Skip to main content

Advertisement

Log in

Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Metabolomic and proteomic analyses will be publicly available on the IBT CAS/BIOCEV website, and on the Zenodo website - https://zenodo.org/, the links will be specified. All other materials and cells will be available upon request.

References

  1. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    CAS  PubMed  Google Scholar 

  3. Kale J, Osterlund EJ, Andrews DW (2018) BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ 25:65–80

    CAS  PubMed  Google Scholar 

  4. Hardwick JM, Soane L (2013) Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect biol. https://doi.org/10.1101/cshperspect.a008722

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gross A, Katz SG (2017) Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ 24:1348–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morris JL, Gillet G, Prudent J, Popgeorgiev N (2021) Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int J Mol Sci. https://doi.org/10.3390/ijms22073730

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chong SJF, Marchi S, Petroni G, Kroemer G, Galluzzi L, Pervaiz S (2020) Noncanonical cell fate regulation by Bcl-2 proteins. Trends Cell Biol 30:537–555

    CAS  PubMed  Google Scholar 

  8. Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 285:13678–13684

    CAS  PubMed  PubMed Central  Google Scholar 

  9. White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Nutt LK, Pataer A, Pahler J et al (2002) Bax and bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277:9219–9225

    CAS  PubMed  Google Scholar 

  11. Zong WX, Li C, Hatzivassiliou G et al (2003) Bax and Bak can localize to the endoplasmic reticulum to initiate apoptosis. J Cell Biol 162:59–69

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Oakes SA, Scorrano L, Opferman JT et al (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110

    CAS  PubMed  ADS  Google Scholar 

  13. Hirata H, Lopes GS, Jurkiewicz A, Garcez-do-Carmo L, Smaili SS (2012) Bcl-2 modulates endoplasmic reticulum and mitochondrial calcium stores in PC12 cells. Neurochem Res 37:238–243

    CAS  PubMed  Google Scholar 

  14. Carvalho AC, Sharpe J, Rosenstock TR, Teles AF, Youle RJ, Smaili SS (2004) Bax affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ 11:1265–1276

    CAS  PubMed  Google Scholar 

  15. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    CAS  PubMed  Google Scholar 

  16. Brooks C, Wei Q, Feng L et al (2007) Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins. Proc Natl Acad Sci USA 104:11649–11654

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–662

    CAS  PubMed  ADS  Google Scholar 

  18. Um HD (2016) Bcl-2 family proteins as regulators of cancer cell invasion and metastasis: a review focusing on mitochondrial respiration and reactive oxygen species. Oncotarget 7:5193–5203

    PubMed  Google Scholar 

  19. Chen ZX, Pervaiz S (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ 14:1617–1627

    CAS  PubMed  Google Scholar 

  20. Eliseev RA, Malecki J, Lester T, Zhang Y, Humphrey J, Gunter TE (2009) Cyclophilin D interacts with Bcl2 and exerts an anti-apoptotic effect. J Biol Chem 284:9692–9699

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen ZX, Pervaiz S (2010) Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 17:408–420

    CAS  PubMed  Google Scholar 

  22. Lagadinou ED, Sach A, Callahan K et al (2013) BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 12:329–341

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kane DJ, Sarafian TA, Anton R et al (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262:1274–1277

    CAS  PubMed  ADS  Google Scholar 

  24. Imahashi K, Schneider MD, Steenbergen C, Murphy E (2004) Transgenic expression of Bcl-2 modulates energy metabolism, prevents cytosolic acidification during ischemia, and reduces ischemia/reperfusion injury. Circul Res 95:734–741

    CAS  Google Scholar 

  25. Alavian KN, Li H, Collis L et al (2011) Bcl-xL regulates metabolic efficiency of neurons through interaction with the mitochondrial F1FO ATP synthase. Nat Cell Biol 13:1224–1233

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Li M, Wang D, He J, Chen L, Li H (2020) Bcl-XL: a multifunctional anti-apoptotic protein. Pharmacol Res 151:104547

    PubMed  Google Scholar 

  27. Chen YB, Aon MA, Hsu YT et al (2011) Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 195:263–276

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lucantoni F, Salvucci M, Düssmann H, Lindner AU, Lambrechts D, Prehn JHM (2021) BCL(X)L and BCL2 increase the metabolic fitness of breast cancer cells: a single-cell imaging study. Cell Death Differ 28:1512–1531

    CAS  PubMed  Google Scholar 

  29. Lee KM, Giltnane JM, Balko JM et al (2017) MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metabol 26:633-647e637

    CAS  Google Scholar 

  30. Carter BZ, Mak PY, Tao W et al (2022) Targeting MCL-1 dysregulates cell metabolism and leukemia-stroma interactions and resensitizes acute myeloid leukemia to BCL-2 inhibition. Haematologica 107:58–76

    CAS  PubMed  Google Scholar 

  31. Huang CR, Yang-Yen HF (2010) The fast-mobility isoform of mouse Mcl-1 is a mitochondrial matrix-localized protein with attenuated anti-apoptotic activity. FEBS Lett 584:3323–3330

    CAS  PubMed  Google Scholar 

  32. Perciavalle RM, Stewart DP, Koss B et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14:575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang X, Bathina M, Lynch J et al (2013) Deletion of MCL-1 causes lethal cardiac failure and mitochondrial dysfunction. Genes Dev 27:1351–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boohaker RJ, Zhang G, Carlson AL, Nemec KN, Khaled AR (2011) BAX supports the mitochondrial network, promoting bioenergetics in nonapoptotic cells. Am J Physiol Cell Physiol 300:C1466-1478

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim EM, Park JK, Hwang SG et al (2014) Nuclear and cytoplasmic p53 suppress cell invasion by inhibiting respiratory complex-I activity via Bcl-2 family proteins. Oncotarget 5:8452–8465

    PubMed  PubMed Central  Google Scholar 

  36. Kim EM, Jung CH, Song JY, Park JK, Um HD (2018) Pro-apoptotic Bax promotes mesenchymal-epithelial transition by binding to respiratory complex-I and antagonizing the malignant actions of pro-survival Bcl-2 proteins. Cancer Lett 424:127–135

    CAS  PubMed  Google Scholar 

  37. Vercellino I, Sazanov LA (2022) The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol 23:141–161

    CAS  PubMed  Google Scholar 

  38. Tan AS, Baty JW, Dong LF et al (2015) Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metabol 21:81–94

    CAS  Google Scholar 

  39. Chiu HY, Loh AHP, Taneja R (2022) Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 13:419

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Scorrano L, Oakes SA, Opferman JT et al (2003) Bax and bak regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139

    CAS  PubMed  ADS  Google Scholar 

  42. Brayer S, Joannes A, Jaillet M et al (2017) The pro-apoptotic bax protein influences cell growth and differentiation from the nucleus in healthy interphasic cells. Cell Cycle 16:2108–2118

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang C, Youle RJ (2012) Predominant requirement of bax for apoptosis in HCT116 cells is determined by Mcl-1’s inhibitory effect on bak. Oncogene 31:3177–3189

    CAS  PubMed  Google Scholar 

  44. Zhang L, Yu J, Park BH, Kinzler KW, Vogelstein B (2000) Role of BAX in the apoptotic response to anticancer agents. Science 290:989–992

    CAS  PubMed  ADS  Google Scholar 

  45. Deng J, Gutierrez LG, Stoll G et al (2021) Paradoxical implication of BAX/BAK in the persistence of tetraploid cells. Cell Death Dis 12:1039

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bomba-Warczak E, Edassery SL, Hark TJ, Savas JN (2021) Long-lived mitochondrial cristae proteins in mouse heart and brain. J Cell Biol. https://doi.org/10.1083/jcb.202005193

    Article  PubMed  PubMed Central  Google Scholar 

  47. Takeuchi A, Kim B, Matsuoka S (2015) The destiny of ca(2+) released by mitochondria. J Physiol Sci 65:11–24

    CAS  PubMed  Google Scholar 

  48. Minczuk M, He J, Duch AM et al (2011) TEFM (c17orf42) is necessary for transcription of human mtDNA. Nucleic Acids Res 39:4284–4299

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hillen HS, Parshin AV, Agaronyan K et al (2017) Mechanism of transcription anti-termination in human mitochondria. Cell 171:1082–1093

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Posse V, Shahzad S, Falkenberg M, Hallberg BM, Gustafsson CM (2015) TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucleic Acids Res 43:2615–2624

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Yu H, Xue C, Long M et al (2018) TEFM enhances transcription elongation by modifying mtRNAP Pausing dynamics. Biophys J 115:2295–2300

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang S, Koolmeister C, Misic J et al (2019) TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep 20:e48101

    PubMed  PubMed Central  Google Scholar 

  53. Fei ZY, Wang WS, Li SF et al (2020) High expression of the TEFM gene predicts poor prognosis in hepatocellular carcinoma. J Gastrointest Oncol 11:1291–1304

    PubMed  PubMed Central  Google Scholar 

  54. Li S, Wang W, Zi J et al (2020) Elevated expression of mitochondrial transcription elongation factor (TEFM) predicts poor prognosis in low grade glioma-an analysis of the cancer genome atlas (TCGA) dataset. Transl Cancer Res 9:3610–3622

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wan L, Wang Y, Zhang Z et al (2021) Elevated TEFM expression promotes growth and metastasis through activation of ROS/ERK signaling in hepatocellular carcinoma. Cell Death Dis 12:325

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Van Haute L, O’Connor E, Diaz-Maldonado H et al (2023) TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 14:1009

    PubMed  PubMed Central  ADS  Google Scholar 

  57. Eischen CM, Rehg JE, Korsmeyer SJ, Cleveland JL (2002) Loss of bax alters tumor spectrum and tumor numbers in ARF-deficient mice. Cancer Res 62:2184–2191

    CAS  PubMed  Google Scholar 

  58. Mrozek A, Petrowsky H, Sturm I et al (2003) Combined p53/Bax mutation results in extremely poor prognosis in gastric carcinoma with low microsatellite instability. Cell Death Differ 10:461–467

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work on the project was supported by the Czech Science Foundation grants GA19-08772 S (LA), GX21-04607X (JN) and by Ministry of Health of the Czech Republic grant AZV NU21-03-00386 (PK) and NU23-03-00226 (SD). We also acknowledge the BIOCEV European Regional Development Fund CZ.1.05/1.100/02.0109 and Institute of Biotechnology funding (RVO: 86652036). Electron Microscopy Core Facility, IMG AS CR was supported by the Czech-BioImaging large RI project (LM2023050 funded by MEYS CR) and by OP RDE (Project No. CZ.02.1.01/0.0/0.0/18_046/0016045 “Modernization and support of research activities of the national infrastructure for biological and medical imaging Czech-BioImaging”). Metabolomic and proteomic LC-MS analyses were partly supported by Czech Science Foundation grant number 20-05942 S. Calcium imaging microscopy was supported by Czech-BioImaging large RI project (LM2023050). JK was supported by project L200392251 from the Czech Academy of Sciences.

Funding

This work was supported by Czech Science Foundation grants GA19-08772 S (L.A.), GX21-04607X (J.N.), and 20-05942 S (Metabolomics’ and proteomics’ LC-MS analyses), Ministry of Health of the Czech Republic grant AZV NU21-03-00386 (P.K.) and NU23-03-00226 (S.D.), BIOCEV European Regional Development Fund CZ.1.05/1.100/02.0109 and Institute of Biotechnology funding (RVO: 86652036) (L.A., J.N.). We also acknowledge support by the Czech-BioImaging large RI project (LM2023050 funded by the Ministry of Education, Youth and Sports of Czech Republic (H.R., V.F., J.K., Z.H., T.K., M.A.) and by OP RDE (Project No. CZ.02.1.01/0.0/0.0/18_046/0016045 “Modernization and support of research activities of the national infrastructure for biological and medical imaging Czech-BioImaging”; H.R., V.F.). J.K. was supported by project L200392251 from the Czech Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. LA supervised and coordinated the study. DS, CDK, SD performed molecular and cell biological experiments. DS, RZ, PK realized in vivo experiments. HR, VF run EM experiments. JK, ZH, TK, MA performed and discussed calcium imaging experiment. DS performed the statistical analyses for all the data. DS, LA, JN drafted the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ladislav Andera.

Ethics declarations

Conflict of interest

Jiri Neuzil is co-owner of MitoTax s.r.o., receives no compensation, and has no competing or financial interest. The other authors have no relevant financial or non-financial interests to disclose

Ethical approval

Subcutaneous xenotransplantations into NSG mice and follow-up surveillance were performed in accordance with the European Communities Council Directive November 24, 1986 (86/609/EEC) and animal care guidelines approved by the Animal Care Committee of the Institute of Molecular Genetics CAS, approval number 74/2020 and by the Animal Welfare Committee of the Charles University, approval number MSMT-26148/2022-4. We aimed to minimize the suffering and the number of animals. The mice were kept on a 12-h light/dark cycle with access to food and water ad libitum.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sovilj, D., Kelemen, C.D., Dvorakova, S. et al. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak. Apoptosis 29, 424–438 (2024). https://doi.org/10.1007/s10495-023-01917-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01917-2

Keywords

Navigation