock/Yeliena Brovko)

An overview of the proposed workflow for motion-corrected model-based SRR T1 mapping
is depicted in Figure 5.1: Multiple stacks of 2D slices are acquired continuously using a
Golden radial angle trajectory with one stack per BH, as described in section 3.2. In the first
step, the non-rigid cardiac motion is estimated and used in a model-based T1 reconstruction
(subsection 4.2.1) resulting in the dynamics χ and parameter maps γ (6 slices with a slice
thickness of 6 to 8 mm per stack) which are all in the same cardiac motion state. In a second
step, the stacks are registered to each other to compensate for different BH positions, as will
be described in subsection 5.2.2. After the motion alignment, the maps are used to calculate
the first estimate of the HR map Γ0 as initialization of the SRR. Finally, a HR T1 map Γfinal

is generated by SRR, as described in subsection 4.2.1.
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5.2 Methods

5.2.2 Breath hold registration

Figure 5.2: BH registration scheme. Different BH positions of the uncorrected T1 maps of the
individual LR stacks, three of which are shown as an example (γ0,γ1,γ2), leads to artefacts when

combining them in γavg. In the first step, each LR slice is registered to the closest slice in the
neighbouring stack (in-plane registration), leading to a reduction of artefacts in the orthogonal

view of γavg. In the subsequent through-plane registration, each LR stack is registered to γavg in
an iterative fashion.

Each stack is acquired in a different BH. To correct for potential misalignments of BH positions,
the stacks are registered to each other using a cross-correlation approach [121]. For this, a two-
stage process was developed, as shown in Figure 5.2. In the first step of the motion estimation,
the rigid motion in the in-plane directions of the LR slices γs of stack s is determined. For
that, the T1 maps of the LR slices are registered to each other: Each slice of each stack is
registered to the slice which is closest (i.e. smallest distance along the SE direction) to it. The
stacks are acquired in an overlapping fashion. Therefore, the closest slice is part of another
stack, and hence, γs is registered to γs−1 using a phase-cross-correlation registration [121].
That yields information about the in-plane motion of every slice of every stack. The median
of the motion detected in its six slices is finally assigned to the entire stack of LR slices.
In the second step, the LR stacks are registered with respect to shifts along the SE direction. For
that, γs are interpolated on a HR grid along the SE direction using bicubic spline interpolation,
which also fills the gaps between the LR slices. The interpolated T1 maps of the LR stacks are
then combined, and an average stack γavg is calculated. In an iterative process, each stack
is then registered to γavg. In the next iteration, a new γavg is calculated, considering the
estimated motion. Only translational shifts are considered. Two iterations were used in total.
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5. In vivo application of SRR with residual breath hold motion correction

5.3 Experiments

5.3.1 Simulations

Simulated k-space data was generated as described in subsection 4.3.1.
Different BH positions were simulated by applying translation shifts. Twenty random
configurations with different BH positions of the stacks were simulated. The simulated
motion was in the range of (3.5, 1.9, 8.2) mm in the (anterior-posterior, right-left, food-head)
direction, based on half of the motion range between end expiration and end inspiration
measured in free-breathing experiments [122]. For reasons of computational time, no heart
motion was included in this simulation.
To evaluate the accuracy of the alignment of the BH, the RMSE ϵ between the originally
simulated motion and the estimated motion was calculated in mm.

5.3.2 Phantom

Phantom data was acquired as described in subsection 3.3.1. Eight LR stacks were acquired
with 12 slices per stack to cover the whole phantom. The stacks were shifted to each other
along the SE direction by 1.5 mm.
To evaluate the proposed approach in phantom measurements, next to the IR spin-echo
reference refIRSE , a scan reforth orthogonal to the LR slices was acquired, where the SE
direction of γ became an in-plane direction of reforth.
To assess the outcome of the SRR applied on the T1MES phantom, a ROI was drawn in every
tube in γ, Γ0, Γfinal and ref IRSE . The mean and SD of the T1 values were compared to
assess T1 accuracy and precision, respectively. The Pearson’s correlation coefficient and the
two-tailed P-value between γ, Γ0, Γfinal and ref IRSE were calculated.
To evaluate the outcome of the BH motion alignment, another dataset was acquired with
phantom data at different, well-defined positions simulating different BH positions. The
different positions were in the range (5.0, 2.4, 5.0) mm compared to the reference position.
The reference motion was known for this acquisition, and the RMSE to the estimated motion
was calculated.

5.3.3 In vivo

To evaluate the proposed approach in in vivo measurements, data was obtained from four
healthy subjects (4 males, aged 34.0 ± 11.7 years) with a commercial 32-channel cardiac
coil. All subjects gave written informed consent before participation in accordance with the
institution’s ethical committee.
Six to ten stacks (one stack per BH) with each six SAX slices were acquired in total with an
offset of 1.5 to 2 mm between stacks along the SE direction. As discussed in subsection 3.3.3,
a slice selective inversion pulse was used. The slice gap was subject-specific between 4 to 9
mm to cover the desired FOV while avoiding slice interference from the RF inversion and
excitation pulses. The subject-specific spatial resolution was 1.3 × 1.3 × 6.0 to 8.0 mm3 with a
FOV of 320 × 320 × 84 to 105 mm3. The ECG was recorded for retrospective cardiac motion
correction.
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5.3 Experiments

Similar to the phantom data, an orthogonal scan reforth was acquired as a reference. Next
to that, a 3(3)3(3)5 MOLLI scan refMOLLI was acquired with the following scan parameter:
FOV: 360 × 306 mm2, TE/TR: 1.12/2.7 ms, α: 35°, spatial resolution: 2.1 × 1.4 × 6 mm3,
orientation: 4CH. Accuracy of the T1 values was evaluated by a comparison between the SRR
result and the MOLLI reference using a ROI placed in the septum.
To assess the outcome of the SRR applied on in vivo data, reforth was qualitatively compared
to Γfinal. The precision of the T1 values was evaluated quantitatively by comparing the bull’s
eye plots [123] before and after the SRR, using four selected slices (apex, apical, mid-cavity
and basal) and calculating the SD over four healthy volunteers.
No fibrotic tissue was present in the healthy volunteers, and therefore, the detectability of the
right ventricle was calculated to assess the effect of SRR on small structures:

d = µstructure − µnextStructure

σnextStructure
(5.1)

Where the mean T1 value µstructure was measured in a ROI within the right ventricle while
the mean T1 value µnextStructure and its SD σnextStructure was calculated in a ROI next to the
right ventricle.
The edge sharpness of the left ventricle in the anterior apical segment of the ventricle was
calculated for γ, Γ0 and Γfinal. The edge sharpness was calculated by manually drawing a
line along the edge of interest and calculating an average edge profile perpendicular to this
line. The first-order derivative of the edge profile was calculated, and edge sharpness of 100%
referred to the case when the maximum derivative of the average edge profile was equal to the
maximum intensity difference in the average edge profile, similar to previous work on coronary
arteries [124].
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5. In vivo application of SRR with residual breath hold motion correction

5.4 Results

5.4.1 Simulations

Figure 5.3: SRR applied to simulated data with stack specific BH states. The best and worst
result of the motion correction (moco) out of 20 simulations is shown, measured by the moco error
in mm (ϵ). The simulation with the detectability d closest to the mean d is shown in the middle
column. The result of SRR without moco (ΓnoMoco

final ) is compared to the result including moco
(ΓMoco

final).

Figure 5.3 shows the SRR applied on simulated data, simulated with different BH positions for
every stack. Γfinal is shown without motion correction (ΓnoMoco

final ) and with motion correction
using the motion estimated with the proposed approach (ΓMoco

final ). The SRR results are shown
once from the simulation with ϵ = 0 (best case), with the largest ϵ (worst case) and once for
the simulation with a d closest to the mean d of all simulations. Motion correction improved
the outcome of the SRR. In the best motion correction case, the differentiation of healthy and
pathological tissue was clearer compared to the worst motion correction case. After applying
the calculated motion, d of the simulated fibrosis over all 20 simulations was 3.55 ± 0.54 in
Γfinal,Moco. When applying the correct motion, known from the simulations, d was 3.62 ± 0.5.
d in Γfinal,noMoco was not calculated because the fibrosis could not be detected for these T1

maps, as Figure 5.3 shows. The motion estimation error ϵ over all simulations was (0.0, 0.0,
0.18) ± (0.0, 0.0, 0.28) mm.
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5.4 Results

5.4.2 Phantom

Figure 5.4: SRR applied on phantom data. The in-plane views and the orthogonal reformations
of the combination of the LR stacks γ0 and γ3, Γ0 and Γfinal are compared to reforth. A line plot

through three tubes (brown line) along the SE direction shows an improved differentiation
(arrows) between tubes and background after SRR as shown by the reference in green.

Figure 5.4 shows the in-plane view and the orthogonal reformation of γ, Γ0 and Γfinal and
compares it to an orthogonal acquisition reforth. A line plot through three tubes along the SE
direction shows an improved differentiation between tubes and background after SRR.

53



5. In vivo application of SRR with residual breath hold motion correction

Figure 5.5: T1 values obtained with an IR spin-echo reference refIRSE scan are compared to the
combination of LR stacks γ, the initialization of SRR Γ0 and the final SRR result Γfinal.

Figure 5.5 assesses the accuracy of SRR: γ, Γ0 and Γfinal showed high correlation with
refIRSE (P <0.001, R2>0.999). The mean absolute difference between the T1 values of refIRSE

and Γfinal was 7.65 ± 9.24 ms. The mean absolute difference of γ and Γ0 to refIRSE was 7.74
± 7.09 ms and 5.41 ± 3.7 ms, respectively, indicating high T1 accuracy.
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5.4 Results

Figure 5.6: Simulated motion in the phantom experiment. The orthogonal view of the SRR
initialization Γ0, the final SRR output Γfinal as well as the in-plane view of Γfinal are shown

when no motion correction (moco) was performed, when the estimated motion was applied and
when the reference motion was used during moco.

Figure 5.6 shows the application of SRR on phantom data acquired at different simulated
BH positions. The orthogonal view of Γ0 and Γfinal and the in-plane view of Γfinal are shown
without motion correction, when the estimated motion was applied and when the reference
motion was applied during motion correction. SRR without motion correction shows motion
artefacts that could be removed after applying the calculated motion correction. After applying
the estimated motion shifts, the visual result is similar to applying the reference motion shifts
during motion correction. The RMSE between estimated and reference motion was (0.03, 0.04,
0.61) mm.
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5. In vivo application of SRR with residual breath hold motion correction

5.4.3 In vivo

Figure 5.7: SRR applied on in vivo data. The combination of the LR stacks γ0 and γ3, Γ0 and
Γfinal are reformatted orthogonally and compared to reforth and to refMOLLI . All the results

shown were obtained with the proposed motion correction approach. The visualisation of the apex
and the right ventricle improved after SRR (arrows).

Figure 5.7 shows the in-plane view and the orthogonal reformation of γ, Γ0, Γfinal and
compares it to an orthogonal acquisition reforth and to refMOLLI . Due to the slice-selective
inversion pulse, blood appeared with a low T1 value. The visualisation of the apex and the
differentiation between the right ventricle and blood improved after SRR. Due to scan time
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limitations, reforth could not be acquired for one volunteer. The mean T1 value across all
volunteers in a ROI in the septum in Γfinal was 1211.49 ± 75.17 ms and in refMOLLI 1276.11
± 38.77 ms. One volunteer had to be excluded from the calculation because no refMOLLI

scan was available.

Figure 5.8: Four selected slices (apex, apical, mid-cavity and basal) before and after SRR. The
visualisation of the apex and the right ventricle improved in the SRR result Γfinal compared to Γ0
and a single LR stack γ (arrow in apex and mid-cavity slice). SRR reduced artefacts (arrow in
basal slice). All the results shown were obtained with the proposed motion correction approach.

In Figure 5.8, four selected slices (apex, apical, mid-cavity and basal) of γ, Γ0, Γfinal are
compared in-plane. The apex was more clearly visible after SRR. The visualisation of the
right ventricle improved after SRR. In addition, the combination of multiple LR slices in the
SRR also reduced artefacts and improved, for example, the quantification of the inferolateral
segment of the basal slice. d in the right ventricle increased from 2.4 ± 1.35 in γ, to 3.2 ±
1.63 in Γ0 and 3.35 ±1.39 in Γfinal, thus an increase of d by 40% from γ to Γfinal. The edge
sharpness in the anterior apical segment was 0.26 ± 0.04 in γ, 0.21 ± 0.02 in Γ0 and 0.26
± 0.04 in Γfinal. The sharpness of the ventricle was lower in the SRR initialization than in
the LR slices, which could be attributed to the mixing of the partial volume effects in the
individual LR slices when combining them for the initialization. SRR was able to restore
the original edge sharpness of the LR slices. T1 maps of two more volunteers can be seen in
Figure 5.9.
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5. In vivo application of SRR with residual breath hold motion correction

Figure 5.9: Four selected slices (apex, apical, mid-cavity and basal) before and after SRR for two
more volunteers, as a complement to Figure 5.8. The visualisation of the apex, the papillary

muscle and the right ventricle improved in the SRR result Γfinal compared to a single LR stack γ
(arrows). All the results shown were obtained with the proposed motion correction approach.
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5.4 Results

Figure 5.10: Bull’s eye plots of the average T1 values in ms in standardized segments of the left
ventricle and their SD.

Figure 5.10 shows the bulls-eye plots of γ, Γ0 and Γfinal, averaged over four healthy
volunteers. The SD before and after the SRR remained comparable, indicating that SRR did
not affect the precision of the T1 values. The T1 values in the segments varied in Γfinal by an
average of 63.72 ms across the four healthy volunteers. The T1 intensities of the apical segment
were underestimated before the SRR and showed a high SD. This was corrected by SRR.
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5. In vivo application of SRR with residual breath hold motion correction

Figure 5.11: Impact of respiratory motion correction (moco) on in vivo data. The orthogonal
view of Γ0, Γfinal, as well as the in-plane view of Γfinal are shown without and with moco.

Figure 5.11 compares the orthogonal view of Γ0 and Γfinal and the in-plane view of Γfinal

with and without motion correction. Without BH alignment, motion artefacts could be
seen as a discontinuous septum in the orthogonal view and an ambiguous delineation of the
myocardium in the in-plane view, highlighted by the arrows in the figure. The motion artefacts
were less visible in the initialization of the SRR compared to its output. The motion artefacts
could be reduced after the proposed BH registration and subsequent correction.

5.5 Discussion

In this study, a respiratory BH motion correction was proposed. A motion-corrected model-
based SRR approach was applied on phantom, and in vivo data, providing a 3D HR T1 map in
six to ten 17-second breath holds. Matching the results from the simulations in subsection 4.4.1,
the proposed model-based SRR scheme improved the visibility of small structures while the
accuracy and precision of the T1 values after SRR remained comparably high.
The visualisation of small structures as the differentiation between phantom tubes and
background or the right ventricle could be improved using SRR. Furthermore, anatomic
information, which was impaired in some LR stacks due to partial volume effects, for example,
the apex, was successfully recovered by the proposed SRR approach.
The accurate mapping of the right ventricular myocardium poses a great challenge due to
its small thickness but would help to improve the diagnosis of, for example, right ventricular
myocarditis or arrhythmogenic right ventricular cardiomyopathy. Its assessment could be
improved by SRR, moving towards whole heart T1 mapping in the future.
A general improvement in the imaging of small features by SRR can be concluded from the
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improved visualisation of small structures in all volunteers of the in vivo experiments, such as
in the right ventricle.
Every stack was acquired in a separate BH. Due to variations in BH positions, an alignment
of different BH states was necessary before SRR. In agreement with [64] and the results from
subsection 4.4.3, motion estimation was a key step in the SRR process and significantly affected
the quality of the SRR result. Motion correction imperfections led to artefacts in the SRR
reconstruction. An alignment of different BH states showed great improvement in the SRR
result.
Compared to brain T1 mapping, cardiac imaging is restricted with respect to the number of
LR slices per stack due to limited BH time. To still cover a specific FOV in the SE direction,
gaps needed to be introduced between the LR slices. More stacks of LR slices needed to be
acquired to compensate for these gaps. According to [80], the more stacks used, the greater
the degrading influence of inaccuracies in the motion registration on the SRR. Due to this
restriction, the FOV of the presented approach was limited to the ventricles. In the case of
focal pathologies, however, there is a clinical need for whole heart T1 mapping techniques [15].
As described in chapter 6, this could be achieved by acquiring the LR stacks in the long-axis
orientation and by also rotating the LR stacks differently to one another instead of shifting
them. Furthermore, with that, the SRR result would be more robust with respect to residual
motion in between the LR stacks [101].
In clinical practice, 17 seconds BH are sometimes not feasible. To adapt the BH duration, the
acquisition time per stack would need to be reduced and compensated for by acquiring more
stacks in total. Due to the higher number of stacks, the proposed motion correction approach
would have an even greater influence on the SRR result.
The results were compared to a clinical reference scan, and the T1 values after SRR were in
good agreement with both the reference values resulting from the MOLLI reference scan and
those presented in literature [125]. The small underestimation of 2.09% of the myocardial
T1 values after the SRR compared to reference values was probably due to the use of a
slice-selective inversion pulse. A similar underestimation of the T1 values was reported in [126],
which was attributed to magnetization transfer effects. However, a direct comparison of the
SRR results to an in vivo reference scan was difficult since this was acquired in another BH,
showing a different motion state. Thus, the accuracy of the T1 values could only be determined
in phantom measurement but not in the volunteer scans.
The precision of the T1 values was not calculated with a retest but as the SD over several
healthy volunteers. It was assumed that the T1 values of the myocardium were similar in all
healthy volunteers.
One limitation of this approach is that T1 values of voxels representing blood could not
be estimated and appeared shortened due to the in-flow effect caused by the slice-selective
inversion pulse. To still be able to calculate the ECV, a further fast acquisition of a single LR
slice with a global inversion pulse would provide the necessary information about the blood
pool T1 values.
To improve the overall result of the SRR in future approaches, the SRR optimization scheme
could be integrated into a model-based reconstruction framework as performed in [94] and will
be further investigated in chapter 7. By that, the SRR is going to incorporate the acquired
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raw data in the entire reconstruction optimization scheme instead of using it only in the
model-based T1 reconstruction as in the presented approach.
This work was only evaluated in healthy volunteers. Nevertheless, from the improved
visualisation of pathologies in the simulated data in subsection 4.4.1, it can be concluded that
SRR might lead to improved image quality in patients as well.

5.6 Conclusion

In this chapter, a motion-corrected cardiac model-based SRR approach was presented, providing
a 3D HR T1 map of the ventricles in six to ten 17 seconds BH. Cardiac motion and motion
in between different BH states could be corrected. The proposed approach was successfully
applied in four healthy volunteers, leading to improved visualisation of small structures and
precise T1 values. Nonetheless, the imaging FOV was still limited to the ventricles, which
could be improved by using a radial SRR geometry with long-axis LR stacks, as presented in
the next chapter.
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Whole heart T1 mapping with rotated

stacks

6.1 Introduction

In the previous chapter, 3D HR T1 maps of the ventricles could be obtained using cardiac
motion-corrected SRR with SAX stacks, which were shifted to each other by a sub voxel shift
along the SE direction. For focal cardiomyopathies, however, there is a clinical need for whole
heart T1 mapping techniques that can provide a thorough evaluation of the complex regional
distribution patterns of the disease [15]. In these cases, it is important to examine the regional
characteristics of the myocardial tissue to understand the underlying causes of the disease.
Previous studies in the brain have shown that the visualisation of small structures with SRR
improves with rotating the single LR stacks differently compared to translating them, in the
sense of the least error to the reference. Furthermore, SRR using rotated stacks is more
robust with respect to slice profile inaccuracies assumed during reconstruction compared to
translated stacks [115]. Previous studies for the brain [115] have shown that the more stacks,
i.e. orientations used for the SRR, the better the result in the sense of the least mean squared
error to the reference. For cardiac imaging, however, the number of LR slices per stack and
the total number of stacks are limited by BH duration and overall acquisition time. Therefore,
the rotated SRR geometry needs to be adapted for cardiac applications.
For coverage of the whole heart using multiple LR stacks, fewer images are needed when
acquiring the LR images in long-axis orientation compared to SAX due to the geometry of
the heart [127]. This has been used for cine MRI [40, 127] or perfusion [128] approaches using
slices at different radial long-axis orientations for obtaining volumetric data. So, the overall
acquisition time for a whole heart coverage can be reduced by acquiring 4CH or 2CH slices
instead of SAX ones.
The relationship between blood flow and the SE direction is, however, more complex in the
long axis compared to the SAX: While in the SAX, blood is mainly flowing through the slice
[129, 130], blood is moving within the slice [127] in the long axis slice. The ejection fraction
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is normally below 72% for men and 74% for women [131]. So when using a slice-selective
inversion pulse, inverted blood is mixed at some point during the acquisition with blood that
has not been inverted. Especially blood in the apical region does not necessarily get ejected,
so this effect is strongly visible there. A similar effect in the apical region has been reported
for spin echo sequences [132].
The T1 value of partially inverted blood can be close to the one of healthy myocardium, making
it challenging to distinguish myocardium from blood in this region. This effect depends, on
the one hand, on the cardiac blood flow dynamics of each subject but also on the thickness of
the slice-selective inversion pulse. Depending on this thickness, more or less inverted blood is
available; hence, the mixing ratio of inverted and non-inverted blood changes.

Figure 6.1: Illustrative comparison between the previously used SRR geometry using translated
SAX stacks (SRRtransl) and one using rotated long-axis stacks (SRRrot) (source of parts:

Shutterstock/Noonnin)

In this chapter, a whole heart SRR approach is introduced, acquiring rotated long-axis
LR stacks going from the 4CH to the 2CH orientation by placing the rotation axis along the
septum, as shown in Figure 6.1. For that, several multi-slice long-axis stacks with high in-plane
but low through-plane resolution are acquired. In this chapter, the acquisition scheme of the
LR stacks is adapted to provide accurate T1 estimates. The radial SRR geometry provides
radially overlapping LR stacks of the object, from which a HR volume is reconstructed. This
acquisition scheme ensures that the stacks overlap and provide information about the complete
heart, especially along the LR stack direction. So, in this chapter, the radial SRR geometry
will be adapted to cardiac imaging.
The proposed approach will be evaluated in simulations and phantom experiments.

Parts of this chapter have been submitted for publication in J2.
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6.2 Methods

In this chapter, SRR acquiring LR stacks in the long-axis orientation is introduced. For that,
the model-based T1 reconstruction is adapted. Next to that, a radial SRR acquisition geometry
is introduced. With that, the LR stacks are rotated to one another instead of shifted. A
motion estimation and correction scheme, aligning different positions of the LR stacks as, for
example, in the case of different BH positions, is presented.

6.2.1 Model-based T1 reconstruction

The parameter maps are reconstructed as described in subsection 3.2.2. Compared to the
SAX, the anatomy and motion of the long-axis orientation are more complex, covering both
atrial and ventricular contraction. Therefore, 60% of the ventricular systole is removed prior
to the SRR reconstruction.

6.2.2 Radial SRR acquisition

For SRR, several radial LR stacks are acquired. The stacks have the same positions but are
rotated around the PE direction. The septum is aligned parallel to PE, so the stacks are
rotated from a 4CH to a 2CH and back to a 4CH. Every stack is acquired in a separate BH.
As nomenclature, in the following, the superscript describes the geometry of the SRR acquisition
(rot for rotated or transl for translated).
The formulation and way of solving the optimisation problem of the SRR stay the same as
introduced in subsection 4.2.1:

min
Γ

NT∑︂
t=1

NS∑︂
s=1

||χt,s − As ∗ qt(Γ)||22 + κ∥G ∗ Γ||1 (6.1)

However, the stack-specific acquisition geometry parameter As of stack s changed, from
shifting the LR stacks differently to one another to rotating them.

6.2.3 Motion estimation and correction

The cardiac motion is estimated using the MIRTK Toolkit [105] as described in subsection 3.2.1
with a temporal resolution of 57 ms.
As each LR stack is acquired in a different BH, translational motion correction is applied to
correct for potential misalignment between the BH positions. For that, the LR T1 maps are
interpolated onto a HR grid using AT . All LR stacks are combined into an average stack,
and every stack is registered to this average using a masked cross-correlation approach [121].
Three iterations are used in total.

6.3 Experiments

6.3.1 Data acquisition

Data was acquired using the scanning parameters described in subsection 3.3.1. For SRR, 12
LR stacks were acquired. The number of slices per stack was decreased from six to five slices to
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shorten the BH length to approximately 14 seconds, as discussed in section 5.5. To cover the
whole heart with each LR stack, gaps of 14 mm were introduced in between the LR slices. The
SRR results were reconstructed to an isotropic high resolution of 1.3 mm. When the results
from SRRrot were compared to the results from SRRtransl, the LR stacks for SRRtransl were
shifted to one another by 1.3 mm to match the isotropic resolution.

6.3.2 Minimisation of blood-flow artefacts

The geometry of the myocardium in the long-axis orientation is very different to the SAX. The
model-based T1 reconstruction as proposed in [54, 55, 53] was, however, optimised for SAX
imaging. Hence, in this chapter, the acquisition of long-axis oriented LR slices is optimised to
provide accurate T1 values.
For this, data from a healthy volunteer was acquired in 4CH orientation with different slice
thickness ∆z in the range from [4, 5, 6] mm leading to a thickness of the inversion pulse of [12,
15, 18] mm. A flip angle α = 9° was used. The acquired k-space data was reconstructed using
a non-uniform FFT [109, 110] to avoid regularisation effects of the model-based reconstruction.
The images were reconstructed without cardiac motion correction, and the whole systole was
excluded from reconstruction to avoid any influence of the cardiac motion correction on the
results.
The accuracy of the T1 values in the long axis was evaluated qualitatively and quantitatively.
The T1 values along a line through the apical region in the 4CH orientation for different ∆z

were plotted and compared for qualitative evaluation. For quantitative evaluation, a reference
T1 value T blood,ref

1 of blood was calculated as the mean T1 value in a basal ROI in the blood.
For each ∆z the mean T1 value of the blood in an apical ROI was calculated and compared to
T blood,ref

1 .

6.3.3 Optimal flip angle for maximum SNR

As mentioned in the previous chapter, a reduction in ∆z leads to a reduction of SNR. This
could be counteracted by an adaption of the flip angle α. In this chapter, α was optimised
with respect to maximise the SNR. For that, phantom scans were performed with one slice per
stack, ∆z = 4 mm and α between 2 and 18°.
The SNR was calculated per phantom tube, as proposed in chapter subsection 3.3.2. Next to
that, the RMSE of the fitted T1 values within ROIs of the phantom tubes were calculated.
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6.3.4 Optimize SRRrot for cardiac applications

Figure 6.2: Illustration of different SRRrot geometries. While each column represents a different
geometry, with each row, one more of the overall 12 stacks is shown

In this chapter, three different acquisition geometries with different orientations and positions
of the LR stacks were compared:

• SRR4: 4 orientations (0, 45, 90, 135)° and three stacks per orientation

• SRR6: 6 orientations (0, 30, 60, 90, 120, 150)° and two stacks per orientation

• SRR12: 12 orientations (0, 15, 30, 45, 60, 75, 90, 120, 135, 150, 165)°

Each of the geometries used 12 stacks in total, but some used several stacks per orientation
and used them for filling the gaps in between the LR slices as shown in Figure 6.2.
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6. Whole heart T1 mapping with rotated stacks

The effect of the different geometries on the SRR result was investigated by applying the
motion-corrected model-based SRR proposed in chapter subsection 4.2.1 to the LR stacks
of simulated and phantom data. Simulated and phantom data was acquired as described in
subsection 3.3.1. For both, 12 stacks consisting of five parallel slices each were acquired with
the following parameters: ∆z = 4 mm, α = 9°. Different stacks within one orientation were
placed such that they filled the gaps of the other stack equidistantly, so the offset between the
stacks for SRR4 was 6 mm and for SRR6 4.5 mm.
To separate the effect of the different SRR geometries from any inaccuracies due to incomplete
cardiac motion correction and the model-based T1 reconstruction, this evaluation was carried
out using a simplified simulation of the LR XCAT data, with SRR performed directly on the
LR dynamics. Furthermore, no BH motion correction was performed. No noise was added.
For evaluation, the weight distribution of the different slices was calculated. This distribution
shows the amount of LR information per HR position, so regions where LR slices overlapped
lead to high information and hence appear bright in the weight distribution. Areas where no
information was obtained with any LR slice appear dark in the weight distribution.

6.3.5 Numerical simulations and phantom experiments using SRRrot

In this chapter, the SRRrot approach, optimised for cardiac applications based on the
experiments described in the previous subsection, is further investigated in simulation and
phantom experiments. For both, 12 stacks consisting of five parallel slices each were acquired
with the following parameters: orientations: (0, 45, 90, 135)°, three stacks per orientation
shifted by 6 mm to each other, ∆z = 4 mm, and α = 9°.
For the XCAT data, two different simulations were carried out: once only cardiac motion
was simulated and corrected, but not BH motion was simulated, and once no cardiac but BH
motion was simulated. Different BH positions were simulated by translational shifts in the
range of (5.2, 10.4, 10.4) mm. The range refers to the HR coordinate system, with the first
number indicating the long axis of the myocardium and the two others indicating the short
axes. The simulated motion range was assumed to be half of the amplitude motion between
end expiration and end inspiration as reported in [122].
The performance of the BH motion alignment was evaluated by calculating the RMSE to
the known simulated motion in mm. The reduction in RMSE compared to the maximum
possible RMSE was calculated as the mean RMSE over the three spatial directions. For that,
the simulated dataset with no cardiac motion was used as the performance of cardiac motion
correction could influence the performance of the BH motion correction.
For the phantom experiments, data was acquired using a continuous Golden radial acquisition
scheme as described previously. A reference scan reforth orthogonal to the axis of rotation of
SRRrot was acquired. So the high in-plane resolution of reforth was in the plane to which all
LR stacks were orthogonal. The SE direction of reforth was therefore parallel to the rotation
axis of SRRrot.

6.3.6 Influence of slice profile accuracy on SRRrot

Analogously to subsection 4.3.3, the influence of the slice profile accuracy on the SRR result
using rotated stacks was assessed with ∆z = 4 mm and α = 9°. For that, the measured
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slice profile from Bloch simulations was approximated using once a Gaussian and once a
rectangular approximation. The effect of inaccuracies in the slice profile on the results of SRR
was evaluated quantitatively by calculating and comparing the RMSE of the T1 values in two
different ROI in the septum and the basal lateral part of the left ventricle with respect to
refXCAT .
As already mentioned above, this evaluation was carried out using a simplified simulation of
LR data, with SRR performed directly on the LR dynamics. Zero-mean noise was added.

6.3.7 Performance of SRRrot with respect to resolving small structures

The performance of SRRrot with respect to resolving small structures was evaluated by
calculating the detectability of the fibrotic structures in simulated data as described in
subsection 4.3.2, with ∆z = 4 mm and α = 9°. For the XCAT simulation, no k-space data
was generated, but the SRR was directly applied to the LR dynamics to avoid misleading
results due to cardiac motion correction and reconstruction artefacts.
The fibrotic structure was simulated as described in subsection 4.3.2. However, its orientation
was changed, such that the differentiation between the fibrosis and the gap was orthogonal to
the axis of rotation, so within the plane with the low spatial resolution.
Different thicknesses of fibrotic structures and the respective gap in between them were
simulated in the range of one to five times the voxel size, so in the range of [1.3, ..., 6.5] mm.
The detectability was compared between Γ0, Γfinal and refXCAT .
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6.4 Results

6.4.1 Minimisation of blood-flow artefacts

Figure 6.3: 4CH slice of a healthy volunteer with different slice thicknesses ∆z. The T1 values
along an apical line are plotted in the upper right subplot. The reference T1 value for blood

T ref,blood
1 is plotted dashed in red and the one for the myocardium in orange.

Figure 6.3 shows the T1 values along a line through the apical region shown for different
∆z. A reference value for the blood, the mean T1 value in a basal blood ROI was calculated
(see red line in upper left subplot in Figure 6.3), resulting in T ref,blood

1 = 576.53 ms. With
∆z = 6 mm, it was challenging to differentiate myocardium and blood, with a T1 value of the
blood of 1098.24 ms (overestimation compared to T ref

1 by 90.49%). A ∆z of 5 mm improved
the differentiability, while the blood T1 values were with a mean value of 938.19 ms still
overestimated by 62.73%. The least overestimation of 34.23% was achieved with ∆z = 4mm,
with a T1 value along the line of 773.88 ms.
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6.4.2 Optimal flip angle for maximum SNR

Figure 6.4: Effect of α on the error of fitted T1 values and the SNR. The values for the single
phantom tubes are shown in grey, while blue represents their mean.

The second row in Figure 6.4 shows the mean absolute error of the fitted T1 values for the
single phantom tubes in grey over different α and the RMSE over all tubes in blue. The α

with the least RMSE of T1 was for α = 10°. In the first row, the SNR in the T1 maps is shown.
The α with the highest SNR was for α = 6°.
An α of 9° will be used in the following work.
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6.4.3 Optimize SRRrot for cardiac applications

Figure 6.5: Simulation and phantom results of different SRR geometries compared to the
reference (refXCAT for the simulation and reforth for the phantom data). The weight distribution

of the SRR geometries shows the amount of LR information at a specific HR position (the
brighter, the more information), as further explained in subsection 6.3.4.
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Figure 6.5 shows the application of the model-based SRR on different SRR geometries with
rotated stacks, using simulations and phantom data. The weight distribution shows how
much information from all LR stacks was available at a HR position (the brighter, the more
information). The different orientations of the stacks and filling or not filling of slice gaps in
the SRR geometries led to different patterns in the weight distributions.
With SRR6 and SRR12, artefacts can be seen, as highlighted by the arrows. The visualisation
of small structures is most similar to the reference for SRR4.
SRRrot will from know on always be referring to SRR4.

6.4.4 Numerical simulations and phantom experiments using SRRrot

Figure 6.6: Application of the proposed approach on phantom data. In the same acquisition
time, Γrot

final but not Γtransl
final could recover the whole phantom tubes structure

.

Figure 6.6 shows the application of the proposed approach on phantom data (Γrot
final) and

compares it with Γtransl
final and reforth. While with the proposed number of stacks, SRRtransl

could not image all phantom tubes, SRRrot could cover the whole phantom and therefore
captured a larger FOV.
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Figure 6.7: Application of the proposed approach on simulated data. Γrot
final and Γtransl

final are
compared to the ground truth. While SRRtransl was limited to the ventricles, the SRRrot

approach could cover the whole heart with the same number of LR stacks. No BH motion was
simulated.

Figure 6.7 shows Γrot
final for the simulated data in all three common orientations and

compares it to Γtransl
final and refXCAT . With the same number of LR stacks and LR slices,

SRRrot could cover the whole heart while SRRtransl was limited to the ventricles.
As evaluated in a further experiment, The RMSE to the known simulated BH motion in
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SRRrot was [1.79, 1.59, 1.18] mm while the maximum possible RMSE was [2.14, 2.24, 1.29]
and thus decreased by an average of 36.83%.
Visually, the myocardial structures were well recovered in the SAX of the heart when
using rotated stacks, even though this orientation has never been acquired directly but
was reconstructed from the other orientations.

6.4.5 Influence of slice profile accuracy on SRRrot

Figure 6.8: Influence of slice profile accuracy on SRR: The results of SRR using the correct slice
profile (shown in blue) are compared to two SRR results using approximations (shown in black).

The mean T1 values in the green ROI are calculated for evaluation.

In Figure 6.8, Γfinal assuming different slice profiles for the SRR using rotated stacks is shown,
analogously to subsection 4.4.2. While the first row shows the SRR result, the second row
shows the correct slice profile used for the simulation of the LR slices in blue and the profile
used for the optimisation in black.
The RMSE of the ROI in Γfinal compared to refXCAT using the Gaussian approximated
increased by 61.66% and by 97.49% using the box-approximated profile. As seen in Figure 6.8,
strong image artefacts appeared when assuming a box-approximated slice profile for the SRR.
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6.4.6 Performance of SRRrot with respect to resolving small structures

Figure 6.9: Influence of SRRrot on detectability of simulated fibrosis. On the left side, the
detectability for different sizes of fibrotic structures are shown for the reference, the SRR

initialisation and the result. A zoom into the fibrosis with the size of 1.3 mm is shown on the right
side.

Figure 6.9 shows the effect of SRRrot on the simulated fibrotic structure. The SRR improved
the detectability of the gap between the fibrosis by 419.07 ± 182.56% on average over all
thicknesses compared to the SRR initialisation. The fibrosis gap with the thickness of 1.3 mm
could not be resolved in Γrot

0 but could be resolved after the SRR.
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Figure 6.10: Comparison of the detectability of small structures after SRRrot compared to
SRRtransl.

In Figure 6.10, the comparison of the detectability achieved with SRRrot and with SRRtransl

is shown. The visualisation of small structures increased by 439.09 ± 470.62% over all fibrosis
thicknesses using SRRrot compared to SRRtransl.

6.5 Discussion

In this chapter, a SRR geometry with rotated stacks was proposed, which was able to increase
the FOV of the HR volume to the whole heart without an increase in scan time. SRRrot was
therefore more efficient with respect to the heart coverage compared to SRRtransl.
For that, the acquisition parameter of the LR slices needed to be optimised to provide accurate
T1 values, especially in the apical region, while maximising the SNR. This led to a change
of the LR slice thickness of ∆z =4 mm and of the flip angle to α = 9°. To still be able to
accurately distinguish different T1 relaxation times using the proposed signal model, the used
flip angle should be less than 10° [49]. The inaccurate intensity values in the apical region are
most likely due to some inverted blood staying inside the myocardium and not getting ejected,
mixing with blood which has not been inverted.
The SRR acquisition geometry needed to be adapted for cardiac applications. Gaps needed to
be introduced between the LR slices to cover the whole heart with each stack. However, the
gaps between the slices could lead to an inhomogeneous amount of information contribution to
different HR positions. As already shown for SRR applied on fetal brain MRI, gaps between the
slices increase the number of stacks needed for a successful SRR [75]. As shown experimentally
in this chapter, using some stacks to fill gaps of other stacks instead of introducing a new
orientation reduced artefacts in the SRR result. This correlated with the respective weight
distribution being the most homogeneous and the least amount of areas where no or only
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little LR information was available. The artefacts, therefore, could be explained by the SRR
having too little information from the LR stacks at these positions to reconstruct the original
structures.
Next to that, the number of slices per LR stack was limited due to BH duration, so the gap
between the slices was adjusted such that every stack covered a FOV of 76 mm in the SE
direction. This resulted in an area of maximum LR information about approximately 76 mm
in diameter, centred on the septum as the axis of rotation. However, this is only sufficient for
patients with a rather small overall heart size [133]. This can be adapted to a larger heart by
increasing the gap between the slices and thus requiring more stacks to fill the gaps.
The radial acquisition scheme leads to more information per HR position the closer the HR
position is to the rotation axis since more stacks overlap in this region. This can also be seen
in Figure 6.6, in which the tubes in the corner of the phantom received less LR information
than the centre tube. This effect can be adjusted by changing the FOV in the SE direction
acquired with each LR stack. The higher the covered FOV per LR stack, the farther the area
with less LR information is from the rotation axis.
Matching the results from subsection 4.4.2, slice profile inaccuracies for the SRR led to artefacts.
When using SRRrot, the approximation of the slice profile led to strong image artefacts and
significantly impaired the T1 accuracy of the SRR result. Therefore, it can be concluded that
an accurate modelling of the slice profile is an important factor for an accurate SRR result,
which is in accordance with [115].
A model-based SRR scheme with differently rotated LR stacks could be applied for the first
time to quantitative cardiac imaging. The performance of the proposed SRR scheme was
evaluated quantitatively, and it could be shown that structures in the size of 1.3 mm could
be resolved. The detectability of small structures of all sizes increased when using SRRrot

compared to SRRtransl, which is in accordance with previous research conducted on the brain
[101, 115].
However, the proposed image-space-based SRR approach is limited by a lack of feedback between
the SRR result and the raw k-space data. Undersampling artefacts in the reconstructed LR
dynamics might propagate into the SRR result and impair the visualisation of small structures.
This could be improved by using a k-space based SRR approach, as presented in chapter 7
and also used in [93, 94]. This might improve the overall image quality and the visualisation
of small structures.

6.6 Conclusion

The reconstruction of a whole heart HR 1.3 mm isotropic cardiac T1 map was proposed. For
that, the acquisition of long-axis LR stacks with accurate T1 estimates was optimised. Next
to that, a SRR acquisition scheme with rotated stacks was presented and adapted for whole
heart cardiac T1 mapping. However, with the proposed image-space based SRR approach,
undersampling artefacts in the reconstructed LR dynamics might propagate into the SRR result
and impair the visualisation of small structures. This could be improved using a k-space-based
approach, as introduced in the next chapter.
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7.1 Introduction

Often for SRR, image-space-based approaches are used, so the LR images are reconstructed
from the k-space data in a preprocessing step and then serve as a starting point for the SRR.
Hence, for model-based SRR, the aim is to minimise the difference between the acquired LR
dynamics and those predicted from the SRR result. However, these approaches mainly use
fully sampled LR images [85, 84, 88]. Others [93, 94] used a k-space-based SRR approach,
where no preprocessing reconstruction step is necessary for the SRR. So, the difference between
the acquired k-space data and the one predicted from the SRR result is minimised. Thereby,
the coil sensitivity maps and the FFT are integrated into the optimisation. This improved
the visualisation of small structures compared to an image-space-based reconstruction [94].
Nevertheless, k-space-based SRR has so far only been applied to qualitative cardiac imaging
[93] or to quantitative cartesian brain imaging [94].
In the previous chapter, high image quality could be achieved with the presented image-
space-based SRR approach. Nonetheless, further improvement could be expected using a
k-space-based SRR, considering the undersampled k-space trajectory.
This chapter proposes a cardiac whole-heart k-space-based SRR T1 mapping approach and
applies it to ten healthy volunteers. The proposed approach was evaluated in numerical
simulations by comparing the proposed k-space SRR approach with an image-space-based
SRR approach using rotated stacks (chapter 6) and with an image-space-based SRR approach
using translated stacks in SAX orientation (chapter 4).

Parts of this chapter have been submitted for publication in J2.
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7.2 Methods

7.2.1 Overall workflow of k-space-based cardiac SRR

Figure 7.1: Schematic pipeline of the proposed approach. Several stacks were acquired with
long-axis orientations rotated to each other, described by A. For cardiac motion estimation and

BH alignment, LR dynamics and T1 maps were reconstructed in a preprocessing step. The
estimated motion MC and MB served as input for the following SRR. The SRR was

k-space-based, so the acquired k-space data y as well as the radial k-space trajectory R, coil maps
C and FFT F were part of the signal model in SRR. The SRR yielded a HR 3D T1 map Γ.

(source of parts: Shutterstock/howcolour)

The proposed workflow to acquire whole heart isotropic T1 maps using a k-space-based SRR is
depicted in Figure 7.1: After the application of an inversion pulse, multiple stacks of 2D slices
with high in-plane but low through-plane resolution at different angles are acquired with a
Golden radial k-space sampling scheme and a radial SRR acquisition scheme with one stack
per BH. This results in radially overlapping stacks covering the whole heart, as described in
subsection 6.2.2. The respective k-space data is then used to reconstruct the LR dynamics
and T1 maps, which are needed to estimate cardiac motion and BH alignment. The proposed
scheme is k-space-based, so the SRR is applied to the raw k-space data and therefore also
includes information about the k-space trajectory R, the coil maps C and the FFT F . After
the iterative optimisation scheme of the SRR, a HR 3D T1 map is obtained.

7.2.2 K-space-based SRR

For the proposed k-space-based SRR, the difference between the acquired k-space data y

and the one predicted from the application of the acquisition model on the SRR volume Γ
is minimised (see Equation 7.1). As for the image-space-based SRR (subsection 4.2.1), the
acquisition model thereby consists of the T1 relaxation model q, the translational BH motion
MB, and the downsampling operator A. For the k-space-based SRR, the cardiac motion
fields MC , the coil maps C, the FFT F and the radial k-space sampling operator R are also

80



7.2 Methods

integrated into the acquisition model. For regularisation, the parameter κ weights the influence
of the total variation regularisation based on the forward finite differences operator G and the
data consistency term. The sum over all stacks s and inversion times t (with s = 1, . . . NS

and t = 1, . . . , NT , with NS being the number of stacks and NT being the number of inversion
times) is minimised.

min
Γ

NT∑︂
t=1

NS∑︂
s=1

||yt,s − R ∗ F ∗ Cs ∗ MC
s ∗ MB

s ∗ As ∗ qt(Γ)||22 + κ||G ∗ Γ||1 (7.1)

MB only includes the detected motion in the readout and SE direction. As the LR stacks
are rotated around the PE axis, shifts in the PE correspond to a shift in the in-plane dimension
of the LR images. So translation in the PE direction is implemented as a preprocessing phase
shift directly applied to the acquired k-space data.
Since the non-smoothness of the L1-norm as well as the non-linear function q make solving
Equation 7.1 challenging, a variable splitting [93, 94, 116] approach is used, analogously to
subsection 4.2.2. Auxiliary variables xt := qt(Γ) for all t and u := Γ are introduced, and these
equalities are relaxed by including two quadratic penalty terms, weighted by λ and µ. This
yields the following equation:

min
Γ,x,u

NT∑︂
t=1

NS∑︂
s=1

||yt,s−R∗F ∗Cs∗MC
s ∗MB

s ∗As∗xt||22+λ||xt−qt(Γ)||22+µ||u−Γ||22+κ||G∗u||1 (7.2)

Equation 7.2 is split into three subproblems, and its solution is approached by alternating
the minimisation of the subproblems. For that, only one of the variables of the subproblem is
optimised, and the two others are fixed. Fixing Γ and x thus leads to

min
u

µ

κ
||u − Γ||22 + ||G ∗ u||1 (7.2.1)

Subproblem 7.2.1 is solved using the iterative algorithm proposed in [117].
Fixing Γ and u thus leads to

min
x

NT∑︂
t=1

NS∑︂
s=1

||yt,s − R ∗ F ∗ Cs ∗ MC
s ∗ MB

s ∗ As ∗ xt||22 + λ||xt − qt(Γ)||22 (7.2.2)

Subproblem 7.2.2 is solved using a conjugate gradient approach. Five iterations were used per
alternation.
Fixing x and u and updating Γ leads to

min
Γ

NT∑︂
t=1

λ||xt − qt(Γ)||22 + µ||u − Γ||22 (7.2.3)

Since the phase difference between xt and qt(Γ) is assumed not to influence the other
subproblems relevantly, the constraint is further relaxed by ∠xt = ∠qt(Γ), similarly to [134].
Subproblem 7.2.3 is solved using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno
algorithm [118] with ten iterations per alternation.
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To approach the solution of Equation 7.1, all subproblems are alternated three times.
For initialisation of Γ and subproblem 7.2.3, the individual slices of the LR stacks are
reconstructed using a conjugate gradient approach, a three-parameter fit is applied and
combining these maps using the transpose of A results in Γ0, analogously to subsection 4.2.2.
For initialization of subproblem 7.2.1, u is set to Γ0. Subproblem 7.2.2 is initialized by
xt = qt(Γ0). Γ0 for initialisation of the subproblems is updated after every alternation.

7.3 Experiments

Data was acquired with the geometry as described in subsection 6.3.5, so 12 stacks were
acquired, with the orientations (0, 45, 90, 135)° and three stacks per orientation, shifted to
one another by 6 mm.
As nomenclature, in the following, the subscript will describe the type of SRR reconstruction (i

for image-space-based or k for k-space-based). The subscript, therefore, will no longer indicate
whether the variable shows the SRR initialisation or result, but from now on, only the SRR
result will be shown. So the proposed method yielded Γrot

k .

7.3.1 Simulations

Simulated k-space data was generated as described in subsection 3.3.1. No BH motion was
simulated, as its correction was already evaluated in subsection 6.4.4. As a quantitative
evaluation, the edge sharpness of the septum in Γtransl

i , Γrot
i , Γrot

k and refXCAT was compared,
calculated as described in subsection 5.3.3.

7.3.2 Phantom

Phantom data was acquired as described in subsection 3.3.1.
The edge sharpness of the phantom tubes was calculated and compared between the different
approaches. The difference between the average edge sharpness of Γrot

i and Γrot
k was evaluated

on statistical difference using a paired student T-test.
Next to that, several ROI were selected in each of the nine phantom tubes and the average
and SD of the T1 values were compared between Γrot

i and refIRSE as well as between Γrot
k and

refIRSE . To assess the accuracy of the SRR, Pearson’s correlation coefficients and the paired
student T-test P-values between Γrot

i and refIRSE and Γrot
k and refIRSE were calculated.

7.3.3 In vivo

To evaluate the proposed approach in vivo, data was obtained from ten healthy subjects (7
males, 3 females, aged 30.3 ± 2.28 years). All subjects gave written informed consent before
participation in accordance with the institution’s ethical committee.
For quantitative reference, a 3(3)3(3)5 MOLLI scan refMOLLI was acquired with the following
scan parameter: FOV: 360 × 323 mm2, TE / TR: 1.12 / 2.7 ms, α: 35°, and spatial resolution:
2.1 × 1.4 × 6 mm3. Overall, eight slices were acquired with the following orientations and
positions: 4CH, 2CH of the left ventricle, 2CH of the right ventricle, and SAX at the following

82



7.3 Experiments

positions: apex, apical, mid-ventricular, basal and atrial.
For anatomic reference, a turbo-spin-echo (TSE) black-blood sequence refT SE was used with
the following parameters: FOV: 340 × 276 mm2, TE / TR: 28.0 / 700.0 ms, α: 180°, and
spatial resolution: 1.3 × 1.3 × 5 mm3. Overall, five slices were acquired with the following
orientations and positions: 4CH, 2CH of the left ventricle, 2CH of the right ventricle, and
SAX at mid-ventricular and atrial positions.
To assess the performance of the k-space-based reconstruction in in vivo experiments, γrot,
Γrot

i and Γrot
k were qualitatively compared. Next to that, a qualitative comparison between

Γrot
k and refMOLLI and refT SE reference scans was performed.

The accuracy of the T1 values was evaluated quantitatively by comparing the bull’s eye plots
[123] of Γrot

k to refMOLLI . For this, the mean T1 values in each myocardial segment of each
volunteer were calculated, and the mean and SD over the volunteers of these values were plotted
for Γrot

k and refMOLLI . Next to that, the mean absolute difference in the T1 values of the
different myocardial segments between refMOLLI and Γrot

k was calculated. The precision of the
T1 values was evaluated by comparing the SD of the T1 values within the different myocardial
segments between Γrot

k and refMOLLI over all segments and all ten healthy volunteers.
Improvements compared to image-space-based SRRtransl and k-space-based SRRrot approaches
as well as the impact of motion on SRRrot were investigated in a qualitative comparison
between Γrot

k and Γtransl
i .

The influence of the k-space-based reconstruction on noise and image contrast was evaluated
using the contrast-to-noise ratio CNR. This was evaluated at the septum using the following
formula:

CNR = µseptum − µblood

σblood
(7.3)

Thereby, µseptum describes the mean T1 intensity in a ROI placed in the septum, µblood

describes the mean T1 intensity in a ROI placed in the blood adjacent to the septum and
σblood describes the SD of the T1 intensities in a ROI placed in the blood.
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7.4 Results

7.4.1 Simulations

Figure 7.2: Application of the proposed approach on simulated data. While Γtransl
i was limited

to the ventricles, Γrot
k could cover the whole heart with the same number of LR stacks. Using a

k-space-based reconstruction improved the visualisation of small structures such as the atrial wall
(arrow). No BH motion was simulated.

Figure 7.2 shows the application of the proposed approach on simulated data and compares
Γtransl

i with the results from Γrot
i , Γrot

k and the refXCAT . The k-space-based reconstruction
in Γrot

k improved the visualisation of thin structures such as the atrial wall (green arrow in
Figure 7.2).
The edge sharpness of the septum increased from 0.28 in Γrot

i to 0.29 for Γrot
k and was 0.42 for

refXCAT . So, the k-space-based reconstruction increased the edge sharpness of the septum by
6.2% compared to the image-space-based reconstruction.
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7.4.2 Phantom

Figure 7.3: Application of the proposed approach on phantom data. The sharpness of the
interface between tubes and phantom background increased when using the k-space-based SRR.
This is highlighted in the zoom-ins in the second row with the measured sharpness value of the

single tube in the corner.

Figure 7.3 shows the application of the proposed approach on phantom data and compares it
with one of the LR stacks, Γi

rot and reforth. The sharpness of all tubes increased from 0.33 ±
0.05 for Γrot

i to 0.35 ± 0.05 for Γrot
k , corresponding to an increment in the sharpness of the

tubes by 4.73% through the k-space-based reconstruction. The difference in sharpness values
was statistically significant (P=0.01). The sharpness in reforth was 0.45 ± 0.08.
The average T1 values of both Γrot

k and Γrot
i showed high correlation (P>0.61, R2 >0.99)

with the spin-echo reference refIRSE . The mean difference between the T1 times in Γrot
i and

refIRSE was 3.9 ± 21.18 ms and between Γrot
k and refIRSE 3.77 ± 23.26 ms. The mean

absolute difference between the T1 times in Γrot
i and refIRSE was 13.36 ± 16.90 ms and

between Γrot
k and refIRSE 14.53 ± 18.56 ms.
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7.4.3 In vivo

Figure 7.4: Application of k-space-based SRR on in vivo data. The SRR using rotated stacks
could recover the standard SAX view. The k-space-based SRR improved the visualisation of small
structures such as the interatrial septum (see green arrow) and the aortic wall (see blue arrow)

and decreased the overall noise level.

In Figure 7.4, the application of the proposed approach on in vivo data is compared to the
image-space-based SRR approach next to one LR stack. The whole myocardium, including the
atria, could be visualised with the proposed approach. The image quality improved with the
k-space-based SRR, as seen in the decreased overall noise and the increased contrast between
myocardium and blood. The visualisation of small structures, such as the atrial wall, improved
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(see arrows). The CNR at the septum over all volunteers was 8.44 ± 3.30 in Γrot
i and 9.66 ±

3.77 in Γrot
k , corresponding to an increment of 14.50% using a k-space-based SRR.

Figure 7.5: Application of the proposed approach on in vivo data, and comparison to refMOLLI

and refT SE . Γrot
k matched the reference scans, and small structures such as the atrial wall or the

papillary muscles could be recovered (arrows). In contrast to refMOLLI , blood could not be
visualised with the SRR approach due to the use of slice-selective inversion pulses.

Figure 7.5 compares Γrot
k of one volunteer to refMOLLI and refT SE in all three orientations

(SAX, 4CH, 2CH of the left ventricle). All three orientations could be captured well, and small
details, such as the atrial wall (arrow), could be visualised.
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Figure 7.6: Application of the proposed approach Γrot
k on in vivo data and comparison to

refMOLLI and refT SE in 4CH orientation. In addition to Figure 7.5, three more volunteers are
shown here. Γrot

k matches the reference scans, and small structures such as the atrial wall or the
papillary muscles could be captured.

Additionally, Figure 7.6 shows the results of the proposed approach applied to three more
volunteers in 4CH and compares them to the reference scans. The results again matched the
references, and small structures as the papillary muscles could be visualised (arrow).
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Figure 7.7: A bull’s eye plot evaluation of the mean T1 values and their standard deviation (SD)
in ms in standardised myocardial segments of Γrot

k and of a MOLLI reference acquisition.

Figure 7.7 shows a bull’s eye plot analysis [123] of the T1 times of Γrot
k and refMOLLI of

all ten healthy volunteers. The mean T1 value over all volunteers and all myocardial segments
was 1068.02 ± 71.45 ms using the proposed approach and 1261.15 ± 55.50 ms using MOLLI.
T1 was underestimated in Γrot

k by 193.14 ± 80.73 ms compared to refMOLLI , which can be
attributed to the magnetisation transfer effects as a consequence of the slice selective inversion
pulses [126] as well as residual BH motion artefacts. The SD within the myocardial segments
was 64.32 ± 22.77 ms over all segments and volunteers for Γrot

k and 44.73 ± 31.90 ms for
refMOLLI . These SD were comparable, indicating high precision.
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Figure 7.8: A comparison of Γrot
k and Γtransl

i in vivo: With Γrot
k the whole heart could be

covered while Γtransl
i was restricted to the ventricles. Artefacts appearing as discontinuities in the

septum (arrow) could be seen in Γtransl
i but not in Γrot

k , which could be attributed to residual
motion artefacts in Γtransl

i .

In Figure 7.8, Γrot
k is compared to Γtransl

i . With the same number of LR stacks, Γrot
k could

cover the whole heart while Γtransl
i was restricted to the ventricles. Artefacts appearing as

discontinuities in the septum (arrow) could be seen in Γtransl
i but not in Γrot

k , which could be
attributed to residual motion artefacts.
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Figure 7.9: The application of the proposed approach on in vivo data in uncommon slice
positions showing small myocardial structures and comparison to refMOLLI and refT SE . Small
structures in the SAX view through the interatrial septum (arrow) and in the 2CH view of the

right ventricle could be recovered. Different colour bars have been used for refMOLLI and Γrot
k to

adapt to the different T1 intensities of blood.

Figure 7.9 compares the application of the proposed approach to reference scans at oblique
slice positions showing small myocardial structures such as the SAX through the atria and the
2CH of the right ventricle. The proposed approach could partially recover small details in the
atrial walls. The right ventricular wall could be fully captured.
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Figure 7.10: Comparison of the influence of motion on different SRR schemes applied to in vivo
data. Major motion artefacts (blue arrow) were induced by different BH positions in Γtransl

i

without any motion correction. In Γrot
k , motion between the stacks led to minor artefacts such as

blurring (green arrow), which could be removed after applying the proposed moco scheme.

In Figure 7.10, the influence of motion on different SRR schemes is shown. The motion
detected in Γtransl

i was in the range of [7.8, 9.1, 2.6] mm in the three different directions and
the range of [1.3, 3.9, 3.9] mm for Γrot

k . Motion induced by different BH positions led to major
zig-zag artefacts in Γtransl

i . In the proposed approach, motion led to minor artefacts, such as
blurring, which could be reduced with the proposed motion correction scheme.

7.5 Discussion

In the proposed approach, the whole heart could be covered in 12 BH and an overall scan time
of approximately three minutes, excluding breaks between individual BH. The application of
a k-space-based radial SRR allowed the visualisation of, for example, the wall of the right
ventricle and parts of the atrial wall. Cardiac motion could be corrected, and different BH
positions could be aligned. The proposed approach provided precise T1 maps.

92



7.6 Conclusion

The proposed k-space-based reconstruction outperformed the previously presented image-
space-based reconstruction. By the integration of the T1 relaxation model, the BH motion,
the downsampling operator, the cardiac motion fields, the coil maps, the FFT and the radial
k-space trajectory into the optimisation, the visualisation of small structures improved, which
is in accordance with previous methods proposed for k-space-based SRR of the brain [94].
The results of the proposed approach agreed well with the reference scans. The in vivo results
could, however, not be directly compared with refMOLLI and refT SE because each scan was
acquired in a different BH. Nevertheless, the simulations and phantom experiments suggest
that the proposed approach provides accurate T1 quantification.
As shown in Figure 7.10, SRRrot showed less pronounced artefacts due to motion compared to
SRRtransl, which was in agreement with [101]. Motion using SRRtransl led to strong zig-zag
artefacts, while motion using SRRrot led to minor artefacts such as blurring. Any residual
uncorrected motion, therefore, also impairs the quality of the T1 maps more using SRRtransl

than using SRRrot.
The approach was limited by not being able to accurately quantify the T1 values of blood due
to the use of a slice-selective inversion pulse. However, the low apparent T1 time of blood can
also be an advantage, as the contrast between the myocardium and the blood increases. This
can be especially interesting for assessing small structures such as the atrial wall. To calculate
the ECV, the acquisition of a single LR slice with a global inversion pulse would provide the
required information regarding the T1 values of the blood pool.
A limitation of the proposed approach is that the SAX for some volunteers showed more artefacts
compared to SRRtransl. This can be traced back to imperfectness in motion correction, as
unknown motion between the LR stack worsens the SRR result [64]. In the proposed approach,
the SAX has never been acquired directly but was only reconstructed from other orientations
using SRR, whereas SRRtransl always acquired SAX images and then reconstructed 4CH or
2CH out of the SRR result. Improvements in cardiac and BH motion correction and the use
of more complex motion registration algorithms [85, 84, 114, 91, 75, 135, 81] might therefore
improve the overall SRR result.
This work was only evaluated in healthy volunteers. However, based on the improved
visualisation of small structures such as the atrial wall, it can be concluded that SRR will also
lead to improved image quality with future applications in patients.

7.6 Conclusion

In this study, a novel 3D k-space-based SRR T1 mapping approach with rotated stacks was
proposed. Whole heart isotropic 1.3 mm T1 maps were provided in an overall acquisition time
of approximately three minutes. The visualisation of small structures improved, and the whole
heart could be covered, including the atria.
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Summary

In this thesis, a novel approach to obtain a whole-heart HR 3D cardiac T1 map in an overall
acquisition time of three minutes was developed and evaluated in numerical simulations,
phantom experiments and in vivo studies. Scan time was used efficiently with a SRR
approach, providing a HR volume with precise T1 estimates in a short acquisition time. Good
visualisation of small structures such as the right ventricular and atrial walls in a 3D HR T1

map could be provided with a motion-corrected k-space-based SRR approach. Whole heart
coverage was achieved with a radial SRR geometry. The provided T1 estimates were accurate
as shown in phantom experiments, and showed high precision in in vivo experiments.

As an alternative to SRR, HR imaging can be achieved by acquiring thin slices directly.
However, keeping the acquisition time fixed would lead to a lower SNR. In chapter 3, it was
confirmed experimentally for quantitative T1 maps that it is more efficient to acquire thick
slices compared to increasing the acquisition time and acquiring thin slices, motivating the use
of SRR. As the output of the SRR depends strongly on its LR input data, in this chapter, the
parameter for the acquisition of a single multi-slice stack with accurate T1 estimates in a low
acquisition time was optimised. The acquisition time of a single LR stack was minimised by
using a slice-selective inversion pulse and, therefore, reducing the acquisition time of a single
LR slice by approximately 60% compared to a non-selective inversion pulse. Furthermore, the
width of the slice-selective inversion pulse was adapted with respect to robustness in case of
motion and under consideration of the non-rectangular shape of the inversion pulse. Gaps
between the LR slices were introduced for independence between the single slices. Next to that,
a minimisation in acquisition time was demonstrated by using a cardiac motion correction
approach. These optimisations allowed the acquisition of a single multi-slice slice stack of six
slices of accurate and precise T1 maps in an overall acquisition time of 16 seconds.

In chapter 4, a model-based SRR approach was developed, reconstructing a 3D HR T1 map
from the reconstructed dynamics and therefore being image-space based. The visualisation of
small structures increased from 0.38% compared to the ground truth to 48.63%. Next to that,
the influence of uncertainties in the knowledge about the acquisition geometry, for example,
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slice profile or slice position, on the SRR was analysed. Uncorrected motion between the LR
stacks has shown to be a major factor influencing the performance of the SRR.

In chapter 5, a motion correction scheme was developed to align different BH states. The
proposed motion correction scheme performed successfully and reduced the residual motion
by 97.79%. This allowed the successful application of the developed motion-correction SRR
scheme on in vivo data and provided accurate (P<0.001, R2>0.999) and precise (SD of 63.72
ms across the four healthy volunteers) T1 values. The ability to differentiate small structures
has been enhanced by 40% through the developed model-based motion-corrected SRR scheme
and allowed the acquisition of a 3D HR T1 map in six to ten 17 seconds long BH.

While the provided T1 maps of the previous chapter were limited to the ventricles, a
novel approach was developed in chapter 6, allowing an increase of the FOV to the whole
heart by introducing a new SRR acquisition scheme. Acquiring long-axis images of the
heart with different orientations instead of acquiring shifted SAX images thereby allowed
the coverage of the whole heart in the same acquisition time. For that, the acquisition
parameters needed to be optimised to provide accurate T1 values for the long-axis images
and to maximise the acquired signal. Different radial SRR acquisition geometries were
evaluated to provide accurate T1 estimates in cardiac applications. The motion alignment
of different BH positions was adapted to the radial acquisition geometry. In simulation
experiments, structures in the size of 1.3 mm could be differentiated with the proposed approach.

The developed approach was further improved in chapter 7 by introducing a k-space-based
SRR approach, which could be successfully applied to ten healthy volunteers. The provided T1

values were precise, and the contrast between myocardium and blood increased by 14.50%
compared to an image-space-based SRR. Consequently, the whole heart could be covered in
only three minutes overall acquisition time while a good visualisation of small structures was
possible with an isotropic spatial resolution of 1.3 mm.

Uncorrected BH misalignment in between the different LR stacks has a strong impact
on the final SRR results, as shown in subsection 4.4.3. Similar effects can be expected
from insufficiently corrected cardiac motion. In future research, more advanced motion
correction for the cardiac and BH motion correction might, therefore, improve the overall
SRR result. The results of the motion correction could be improved by its integration into
the optimisation scheme of the SRR, as described in [83–85, 93]. Furthermore, the integration
of motion correction approaches as proposed for the application of SRR on fetal imaging
[114, 91, 75, 135, 81] could further improve the overall SRR result. In this work, only
translational misalignment between the BH states was corrected. Integrating rotation and
deformation into the BH motion correction would probably further improve the SRR result.
Registering the slices within one stack separately to the HR volume would also account for
inter-stack motion due to poor breath holding.
In addition, instead of correcting the BH positions retrospectively, the position of the slices
could be tracked prospectively and the acquisition adjusted accordingly, for example, using the

96



Pilot tone [57]. As assessed in subsection 3.4.2, a slice-selective inversion pulse broader than
theoretically necessary needed to be used to account for motion in case of a non-consistent
BH. In case of a prospective BH position correction, this buffer would not be necessary, thus
avoiding the potential source of slice inversion error due to incorrectly estimated motion.
A drawback of the proposed approach is the computational complexity, leading to an overall
computation time of approximately 24 hours for the reconstruction of the whole heart T1 map
of one volunteer, using a high-performance computer (2x24 Cores, Dual Intel Xeon Gold 6246,
768GB RAM).
For cardiac SRR, Deep Learning is used extensively in the literature [136, 137, 95, 138, 139]
as also described in section 2.5. However, the physical acquisition model between the acquired
k-space data and the SRR result has not been considered for quantitative cardiac imaging. For
qualitative brain imaging, the integration of physics-based knowledge in the data-consistency
layers of a neural network, along with deep learning regularisation techniques, has greatly
enhanced the quality of the reconstructed images [140]. Future research could, therefore,
combine physics-informed Deep Learning methods and multi-image SRR. This could combine
the strong computational power of Deep Learning with the knowledge about the acquisition
models of different LR stacks proposed in this work. By that, the reconstruction time could
be accelerated, and the data consistency term of the physics-informed Deep Learning model
would ensure the acquired k-space data still matches the SRR result.
To further speed up the total acquisition time, a simultaneous multi-slice sequence [141] could
be used to acquire several slices in one stack at once and reduce the acquisition time per stack.
For that, a multi-slice inversion pulse would be needed as described in [142].
The proposed SRR reconstruction problem relates the acquired k-space data to the HR T1

parameter map via an acquisition and a signal model. This formulation is universal and can
be applied to different quantitative imaging techniques, such as T2 mapping, or even extended
to MRI fingerprinting [143] approaches. Low through-plane resolution of cardiac T2 maps
may lower the sensitivity to small focal areas of inflammation [144] or oedema detection [145].
Next to that, in cardiac T2 mapping, the FOV is often restricted to only a fraction of the
left ventricle, potentially missing focal areas of inflammation [145]. In future applications,
therefore, an application of SRR on T2 mapping could also provide diagnostic information
about oedema [15] in patients with myocardial infarction [146, 147], heart transplant rejection
[148] or inflammatory cardiomyopathy [149].
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