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Abstract

One of the deadliest disease types in modern societies is coronary artery disease
(CAD). It is often related to coronary artery plaques aggregating within the vessel
wall obstructing the lumen causing a stenosis. To support physicians this thesis aims
to answer the following research question: Can we perform an automated CAD assess-
ment from coronary CT angiography (CCTA) scans using machine learning (ML)?
To answer this question, we tackle three main tasks: First, we develop deep learning
(DL)-based methods capable of predicting a significant stenosis degree and whether
a lesion leads to a revascularization procedure. Four approaches with different char-
acteristics are developed on this task, striving for a prior knowledge induced data
representation and ML method design. Depending on whether a prior segmentation
step is performed or not we reach an area under the receiver operating characteris-
tic curve (AUC) of 0.96/0.92 for significant stenosis detection and 0.88/0.90 for the
revascularization decision target with/without the segmentation. As a second task,
methods to automatically determine the coronary artery disease-reporting data sys-
tem (CAD-RADS) score – a patient-level CAD severity score – is developed. We
leverage the best performing approach from the first task and embed it in a task-
specific hierarchical architecture to aggregate single coronary subsegment features to
allow a patient-level prediction. This approach is enhanced with a synergizing heuris-
tic centerline labeling approach and auxiliary targets to reach an AUC of 0.942, 0.950
on the task of finding patients with CAD and on the task of detecting patients with
an obstructive CAD respectively. With this strong performance, we tackle a third
task of evaluating the clinical applicability of our CAD-RADS scoring approach. In a
first step, we examine how changing some commonly altered CCTA image formation
parameters influences the predictions of our approach. Here, we find that the overall
performance stays on a high level, but predictions for individual patients changes.
From this we conclude a need to create a more robust approach with respect to tech-
nical variation. In a second step, we develop an approach to automatically detect
a norm variant of the coronaries, as out-of-domain samples may adversely impact
ML-based CAD grading systems. On this task, we achieve a strong performance
with an AUC of around 0.938. Additionally, we propose a quantile-based abstention
approach, as an automated CAD grading system should know when a decision is
better left to the human reader. Overall, this thesis concludes that – with limitations
– its main research question can be answered with a “Yes”. A well-performing CAD
grading system was developed, but future work on robustness with respect to tech-
nical variation, the handling of anatomical outliers and explainability of the method
at hand remain on the horizon.





Zusammenfassung

In der heutigen Zeit gehört die koronare Herzkrankheit (KHK) zu den tödlichsten
Erkrankungen. Sie werden meist von Plaqueablagerungen verursacht, die sich in der
Gefäßwand ansammeln und das Lumen verengen, wodurch eine Stenose entsteht. Um
Mediziner bei der Klassifizierung von KHK zu unterstützen, soll in dieser Arbeit die
folgende Forschungsfrage beantwortet werden: Können wir KHK in Koronar CT An-
giographie (KCTA) Aufnahmen mittels machine learning (ML) automatisiert klassi-
fizieren? Diese Fragestellung wird in drei Schritten bearbeitet: Zunächst entwickeln
wir deep learning (DL)-basierte Methoden, die in der Lage sind, den Stenosegrad
von Läsionen vorherzusagen und ob diese revaskularisiert wurden. Hierfür werden
vier Ansätze vorgestellt, die Domänenvorwissen in die Wahl der Datenrepräsentation
und das DL-Architekturdesign einbinden. Hier erreichen wir eine area under the
receiver operating characteristic curve (AUC) von 0,96/0,92 für die Erkennung sig-
nifikanter Stenosen und 0,88/0,90 für die Revaskularisierungsentscheidung mit/ohne
vorherigem Segmentierungsschritt. Im zweiten Schritt werden Methoden zur au-
tomatischen Bestimmung des coronary artery disease-reporting data system (CAD-
RADS)-Scores entwickelt. Hierbei handelt es sich um einen KHK-Schweregrad-Score
auf Patientenebene. Wir nutzen den besten Ansatz aus dem ersten Teil und betten ihn
in eine aufgabenspezifische hierarchische DL-Architektur ein, um Merkmale einzel-
ner Koronarsubsegmente zu aggregieren und eine Vorhersage auf Patientenebene zu
ermöglichen. Dieser Ansatz erreicht eine AUC von 0,942 bei der Suche nach Patienten
mit KHK bzw. von 0,950 bei der Erkennung von Patienten mit einer obstruktiven
KHK. Mit dieser starken Performance wollen wir im dritten Schritt die klinische An-
wendbarkeit unseres CAD-RADS-Scoring-Ansatzes bewerten. Zunächst untersuchen
wir, wie sich die Änderung einiger häufig variierter KCTA-Rekonstruktionsparameter
auf die Vorhersagen unseres Ansatzes auswirkt. Dabei stellen wir fest, dass die
Gesamtperformance auf einem hohen Niveau bleibt, während sich die Vorhersagen
für einzelne Patienten ändern. Daraus leiten wir die Notwendigkeit ab, einen Ansatz
zu entwickeln, der robust gegenüber technischer Variation ist. Sodann entwickeln
wir einen Ansatz zur automatischen Erkennung einer Normvariante der Koronar-
ien, da sich Samples außerhalb der Trainingsdomäne negativ auf ML-basierte KHK-
Bewertungssysteme auswirken können. Auch hier erreichen wir eine gute Performance
mit einer AUC von 0,938. Darüber hinaus schlagen wir einen quantilbasierten Ansatz
vor, der unserem Bewertungssystem die Möglichkeit einer Enthaltung einräumt, da
einem automatisierten KHK-Bewertungssystem erlaubt sein sollte, die finale Be-
fundung einem Arzt zu überlassen. Im Ergebnis ist die Antwort auf die Haupt-
forschungsfrage dieser Arbeit ein ”Ja, aber“. Es wurde ein gut funktionierendes KHK-



Bewertungssystem entwickelt, aber es bedarf weiterer Forschung bezüglich der Ro-
bustheit des Ansatzes im Hinblick auf technische Einflüsse, des Umgangs mit Samples
mit seltenen anatomischen Varianten und der Nachvollziehbarkeit der Entscheidung
des KHK-Bewertungssystems.
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Dr. Sebastian Faby, who enabled the realization of this thesis from the industry side.
Furthermore, I am deeply indebted to my two exceptional supervisors, Dr. Michael
Wels and Prof. Katharina Breininger. Dr. Wels provided continuous encouragement
and uplifting feedback throughout this thesis, consistently highlighting the positive
aspects of my work and offering invaluable insights. Likewise, Prof. Breininger stood
beside me as a brilliant source of scientific and social feedback whenever needed.
Their tireless support and guidance have been instrumental in shaping this journey.
It was ultimately Prof. Breininger and Dr. Tobias Würfl who inspired me, through
their enthusiasm and inexhaustible dedication in the deep learning lecture, to embark
on the pursuit of a PhD. Fueled by their passion for this captivating topic, I joined
the deep-learning lecture team, where I had the pleasure of meeting my first partner
in crime, Florian Thamm. Together, we had an incredible time teaching numerous
students and refining the deep-learning exercises. I deeply appreciate your friend-
ship and your invaluable contributions as a scientific sparring partner throughout
this journey. I also acknowledge Florian Kordon as my second partner in crime, with
whom I joyfully supervised a major part of my students, forging friendship and sci-
entific insights. Furthermore, I want to express my gratitude to Dr. Philipp Roser
and Dr. Christian Marzahl. Your presence and the uplifting exchanges we shared at
the lab during the challenging times of the pandemic played an integral role in pre-
serving my sanity. I am sincerely thankful for the camaraderie we developed. When
the pandemic receded, I thoroughly enjoyed the vibrant atmosphere of the lab, where
the entire pattern recognition community felt like a closely-knit family. Without any



particular order, I would like to extend my gratitude to Dr. Prathmesh Mahdu, Paula
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Introduction
1.1 Motivation and Medical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution to the Progress of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

In this introductory chapter, the importance of research in the field of computer
assisted identification of coronary artery disease (CAD) is motivated, and several
related terms and challenges are introduced, defined, and explained. Furthermore,
contributions made to the progress of research within the scope of this thesis are
listed and set into context before outlining the structure of the remaining thesis.

1.1 Motivation and Medical Background
CAD is the most frequent cause of natural death throughout modern societies [Roth 20].
Therefore, the resulting socioeconomic impact is enormous [Chau 16] and research in
detecting CAD to mitigate adverse outcomes is of great importance.

1.1.1 Coronary Artery Disease

CAD usually relates to atherosclerotic plaque deposits aggregating in the vessel wall
as depicted in Figure 1.1. Nowadays, it is understood as an inflammatory disease,
where due to inflammation of the tissue surrounding the vasculature, immune re-
sponse cells aggregate inside the vessel wall [Tion 05]. These cells then form a necrotic
core consisting of mostly lipid-rich tissue. Subsequently, it undergoes fibrosis or cal-
cification. Therefore, coronary plaques consist of either lipid-rich, fibrous or calcified
tissue. The necrotic core is often bordered by a fibrous cap stabilizing the plaque.
Depending on their tissue composition and structure, these plaque deposits may be
prone to rupture [Maur 14]. This may lead to the plaque being released into the
bloodstream, causing coagulation and thrombus formation. As these thrombi may
cause myocardial infarction or strokes, this scenario is sought to be mitigated, and
such plaques prone to rupture – called vulnerable plaques – should be identified as
soon as possible [Maur 14]. Another aspect of plaque deposits is that these extend
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Endothelium
Fibrous Cap
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into Foam Cells

Lipids, Calcium Lumen

Figure 1.1: Schematic longitudinal view of an atherosclerotic plaque deposit. The
lumen is narrowed due to tissue aggregation within the vessel wall. The healthy
vessel wall mainly consists of smooth muscle cells. The inner wall’s boundary is the
endothelium. A fibrous cap stabilizes the plaque. Created using Inkscape v0.92.

into the lumen obstructing blood flow. This kind of narrowing is called stenosis,
and depending on its severity, the downstream tissue, e.g., the heart muscle, may
be malperfused [Cury 16]. The resulting ischemia may also cause major acute car-
diac events. Consequently, stenoses severely impacting the haemodynamics, i.e. the
blood flow characteristics, need immediate care. In the case of haemodynamically
significant stenosis, the CAD is usually treated by minimally invasively implanting
a stent at the position of the stenosis to widen the vessel. This process is called
revascularization.

1.1.2 Cardiovascular Imaging and Assessment

Different modalities are considered the gold standard to identify lesions requiring
action depending on whether the plaque’s vulnerability or impact on the haemody-
namics is of concern. For vulnerable plaques, the tissue composition and structure are
most accurately assessed using intravascular ultrasound (IVUS) or optical coherence
tomography angiography (OCTA) [Role 14]. These minimally invasive modalities re-
quire the insertion of a catheter usually from the femoral artery to the site of the
lesion where a measuring probe either performs an ultrasound or an optical coherence
tomography measurement.

Also, for assessment of potentially haemodynamically significant stenosis a catheter
is used. With a pressure wire inserted through the catheter, the fractional flow re-
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serve (FFR) value [Pijl 96] is measured, which is defined as the ratio of intravascular
blood pressure before and after the lesion.

All modalities mentioned above require fluoroscopic guidance, i.e. continuous
visualization of the catheter position using X-rays and contrast agent. Therefore,
the patient is not only exposed to the risk of the invasive procedure but additionally
to radiation. Furthermore, invasive assessment in the catheter laboratory is time-
consuming and requires a relatively high amount of qualified personnel.

To circumvent some of these shortcomings, computed tomography (CT) as modal-
ity to assess coronaries non-invasively is becoming increasingly popular. It allows a
3D assessment of the heart and coronary vasculature. Typical scan types include the
coronary calcium scoring (CCS) scan, where the heart is natively scanned, i.e. with-
out the use of contrast agent, and reconstructed with a quantitative kernel to assess
the amount of calcification present in the coronary vasculature. From this scan type,
the overall calcification degree is often reported as the Agatston score (AS) [Agat 90].
It is defined as

AS =
∑
l∈L

sl (1.1)

with
sl = vl · wd,l (1.2)

and

wd =



0 max(CL) < 130 HU

1 130 HU ≤ max(CL) < 200 HU

2 200 HU ≤ max(CL) < 300 HU

3 300 HU ≤ max(CL) < 400 HU

4 400 HU ≤ max(CL)

(1.3)

where l ∈ L corresponds to the singular lesion l in the set of lesions L, vl being its
volume, and wd being a density weight factor depending on the maximum Hounsfield
unit (HU) value max(CL) within the segmentation of the calcification CL. The re-
sulting risk groups are: no (AS = 0), minimal (0 < AS ≤ 10), mild (10 < AS ≤ 100),
moderate (100 < AS ≤ 400) and severe (400 < AS) [Rumb 03].
A different scan type enabling a more detailed assessment of the vasculature is the
coronary CT angiography (CCTA) scan, where the lumen of the vessels is enhanced
by an injected contrast agent. Therefore, a CCTA scan enables lesion identification
and quantification of the plaque morphology by leveraging the 3D information. This,
however, comes at the cost of a lower spatial resolution compared to IVUS or OCTA.
Still, several features corresponding to vulnerable plaques can be identified in CCTA
scans including the so-called napkin ring sign, spotty calcifications, low attenuation
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plaques, and positive remodeling [Maur 14]. Also, the degree of stenosis is an im-
portant measure, which is also highly correlated to the haemodynamic significance
of the lesion. Usually, it is defined as the ratio between the measured lumen area to
an estimated healthy lumen area at that vessel position. This healthy lumen area is
often approximated by weighting the lumen area measurements at a healthy proxi-
mal and distal position along the centerline. However, this measurement procedure
may be complicated for patients with a high calcification burden or for lesions at bi-
furcations where the vessel branches into two. Therefore, also eyeballing is involved
when determining the stenosis degree (SD) making it a cumbersome and potentially
error-prone procedure [Kiri 13]. Relevant classes of SD are no (SD = 0 %), minimal
(0 % < SD < 25 %), mild (25 % ≤ SD < 50 %), moderate (50 % ≤ SD < 70 %), severe
stenosis (70 % ≤ SD < 100 %) and total occlusion (SD = 100 %) [Cury 16]. Note that
stenoses with grades above and including moderate are often referred to as significant
stenoses.

To have a clinical score to report the severeness of CAD on patient-level and
guide through the clinical decision process, the coronary artery disease-reporting
data system (CAD-RADS) score was introduced by Cury et al. [Cury 16]. It is mainly
determined by propagating the most severe lesion grading to patient-level. Therefore,
the same six grades as for the SD exist, with CAD-RADS 0 referring to a patient
having no CAD, CAD-RADS 1 to 2 to a patient having non-obstructive CAD and 3
to 5 to a patient having obstructive CAD, which requires immediate further action.
The exception of the severest stenosis degree score being propagated to patient level
is the CAD-RADS grade 4. Here, CAD-RADS 4A corresponds to a severe stenosis
analog to the SD, but CAD-RADS 4B is assigned if a patient has a lesion with
a moderate SD in the left main segment or all three main branches have a severe
stenosis. Additional modifiers for this score for non-diagnostic scans, stents, grafts,
and vulnerable plaques exist but play a minor role in this thesis.

Apart from performing a measurement regarding the stenosis degree, the haemo-
dynamic significance of coronary lesions can also be calculated by segmenting the
coronary tree and computing the fluid dynamics for the entire system. This measure-
ment is called simulated FFR [Tayl 13].

1.1.3 Coronary Artery Anatomy

To foster an understanding of the underlying anatomy, this section will briefly define
the norm anatomy of the coronary arteries according to the american heart association
(AHA) norm [Aust 75] and introduce some variants of this norm.
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Figure 1.2: Rendering of the coronary arteries and the aortic stem. From the
right ostium, the right coronary artery (RCA) arises, while from the left ostium the
left main (LM) arises which subdivides into the left artery descending (LAD) and
circumflex artery (CX) main branches.

A coarse overview of the coronary arteries in the form of a rendering can be seen
in Figure 1.2. The aortic stem gives rise to both the RCA and LM through their
respective ostium. From here, the RCA follows a path around the back of the heart
and is subdivided into a proximal, middle, and distal segment with potential side
branches. The distal segment may be followed by a right posterior descending artery
if the vasculature is of the right or co-dominant type. On the other side of the aortic
stem, the left ostium gives rise to the LM segment, which then bifurcates into the
LAD and CX branch. The LAD also consists of a proximal, mid, and distal sub-
segment with potential diagonal side branches and a left posterior descending artery
in the case of a left or co-dominant vasculature type. Furthermore, the CX can be
subdivided into sub-segments, namely a proximal, a distal, and an obtuse marginal
segment.

One of the most common variants of this norm includes a trifurcation at the end of
the LM segment. Hence, between the LAD and CX the ramus intermedius (RI) arises
for this variant. Another norm variant of interest in this thesis is the Shepherd’s crook
(SC) RCA, which is defined as an RCA making a high and tortuous turn directly after
the ostium. This variant is reported to complicate minimally invasive procedures in
the RCA and has a prevalence of around 5 % [Shri 12]. Other norm variants and
anomalies of the coronary vasculature exist but are not a main focus of this thesis.
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1.1.4 Computer-Assisted Diagnosis

With the advent of increasingly potent algorithmic solutions in the field of artificial
intelligence (AI) and its sub-field of deep learning (DL), these also found application
in the field of medical imaging [Maie 19a]. The main question to be answered in
this domain is “how can one support physicians with their increasing amount of
workload using algorithms?”. And the aspects in which physicians can be supported
are manifold. Possible machine learning (ML) solutions in the field of CAD diagnosis
include for example: tracing of the centerlines of the coronary vasculature [Zhen 13],
labeling of the coronary sub-segments [Guls 14], and delineation of the inner [Luga 14]
and outer vessel wall [Gros 09]. The results of these algorithms are already applied
in clinical practice to facilitate the assessment from complex volumetric image data.
Apart from just supporting the assessment, ML-based methods can also provide a
second opinion on a patient’s disease state. This kind of second reading is commonly
called computer-assisted diagnosis. Note that, in theory, these kinds of algorithms
could also be used as initial gatekeepers to help physicians prioritize which patients
need the most care.

1.2 Contribution to the Progress of Research
Now, the general medical motivation of the research conducted in the scope of this
thesis should be clear: with CCTA scans, coronary plaque deposits can be analyzed
to improve risk assessment. The main research question tackled in this thesis is:

Can we perform an automated CAD assessment from CCTA scans using
ML?

From this main question, several subtasks emerged:

1. Finding an optimal data representation and DL architecture to predict the
stenosis degree and revascularization decision for single lesions.

2. Leveraging the findings from the first step to develop task-specific DL-based
approaches which directly predict the patient-wise CAD-RADS score from a
hierarchical data representation.

3. Evaluation of aspects of the clinical applicability of such algorithms by examin-
ing the influence of image formation parameter variations to their predictions.
Additionally, we evaluate learning with abstention, where a network does not
output a class-assignment if it is uncertain of the prediction.
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1.2.1 Coronary Plaque Classification

The first sub-task is tackled in two publications, which both focus on classifying
a significant stenosis degree and the revascularization decision for single coronary
plaque lesions. Two aspects are the focus here: optimizing the input data repre-
sentation and finding a robust method embedding prior domain knowledge on the
way. To enhance the input representation, it is examined whether the application
of the polar transform to the cylindrical vessels yields improvements. Furthermore,
several different approaches and techniques are evaluated here, including Radiomic
features, convolutional neural networks (CNNs), recurrent neural networks (RNNs),
and boosting tree classifiers. In the end, taking two orthogonal longitudinal slices of
the stretched lesions is found to be the data representation which yielded the best
results in combination with a simple CNN. To cope with potentially sub-optimal slice
selection, the concept of test time augmentation (TTA) is employed.

[Denz 19]
Section 5.2.2

F. Denzinger, M. Wels, N. Ravikumar, K. Breininger, A. Rei-
delshöfer, J. Eckert, M. Sühling, A. Schmermund, and A. Maier.
“Coronary artery plaque characterization from CCTA scans us-
ing deep learning and radiomics”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention,
pp. 593–601, Springer, 2019

[Denz 20b]
Section 5.3.2

F. Denzinger, M. Wels, K. Breininger, A. Reidelshöfer, J. Eckert,
M. Sühling, A. Schmermund, and A. Maier. “Deep learning al-
gorithms for coronary artery plaque characterisation from CCTA
scans”. In: Bildverarbeitung für die Medizin 2020, pp. 193–198,
Springer, 2020

1.2.2 Coronary Artery Disease Grading

After finding a suitable data representation and network architecture to classify singu-
lar plaque deposits, methods to directly predict the patient-level CAD-RADS score
are sought. Here, further two publications were presented at international confer-
ences. These also leverage domain knowledge on the anatomical definition of the
coronary artery tree, which can be split in several subsegments. For each of the AHA
segments, features are extracted using the representation and architecture yielding
the best results on the first task. By aggregating these features on a patient-level
and employing a classifier artificial neural network (ANN), we are able to accurately
estimate the patient-level CAD-RADS. As a main difference between the two publi-
cations, the coronary vasculature is subdivided into segments of the same size in the
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second publication. This proofs to enhance the robustness of the method and is a
more straightforward labeling approach compared to the one leveraged before.

[Denz 20a]
Section 6.2.2

F. Denzinger, M. Wels, K. Breininger, M. A. Gülsün, M. Schöbinger,
F. André, S. Buß, J. Görich, M. Sühling, and A. Maier. “Auto-
matic CAD-RADS scoring using deep learning”. In: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 45–54, Springer, 2020

[Denz 21b]
Section 6.3.2

F. Denzinger, M. Wels, O. Taubmann, M. A. Gülsün,
M. Schöbinger, F. André, S. Buß, J. Görich, M. Suehling, and
A. Maier. “CAD-RADS Scoring using Deep Learning and Task-
Specific Centerline Labeling”. In: Medical Imaging with Deep Learn-
ing, 2021

1.2.3 Clinical Application

Finally, efforts are made towards examining the clinical applicability of the CAD-
RADS grading method mentioned above. Therefore, the robustness of this method
regarding frequently altered reconstruction parameters is evaluated. As a summarized
outcome, the overall performance of the method did not change. However, for single
patients the predictions may differ for different reconstruction parameters. From this
we derive the need for additional studies aiming to disentangle the biological and
technical variation of the input data. Furthermore, out-of-domain samples may ad-
versely impact the performance of the final CAD-RADS grading system. Therefore,
first efforts to automatically detect infrequent norm variants are made. As a proof
of concept, an approach to automatically determine the presence of SC RCA is de-
veloped. Further experiments in this work examine how to handle unsure samples,
i.e. samples which human annotators cannot label confidently. Additionally, this is
combined with learning with abstention, as an ML approach should be allowed to
refrain from predicting if we grant the same right to human annotators. Therefore,
a simple non-invasive abstention strategy is proposed.

[Denz 23a]
Section 7.1.3

F. Denzinger, M. Wels, K. Breininger, O. Taubmann, A. Mühlberg,
T. Allmendinger, M. A. Gülsün, M. Schöbinger, F. André, S. J.
Buss, J. Görich, M. Sühling, and A. Maier. “How scan parame-
ter choice affects deep learning-based coronary artery disease as-
sessment from computed tomography”. Scientific Reports, Vol. 13,
No. 1, p. 2563, 2023
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[Denz 23b]
Section 7.2.3

F. Denzinger, M. Wels, O. Taubmann, F. Kordon, F. Wagner,
S. Mehltretter, M. A. Gülsün, M. Schöbinger, F. André, S. Buß,
J. Görich, M. Sühling, A. Maier, and K. Breininger. “Handling La-
bel Uncertainty on the Example of Automatic Detection of Shep-
herd’s Crook RCA in Coronary CT Angiography”. In: 2023 IEEE
20th International Symposium on Biomedical Imaging, pp. 1–5,
IEEE, 2023

1.2.4 Other Contributions

Apart from the main research area of this thesis, the author of this thesis con-
tributed to research in other fields. These include works in the directions of standard
plane regression for a set of body regions [Mart 20, Mart 22a, Mart 22b] and the
spine [Doer 23], and the automatic detection of free intra-abdominal air [Taub 20].
Furthermore, clinical research in the domain of coronary plaque analysis was en-
abled [Denz 21a] and conducted with focus of the analysis of perivascular tissue [Mose 23].
Other contributions in the neuro CT domain include generative approaches [Tham 21]
and the detection of large vessel occlusions [Tham 22]. Moreover, there were contri-
butions to a generative approach in the histopathology domain [Kunz 22], medical
image denoising leveraging known operators and being applied in both projection
and image domain [Wagn 22, Wagn 23, Pfaf 23] as well as medical image segmen-
tation [Liu 23, Quer 23], cancer survival regression [Rist 23], and strategies to migi-
tate bias during network training [Lang 23]. Also, there were contributions to work
leveraging epipolar consistency conditions for feature translation in multi-view set-
tings [Rohl 23] and anonymizing chest radiographs [Pack 23]. These are subsequently
listed in chronological order.

2020

[Taub 20] O. Taubmann, J. Li, F. Denzinger, E. Eibenberger, F. C. Müller,
M. W. Brejnebøl, and A. Maier. “Automatic detection of free intra-
abdominal air in computed tomography”. In: International Confer-
ence on Medical Image Computing and Computer-Assisted Inter-
vention, pp. 232–241, Springer, 2020
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[Mart 20] C. Mart́ın Vicario, F. Kordon, F. Denzinger, M. Weiten, S. Thomas,
L. Kausch, J. Franke, H. Keil, A. Maier, and H. Kunze. “Automatic
plane adjustment of orthopedic intraoperative flat panel detector
CT-volumes”. In: International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pp. 486–495, Springer,
2020

2021

[Denz 21a] F. Denzinger, M. Wels, C. Hopfgartner, J. Lu, M. Schöbinger,
A. Maier, and M. Sühling. “Coronary Plaque Analysis for CT An-
giography Clinical Research”. In: Bildverarbeitung für die Medizin
2021, pp. 223–228, Springer, 2021

[Tham 21] F. Thamm, O. Taubmann, F. Denzinger, M. Jürgens, H. Ditt,
and A. Maier. “SyNCCT: Synthetic Non-contrast Images of the
Brain from Single-Energy Computed Tomography Angiography”.
In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 681–690, Springer, 2021

2022

[Kunz 22] S. Kunzmann, C. Marzahl, F. Denzinger, C. Bertram,
R. Klopfleisch, K. Breininger, V. Christlein, and A. Maier.
“First Steps on Gamification of Lung Fluid Cells Annotations in
the Flower Domain”. In: Bildverarbeitung für die Medizin 2022,
pp. 223–228, Springer, 2022

[Mart 22a] C. Mart́ın Vicario, F. Kordon, F. Denzinger, J. S. El Barbari,
M. Privalov, J. Franke, A. Maier, and H. Kunze. “Normalization
techniques for CNN based analysis of surgical cone beam CT vol-
umes”. In: Medical Imaging 2022: Image Processing, pp. 648–652,
SPIE, 2022

[Mart 22b] C. Mart́ın Vicario, F. Kordon, F. Denzinger, J. S. El Barbari,
M. Privalov, J. Franke, S. Thomas, L. Kausch, A. Maier, and
H. Kunze. “Automatic plane adjustment of orthopedic intraopera-
tive flat panel detector CT-volumes”. Journal of Medical Imaging,
Vol. 9, No. 3, pp. 034001–034001, 2022
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[Wagn 22] F. Wagner, M. Thies, F. Denzinger, M. Gu, M. Patwari, S. Ploner,
N. Maul, L. Pfaff, Y. Huang, and A. Maier. “Trainable joint bilat-
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2023
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1.3 Thesis Structure
This thesis is structured as follows and as depicted in Figure 1.3. After introducing
and motivating the underlying medical problem behind this thesis and some core
terminology in this Chapter, Chapter 2 will provide a some background knowledge
on the CCTA modality and CCTA in particular. Furthermore, Chapter 3 includes
the theoretical foundation of the methods applied within this thesis. It starts with a
general introduction of ML, continues with a limited selection of feature-based clas-
sical ML approaches, and finally elaborates on the concept behind DL and the main
DL constituents. Moreover, Chapter 4 will help the reader to set the contributions of
this thesis into context by providing an overview of the related work done in the field
of DL-based CAD assessment. Next, as the reader should be aware of the background
behind this thesis, the contributions made in the scope of this dissertation will be de-
scribed regardingcoronary artery plaque classification in Chapter 5, coronary artery
disease classification in Chapter 6 and clinical applicability in Chapter 7. The thesis
wraps-up with an outlook in Chapter 8 and a summary in Chapter 9.
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Figure 1.3: Overview over the thesis structure. The size of the individual blocks
corresponds to the size of the individual chapter.
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Coronary CT Angiography
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This chapter presents the computed tomography (CT) scanning type used for the
research conducted in this thesis: coronary CT angiography (CCTA). First, X-rays
and the CT modality are explained as these build the foundation of CCTA. Further,
the CCTA acquisition type together with its unique challenges is elaborated on. Note
that this chapter will only superficially cover imaging physics as these are not the
focus of this thesis. Sections 2.1 and 2.2 are based on Maier et al. [Maie 18] if no
other reference is given.

2.1 X-rays

An essential prerequisite before talking about CT are X-rays. This term describes
ionizing electromagnetic radiation, commonly generated by an X-ray tube, where
electrons are accelerated from a cathode to an anode. As the electrons hit the anode,
X-rays are emitted from the anode material. Usually, the resulting X-ray cone is
aimed at a patient where the X-rays may interact with the matter through absorption
or scattering, which changes their direction and energy. Denser tissues and atoms
with a higher atomic number lead to higher attenuation. In CT systems, the traversed
X-rays hit a detector, which measures the location and number of the X-rays. For an
individual X-ray beam the measured intensity I is defined by Lambert-Beer’s law:

I = I0 · exp
(

−
∫

ζ(x)dx
)

(2.1)

where I0 is the initial beam intensity and ζ(x) is the position-dependent attenuation
coefficient. Note that this simple equation only holds for a mono-energetic X-ray as,
in reality, ζ(x) is also dependent on the energy distribution in the used X-ray tube
spectrum.

17
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z

Figure 2.1: Helical trajectory of the source and detector orbiting the patient. Image
taken from Maier et al. [Maie 18] under CC BY 4.0 license.

2.2 Computed Tomography

Using an X-ray tube and detector pair rotating around a patient, projection images
can be measured. Usually, for CT imaging outside of the intra-operative suite, the
trajectory of the source and detector pair is a helix created by altering the angle θ and
moving the patient on a table with a pitch in z-direction as visualized in Figure 2.1.
Pitch is defined as the distance traveled during one 360 ◦ rotation divided by the
utilized detector width in z-direction. For each position on this trajectory, a projection
image is acquired. This step is also called forward projection. Usually, the filtered
back projection (FBP) algorithm is applied to reconstruct a CT image from these
measurements. One step of it is a back-projection of the data, i.e. the data is smeared
back into the volume to be reconstructed. However, the back projection is not the
exact inverse of the forward projection. The reasoning for this can be deducted from
the Fourier slice theorem as depicted in Figure 2.2. For each angle θ a projection is
obtained. If only one slice is considered, this projected line pθ(s) corresponds to one
line in the Fourier space F (u, v) (u and v describe the coordinates in Fourier space)
at angle θ. If a sufficient number of viewing angles is sampled, a representation of the
object in Fourier space can be acquired. With this, a spatial slice can be reconstructed
using the inverse Fourier transform to obtain the object to be reconstructed, which
is described by the function f(x, y).

However, this sort of sampling neglects that the 1D Fourier transform leveraged
to bridge the gap between pθ(s) and the corresponding line in F (u, v) is defined as:

P (ξ, θ) =
∫ ∞

−∞
pθ(s)e−2πiξsds (2.2)

https://creativecommons.org/licenses/by/4.0/legalcode
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Figure 2.2: Fourier slice theorem. There is an equivalence between a projected line
pθ(s) for angle θ, it’s 1D Fourier transform, and a line in Fourier space at angle θ.
Image taken from Maier et al. [Maie 18] under CC BY 4.0 license.

and the additional parameter ξ needs to be considered as it leads to an oversampling
in the center of Fourier space. Therefore, the formula to compute the image function
f(x, y) using FBP is given as:

f(x, y) =
∫ π

0
pθ(s)h(s)|s=x cos θ+y cos θdθ. (2.3)

Here, h(s) refers to the inverse Fourier transform of |ξ|. It is also called ramp-filter
and suppresses the over-sampled low frequencies while enhancing the high frequencies
as depicted in Figure 2.3. Popular filter embodiments include the Ram-Lak and
Shepp-Logan filters. The Ram-Lak filter is defined as

h(s) =
sinc( s

∆s
)

2(∆s)2 −
sinc2( s

2∆s
)

4(∆s)2 (2.4)

with ∆ denoting the laplace-operator. By altering the width of the kernel, the amount
of noise and sharpness can be adapted. The resulting volume consists of attenuation
coefficients which are commonly normalized to Hounsfield unit (HU) values where
water has a HU value of zero and air a value of -1000.

An extension of the original FBP algorithm, which is of interest in this thesis, is
the advanced modeled iterative reconstruction (ADMIRE) method [Rami 18]. As the
exact implementation is proprietary to Siemens Healthcare GmbH, only a high-level
overview will be given here. During a single FBP step, individual projections are

https://creativecommons.org/licenses/by/4.0/legalcode
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Figure 2.3: Two commonly used filter kernels for FBP – the Ram-Lak and Shepp-
Logan filter – in frequency (top) and spatial (bottom) domain. Note that the width
of the filter can be altered by adapting ωmin and ωmax to obtain different image
characteristics. Image taken from Maier et al. [Maie 18] under CC BY 4.0 license.

statistically weighted using a model-based approach and a region around each voxel
is considered to distinguish anatomical information from image noise with the latter
being suppressed. Furthermore, the scanner geometry and so-called flying focal spot
are leveraged to reduce the amount of streaking and windmill artifacts. The result of
a single FBP iteration with said enhancements is then validated against the original
projection data. The statistical weighting is then updated and used for another FBP
iteration. This procedure is then repeated up to 5 times in practice, and the number
of iterations is branded as “ADMIRE strength”. With each iteration the amount of
noise in the reconstructed volume is reduced.

2.3 Coronary Computed Tomography Angiography

As the objective of CCTA scans is to enhance the coronary vasculature, these are
scanned while administrating contrast agent. This contrast agent usually is iodine-
based as iodine is a bio-compatible substance with a relatively high atomic number.
This leads to a higher attenuation of X-rays hitting blood mixed with the contrast

https://creativecommons.org/licenses/by/4.0/legalcode
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agent and vessels appearing brighter than for native scans without contrast agent.
As a result, the vessels can be easier distinguished from their surrounding tissue.

However, one core challenge when acquiring CCTA scans is the constant motion
of the heart. Usually, it is solved by simultaneously measuring an electrocardiogram
(ECG) while scanning and reconstructing only with retrospectively selected projec-
tion images from the same heart phase. However, this forces the acquisition to last for
multiple heart cycles, which hence increases the influence of breathing motion on the
reconstruction. As a consequence and as the heart usually cannot be scanned with a
single gantry rotation so-called stacking artifacts may occur. As the volume consists
of a set of overlapping sub-volumes from different heart cycles the breathing motion
between the sub-volumes may introduce an offset in the xy-plane. Note that also
motion in the z-direction occurs, which can only partly be suppressed when mixing
overlapping sub-volumes.
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This chapter gives an overview of machine learning (ML) in general and explains
the most relevant sub-areas for this thesis in more detail. The first part features a
general introduction to the high-level concept of ML and defines several key terms
and challenges. Next, some constituents of classical ML relevant to this thesis are
explained. Finally, the concept behind deep learning (DL) will be elaborated on
together with the most crucial building blocks used in this thesis.

3.1 Introduction

In a nutshell, ML algorithms leverage features x extracted from measurements m
of real-world information ω to assign a sample to a class in the form of a predic-
tion ŷ. This general procedure is depicted as the pattern recognition pipeline in
Figure 3.1 [Niem 13]. Measurements m can be obtained from various different ac-
quisition devices, with the aim of digitizing information ω from the real world Ω.
These measurements are usually not directly processed by an ML algorithm. Hence,
they are further pre-processed and a set of features x is extracted from each sample.
Commonly used pre-processing includes denoising, normalization, or dimensionality
reduction. The resulting feature vector x is then processed by an ML algorithm,
which in the most simple case may just be linear thresholding of a single feature.
Usually, the parameters α of this so-called classifier are determined during a training
phase and then applied in a test phase. The output of the classifier is a prediction
ŷ, which assigns the sample to a class. For measuring the performance and for opti-
mization of the classifier, the predictions are usually compared to a ground truth y.
This ground truth is commonly created by human annotators.
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Figure 3.1: Flow of the pattern recognition pipeline. Information ω from the real
world Ω are measured using a sensor to obtain measurements m. Next, measurements
are pre-processed to obtain m′ from which features x are extracted. These are then
processed by a classifier to obtain a prediction ŷ. The parameters of the classifier are
set during the training phase and applied during the test phase.

Instead of predicting a sample’s membership to one or multiple classes, a contin-
uous output can be obtained as well by predicting a sample’s membership to one of
infinitely many ordered classes. This is called regression. The term ordinal classifi-
cation describes a mix of classification and regression, where there is a finite set of
ordered classes to which a sample can be assigned. An example of this are medical
severeness grades. Furthermore, for a single sample, more than a single target can
exist. This is the case for the task of segmentation, where for every single pixel or
voxel in an image its respective class membership is predicted.

As a practical example, the biological information ωbio of a patient is measured
with a computed tomography (CT) scanner under the use of contrast agent to obtain
projection images of the coronaries. These then get pre-processed by a filtered back
projection (FBP)-based algorithm [Maie 18] to obtain a coronary CT angiography
(CCTA) volume (c.f. Chapter 2). Note that each of these initial steps may already
introduce some inaccuracies into the system. For once, the projection images exhibit
noise, and the spatial size of individual voxels impacts how accurately ωbio can be
measured. As an exemplary task to solve one might seek to design an ML algorithm
to detect dextrocardia, which is defined as the heart being located on the right side of
the thorax instead of the usual left side [Van 64]. With an additional pre-processing
step, the voxels of the vasculature can be separated from the rest by using the prior
knowledge that iodine-enriched blood has a specific range of Hounsfield unit (HU)
values. Since the coronary vasculature wraps around the heart, the orientation and
position of the vasculature, which can be computed by first- and second-order mo-
ments in the x-direction, can be used as a feature. This feature can then be used
as an input to a classifier that decides whether a patient has dextrocardia or not
by simply looking at whether this direction vector points to the left or right of the
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patient. This process of designing an algorithm can be described as model-driven.
One knows that in the case of dextrocardia the heart points to the right side, which
is exploited by a hand-crafted feature.

A contrary philosophy to approach the pattern recognition pipeline is purely data-
driven, combining the feature extraction and classification step. The increasingly
popular field of DL leverages exactly such a data-driven mechanism. Here, a so-
called artificial neural network (ANN) – composed of a sequence of functions with
optimizable parameters – learns to extract features from the pre-processed measure-
ments m′ and also acts as a classifier. In this case, a multitude of data is shown to an
algorithm to optimize its parameters, e.g., CCTA scans of patients with or without
dextrocardia. But for dextrocardia – an infrequent condition, which only around 1
out of 12.000 persons are born with [Bohu 07] – an algorithm has to be presented
a representative set of both healthy and diseased patients to be able to solve this
task. In the field of computer vision (CV) where data is usually available in far larger
quantities – e.g., the popular ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) dataset contains millions of images with thousands of samples [Russ 15] –
this sort of procedure leads to impressive performance improvements over traditional
ML. However, in the medical domain, the number of available samples for individual
tasks is usually sparse and pathological cases are often in the minority. Additional
problems inherent in the medical domain are that some pathologies are hard to detect
– even for trained physicians – leading to a relatively high amount of inter- and intra-
observer variability and that each clinical site has its own “best practices” regarding
how data is acquired and interpreted.

In general, DL-based approaches often outperform classical approaches if a suffi-
cient quantity of data of all classes to be detected is given. If this condition is not
fulfilled, combining the best of both worlds often yields good results. For example,
Maier et al. showed that known operators – prior knowledge enriched components
embedded into an ANN – reduce the error bound [Maie 19b]. Other components to
optimize in a model-driven fashion are, for example, the data representation used as
an input for the classifier. As a rule of thumb, one should try to have a representation
that only differs with regard to the information about the healthy and pathological
aspects of the data and have a data collection that includes all possible variations
of these aspects. Redundant or unimportant information in the data representation
may threaten the algorithms’ generalizability, as data-driven approaches tend to look
for shortcuts. E.g., in a case where ill patients have wires attached to them visible
in a CT scan, an ML approach might learn the probability of the patient exhibiting
a pathology is increased based on the presence of wires. However, this so-called con-
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founder might not be given at a different hospital with a different scan or workflow
procedure. In summary, some key challenges in the domain of DL for medical image
analysis are the sparsity of data, class imbalances, generalizability across sites, find-
ing an optimal data representation, and detecting and preventing confounders from
leading to shortcuts.

3.2 Classical Approaches

Now that ML in general and some inherent key challenges are defined some classical
concepts used in this thesis are explained in this section. First, a set of features
relevant for this thesis is defined, which are shape-based features. Furthermore, the
eXtreme Gradient Boosting (XGBoost) algorithm – a classifier characterized by a
usually good performance and fast optimization – is eleborated on.

3.2.1 Shape-Based Features

As described in Section 3.1, a key part of designing a classical ML approach is the
selection of an appropriate feature representation. In case of the coronary vasculature
a set of hand-crafted features are an obvious choice when trying to assess the shape
of a stenotic vessel: shape-based features. These form a sub-group in the field of Ra-
diomics [Lamb 12]. To be able to calculate them a prior segmentation of the lesion or
sample to be analyzed is required, which on the one hand might be an additional er-
ror inducing step. However, the resulting features themselves are invariant regarding
intensity shifts. Commonly used shape-based features include: the volume, surface
area, sphericity, spherical disproportion, eigenvectors and eigenvalues. The reader is
pointed to Van Griethuysen et al. [Van 17] for exact definition of these features.

3.2.2 Decision Trees

Decision trees form a quite simple sort of classifiers. An example is given in Figure 3.2.
The nodes of the tree correspond to single features. For each single feature at each
node a linear decision boundary is applied. Finally, the deepest nodes correspond to
the predictions of the classifier. When designing a decision tree classifier, the depth
of the tree is the main parameter to set. Advantages include that they are relatively
easy to interpret, can handle continuous and categorical data, and are invariant to
scale and transformations. However, they may include irrelevant features, which
hinder interpretability, are not applicable for more complex problems. For example
it struggles to model the XOR problem [Hast 09].
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Figure 3.2: Example of a decision tree. Each feature is a node of the tree. By
thresholding a single sample is assigned to a subbranch of the tree. The final nodes
of the tree are the predictions.

3.2.3 XGBoost

An extension of basic decision trees was proposed by Chen et al. [Chen 16] and
branded XGBoost. The final prediction of the XGBoost algorithm is made by hav-
ing a majority vote of multiple singular decision trees. In order to create this set of
decision trees the following loss function is minimized:

LXGB =
n∑

i=1
Ldiff(yi, ŷ(t−1) + gt(xi)) + γ(gt) (3.1a)

where γ(g) = wτ τ + 1
2wreg||α||2 (3.1b)

Here, a new tree gt(xi) is searched in a greedy manner and added to the set of
decision trees of such that the set minimizes LXGB. This step is performed n times.
A main constituent is a convex differentiable loss function Ldiff computed using label
yi and prediction ŷt with t denoting the training step. Every single tree consists
of τ leafs with corresponding leaf weights w. These parameters are considered in a
regularization term γ(f), which seeks to prevent overfitting by penalizing large values
of τ and α with corresponding weighting factors wτ and wreg. To obtain optimal
weights α∗, LXGB can be optimized as it is convex and differentiable. XGBoost tackles
some problems inherent in decision trees (e.g., the usually low model capacity) and
has inherent mechanisms to prevent overfitting. Hence it is a common first choice
when dealing with data consisting of handcrafted feature vectors.
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3.3 Deep Learning

Extending on the initial introduction of DL and ANNs in Section 3.1, this section
aims to lay the knowledge foundation regarding the inner workings of ANNs. First,
the general principles of DL, including the composition of ANNs, some of their com-
mon characteristics, and how they are optimized, are explained. Next, the building
blocks leveraged for the research in this thesis are explained, which includes the
fully connected layer, common activation functions, batch normalization as well as
convolutional, pooling, and recurrent layers.

3.3.1 Principles

The human brain’s neural network is made of complex structures of interconnected
neurons. These neurons communicate with each other through electrical and chem-
ical signals. For an individual neuron, signals arriving from multiple other neurons
aggregate until a threshold is passed, leading to the neuron firing and transmitting
a signal to all subsequently connected neurons. Connections between the individual
neurons, called synapses, are adapting their strength based on experience. This pro-
cess, known as synaptic plasticity, enables the core brain functionalities of memory
and learning [Llin 88].
Inspired by neurons, the Rosenblatt perceptron was proposed in 1958 [Rose 58]. It
models a single neuron, where multiple input signals are weighted and summed up.
Its decision rule is described as:

ŷ = (1 + sign(wT x))/2. (3.2)

Here, w corresponds to weights for each input feature x and this function assigns
samples to a positive or negative class depending on the sign of the weighted sum.
As this approach leads to a linear decision boundary, it cannot solve more complex
tasks like modeling the XOR function. Therefore, the concept is extended with the
introduction of so-called hidden layers between the input and output layer leading
to a multi-layer perceptron [Rume 86]. Usually fully connected layers, also known as
dense layers, are used as hidden layer. They apply an affine transformation defined
as:

fFC(x) = W⊤x + b (3.3)

with x denoting either the initial feature input or a subsequent feature representation,
W being a matrix of size m × n with m being the number of input and n the amount
of output nodes and b being an additive bias.
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From a mathematical and more general perspective, a ANN can be described
as a chain of functions. As an example f (3)(f (2)(f (1)(x))) would describe a three
layer ANN consisting of single functions f [Good 16]. In practice, scaling operators,
e.g., a matrix multiplication with weights, are alternated with non-linear activation
functions. This enables the modeling of any arbitrary function given a large enough
single hidden layer and a locally bounded piece-wise activation function [Cybe 92].
However, multiple hidden layers are used in practice to model the classifier function
more efficiently [Good 16].

For an ANN to be a potent classifier, its parameters need to be optimal. Typically,
these are initialized randomly. As all layers usually describe derivable functions, the
ANN’s parameters can be optimized by calculating the gradient for each individual
weight with respect to their influence on the final prediction. Four steps are commonly
required to optimize a neural network: First, an input x is fed into the ANN, resulting
in a prediction after the chain of functions is calculated. This step is called forward
pass. Then a loss regarding some optimization criterion, e.g., based on the distance
to a ground-truth value, is computed. Common loss functions include the cross entry
loss for classification defined as

LBCE = −(y log(ŷ) + (1 − y) log(1 − ŷ)) (3.4)

for the binary case and the mean squared error (MSE) loss for regression tasks, defined
as

LMSE = ||y − ŷ||22. (3.5)

Thirdly, the error is propagated backwards through the network by calculating the
gradient for each respective layer input and all the weights. An example for this is
depicted in Figure 3.3. As the forward pass is a chain of functions, this backward
pass boils down to the chain rule of differentiation when it comes to the gradient with
respect to the inputs. In order to calculate the gradient for each individual layer, the
gradient of all latter layers can be reused. Additionally, the gradients with respect to
the weights of each layer is calculated, which also requires the inputs of the forward
pass. Finally, the weights of the ANN are updated based on their gradient and a
gradient descent algorithm. In the simplest case stochastic gradient descent is used
with

w(t+1) = w(t) − ν∇L(w(t), x, y) (3.6)

as an update rule, with ∇L(w(t), x, y) being the gradient with respect to the loss
function and ν the learning rate. The most common optimizer in nowadays practice
is the Adam optimizer, which also incorporates “individual learning rates” for single
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Figure 3.3: Backpropagation for a fully connected layer. In the forward pass x,
b and W get combined to form f , which is subsequently processed by an activation
function to receive a prediction ŷ. Meanwhile in the backward pass, the partial
derivatives regarding each individual contributing factor is calculated (depicted in
red here). Note that the derivative with respect to the input ∂f

∂x gets passed to the
previous layer, where the same calculations are performed.

weights by scaling the weight update by how much a weight was already updated in
previous steps.

It features a momentum term

p(t) = βpp(t−1) + (1 − βp)∇L(w(t), x, y) (3.7)

and a velocity term

v(t) = βv ∗ v(t−1) + (1 − βv)(∇L(w(t), x, y) ⊙ ∇L(w(t), x, y)) (3.8)

with βm and βv being weighting factors and ⊙ denoting an element-wise multiplica-
tion. These terms are then used to form the update

w(t+1) = w(t) − ν
p(t)

√
v(t)

. (3.9)

Usually, multiple samples are combined in a batch fed to the ANN at once to stabilize
training.

3.3.2 Building Blocks

In the following, common building blocks of ANNs are defined. If not stated other-
wise, this section is based on Goodfellow et al. [Good 16].
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Figure 3.4: Exemplary activation functions: sigmoid and the tanh are smooth and
differentiable approximations of the step function within the range of [0,1] and [-1,1]
respectively. The rectified linear unit (ReLU) function is defined as max(0, x), is
linear for positive values while setting all negative values to zero. The Leaky ReLU
only scales down negative values.

Activation Functions

Usually, any sort of affine transformation layer, like the fully connected layer which
was introduced before, is followed by an activation function. These functions need
to be non-linear in order to model non-linearities between the input and output.
Examples are given in Figure 3.4.

In the original Rosenblatt perceptron, the step function was used as an activation
function. However, the step function cannot be differentiated in a useful manner
for backpropagation. Therefore, differentiable approximations of the step functions
– the sigmoid or tanh function – are often applied especially in the final layer of
a classifier. Even though they are non-linear, they lead to the so-called vanishing
gradient problem, as small ranges of the output y get mapped to a large range of
x values. An activation function not negatively impacted by this effect is the ReLU
function max(0, x), being linear for all positive and zero for all negative x values.
However, this strict behaviour of mapping all negative to one value does lead to the
fact that no gradient flows into the direction of a negative activation. This leads to
ReLUs potentially “dying” and therefore not contributing to network training any
longer. To overcome this initially, the bias b of fully connected layers is usually set
to a small positive value. Moreover, an extension of the ReLU – the so-called Leaky
ReLU – was introduced [Maas 13], which is defined as:

A(x) =
 x for x ≥ 0

0.01x for x < 0
(3.10)

scaling down all negative values of x with a small factor.
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Batch Normalization

A theoretical drawback of the use of ReLU non-linearities is the so-called covariate
shift. As the ReLU only emphasizes positive values, the value distribution of features
increases throughout the network. Also, if the value range of one layer changes, all
subsequent layers need to adapt accordingly. To prevent such behaviour the concept
of batch normalization layers was introduced [Ioff 15]. It enforces a zero mean and a
standard deviation of one for each batch of data fed to the network. This is achieved
by calculating

fBN(x) = x − µx

σx

(3.11)

for each individual feature/activation x. The mean µx and standard deviation σx is
calculated for each individual batch and a weighted moving average is collected over
the whole training data collection. Additionally, a scale and shift step is introduced
which enforces the batch normalization to create an identity transform. For this,
the output of the normalization step fBN(x) for each individual activation is scaled
and shifted with respective trainable parameters. So far, batch normalization for the
case of fully connected layers was described. For convolutional layers, which will be
described next, the concept can be applied anologeously by replacing single features
with feature maps.

Convolutional Layers

In the domain of image analysis, the use of fully connected layers to directly process
images has several serious drawbacks. On the one hand, the information of spatial
neighborhood of individual pixels is lost, which leads to a non shift-invariant classifier.
On the other hand, the number of weights needed to map an image to a function rises
exponentially with the image size. To overcome these problems, convolutional layers
were introduced [LeCu 89b, LeCu 89a]. For an input image I a 2D convolutional layer
is defined as

fConv(x, y) = (I ∗ K)(x, y) = b +
∑
m

∑
n

I(x, y)K(x − m, y − n) (3.12)

at position (x, y), with K being a kernel of size M×N and a bias b. Again, it is usually
followed by a non-linear activation function. This mathematical operation takes an
input image – or feature map – and slides a filter kernel over it. At each filter position
the dot product between the input values and the filter kernel is calculated. With this
a new feature map is created. In practice usually multiple filters are applied at the
same stage to be able to model a variety of features. Also, for efficiency, several feature
maps or input channels are often processed by the same kernel across the channel
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Figure 3.5: Visualization of a max pooling operation with a kernel size of 2×2 with
a stride of 2.

dimension to also combine individual feature maps. In classical image processing, this
operation is used for edge detection, smoothing or feature extraction by initializing the
parameters of the kernel in a respective structured manner. For ANNs on the other
hand, weights are initialized randomly and such sort of feature extraction capabilities
are learned in a data driven fashion. The extracted features within one individual
layer only combine a local part of the image. Therefore, multiple convolutional layers
are often applied consecutively to also be able to model long distance dependencies.

An alternative to model long distance dependencies are dilated convolutions. For
these the convolution kernel size gets increased by a fixed dilation factor d ∈ N
while keeping the same amount of parameters by adding columns and rows filled
with zeros between the existing parameters. With these features corresponding to
lower frequencies can be extracted. Another special kind of convolutional layers, are
depthwise separable convolutions, which have a filter size of 1 × 1 [Chol 17]. These
are commonly used to combine feature maps across the channel dimension.

Pooling Layers

To reduce the spatial dimensions of feature maps so-called pooling layers are often
employed. These leverage the fact that neighboring features tend to contain similar
information, and allow subsequent convolutional layers to model more complex hi-
erarchical structures. Furthermore, small shifts of the image data are compensated.
Pooling layers are subdivided into local and global pooling or maximum and average
pooling. The most frequently used kind is a local maximum pooling operation. It
is defined by a kernel size and stride used to slide over the image (cf. Figure 3.5).
Within the kernel at each position the maximum value is propagated to the next
layer. Usually, the stride and kernel size have the same value to allow for a dimen-
sionality reduction and full sampling of the image. An alternative to this is fractional
max pooling [Grah 14], which reduces the spatial dimension by a factor of e.g.,

√
2
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by randomly varying the stride between a value of one and two. This enables deeper
ANNs with a larger number of abstraction levels, especially for small input sizes.
Local average pooling layers work analogously to maximum pooling layers but prop-
agate the mean value within the field of view. Global pooling operations follow the
same principle, but result in a fixed output size. This is especially advantageous, if
an ANN should be able to process differing input sizes, or if the classifier needs to be
disentangled from the location of the object of interest within the data.

Recurrent Layers

Another way of processing structured data, typically applied for time-series and nat-
ural language data, is by employing recurrent cells. Contrary to feed-forward ANNs
like the multi-layer perceptron (MLP) an recurrent neural network (RNN) has an
“internal memory” or feedback loop, where the output of the previous input also
influences the output of the current step. With this the context of a sequence can
be modeled better. Furthermore, this concept allows for analysis of sequences of
arbitrary lengths.

One of the simplest recurrent cells is the Elman cell, which employs a hidden state
which is updated after each input and influences the whole latter sequence. A main
problem of the Elman cell is that it is not potent enough to robustly capture long-
term dependencies. One extension of the Elman cell is the so-called long short term
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ŷ
1 0

y
1 TP FN
0 FP TN

Table 3.1: A confusion matrix for a binary classification problem. A prediction
ŷ is compared to the ground truth y. Then the number of samples belonging to
the respective true positive (TP), false negative (FN), false positive (FP), and true
negative (TN) category are aggregated.

memory (LSTM) cell, which introduces an input forget and update gate to model
both a hidden state and an additional cell state. An alternative being the GRU
builds up on a similar concept but with a more efficient use of weights. A schematic
of the inner workings of a GRU is depicted in Figure 3.6. Usually, GRUs are easier
to train with similar performance as LSTM cells. As an alternative to specialized
cells, 1D convolutions with varying dilation degrees can be used to analyze different
frequencies of sequential data.

3.4 Evaluation
An important aspect to consider when developing machine learning approaches is to
measure the performance of the algorithm with metrics of choice. Usually for classi-
fication tasks, these are derived from the confusion matrix as depicted in Table 3.1.

By comparing the ground truth label y to the prediction ŷ each sample gets
categorized as TP, FN, FP, or TN. The summed values over the whole test dataset are
then used to calculate different metrics. A popular metric, which is easily understood
is the accuracy (ACC) defined as

ACC = TP + TN
TP + TN + FP + FN (3.13)

being the ratio of the overall correctly classified samples. Other important metrics,
especially in the medical context include the Sensitivity, Specificity and F1-score
defined as:

Sensitivity = TP
TP + FN (3.14)

Specifity = TN
TN + FP (3.15)

F1 = 2TP
2TP + FP + FN (3.16)

Here, Sensitivity denotes how many positive samples can be detected for the whole
population of positive cases, while Specificity is a measure for how well negative
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cases can be detected for the whole population of negative cases. The F1 score, on
the other hand, measures how well a classifier works for both classes. However, it
may be sensitive to class imbalance. Nevertheless, a method often used to report
for problems suffering from class imbalance is the Matthew’s correlation coefficient
(MCC) defined as

MCC = TP · TN − FP · FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(3.17)

So far, only the setting where samples are assigned to a final class prediction was
assessed. However, as ML algorithms are often capable of outputting a probability
instead of a fixed prediction, threshold agnostic metrics are also of high interest.
The most frequently reported metric for this is the area under the receiver operating
characteristic curve (AUC). By calculating the sensitivity and the false positive rate
(defined as 1 − specificity) for differing cut-off points the receiver operating charac-
teristic curve can be plotted. By calculating the area under this curve, one can assess
the classifiers capability to increase the TP rate while still maintaining a low number
of FP samples.
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With the theoretical background established, this chapter will offer an overview
of methods pertaining to the research conducted within the scope of this thesis. The
primary emphasis is placed on the classification of coronary artery disease (CAD)
derived from coronary CT angiography (CCTA) scans. It should be noted that in-
dividual papers in the subsequent Chapters include sections covering related work,
but due to the rapidly evolving nature of this research field, these sections are some-
what outdated. Therefore, this Chapter aims to present an improved overview of
the current state of research at the time of writing this thesis. This Chapter does
not include work related to the research described in Chapter 7, as that Chapter
encompasses very recent publications. Structure-wise, this Chapter will first depict
the clinical workflow for coronary plaque analysis, which is used as an analogy for the
subsequent method designs. Next, an overview over the variety of input data repre-
sentations is given, followed by discussions on different architectural choices. Finally,
the targets of the respective related research are briefly described.

4.1 Clinical Background

To gain a deeper understanding of the methodologies employed by researchers for
the classification of CAD from CCTA, it is essential to examine how this problem
is typically addressed in clinical settings. In such scenarios, CAD grading typically
follows a multi-stage pipeline. Initially, an optional step of localizing and segmenting
of the heart is performed to assist downstream algorithms that can benefit from
this supplementary information. Subsequently, the coronary centerlines are typically
extracted using semi-automated or automated approaches, aiming to localize and
allow reformatting of the anatomical region of interest. It is noteworthy that this

37
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Figure 4.1: Commonly used vessel reformation strategies: the CPR view is sam-
pled by interpolating a line for each centerline point, to gain a CPR plane. On the
other hand, an MPR view is constructed by interpolating a plane orthogonal to the
centerline direction at a specific centerline point ci. The direction is usually deter-
mined through finite differences of the neighboring points ci+1 − ci−1. Created using
Inkscape v1.22

step can be prone to errors and may necessitate manual correction by physicians,
particularly in areas with significant calcifications or total occlusions. As an optional
intermediate step, the vessel segments can be subdivided according to the american
heart association (AHA) guidelines to facilitate downstream reporting of the location
of found lesions. Following that, two types of reformatted vessel images are commonly
obtained from the CCTA volume: the curved planar reformation (CPR) view and
the multi planar reformation (MPR) view. The CPR view is generated by mapping
all centerline points onto a curved plane, thereby preserving the vessel’s approximate
curvature and providing a longitudinal cross-sectional view. Conversely, MPR images
are produced by interpolating a view for a single centerline point orthogonal to the
direction of the centerline. These reformation strategies are depicted in Figure 4.1.
Subsequently, the assumed healthy vessel diameter is measured at both proximal and
distal reference positions, ideally free from any narrowing, and then compared to the
most severe narrowing observed within the lesion. The CPR view often serves as a
navigational aid, while the MPR view facilitates precise measurements.

4.2 Data Representation

Following this workflow, most related works assume a given centerline extraction al-
gorithm or manually annotated centerlines. A majority of studies focus on the MPR
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views, often stacking them to form overlapping cubes [Zrei 18, Zrei 19, Ma 21, Lin 22]
or stacked to large volumes for whole branches [Cand 20, Gupt 20, Whit 21, Yang 21,
Zhan 22, Chen 22, Pens 23, Gerb 23]. However, also encoding of single views for down-
stream analysis is an alternative [Pabl 19, Hamp 22]. This representation is well-
motivated by the clinical workflow and reduces the algorithm’s search space to the
relevant image sections. Moreover, the crucial information for classification lies in
the radial information of the vessel diameter at each centerline point along the cen-
terline course, which can be effectively captured using this data representation. To
delve deeper, Gupta et al. [Gupt 20] and White et al. [Whit 21] employ a cylindrical
mapping technique, projecting images at every 10 degrees around the centerline to
a plane, and organize the resulting 18 images into a 2 × 9 grid to encompass the
entire vessel. This approach incorporates the knowledge of the cylindrical nature
of vessels within the MPR volume format. Furthermore, the orthogonal interpola-
tion of the MPR slices ensures a uniform spacing across multiple datasets, enhancing
the generalizability of the approaches to datasets acquired with differing spacing,
although fully closing this gap remains challenging. However, relying on prior cen-
terline extraction may prove suboptimal in some cases, as the overall performance
of the method is always limited by the quality of the centerline extraction. Another
strategy involves using the CPR views as inputs [He 22, Paul 22]. While this rep-
resentation preserves the vessel’s curvature to some extent, it includes a significant
amount of non-essential information, and accessing the relevant information is not
as straightforward as in MPR views. A third category of approaches assesses the
coronary arteries directly from the CCTA data without prior reformatting. These
methods either still incorporate the centerline information by extracting 3D cubes at
each centerline point [Viti 22] or, in the work of Jin et al. [Jin 22], leverage the whole
CCTA volume as the input. However, in the latter case, a prior localization network
is employed as a substitute to the centerline extraction to enable downstream focus
on the relevant regions.

4.3 Deep Learning Architectures

When it comes to the employed architectures, there is a variety of approaches. One
common method for analyzing the coronary arteries is to extract local features at
specific centerline positions and then examine the sequence of features along the
centerline. This approach aligns well with the clinical workflow, where the ves-
sel is analyzed at different positions to obtain a lesion-wise assessment. The first
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proposed deep learning-based approach utilizes a straightforward combination of a
convolutional neural network (CNN) combined with bilateral gated recurrent units
(GRUs) [Zrei 18]. However, later on the GRUs are replaced with the Transformer
architecture [Ma 21] which is a logical extension as Transformers often outperform
the traditional recurrent neural network (RNN) cells. Similarly, Viti et al. [Viti 22]
extract local features using a 3D CNN. However, this is followed by a graph network
to directly aggregate and analyze the global context.
Some approaches that take MPR slices as an input also incorporate components
initially introduced for time-series analysis. For instance, Lin et al. [Lin 22] com-
bine CNNs and long short term memory (LSTM) cells to segment the lumen area
for downstream stenosis grading. Other approaches with this kind of input map
the input to either a feature representation [Pabl 19] or alternatively estimate the
vessel radius and plaque extend [Hamp 22]. These intermediate representations are
then used as input for either classical methods based on Gaussian mixture mod-
els (GMMs) and support vector machines (SVMs)[Pabl 19] or a subsequent analysis
with CNNs [Hamp 22]. The advantages and disadvantages of this data representation
mostly align with those of using MPR views as input. However, these approaches
are required to extract the 3D information solely from the downstream analysis. To
overcome this limitation, Tejero-de-Pablos et al. [Pabl 19] address this issue by also
leveraging longitudinal slices along the centerline direction.
Moving on to methods that take larger MPR volumes as an input, previous ap-
proaches employ 3D CNN architectures [Cand 20, Yang 21, Chen 22]. However, more
recent architectures also embrace the Transformer architecture in the form of the
Conv-Mixer architecture [Pens 23] or vision Transformers [Gerb 23]. Approaching the
problem from a different perspective, Zhang et al. [Zhan 22] utilize a Mask region-
based convolutional neural networks (R-CNN) for lesion detection and perform down-
stream classification on these regions. In general, 3D CNNs applied to classification
tasks often struggle due to the high dimensionality of the input, which results in a sin-
gular output guiding the training of a large number of weights. A limitation of most
of the mentioned approaches is that the clinically relevant information, exhibited ra-
dially to the centerline in the form of the lumen, is not easily assessable in Cartesian
coordinates. This is because CNNs are inherently not rotationally invariant, which
may cause varying predictions for inputs rotated around the centerline. Moreover,
vessels in the MPR view typically have a cylindrical shape. Two aforementioned
data representations encode the 3D information in 2D views exploiting a cylindrical
mapping [Gupt 20, Whit 21]. As a benefit, these can leverage 2D CNNs for analysis,
for which a larger number of pre-trained models exist, and they are generally better
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explored for classification tasks. With a similar reasoning Paul et al. [Paul 22] and He
et al. [He 22] employ CPR views to use 2D CNN architectures. As an outlier the work
of Jin et al. [Jin 22] use a Mask R-CNN for both coronary artery as well as plaque
candidate segmentation. The resulting segmentation masks and CCTA volume are
then used to calculate Radiomics for the region, which are subsequently classified
using gradient boosting decision trees.

4.4 Targets
An important aspect that has deliberately been withheld until now is the choice of
the actual target for the various approaches discussed. The reason for withholding
this information was that the fundamental task remains largely the same across the
presented related works: analyzing the coronary arteries in relation to coronary artery
disease. To provide a comprehensive overview, some of the related works aim to
predict only the presence or absence of coronary artery disease [Gupt 20, Whit 21],
while others focus on predicting the significance of stenosis, indicating the need for
further assessment [Zrei 18, Pabl 19, Cand 20, Yang 21, Viti 22, He 22]. Additionally,
some works aim to automatically assess the haemodynamic significance of stenosis
[Hamp 22] or automatically assess the plaque morphology [Zrei 18, Yang 21, Chen 22,
Zhan 22]. The remaining works attempt to directly derive the coronary artery disease-
reporting data system (CAD-RADS) grade as well [Jin 22, Paul 22, Lin 22, Pens 23,
Gerb 23], sometimes binned with respect to the clinically most relevant thresholds.
However, it is important to note that all the presented methods are also capable of
deriving a patient-wise score, and the limitation on other targets is typically driven
by the availability of annotated data. As a side note, it is worth mentioning that all
the works follow a detection process followed by lesion-wise grading, which is then
propagated to the patient level for the most severe lesion. While this grading scheme
is explainable, it does not incorporate a global context into the final grade and is
sensitive to outliers.





P A R T II

Contributions

43





C H A P T E R 5

Coronary Artery Plaque
Characterization

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Coronary Artery Plaque Characterization using Deep Learning and

Radiomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Deep Learning Algorithms for Coronary Plaque Characterization . . . . . . 57
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1 Introduction

The research presented in this chapter is closely aligned with the related work dis-
cussed in Chapter 4. Since there are notable similarities in terms of the tasks and
data utilized in both studies presented in this Chapter, this Section serves as a com-
bined introduction to the topic. The two primary tasks addressed in these studies
are as follows: first, classifying the presence of significant stenosis in previously anno-
tated lesions with defined start and end points, and secondly, examining whether the
lesion leads to a downstream revascularization decision. The selection of these objec-
tives was motivated by the availability of lesion-wise stenosis degree and patient-wise
revascularization decision annotations.

In the studies, a relatively small population of 95 patients is included, encom-
passing a total of 345 lesions. It should be noted that not all smaller lesions are
necessarily included, as the labeling task did not involve an exhaustive annotation of
all lesions. Consequently, the focus was solely on classifying lesions with defined start
and end points, in contrast to related work, which typically includes lesion detection
as well. While this simplification offers certain advantages, it also presents some lim-
itations. Firstly, the consideration of lesions with varying lengths becomes crucial.
Secondly, the amount of data provided to the network is limited to the small number
of annotated regions, rather than the entire coronary artery trees. This, however,
also shifts the data balance towards the more relevant regions. As a side-note: for
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details on the used segmentation algorithms for annotation and mask creation, the
reader is pointed towards our work describing the clinical research prototype used:

[Denz 21a] F. Denzinger, M. Wels, C. Hopfgartner, J. Lu, M. Schöbinger,
A. Maier, and M. Sühling. “Coronary Plaque Analysis for CT An-
giography Clinical Research”. In: Bildverarbeitung für die Medizin
2021, pp. 223–228, Springer, 2021

5.2 Coronary Artery Plaque Characterization using Deep
Learning and Radiomics

The first publication to be presented is:

[Denz 19] F. Denzinger, M. Wels, N. Ravikumar, K. Breininger, A. Rei-
delshöfer, J. Eckert, M. Sühling, A. Schmermund, and A. Maier.
“Coronary artery plaque characterization from CCTA scans us-
ing deep learning and radiomics”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention,
pp. 593–601, Springer, 2019

The main contributions are:

• Prediction of the final revascularization decision from a lesion annotation using
deep learning (DL) as the first reported approach.

• Evaluation of a Radiomics-based approach for coronary artery disease (CAD)
assessment.

• Proposal of an extension to prior work by leveraging polar transform, fractional
max pooling and a problem- and representation-specific network design.

• Introduction of a combination of Radiomic features and recurrent neural net-
work (RNN)s for the task at hand.

5.2.1 Publication Overview

Building upon the previous introduction, this work proposes three distinct approaches.
Firstly, a Radiomics-based approach is employed, which utilizes the plaque segmenta-
tion as input. By extracting a large number of features from the segmentation mask,
an eXtreme Gradient Boosting (XGBoost) classifier is employed for intrinsic feature
selection and classification. As a second approach, we extend the work of Zreik et
al. [Zrei 19] which leverages a convolutional neural network (CNN) to extract local
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features from a series of overlapping cubes obtained from a multi planar reformation
(MPR) volume. This sequence is then analyzed using an RNN. The approach of Zreik
et al. is well-motivated due to the characteristic narrowing and widening of coronary
artery along the centerline direction. Still we aim to enhance its performance.

One aspect of potential improvement lies in the data representation. To embrace
the cylindrical structure of coronary arteries, we transform all single axial slices into
polar coordinates. This transformation not only emphasizes the cylindrical nature
but also enhances the rotational invariance of the downstream CNN. Additionally, we
adapt the CNN architecture to align with the characteristics of coronary arteries. Our
proposed network primarily employs slice-wise, i.e. applied on individual axial cross
sections, convolutions instead of 3D convolutions, combining them solely along the
centerline direction using a final 1 ×1×1 convolution. This architectural adjustment
compels the network to predominantly learn radial features, which are later combined.

As a third approach, we combine the first two by leveraging the lumen segmenta-
tion mask and dividing it into a sequence of masks, similar to the deep learning-based
approach. From these masks, shape-based Radiomics features are extracted, and fi-
nally, the sequence of features along the centerline direction is analyzed with an
RNN.

In terms of results, a mixed picture emerges for the two objectives. For predict-
ing significant stenosis, the approach of Zreik et al.’s [Zrei 19] outperforms our deep
learning-based approach, while the purely Radiomics-based approach performs com-
parably. However, the combined approach significantly outperforms both, achieving
an area under the receiver operating characteristic curve (AUC) of 0.96 compared
to the original 0.89 [Zrei 19]. It is worth stating again that both Radiomics-based
approaches require a prior segmentation, which is a heavy drawback. Regarding the
revascularization decision, the adaptations made to the data representation and CNN
design prove advantageous as the AUC improves from 0.80 to 0.84 compared to Zreik
et al.’s approach [Zrei 19]. Once again, the Radiomics-based approaches outperform
the others in this regard.
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Abstract. Assessing coronary artery plaque segments in coronary CT
angiography scans is an important task to improve patient management
and clinical outcomes, as it can help to decide whether invasive investiga-
tion and treatment are necessary. In this work, we present three machine
learning approaches capable of performing this task. The first approach is
based on radiomics, where a plaque segmentation is used to calculate var-
ious shape-, intensity- and texture-based features under different image
transformations. A second approach is based on deep learning and relies
on centerline extraction as sole prerequisite. In the third approach, we
fuse the deep learning approach with radiomic features. On our data the
methods reached similar scores as simulated fractional flow reserve (FFR)
measurements, which - in contrast to our methods - requires an exact
segmentation of the whole coronary tree and often time-consuming man-
ual interaction. In literature, the performance of simulated FFR reaches
an AUC between 0.79-0.93 predicting an abnormal invasive FFR that
demands revascularization. The radiomics approach achieves an AUC of
0.84, the deep learning approach 0.86 and the combined method 0.88 for
predicting the revascularization decision directly. While all three pro-
posed methods can be determined within seconds, the FFR simulation
typically takes several minutes. Provided representative training data in
sufficient quantities, we believe that the presented methods can be used
to create systems for fully automatic non-invasive risk assessment for a
variety of adverse cardiac events.

Keywords: Plaque Characterization · Computer Aided Diagnosis · Coro-
nary CT Angiography · Radiomics · Deep Learning.

1 Introduction

Cardiovascular diseases (CVDs) have persisted to be the leading cause of death
across all developed countries [10]. Most CVDs are related to atherosclerotic
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plaques in the associated arteries [11]. Two types of high risk plaque segments
exist: functionally significant plaques, which narrow the lumen and immediately
lead to cardiac ischemia, and vulnerable plaques, which can rupture and cause
thrombus formation and adverse coronary syndromes (ACS) such as stroke or
cardiac infarction.
The reference standard measure to judge whether a plaque segment is function-
ally significant and the corresponding vessel needs to be revascularized is the
fractional flow reserve (FFR) value. FFR is defined as the pressure after a le-
sion relative to the pressure before the lesion, and is measured invasively [3]. As
interventional procedures involving the heart have the risk of inducing adverse
cardiac events, a non-invasive assessment of the type of plaque for further patient
selection is highly desirable. A non-invasive approach for this task is simulated
FFR, which aims to simulate the FFR values from coronary computed tomo-
graphy angiography (CCTA) data using a fluid dynamics approach [14], which
requires an exact segmentation of the whole coronary tree and computational
mesh generation [16]. Sufficient segmentation quality can often only be achieved
with time-consuming manual interaction.
Previously, radiomics have been proposed to represent quantitative image infor-
mation which is inherent in the data but hard to interpret for human readers [8].
They include multiple intensity-, texture-, shape- and transformation-based met-
rics extracted from a lesion segmentation and have been shown to be able to
characterize coronary plaques [6]. More recently, deep learning has been investi-
gated to detect lesions with a high stenosis degree and to categorize the calcifi-
cation grade of coronary plaques using a recurrent convolutional neural network
(RCNN) [18]. In their work, they first extract multi planar reformatted (MPR)
slices orthogonally to each centerline point. Next, they cut the resulting image
stack into multiple overlapping cubes from which features are extracted using a
3D convolutional neural network (CNN). Finally, classification is achieved using
a sequence analysis network.
In this work, we propose a fully automatic method to directly predict the clini-
cal decision of revascularization based on single plague segments. We investigate
three machine-learning approaches for classification: radiomic feature analysis,
deep learning and a combination of both. For the first variant, radiomic fea-
tures are extracted from each vessel segment based on the vessel segmentation
in the region of interest. Contrary to the approach in [6], we do not perform
data mining since it neglects cross-feature correlations. Instead, we train a bag-
ging classifier, namely the XGBoost algorithm [1], which automatically detects
relevant features and uses all information from the features. For the deep learn-
ing approach, we extend the approach presented in [18] by improving the data
representation using a transformation of the image stack into a cylindrical co-
ordinate system which allows for a more effective training of the network and
reduce the risk of overfitting by using 2D instead of 3D convolutions. Thirdly, we
propose a novel combination of both aforementioned approaches. After extract-
ing a sequence of cubes along the centerline, we calculate the radiomic features
of each cube using a plaque segmentation mask extracted a priori. The resulting
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sequence of radiomic features is then recombined with a multi-layer perceptron
(MLP) and subsequently analyzed using a sequence analysis network based on
gated recurrent units (GRUs). We evaluate all variants on CCTA scans of 95
patients with a total of 345 plague segments using ten-fold cross validation and
compare our results with simulated FFR.

2 Data

The data collection contains CCTA scans of 95 patients taken within a time span
of 2 years with the same system. The decision for revascularization or further
invasive assessment was based on different clinical indications, e.g., functional
tests including cardiac stress MRI or MIBI SPECT, and was made by trained
cardiologists. In some cases, identification of culprit lesions was additionally
based on ECG abnormalities if these indicated a bad perfusion of a specific
part of the heart muscle. In total, the data contained 345 lesions, which were
annotated by defining their start and end centerline point and segmenting their
inner and outer vessel wall using a fully automatic approach [9]. For all data
sets, automatic centerline extraction was performed as described in [17]. For each
main branch of the coronaries a label indicated whether it was revascularized
or not. To obtain reliable labels on the segment level, we propagated a positive
revascularization decision only to the segment with the highest stenosis grade. In
order to allow for an comparison with the results in [18], we additionally assessed
for all segments whether the stenosis grade was below or above 50 %. With this
procedure 85 (24.64 %) lesions were labeled as having a high stenosis grade and
93 (26.97 %) as requiring revascularization.

3 Methods

3.1 Radiomic-based Classification

As mentioned, a multitude of shape-, intensity- and texture-based features is
extracted under different image transformations from the lesion segmentation as
radiomics. A detailed description of all radiomic features can be found in [7]. The
extracted feature vector has a high dimensionality. Therefore, direct classification
is hard to achieve due to the curse of dimensionality. To overcome this we used
the XGBoost classifier [1], which calculates its prediction based on an ensemble
of decision trees while minimizing a loss function based on the total ensemble
prediction. Since new leaves are added based on greedy search, only relevant non-
redundant features are selected during training. Features were calculated using
the open source PyRadiomics library [5] selecting all possible features under all
transformations.

3.2 Deep Learning-based Classification

The second approach is based on deep learning and can be separated into sev-
eral steps: data extraction, local feature extraction and sequence analysis. An
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Fig. 1. Algorithm overview: extraction of a sequence of cubes along the centerline is
followed up by a feature extraction method – either with a convolutional neural network
or the PyRadiomics module. The resulting sequence of features is then analyzed by a
sequence analysis neural network.

overview of the workflow is shown in Figure 1. First, MPR slices are extracted
orthogonally to each point of the centerline in the segment. Then, the result-
ing image stack is cut into multiple overlapping cubes. The extracted cubes are
transformed to polar coordinates to allow for a better representation for the
neural network. The motivation behind this lies in the assumption that features
that characterize lesions are formed radially to the centerline and vary along the
centerline direction. The slices of each transformed cube are then used as input
to a 2D-CNN that performs a slice-wise feature extraction. This is followed by
1x1 convolutions in centerline direction that recombine and fuse the information
across a cube to perform a local feature extraction. The architecture of the fea-
ture extraction network is depicted in Figure 2, alongside the 3D-CNN network
proposed in [18] that we evaluate for comparison. To obtain a final classifica-
tion, we perform a sequence analysis using a two layer recurrent neural network
(RNN) using gated recurrent units [2] on the features extracted from the cubes
with the centerline direction as “temporal” dimension. Based on the assumption
that information about the plaque composition is contained in both directions
of the centerline, we perform the sequence analysis in a bidirectional fashion.

3.3 Combined Approach

A common way to train neural networks with a limited amount of data is to
use pretrained models, which comprise relevant image features already learned
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32x conv 3x3x3
maxpool 2x2x2

64x conv 3x3x3
maxpool 2x2x2
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maxpool 3x3x3

32x conv* 5x5

128x conv* 3x3
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32x conv* 5x5
fmp* √2x√2

Fig. 2. Feature extraction model overview: a) model as described in [18]. b) our pro-
posed model. * denotes a slice-wise operation, and fmp denotes fractional max pool-
ing [4], which allows a pooling size smaller than 2 which enables feature extraction
from intermediate scales.

on different data sets. However, this is difficult when dealing with medical data,
since data of different organs, modalities and use cases are often not correlated
and three-dimensional. To overcome this, non-deep learning feature extraction
methods can be used and combined with deep learning. Therefore, we combine
the above mentioned radiomic and deep learning approaches. Again, the vessel
was sliced in a sequence of overlapping volume cubes, but now the feature extrac-
tion was performed using the PyRadiomics library and the vessel segmentation
of the plaque segment. Since preliminary experiments suggested the shape-based
feature group to be the most important for estimating both the revasculariza-
tion decision and the stenosis degree, we focused on these features. The resulting
sequence of radiomic feature vectors was further evaluated using a three layer
MLP before analyzing the sequence with bidirectional GRUs.

4 Experiments and Results

We evaluate the proposed approach for binary stenosis grade classification (high-
degree stenosis > 50 %, low-degree stenosis < 50 %) to allow for a direct compar-
ison with [18] and for the prediction of clinical revascularization decisions. For
all experiments, evaluations were performed using ten-fold cross validation with
patient-wise stratified splitting. For the neural network based methods, 20 % of
the training data was set aside as validation set in each fold. For each fold, the
networks were trained for 50 epochs and the model that performed best on the
validation set was selected for evaluation on the test set. For the CNN-based
methods, data augmentation was performed in form of random rotation, mirror-
ing along the x-axis, translation and additive Gaussian noise, and we resampled
the data during batch generation to achieve class balance. In order to normalize
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Table 1. Evaluation results for stenosis degree prediction on lesion-level. The results
in the first row are copied from [18].

Model/metric AUC Acc F1 PPV NPV Sens Spec MCC

3D-RCNN [18] (orig data) – 0.94 0.64 0.65 0.97 0.63 0.97 0.60

3D-RCNN [18] (our data) 0.89 0.85 0.67 0.58 0.94 0.79 0.86 0.59

2D-RCNN + polar transform 0.86 0.87 0.64 0.68 0.91 0.60 0.93 0.56

Radiomics + XGBoost 0.89 0.84 0.69 0.69 0.90 0.68 0.90 0.58

Radiomics + GRUs 0.96 0.92 0.95 0.94 0.82 0.96 0.75 0.74

our data, histogram equalization was performed for each approach before fea-
ture extraction. To evaluate our approaches, we computed the area under the
receiver operating characteristic curve (AUC), accuracy (Acc), F1-score, positive
predictive value (PPV), negative predictive value (NPV), sensitivity, specificity
and the Matthews correlation coefficient (MCC).

4.1 Stenosis Grade Classification

The classification results of the stenosis grade classification for the proposed
methods and the 3D-CNN approach proposed in [18] are shown in Table 1.
Compared to the results reported in [18], the performance of the 3D-RCNN
approach on our dataset is lower. The main reason for this is likely the size
of the respective data set, which was much smaller in our case. The proposed
2D-RCNN and radiomics approach achieved results on par with the 3D-RCNN.
However, our combined approach outperformed all three other methods by a
large margin (AUC 0.96 vs. 0.89 for 3D-RCNN/Radiomics+XGBoost and 0.86
for 2D-RCNN).

4.2 Classification of Revascularization Decision

The metrics for the revascularization prediction can be seen in Table 2. Since
there exists a lot of variance with respect to the reference standard simulated

Table 2. Evaluation results for revascularization decision prediction on lesion-level.

Model/metric AUC Acc F1 PPV NPV Sens Spec MCC

Simulated FFR best [13]a 0.93 0.86 – 0.61 0.95 0.84 0.86 –

Simulated FFR worst [12]a 0.79 0.69 – 0.56 0.84 0.61 0.89 –

3D-RCNN [18] (our data) 0.80 0.76 0.55 0.45 0.91 0.72 0.77 0.42

2D-RCNN + polar transform 0.84 0.82 0.57 0.60 0.88 0.54 0.91 0.46

Radiomics + XGBoost 0.86 0.86 0.62 0.69 0.89 0.56 0.94 0.54

Radiomics + GRUs 0.88 0.87 0.92 0.90 0.74 0.95 0.61 0.60

a Simulated FFR is compared to abnormal invasive FFR instead of revascularization
decision
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FFR, we compare our approaches to the best [13] and worst [12] results reported
in the review paper of [15]. Note that simulated FFR is compared to an abnor-
mally high invasive FFR value rather than the revascularization decision in the
referenced publications, with both targets being highly correlated. The exper-
iments in [12, 13] were performed on different non-publicly available data sets.
Comparing the two RCNN networks, our proposed method performed slightly
better. This indicates that features other than the stenosis degree are relevant
for the revascularization decision, and that transforming the image data into
the polar space was beneficial. The radiomics approach outperformed both deep
learning methods, while our combined approach again performed best.

5 Discussion and Conclusion

Identifying functionally significant stenosis in a non-invasive setup is an im-
portant task to improve clinical outcomes. We presented and compared three
machine-learning methods for the prediction of stenosis degree and clinical revas-
cularization decision based on CCTA scans: Radiomics combined with boosting
trees, a convolutional recurrent neural network, and an approach that combines
shape-based radiomics and recurrent neural networks. We were able to show
that all methods were able to differentiate stenosis grade > 50 % and < 50 %,
and reliably identify plaque lesion that were later revascularized. Across both
tasks, the combined approach performed best, also compared to results reported
in literature. The combined approach comes at a cost of a higher computation
time of up to 2 seconds compared to only milliseconds for the RCNN approaches
and requires a prior segmentation of the vessel lumen in the region of the plague
segment. Still, the additional computation time does not pose a clinical limita-
tion and the lumen segmentation is easily obtainable in an automated fashion.
In contrast to this, simulated FFR requires an exact segmentation of the whole
coronary tree and computation times of several minutes. For classification of
revascularization, we showed that the performance of the proposed methods lies
well within the range of prediction performance obtained by FFR simulation in
literature. Given data with appropriate annotations, we believe that our methods
would also perform well in identifying so-called culprit lesions that cause adverse
cardiac events. Interestingly, the performance difference between the combined
approach and the RCNN methods leads to the conclusion that extracting the
shape-based features is highly relevant for differentiating lesions, but is harder
to achieve for a completely data driven CNN-based feature extractor and may
require a larger training data set. If only limited data is available, the combined
approach proposed here seems to be promising, as predefined features and data-
driven learning are fused. A limitation of the current study is that no simulated
FFR values for the data set under investigation were available, which will be sub-
ject of future work. Additionally, the results will be validated on additional data
collections that also include the invasive FFR measurements for comparison.
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Disclaimer The methods and information here are based on research and are
not commercially available.
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5.3 Deep Learning Algorithms for Coronary Plaque
Characterization

Delving deeper into the topic of coronary artery plaque characterization with the
aim of improving previous results without the need of a segmentation, the following
research was published:

[Denz 20b] F. Denzinger, M. Wels, K. Breininger, A. Reidelshöfer, J. Eckert,
M. Sühling, A. Schmermund, and A. Maier. “Deep learning al-
gorithms for coronary artery plaque characterisation from CCTA
scans”. In: Bildverarbeitung für die Medizin 2020, pp. 193–198,
Springer, 2020

In this work we contributed to the field of research:

• An evaluation of length normalization strategies for lesions of differing sizes.

• Examining how test time augmentation (TTA) influences the performance of
three different approaches for coronary plaque analysis.

• Proposal of a novel 2.5D DL-based approach for coronary plaque analysis.

5.3.1 Publication Overview

Once again, we extend upon the introduction of this Chapter. A crucial aspect
addressed in the publication at hand is the handling of lesions with varying lengths.
As mentioned earlier, lesions with defined start and end points were utilized as input
for this research. However, to facilitate network training, input batches in a training
run typically have the same shape. Although it is possible to aggregate gradients over
multiple inputs to stabilize gradient descent, this approach is time-consuming, and
the network may overfit to the lengths of individual lesions. Hence, this paper aims
to evaluate several straightforward approaches to create samples of the same shape,
including padding with zeros, interpolating to the longest lesion, and interpolating
to an intermediate length.

Furthermore, we assess the impact of utilizing TTA on the performance of deep
learning-based approaches. This involves predicting for different equally spaced ro-
tation angles around the centerline and averaging the predictions. We consider the
approaches of Zreik et al. [Zrei 19] and Tejero-de-Pablos et al. [Pabl 19], as well as
an additional novel approach. The proposed approach involves using two orthogo-
nal longitudinal slices from the MPR volume along the centerline direction as input.
This allows for direct assessment of radial information along the centerline, with the
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second orthogonal view ensuring the preservation of some form of 3D information.
To prevent suboptimal angles for the two views, the application of TTA is crucial for
this method. The advantages of this approach include reduced dimensionality of the
input data, increased variability of the training data, and a simpler architecture.

Our results indicate that resizing to an intermediate size yields the best perfor-
mance, and the application of TTA improves performance across all methods. Fur-
thermore, our novel architecture performs as well as the more complex approach of
Zreik et al. [Zrei 19] for both tasks on our data. Overall, we achieved an AUC of 0.92
for predicting the degree of significant stenosis and an AUC of 0.90 for predicting
subsequent revascularization decisions.
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Abstract. Analysing coronary artery plaque segments with respect to
their functional significance and therefore their influence to patient man-
agement in a non-invasive setup is an important subject of current re-
search. In this work we compare and improve three deep learning al-
gorithms for this task: A 3D recurrent convolutional neural network
(RCNN), a 2D multi-view ensemble approach based on texture analysis,
and a newly proposed 2.5D approach. Current state of the art methods
utilising fluid dynamics based fractional flow reserve (FFR) simulation
reach an AUC of up to 0.93 for the task of predicting an abnormal inva-
sive FFR value. For the comparable task of predicting revascularisation
decision, we are able to improve the performance in terms of AUC of
both existing approaches with the proposed modifications, specifically
from 0.80 to 0.90 for the 3D-RCNN, and from 0.85 to 0.90 for the
multi-view texture-based ensemble. The newly proposed 2.5D approach
achieves comparable results with an AUC of 0.90.

1 Introduction

Cardiovascular diseases (CVDs) remain the leading cause of natural death [1].
In diagnosis and treatment of CVDs, the identification of functionally significant
atherosclerotic plaques that narrow the coronary vessels and cause malperfusion
of the heart muscle plays an important role. In clinical practice, this is typically
assessed using fractional flow reserve (FFR) measurements [2].

This measurement is performed minimally invasively and therefore induces
a small but existing risk to the patient. A non-invasive modality capable of
visualising and assessing coronary artery plaque segments is coronary computed
tomography angiography (CCTA). Current research tries to simulate the FFR
value from CCTA scans [3]. Approaches based on this mostly rely on a prior
segmentation of the whole coronary tree which is computationally intensive,
prone to errors and may need manual corrections [4].

In this work, we investigate three lumen-extraction independent deep learn-
ing algorithms for the task of predicting the revascularisation decision and the
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significance of a stenosis on a lesion-level. We propose a multi-view 2.5D ap-
proach, which we compare with two previously published methods, a 3D-RCNN
approach [5] and a multi-view texture-based ensemble approach [6]. Addition-
ally, we introduce adaptions to improve the performance of all approaches on our
task. These include resizing lesions to an intermediate length instead of padding
them and the usage of test-time augmentations. Also, we propose to use a differ-
ent feature extraction backbone than described in [6] for the respective approach.
Note that both reference approaches were originally used to detect lesions and
characterise them. Contrary to this we characterise annotated lesions with a
defined start and end point.

2 Material and Methods

2.1 Data

The data collection used contains CCTA scans from 95 patients with suspected
coronary artery disease taken within 2 years at the same clinical site. For each
patient, the resulting clinical decision regarding revascularisation was made by
trained cardiologists, based on different clinical indications. This decision was
monitored on a branch level. Lesions were annotated using their start and end
point on the centerline, which was extracted automatically using the method
described in [7]. We binarise the stenosis grade, which is estimated based on
the lumen segmentation and defined as the ratio between the actual lumen and
an estimated healthy lumen, using a threshold of 50 % according to [2]. The
branch-wise revascularisation decision is propagated only to the lesion with the
highest stenosis grade in branches known to be revascularised. Of the total of
345 lesions in our data set, 85 lesions exhibit a significant stenosis grade, and 93
require revascularisation.

2.2 Methods

3D-RCNN The first network we use is identical to the method described in
[5]. In this approach, after extracting the coronary centerlines, a multi-planar
reformatted (MPR) image stack is created by interpolating an orthogonal plane
for each centerline point. Next, the MPR image stack is cut into a sequence
of 25 overlapping cubes with size 25x25x25 and a stride of 5. During training,
data augmentation using random rotations around the centerline and random
shifts in all directions is used. Moreover, the data set is resampled for batch
creation to achieve class balance during training. Since detection instead of sole
characterisation is performed in [5], padding the inputs to the same length was
not needed in their work.

Texture-based Multi-view 2D-CNN The second baseline approach is de-
scribed in reference [6]. A VGG-M network backbone pretrained on the ImageNet
challenge dataset is used as a texture-based feature extractor. The extracted
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features are encoded as Fisher vectors and used for classification using a linear
support vector machine. As inputs for this classification pipeline, different 2D
views of the MPR image stack are combined for a final vote.

2.5D-CNN Both aforementioned methods utilize a sliced 3D representation
of the lesion or a multitude of 2D representations, which is computationally
expensive to obtain and to process by the subsequent machine learning pipeline.
To mitigate this, we propose a 2.5D multi-view approach as shown in Figure 1.
From the MPR image stack, only two orthogonal slices are selected, concatenated
and forwarded to a 2D-CNN.

Modifications In this work, we examine the effect of three different padding
strategies for all three approaches: zero-padding, stretching the volume stack
to the longest lesion and resizing all lesions to an intermediate size. Stretching
and squeezing of the image stacks along the centerline is performed with linear
interpolation. Each MPR image stack for each lesion has a resolution of 64x32x32
and 170x32x32 after padding depending on the method used. For the 3D-RCNN
approach, we downscale the y and x dimension further to 25x25 to match the
original algorithm described in [5]. For augmentation of the data set all single
volumes are rotated around the centerline in steps of 20◦, which leads to an 18
times larger data collection. In order to create valid rotational augmentations of
the image stack without cropping artefacts, we cut out a cylindrical ROI and set
all values around it to zero. We confirmed in preliminary experiments that this
computationally cheaper procedure does not to impact the results compared to
cutting out a rotated view from the original data. In contrast to [5,6], no class
resampling was necessary during training, since the class imbalance is not as
severe for classification given the start and end point of a lesion compared to
detecting lesions as well. Instead of the originally proposed VGG-M backbone
used in [6], we use the VGG-16 network architecture as a backbone since it
was already shown to yield better performance in the original paper on texture-
based filter banks [8]. The data set was normalised to fit ImageNet statistics.
We also evaluate the performance of this approach using a pretrained Resnet50
architecture [9] as backbone.

conv+bn+maxpooling dense

64x32x2
29x26x32

7 5 3 3

64

32

1

12x11x64
6x5x128 3x2x128

Fig. 1. Algorithm overview: Extraction of two orthogonal views of the lesion of interest.
These are concatenated and then used as an input for a 2D-CNN (conv = convolutional
layer, bn = batch normalisation layer, dense = fully connected layer).
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Table 1. Results for predicting stenosis degree prediction on a lesion-level (18 and 8
correspond to the amount of views considered for data augmentation during training
and test time, + = single view classification, ∗ = combined view classification, | | =
resizing to intermediate size, | → | = resizing to the longest sequence).

Model/Metric AUC Accuracy F1-score Sensitivity Specificity MCC

3D-RCNN[5][10] 0.89 0.85 0.67 0.79 0.86 0.59

3D-RCNN[5]18| | 0.92±0.03 0.88±0.02 0.69±0.06 0.68±0.11 0.93±0.03 0.62±0.06

2D[6]8∗|→|V GG 0.85±0.07 0.86±0.04 0.62±0.10 0.56±0.15 0.94±0.02 0.54±0.12

2D[6]18+| |RES 0.78±0.04 0.82±0.03 0.61±0.05 0.70±0.08 0.85±0.03 0.50±0.06

2D[6]18∗| |RES 0.90±0.04 0.87±0.03 0.68±0.08 0.71±0.13 0.91±0.03 0.60±0.09

2.5D18+| | 0.92±0.03 0.89±0.02 0.70±0.06 0.64±0.10 0.95±0.03 0.64±0.06

2.5D18∗| | 0.92±0.03 0.90±0.02 0.71±0.07 0.64±0.10 0.96±0.03 0.66±0.08

Evaluation No hyperparameter optimisation is performed. Parameters are ei-
ther taken from the references or default values are used. To reduce the influence
of random weight initialisation and other random effects on the results, we re-
peat a 5-fold cross validation with five different initialisations, leaving a total of
25 splits. All splits are performed patient-wise. We also use the aforementioned
rotational augmentation during test-time, and compare how the mean prediction
over all rotations performs in comparison to a single input.

3 Results

The most important results are provided in Table 1, Table 2 and Figure 2.
The results for the 3D-RCNN approach are also compared to the results of our
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Fig. 2. Mean performance and standard deviation of all approaches for different
padding strategies. These experiments are performed using only 8 instead of the 18
views (| | = resizing to intermediate size, | → | = resizing to the longest sequence,
O = zero padding or no padding for the texture-based approach, MCC = Matthews
correlation coefficient).
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Table 2. Results for predicting the revascularisation decision on a lesion-level (Abbre-
viations as in Table 1).

Model/Metric AUC Accuracy F1-score Sensitivity Specificity MCC

3D-RCNN[5][10] 0.80 0.76 0.55 0.72 0.77 0.42

3D-RCNN[5]18| | 0.90±0.05 0.84±0.10 0.63±0.10 0.65±0.13 0.90±0.12 0.53±0.11

2D[6]8∗|→|V GG 0.86±0.06 0.84±0.05 0.56±0.12 0.49±0.16 0.93±0.02 0.47±0.13

2D[6]18+| |RES 0.77±0.06 0.81±0.03 0.60±0.06 0.68±0.12 0.84±0.02 0.48±0.07

2D[6]18∗| |RES 0.90±0.06 0.85±0.05 0.66±0.07 0.70±0.16 0.89±0.04 0.57±0.10

2.5D18+| | 0.90±0.04 0.87±0.05 0.65±0.05 0.60±0.11 0.94±0.04 0.58±0.06

2.5D18∗| | 0.90±0.04 0.88±0.05 0.67±0.06 0.61±0.11 0.95±0.04 0.60±0.07

previous work [10], where similar experiments are performed on the same data
set as here but with the workflow described in [5], zero-padding and a different
cross validation strategy. From the three padding methods examined, resizing
all volume stacks of the data collection to one intermediate size yields the best
results for most network approaches except for the texture-based approach with
the VGG-16 backbone, where resizing all lesions to the size of the largest volume
performs best. Interestingly, the same algorithm workflow with the Resnet50
backbone performs differently in that regard. A hypothesis that can be drawn
from the intermediate padding performing best is that this scale provides on the
one hand roughly the same amount of information per sample while on the other
hand also keeping the input size in a range where it can be processed better.
For the 3D-RCNN, we only look at classification in this work, in contrast to the
task in [5] which included the detection of lesions. For this target, the proposed
adaptations to the workflow in terms of padding strategy and not resampling the
data set during batch creation improves the performance of both predicting the
stenosis degree and the revascularisation decision from an AUC of 0.89 to 0.92,
and 0.80 to 0.90, respectively. Having a more powerful feature extractor network
for the texture-based approach combined with slightly more data augmentation
improves the AUC by 0.05 for classifying stenosis significance, and by 0.04 for
classifying revascularisation decision. The method performs considerably better
when using test augmentations than without. Our proposed approach performs
similar to the other two approaches, outperforming them by a small margin
with an AUC of 0.92/0.90 for predicting a significant stenosis/revascularisation
decision. Interestingly, test augmentations only yield a small improvement. This
suggests that the method already has all necessary information to predict the
task at hand from two orthogonal slices.

4 Discussion

In this paper, we compared and improved three segmentation independent deep
learning-based algorithms for predicting both significant stenosis degree and clin-
ical revascularisation decision for lesions annotated with a start and end point.
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We obtained comparable results for each method. Our proposed method – a 2.5D
approach – slightly outperforms the other approaches and requires fewer views
compared to the method previously described in [6]. Therefore, a faster training
procedure and inference is possible. In future work, we will examine whether this
method is also capable of detecting lesions instead of just classifying them, and
whether it is able to predict an abnormal FFR value.

Disclaimer The methods and information here are based on research and are
not commercially available.
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5.4 Discussion

Within this chapter a variety of approaches to predict coronary artery disease, specif-
ically focusing on significant stenosis degree and the revascularization decision, were
presented. Our research has also addressed the challenge of handling lesions with
varying lengths and highlighted the significant influence of TTA on model perfor-
mance for these tasks. However, it is important to discuss how our approaches
compare to more recently proposed methods and the general advantages and dis-
advantages of our techniques.

Regarding related work, Ma et al. [Ma 21], who also build upon Zreik et al.’s
approach [Zrei 19], focus on improving the time-series analysis component. Inter-
estingly, their experiments demonstrated that our network architecture, proposed in
our initial work [Denz 19], outperformed Zreik et al.’s method on their dataset on
the task of significant stenosis classification while we reported opposite behaviour on
this task. This finding not only highlights that our proposed modifications to the
original method, also work for the task of lesion detection, but also sheds light on
a recurring issue in this research field: the lack of publicly available data collections
for direct comparisons and the limited amount of data utilized in most studies. As a
result, without direct comparisons, it is challenging to draw conclusive assessments
regarding the best performing overall methods.

Nevertheless, our proposed approaches aim to enhance data representation and
streamline network training for the targeted tasks. This is achieved by transforming
individual axial slices into polar coordinates or by directly utilizing longitudinal slices.
We also strive for simplicity in our architectures while incorporating task-specific
knowledge. However, it is important to note that our best performing method from
our previous publication requires a prior segmentation, which introduces an additional
prerequisite. However, this segmentation step can be automated and integrated into
the grading system, as demonstrated by Lin et al. [Lin 22]. The integration of seg-
mentation improves the interpretability of the entire system, reducing its black box
nature inherent to our approaches, but also introduces an extended pipeline that may
be prone to error propagation.

Therefore, it might be worthwhile to explore the possibility of combining a black
box approach, which can incorporate qualitative aspects, with segmentation-based
approaches that focus more on quantitative aspects. This combination could poten-
tially leverage the advantages of both approaches. Furthermore, it would be valuable
to investigate whether disagreements between these different directions can be utilized
to perform learning with abstention, thereby improving the overall performance.
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In terms of comparing our approaches with methods that work directly on larger
branches instead of cubes, there is currently no work that has performed a direct
comparison. Theoretical advantages of our work include the sparser data represen-
tation, which still captures the relevant information, thereby potentially improving
efficiency and reducing computational requirements.

In conclusion, our research has contributed by proposing various approaches to
predict CAD. While we have achieved promising results, further studies with larger
datasets and direct comparisons to recent approaches are needed to determine the
best performing methods in this field. Additionally, the trade-offs between simplicity
and performance, as well as the integration of prior segmentation, require careful
consideration in the development of future diagnostic systems for CAD. Furthermore,
exploring the combination of different approaches and investigating the potential of
learning with abstention could lead to advancements in this domain.
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6.1 Introduction

Again, the related work presented in Chapter 4 is highly relevant to the research
presented in this chapter. Additionally, there are significant similarities between the
two subsequent publications, making it appropriate to provide a joint introduction. In
both studies, the primary objective is the automated scoring of the coronary artery
disease-reporting data system (CAD-RADS) grade, as described in Section 1.1.2,
using deep learning (DL). Moreover, similar to the research presented in Chapter 5,
the design of the methods is influenced by the availability of annotations for the given
data collection.

The dataset used for both studies comprises approximately 2,900 patients, with
a minor discrepancy in the number of patients between the two publications due to
the automated pre-processing pipeline encountering issues for a limited number of
cases. The annotations for this dataset include the patient-wise CAD-RADS score,
Agatston score (AS) score, and stenosis grade labels for coronary subsegments labed
according to the american heart association (AHA) guidelines. However, the dataset
lacks centerlines labeled with respect to their AHA segments. Consequently, the
stenosis-grade labels are weak labels, as their accuracy depends on the accuracy of the
employed automated centerline labeling step and how well it matched the individual
human annotator. Furthermore, the exact location of a lesion within a segment is
unknown, and there may be instances of multiple lesions or lesions spanning across
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segment boundaries. Therefore, the research conducted here primarily focuses on
predicting the patient-wise CAD-RADS score, as it provides the most reliable labels.
The AS score and stenosis degree labels are used as auxiliary targets. Addressing
these challenges, the key tasks involve finding an appropriate data representation
and designing an architecture to effectively aggregate information from the entire
coronary tree for patient-wise assessment. Similar to Chapter 5, another challenge is
handling segments of varying lengths.

6.2 Automatic CAD-RADS Scoring using Deep Learn-
ing

The first work published on this topic is the following:

[Denz 20a] F. Denzinger, M. Wels, K. Breininger, M. A. Gülsün, M. Schöbinger,
F. André, S. Buß, J. Görich, M. Sühling, and A. Maier. “Auto-
matic CAD-RADS scoring using deep learning”. In: International
Conference on Medical Image Computing and Computer-Assisted
Intervention, pp. 45–54, Springer, 2020

With the main contributions being:

• Introduction of a task-specific data representation for the task at hand.

• Proposal of a bottom-up approach to directly predict the CAD-RADS grade.

• Enhancing the model performance using the stenosis degree and AS score as
auxiliary targets.

• Enabling a explainable localization of culprit segments through the network
design.

• Providing the first approach to predict all six CAD-RADS grades.

6.2.1 Publication Overview

To aggregate information from the entire coronary artery tree into a patient-wise
score, we propose the following workflow. Initially, the coronary centerlines are ex-
tracted using the method described in Zheng et al. [Zhen 13] and labeled according
to the AHA guidelines using the approach of Gülsün et al. [Guls 14]. In cases where
multiple subbranches were assigned the same label, typically occurring for distal ves-
sels, we selected the longest segment. To ensure consistent processing, the segments
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were interpolated to a common length. Next, segment-wise features were extracted
using the approach presented in our prior work on lesion characterization [Denz 20b].

These segment-wise features were utilized to predict the segment-wise stenosis
degree using a multi planar reformation (MPR) approach. It is important to note
that, unlike previous work, we utilized binned versions of the stenosis degree based
on Cury et al. [Cury 16] instead of the 50 % cutoff. To obtain a patient-wise feature
representation, the segment-wise features were combined through a global max pool-
ing operation. This constituent is well motivated by the definition of the CAD-RADS
score, which is typically influenced by the most severe lesion score propagated to the
patient-level. Moreover, it enables us to identify the segment that contributed the
highest activations, providing a localization of the most severely affected segment.
This enhances the interpretability of our method. However, due to the weak nature
of the segment annotations, we were unable to perform a systematic evaluation of this
assumed behavior and only confirmed our intuition qualitatively on a small subset of
samples.

Analyzing the results, we observed significant improvements by introducing auxil-
iary targets for both clinically relevant tasks: rule-out and hold-out. For the rule-out
case, we achieved an area under the receiver operating characteristic curve (AUC) of
0.914, while for the hold-out case, the AUC reached 0.923. Additionally, we obtained
a Matthew’s correlation coefficient (MCC) of 0.424 for the six-class problem.
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Abstract. Coronary CT angiography (CCTA) has established its role
as a non-invasive modality for the diagnosis of coronary artery disease
(CAD). The CAD-Reporting and Data System (CAD-RADS) has been
developed to standardize communication and aid in decision making
based on CCTA findings. The CAD-RADS score is determined by man-
ual assessment of all coronary vessels and the grading of lesions within
the coronary artery tree.
We propose a bottom-up approach for fully-automated prediction of this
score using deep-learning operating on a segment-wise representation of
the coronary arteries. The method relies solely on a prior fully-automated
centerline extraction and segment labeling and predicts the segment-wise
stenosis degree and the overall calcification grade as auxiliary tasks in a
multi-task learning setup.
We evaluate our approach on a data collection consisting of 2,867 pa-
tients. On the task of identifying patients with a CAD-RADS score indi-
cating the need for further invasive investigation our approach reaches an
area under curve (AUC) of 0.923 and an AUC of 0.914 for determining
whether the patient suffers from CAD. This level of performance enables
our approach to be used in a fully-automated screening setup or to assist
diagnostic CCTA reading, especially due to its neural architecture design
– which allows comprehensive predictions.

Keywords: Coronary Artery Disease · Coronary CT Angiography ·
Deep Learning · Data Representation · CAD-RADS

1 Introduction

Coronary Artery Disease (CAD), which may lead to major adverse events like
cardiac infarction or significantly decrease quality of life in the form of coronary
ischemia, remains the most common cause of death [7]. Most kinds of CAD re-
sult from atherosclerotic plaque deposits aggregating in the vessel wall creating a
stenosis, hence narrowing the vessel and obstructing the blood flow. The plaque
lesions are categorized by the degree of stenosis into no (0%), minimal (1-24%),
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mild (25-49%), moderate (50-69%), severe stenosis (70-99%), and occluded ves-
sel (100%) [2].
Coronary CT Angiography (CCTA) is a common non-invasive rule-out modal-
ity for CAD due to its high negative predictive value. In order to standardize
communication and guide patient management, the CAD-RADS score based on
above mentioned stenosis grades was introduced [2]. It ranges between 0 and 5
and is strongly influenced by the degree of the severest stenosis within a patient.
Additionally, this score is influenced by the location of the lesion and includes
qualitative assessments based on the experience of the physician, especially in
edge-cases.
From a high-level perspective for the case of stable CAD, the resulting patient
management decision can be divided into three options: the patient has no CAD
and does not need any treatment in the direction of CAD (0), the patient has a
non-obstructive CAD (1-2) without need for further investigation, or the patient
has an obstructive CAD and should undergo a further functional investigation
or direct intervention (3-5).
Therefore, at least these clinical questions need to be answered by an assisting
image analysis tool: in the rule-out case, the CAD-RADS 0 score needs to be
differentiated from 1-5, and in the hold-out case, the CAD-RADS scores 0-2
need to be differentiated from 3-5. However, prediction on an even finer scale is
necessary when the exact required action needs to be identified.
In clinical practice, the assessment of the CAD-RADS score is cumbersome, since
the whole coronary tree needs to be assessed and the severest lesion is graded
manually based on experience and eyeballing, which is prone to error. Therefore,
approaches to ease the workflow and help to detect and grade stenotic lesions
have been developed in recent years. Previous approaches focus on detection
and quantification of stenoses and are based on the segmentation of the entire
coronary tree [5, 10], which is time consuming and often needs manual correction
[12].
Recently, deep-learning approaches [6] without the need for a prior segmentation
were introduced [1, 11, 14]. These methods operate on multi-planar reformatted
(MPR) image stacks which are extracted by interpolating orthogonal planes for
each centerline point of the vessel. Approaches for this task include a recurrent
convolutional neural network (RCNN) [14], a 2D texture-based multi-view [11],
and a 3D CNN approach [1]. A 2D CNN approach, which classifies the whole
CCTA volume scaled down and placed in a 2D grid, is described in [8], but might
have optimistic results since the training and test splits are described not to be
patient-wise.
However, most of the above approaches have the disadvantage of determining
the patient score based on single lesions, again introducing a large amount of
potential error sources, with no global context incorporated into the decision.
To overcome these pitfalls, we propose a bottom-up approach to directly pre-
dict the patient-level CAD-RADS score using a deep-learning based approach
that leverages a task-specific hierarchical data representation building up on the
coronary tree segments as defined by the American Health Association (AHA)
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norm. By having the segment-wise stenosis degree as an additional output and
by utilizing a global max pooling operation, which identifies the most relevant
features across the whole coronary tree, the network is designed to be compre-
hensive. Additionally, since all steps in the workflow of our approach can be
automated, it can be used for patient screening as well as a preprocessing utility
to ease and speed up the clinical workflow.

2 Data

We train and evaluate our methods on a data set consisting of CCTA scans from
2,867 patients collected at a single site.
For each patient, labels regarding the stenosis degree were given on a segment-
level as no-stenosis, minimal, mild, moderate, severe or occluded with frequencies
of 3,625, 34,889, 4,565, 2,324, 722 and 70 and on patient-level with frequencies of
53, 940, 861, 611, 352 and 50. Furthermore, the CAD-RADS score was annotated
on the patient-level with categories 0-5 with frequencies of 436, 584, 873, 568,
348 and 58 [2]. The difference between the patient-wise stenosis degree and the
CAD-RADS score can be explained by edge-cases and is especially severe in
the CAD-RADS 0 case, since lesions with very minor wall irregularities were
classified as minimal according to literature [2]. Additionally, for a subset of
2,828 patients, the Agatston scores were annotated based on additional calcium
scoring scans, which were utilized in a binned version according to Rumberger et
al. [9] as no, minimal, mild, moderate and severe calcifications with frequencies
of 911, 317, 649, 491 and 460.
The data collection did not include patients with stents or bypass grafts. It was
split into two parts with two thirds (1,899) used for training and one third (968)
used for testing.

3 Methods

Preprocessing For each patient, centerlines are automatically extracted using
the algorithm described by Zheng et al. [13] and assigned to the AHA seg-
ments [4]. The extracted AHA segment centerlines are used to create MPR
image stacks, which are then resized to the mode segment length resulting in a
subvolume of size 128 × 32 × 32 for each segment according to Denzinger et al.
[3]. Subsequently, the Hounsfield Unit (HU) value range is clipped between -324
and 1,176 HU and normalized to a value range of [0, 1]. In order to focus on the
more important sections and prevent error propagation from mislabeled AHA-
segments, we only select a subset of AHA-segments (RCA p, RCA m, RCA d,
LM, LAD p, LAD m, LAD d, LAD D1, CX m, CX d, RAMUS), which were
more robustly labeled according to Gülsün et al. [4]. We confirmed to reach
similar performance with this subset compared to utilizing all segments in pre-
liminary experiments.
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Fig. 1. Model overview (Conv = 2D Convolutional Layer; BN = Batch Normalization
Layer; MaxPool = 2D MaxPooling Layer; ReLU = Rectified Linear Unit; FC = Fully-
Connected Layer).

Neural Architecture Design The general workflow of the proposed method
is outlined in Figure 1. Since our classes are ordered, we reformulate our clas-
sification task as a regression problem. This carries the benefit that misclassifi-
cations are penalized stronger depending on the class distance, which is conve-
nient since misclassifications between neighboring classes are not as severe for
our task. In order to reformat the whole coronary tree in a reasonable repre-
sentation for neural network training, we divided the whole coronary tree into
its sub-segments and extracted straightened MPR volumes. Since we assume all
segments to be able to contribute equally, we utilize a feature extractor block
with shared weights across all segments to extract spatial features. The feature
extractor blocks work on a 2.5D representation utilizing a simple convolutional
neural network (CNN) [3]. This architecture choice is motivated by the fact that
we strived for simple building blocks to reduce the overall computational effort.
Furthermore, we validated in prior experiments that adding additional views or
having a feature extractor block similar to the method of [14] did not improve
the performance. Since we do not want our model to depend on the location
of the stenosis within one segment we choose to decouple the spatial features
using a global max pooling operation. A fully-connected layer is used as the last
layer of the feature extractor block in order to weight and combine the features
such that our different targets can influence each other in the multi-task learn-
ing setup. The output of the feature extractor block is then either processed by
a stenosis regression block with shared weights across segments to predict the
stenosis degree of each segment or the maximum feature responses across all
segments are extracted by a global max pooling layer. These global maximum
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feature responses are then fed into two further regression blocks for the CAD-
RADS and calcification score prediction. This architecture choice is motivated
by the definition of the CAD-RADS score as being heavily influenced by the
severest lesion. Furthermore, the use of global max pooling allows the network
to be more comprehensible since the regions with the highest activations as de-
termined by the network can be displayed to the physician.

Evaluation In order to evaluate the effectiveness of the use of multi-task learn-
ing, we evaluated our approach on three different configurations: directly regress-
ing the CAD-RADS score (CAD-RADS), additionally regressing the segment-
wise stenosis scores (CAD-RADS + �) and also regressing the calcification score
(CAD-RADS + � + Ca). Furthermore, to verify whether the global context in-
troduced by our architecture improves the performance, we also evaluate the
combination of the feature extractor block and the stenosis regression block
with the severest prediction being propagated to the patient-level (Patient-level
�), which is as close as we can get to related work algorithms with our given
labels.
The training set is split into five folds of actual training and validation data
(80 %/20 %). The model with the overall lowest loss on the validation set is used
as a checkpoint for later evaluation. We choose the Adam optimizer with a learn-
ing rate of 0.0001, a batch size of 32 and mean squared error loss for all targets.
Furthermore, we utilize data augmentation in the form of rotations around the
centerline and minor shifts in x and y direction. In all experiments involving
the segment-wise stenosis grade, the feature extractor block is pretrained on the
stenosis grade on segment-level before getting integrated into the full model.
This is done to condition the feature extractor block towards learning relevant
features for the prediction of the stenosis degree. In order to convert our re-
gressed predictions back into classes, we enforce the binned predictions to have
the same class distribution as the ground truth labels. The thresholds used for
this are calculated on the training set and propagated to the test set.

4 Results

As mentioned in Section 1, most reference approaches perform the classification
of the severeness on a per-lesion-level with only Zreik et al. [14] performing an
evaluation on the patient-level. However, the severest lesion per patient is not
equivalent to the CAD-RADS score and differs especially often in the CAD-
RADS 0 case (see Section 2), hence complicating a direct comparison.

CAD-RADS Performance Before analyzing the clinical tasks at hand (rule-
out/hold-out), we want to analyze the performance of our approach under dif-
ferent configurations for all six classes. Results for our baseline (severest lesion
score as patient score) approach and our full model are given in Fig. 2 and
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a) b)

Fig. 2. Example confusion matrices of a single fold on the target of predicting the CAD-
RADS using the maximum segment-wise prediction (a) and our proposed multi-task
learning procedure (b).

Tab. 1. By leveraging multi-task learning we are able to boost the performance
of our approach incrementally (Tab. 1) from an accuracy of 0.810 to 0.840. While
the baseline approach performs better compared to direct CAD-RADS scoring
without auxiliary targets, we manage to outperform it in the multi-task setup.
The biggest performance difference in comparison to the baseline are the lower
CAD-RADS scores since in these cases overestimation of single-segment stenoses
degrees are especially severe. As displayed in Fig. 2, the hardest class to iden-
tify was CAD-RADS 5. An explanation for this is the fact that the centerline
extraction fails in the case of occluded vessels. Our method has a low specificity
due to the high class imbalance for the single class metrics. Apart from this,
most misclassifications are within one class distance, especially in our multi-task
learning setup, which is a good feature with respect to the confidence in the
network decision.

Table 1. Mean performance on the six class problem of the baseline approach and the
three different multi-task learning network configurations (� = segment-wise stenosis
grade; Ca = patient-wise calcification grade; MCC = Matthews Correlation Coeffi-
cient).

Approach/Metric Accuracy Sensitivity Specificity MCC

Patient-level � 0.825 0.895 0.476 0.371

CAD-RADS 0.810 0.886 0.430 0.316

CAD-RADS + � 0.832 0.899 0.496 0.395

CAD-RADS + � + Ca 0.840 0.904 0.520 0.424

Rule-out On the task of classifying whether a patient suffers from CAD, we see
incremental improvements in the performance of our method with each auxiliary
target from an AUC of 0.860 to 0.894 to 0.914 (Fig. 3a and Tab. 2). The perfor-
mance boost of utilizing the calcification grade can be explained by the fact that
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a) b) c)

Fig. 3. Results: a) Mean receiver operating characteristic (ROC) curves for the rule-
out case. The operating points (OP) of Zreik et al. [14] and Muscogiuri et al. [8] refer
to metrics calculated on their data set with Zreik et al. operating on the related task
of classifying the severest stenosis degree. b) Mean ROC curves for the hold-out case.
c) Mean ROC curve for the classification of significant stenoses. Prediction in Zreik et
al. [14] and Tejero-de-Pablos et al. [11] is performed on a per-lesion level and Sankaran
et al. [10] utilize the vessel segmentation as additional preprocessing.

patients without CAD should not exhibit any calcifications in the coronary ar-
teries. Also the baseline approach of propagating the severest segment-prediction
to the patient-level only reaches an AUC of 0.875 compared to the 0.914 of our
full model. Furthermore, there is a severe gap between sensitivity and specificity
due to class imbalance. However, as the ROC curve (Fig. 3a) indicates an op-
erating point with both sensitivity and specificity above 0.800 – which is often
times required in a clinical setting – can be selected.

Table 2. Results for the rule-out case (predicting CAD-RADS 0 vs 1-5). Results of
Zreik et al. [14] refer to the related but different task of predicting the severest stenosis
degree on a different data set (abbreviations as in Table 1).

Approach/Metric Patients AUC Accuracy Sensitivity Specificity MCC

Patient-level � 955 0.875 0.865 0.508 0.921 0.430

CAD-RADS 955 0.860 0.849 0.489 0.907 0.384

CAD-RADS + � 955 0.894 0.875 0.510 0.933 0.456

CAD-RADS + � + Ca 955 0.914 0.888 0.532 0.945 0.504

Zreik et al. [14] 65 - 0.892 0.714 0.941 0.674

Muscogiuri et al. [8] 284 0.89 0.863 0.660 0.909 0.558

Hold-out In the hold-out case, the use of auxiliary tasks did not boost the
performance as much as for the other targets (Fig. 3b and Tab. 3), with the
biggest gain caused by adding the segment-wise stenosis degree. However, we
outperform our baseline with an AUC, accuracy and MCC of 0.923, 0.860 and
0.692.
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Table 3. Results for the hold-out case (predicting CAD-RADS 0-2 vs 3-5). (abbrevi-
ations as in Table 1)

Approach/Metric Patients AUC Accuracy Sensitivity Specificity MCC

Patient-level � 955 0.912 0.850 0.885 0.781 0.666

CAD-RADS 955 0.901 0.838 0.879 0.759 0.640

CAD-RADS + � 955 0.921 0.858 0.895 0.787 0.684

CAD-RADS + � + Ca 955 0.923 0.860 0.891 0.802 0.692

Zreik et al. [14] 65 - 0.846 0.841 0.857 0.671

Muscogiuri et al. [8] 284 0.78 0.711 0.822 0.583 0.420

Auxiliary Targets For the target of predicting the stenosis degree on a segment-
wise level, we reach results comparable to state-of-the-art methods when looking
at the binary case of predicting significant stenosis (>50 %) (Fig. 3c). It should
be noted that competing methods are evaluated on different data sets and use
labels on lesion-level with defined start and end points, which require a remark-
able amount of effort for annotation. Furthermore, our performance on this level
enables that segments with the highest score are highlighted in order to aid
physicians in their decision making process.
On the task of predicting our calcification grade (as defined in Section 2) we are
able to reach a mean accuracy of 0.878.

5 Conclusion

In clinical practice, a standardized way to report CAD from CCTA scans is
the CAD-RADS score. To the best of our knowledge – this work presents and
evaluates the first approach to directly predict the six class CAD-RADS score
using a deep-learning based algorithm. By leveraging two auxiliary tasks – the
prediction of the segment-wise stenosis grade and a patient-wise calcification
grade – we boosted the performance of our method. The method only relies on
a prior centerline extraction and AHA segment label but not on the segmen-
tation of the coronary tree, which is time-consuming to obtain and may need
manual correction. Our approach is able to robustly identify patients suffering
from CAD (AUC 0.914) or requiring further clinical investigation (AUC 0.923).
Segments with severe lesions can be identified by our approach due to the neural
architecture design and since we predict segment-wise stenosis with the same
network. We validated our approach on a data set of 2,867 patients, a data set
considerably larger compared to what has been reported in related work.
Still, the used 2.5D data representation of the single segments may omit some 3D
information. We expect this to be successfully addressed by using test augmen-
tation or utilizing additional views in future work. Within this study, it was not
possible to apply algorithms defined in related work to our data set, since our
stenosis degree labels were segment-wise and not on a per lesion-level. Still, with
our experimental design we address this issue in order to allow for a fair compar-
ison. Furthermore, the definition of CAD-RADS also includes report modifiers
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related to high-risk plaques, stents and bypass grafts which will be addressed in
future work.

Disclaimer The methods and information here are based on research and are
not commercially available.
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6.3 CAD-RADS Scoring using Deep Learning and Task-
Specific Centerline Labeling

Building up on our previously presented method, we published:

[Denz 21b] F. Denzinger, M. Wels, O. Taubmann, M. A. Gülsün,
M. Schöbinger, F. André, S. Buß, J. Görich, M. Suehling, and
A. Maier. “CAD-RADS Scoring using Deep Learning and Task-
Specific Centerline Labeling”. In: Medical Imaging with Deep Learn-
ing, 2021

Here, our contibutions include:

• Proposal of a task-specific heuristic centerline labeling.

• Evaluation of a severity-based label encoding leveraging the ordinal nature of
the classification task.

• Use of test time augmentation (TTA) and model ensembling to enhance the
robustness of the final approach.

6.3.1 Publication Overview

Upon examining our initial method, we identify certain weaknesses primarily asso-
ciated with the pre-processing pipeline. While we have confidence in the centerline
extraction algorithm, we notice suboptimal performance in a small number of cases
for the centerline labeling. In these instances, some subbranches are missing or the
distal subbranches are labeled at more proximal points than usual. While this can oc-
casionally be accurate, it results in significant variability in the lengths of individual
segments. To address this issue and simplify the processing, we propose a straight-
forward heuristic approach for centerline labeling. This approach involves dividing
the centerlines into the three main branches using a simple rule set and selecting
the longest branches for each main branch as the primary branches. These primary
branches are then divided into segments of equal length. By employing this approach,
we provide the downstream artificial neural network (ANN) with a set of segments
that do not suffer from interpolation inhomogeneities. Additionally, the segments
are now comparable across patients, ensuring that the same anatomical regions are
assessed.

Another area for improvement we identified was the encoding of labels for network
training. Previously, the problem was formulated as a regression task with subsequent
threshold optimization to obtain individual class predictions. While this enforced



80 Chapter 6. Coronary Artery Disease Classification

predictions to follow the ordering within the data collection, it did not account for
the actual classes. To enhance this aspect, we propose the utilization of a rank-based
encoding.

Furthermore, we incorporated additional concepts in this study, namely TTA
and model ensembling, as they are known to enhance the robustness of DL-based
approaches. TTA had already proved useful in our prior work, which served as the
basis for our model architecture [Denz 20b]. In the current publication, we took a
step further and eliminated the orthogonal view, reducing the network’s footprint, as
it appeared that the task at hand did not benefit from it.

The final results demonstrated that all the modifications yielded improvements
across all tasks. For the rule-out and hold-out cases, we achieved an AUC of 0.942
and 0.950, respectively. Additionally, for the six-class problem, an MCC of 0.493 was
obtained. These outcomes highlight the efficacy of the proposed changes and their
positive impact on the overall performance of the system.



Proceedings of Machine Learning Research 172:1–10, 2022 Full Paper – MIDL 2022

CAD-RADS Scoring using Deep Learning and Task-Specific
Centerline Labeling

Felix Denzinger1,2 felix.denzinger@fau.de
1 Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
2 Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany

Michael Wels2

Oliver Taubmann2

Mehmet A. Gülsün2

Max Schöbinger2

Florian André3
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Abstract

With coronary artery disease (CAD) persisting to be one of the leading causes of death
worldwide, interest in supporting physicians with algorithms to speed up and improve
diagnosis is high. In clinical practice, the severeness of CAD is often assessed with a
coronary CT angiography (CCTA) scan and manually graded with the CAD-Reporting and
Data System (CAD-RADS) score. The clinical questions this score assesses are whether
patients have CAD or not (rule-out) and whether they have severe CAD or not (hold-out).
In this work, we reach new state-of-the-art performance for automatic CAD-RADS scoring.
We propose using severity-based label encoding, test time augmentation (TTA) and model
ensembling for a task-specific deep learning architecture. Furthermore, we introduce a novel
task- and model-specific, heuristic coronary segment labeling, which subdivides coronary
trees into consistent parts across patients. It is fast, robust, and easy to implement. We
were able to raise the previously reported area under the receiver operating characteristic
curve (AUC) from 0.914 to 0.942 in the rule-out and from 0.921 to 0.950 in the hold-out
task respectively.

Keywords: Coronary Artery Disease, Coronary CT Angiography, Deep Learning, Ensem-
bling, CAD-RADS, Coronary Artery Labeling

1. Introduction

Worldwide, coronary artery disease (CAD) still is the leading cause of death (Roth et al.,
2020), thus impacting the lives of many. Therefore, developing algorithms to support physi-
cians with the diagnosis is of high interest. These algorithms may serve as a second reader
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to ensure that no aspect is missed or to point the physician to areas of interest, thus speed-
ing up the workflow.
CAD is predominantly linked to atherosclerotic plaque deposits aggregating within the
vessel wall (Fuster et al., 1992). The degree of vessel narrowing – also called stenosis –
caused by such a plaque deposit is an essential piece of information regarding patient risk
and can be obtained using a coronary CT angiography (CCTA) scan. To report findings,
assess patients’ general condition, and to guide the clinical workflow the coronary artery
disease-reporting and diagnosis system (CAD-RADS) score was introduced (Cury et al.,
2016). This score is usually determined through a manual assessment by a human reader
scoring the whole coronary vessel tree. It consists of six grades ranging from 0 to 5, where 0
refers to “no CAD present”, 1-2 to “non-obstructive CAD present” and 3-5 to “obstructive
CAD present”, with a rising severeness within this grouping. Hence, primary clinical ques-
tions of interest are whether patients do have CAD or not (rule-out) and whether they suffer
from obstructive CAD and therefore should undergo further (invasive) assessment including
potential immediate revascularization or not (hold-out). However, this manual grading is
time-consuming and reader/experience dependent (Razek et al., 2018; Maroules et al., 2018;
Hu et al., 2021). Therefore, introducing decision support algorithms for this task is of high
interest.As related work regarding this task is sparse, we discuss work on the related task
of predicting severe stenosis degree. Algorithms performing this task can be divided into
lesion-wise, and branch-wise.Lesion-wise algorithms focus mainly on the task of detecting
and (separately) scoring one or multiple plaque deposits within the whole coronary vessel
tree. Most of these approaches work on multi-planar reformatted (MPR) volumes created
by interpolating orthogonal planes for each vessel centerline point. Commonly, these ap-
proaches are based on recurrent convolutional neural networks (RCNN) (Zreik et al., 2018;
Denzinger et al., 2019; Ma et al., 2021). For these, a series of overlapping cubes along the
centerline dimension is used, from which spatial features are extracted using a 3D convolu-
tional neural network (CNN) at each position. The resulting feature sequence is analyzed
using a recurrent neural network (RNN) (Zreik et al., 2018) or combined using a trans-
former module (Ma et al., 2021). A branch-wise approach presented by (Candemir et al.,
2020) utilizes a 3D CNN which takes whole coronary branches in MPR format as inputs.
Disadvantages of both lesion- and branch-wise approaches are that errors on lesion-/branch-
level are directly propagated to patient-level and that only local information is included in
the network prediction. A case-wise CAD severity score is the Agatston score (Agatston
et al., 1990), which in principle assesses the overall calcified plaque burden of a patient from
non-contrast CT scans. This score can also be determined using machine learning methods
(Wolterink et al., 2014; Lessmann et al., 2017; Cano-Espinosa et al., 2018). Our group re-
cently proposed a case-wise approach to determine the CAD-RADS score (Denzinger et al.,
2020b). It uses a hierarchical data representation of the whole coronary tree based on its
anatomical sub-segments. For each of these sub-segments, features are extracted from the
MPR volume stack with a CNN and combined with a global max pooling layer to pre-
dict the case-wise score. Based on the architecture and concepts presented in our previous
work (Denzinger et al., 2020b), we present a more robust, streamlined and reproducible
pipeline. Specifically, to ease reproducibility and simplify the pre-processing pipeline of our
work we propose an architecture- and task-specific heuristic centerline labeling. Moreover,
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we are leveraging the use of a severity-based label encoding, test time augmentation (TTA),
model ensembling and reduced input dimensionality.

2. Data

Data is provided from a single site with CCTA scans acquired with the same scanner type.
The number of patients (and samples) included is 2,902 with a fixed split of 1,926 used for
training and 976 for testing. Within the test set, 131 patients have no CAD, 499 patients
have non-obstructive CAD and 346 patients have obstructive CAD. The pre-processing is
conducted as follows: after extracting the coronary centerlines using the method of (Zheng
et al., 2013), MPR image stacks are extracted by interpolating planes orthogonal to the
centerlines with a spacing of (0.33×0.33)mm2 and a field of view (FOV) of 12×12mm2 for
each centerline point with centerline points placed 0.25mm apart. For these MPR image
stacks, the Hounsfield unit (HU) value range is clipped to lie between −300 HU and 1,024
HU with the resulting values being rescaled to a value range between 0 and 1.

3. Methods

3.1. Architecture

An overview of the used deep learning architecture is presented in Fig. 1, including an
explanation of the individual steps.

3.2. Proposed Extensions

As the input for this network is either one or two orthogonal longitudinal views cut from
the MPR volume stack at a specific angle α for each subsegment (cf. Fig. 1), the informa-
tion used to predict the CAD-RADS score may vary. Therefore, the prediction may not
be consistent with different angles, which it should be, given that for all angles the same
biological information should be assessed. Our group showed in previous work (Denzinger
et al., 2020a) that this problem can be partly solved by adding a second orthogonal view
which still leaves some leeway for suboptimal angles especially when only one angle is con-
sidered during inference. To overcome this we leverage TTA averaging predictions for 16
views extracted for equally distributed angles between [0, π] with the same angle for all
segments. As the whole vessel information should be covered with this strategy, we addi-
tionally evaluate whether a single longitudinal view instead of two orthogonal longitudinal
views suffices. Also, we propose to use model ensembling to lower uncertainty introduced
by the network training converging to different local optima. In our prior work (Denzinger
et al., 2020b), the prediction of the CAD-RADS score is transformed from a classification to
a regression task and the network trained with a mean squared error (MSE) loss. This leads
to all classes being weighted equally and the loss not depending on the individual class and
how well this class has been learned already. To address this we suggest to use the following
label encoding (Niu et al., 2016): yki = 1 if i ≤ k, yki = 0 otherwise. Therefore, label
vectors yk belonging to class k are created, with i denoting the index of the entry in the
label vector (e.g. CAD-RADS 2 is encoded as (1,1,1,0,0,0)). With this, we transform the
regression task to a multi-label problem, which enables the use of a cross-entropy loss with
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Figure 1: Overview of the architecture. For each labeled subsegment an MPR volume stack
is computed and for one arbitrary angle α around the centerline, a longitudinal
slice or two orthogonal longitudinal slices are extracted. The slices of all seg-
ments are fed into the same 2D CNN. The resulting feature representation is
further processed by a multi-layer perceptron (MLP) for each segment to classify
the stenosis grade and globally max pooled. The global feature representation
is fed into two MLPs predicting the overall calcification (denoted as Calc and
determined as a binned version of the Agatston score according to (Rumberger
and Kaufman, 2003)) and the CAD-RADS grade. The output of the network is
either one scalar value in case of regression or 5-6 sigmoidal outputs in case the
labels are encoded as described in Section. 3.2.

sigmoidal predictions. During inference the raw predictions are summed over all outputs to
get a cumulative probability and binned according to (Denzinger et al., 2020b).

3.3. Centerline Labeling

Furthermore, in the pipeline described in Reference (Denzinger et al., 2020b), the coronary
tree was subdivided using the method proposed by (Gülsün et al., 2014) and the resulting
segments were interpolated to one common length. With this a reasonable input to the
network is obtained which may, however, yield obscured segments. Moreover, the extracted
coronary tree usually exhibits more centerlines than defined in literature, since also small
side branches are found by the centerline extraction algorithm of (Zheng et al., 2013).
Furthermore, distal parts are usually less important and if a stenosis is present there it has
less influence on thrombus formation or myocardial ischemia. Therefore, these should not
necessarily have an impact on network prediction. Furthermore, even if the segment labels
determined with the method of (Gülsün et al., 2014) are anatomically correct – which is
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Figure 2: Centerlines before (top) and after (bottom) labeling. Note that centerline points
inside the aorta originate from our data format and do not need to be labeled.
Detected centerlines include the proximal, mid and distal part of the right coro-
nary artery RCA (RCAprox, RCAmid and RCAdist), the left main segment (LM),
the proximal, mid and distal part of the left artery descending (LAD) and left
circumflex artery (CX) named LADprox, LADmid, LADdist and CXprox, CXdist,
CXOM2, respectively, and the obtuse marginal (OM) artery of the CX CXOM1

and the diagonal segment of the LAD, LADD1.

not always guaranteed – the segment image information is not directly transferable between
patients due to the different segment lengths and potentially different supplied heart regions.
We therefore propose an heuristic centerline labeling approach to solve previously mentioned
problems with following notation 1: let C be a set of centerlines C consisting of centerline
points c ∈ R3. c0 is the first point of each centerline, which in our centerline format is always
the center of the aorta with the first centerline points connecting the center of the aorta
with the respective ostia. All centerlines end at their respective most distal point cnc . This
format leads to high redundancy in the centerlines with proximal parts often overlapping.
An example of this and the abbreviations for the different segments are included in Fig. 2.
Our heuristic pipeline is defined as follows: the set of centerlines can be subdivided into
left Cl and right Cr centerlines by looking at their world coordinate direction starting
from the center of the aorta. If hypothetically a different centerline-extraction algorithm
outputs centerlines starting from the ostia, this initial step could be skipped. For the right
centerline tree the longest segment C∗

r is selected and, starting from the ostium, three
subsequent segments of length 32mm each are labelled as RCAprox, RCAmid and RCAdist,
while the remaining vessel is excluded. For the left coronary tree, the bifurcation point cb
between the LAD and CX needs to be determined first. We detect cb as the point where
the centerlines of the left tree split most frequently. The LM is consequently labeled as
the segment between the left ostium and cb. From cb we calculate the directions of all
centerlines containing this point as cb+10 − cb. If there are two unique directions, the
rightmost centerlines with this direction are defined as the LAD branch and the leftmost as

1. Code available at https://github.com/fdenz/HeuristicCLLabeling
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the CX branch. If there are three unique directions the branch between the others is labeled
as RAMUS intermedius, which does not exist for all patients. The longest centerlines C∗

LAD

and C∗
CX of the LAD and CX are divided into LADprox, LADmid, LADdist and CXprox,

CXdist, CXOM2 respectively to obtain segments of lengths 32mm. Furthermore, for LAD
and CX the centerlines C

′
LAD and C

′
CX which have the longest non-overlapping part to C∗

LAD

and C∗
CX are selected. The 32mm segments starting from the bifurcation between C

′
LAD /

C
′
CX and C∗

LAD / C∗
CX respectively are labeled as LADD1 and CXOM1. As the described

heuristic approach does not aim to be absolutely anatomically correct and relies only on
a small set of rules, it is consistent by design. Furthermore, it extracts segments of the
same length, which eases the network training when it compares the segments of different
patients. On the other hand, bifurcations do not only occur on the start and end of the
segments, but also in the middle of the segment which leads to more diverse training data.
Also, and maybe most importantly, it is simple and fast (around 350ms with a Intel(R)
Xeon(R) CPU E5-2640 CPU).

3.4. Evaluation

For the evaluation, we keep our test set fixed while splitting our training data into five
parts of approximately equal size in a stratified manner. We then use four of these parts
as training and one as a validation set for five folds with the best model for each training
with respect to the validation CAD-RADS score loss saved for evaluation. This setting
is repeated five times for different seeds and splits for a total of 25 trained models for all
configurations. Further hyperparameters were a stochastic gradient descent optimizer with
a learning rate of 0.007/0.0007 for the label encoding/regression task respectively and a
momentum of 0.99. We evaluate our different additions in form of an incremental study.
First, the centerline labeling of the original approach is replaced with the one described
in the section above. As the prediction of the network depends on the angle selected we
will include the average results over all angles, the initial angle, and the angle with the
retrospectively highest performance. Next, we use TTA taking the mean prediction over 16
angles equally distributed between [0, π] with the same angle applied to all segments. This
is followed by ensembling models and taking either the average prediction over the five folds
of one seed or all 25 models. Finally, the label encoding is added, before testing whether a
single view suffices.

4. Results and Discussion

As we have an ordinal classification task and are able to adapt the threshold depending
on the desired ratio of sensitivity and specificity, we consider the area under the receiver
operating curve (AUC) to be the most important metric. In general, we can see an incre-
mental increase in performance with each improvement for the clinical question of rule-out
(Table 1), hold-out (Table 2) and for predicting all six CAD-RADS grades (Table 3).
As we previously only reported the metrics for the views at a single angle in Reference (Den-
zinger et al., 2020b), it is hard to select which angle to choose for comparison. This task
is also impacted by the fact that results differ at different selected angles. When averaging
over all evaluated angles we get a mean AUC of 0.913 compared to 0.914 for the rule-out
and 0.933 compared to a baseline of 0.923 for the hold-out case. However, looking at the
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Config/Metric AUC ACC Sens Spec MCC

Baseline 0.914 0.888 0.532 0.945 0.504

+ TTA E1 LE 0 0.917±0.008 0.884±0.006 0.569±0.023 0.933±0.003 0.503±0.027

+ TTA E1 LE ∗ 0.917±0.008 0.886±0.008 0.574±0.031 0.934±0.004 0.508±0.036

+ TTA E1 LE ∀ 0.913±0.006 0.880±0.004 0.555±0.016 0.931±0.002 0.486±0.019

+ TTA E1 LE 0.924±0.005 0.887±0.007 0.578±0.026 0.935±0.004 0.512±0.030

+ TTA E5 LE 0.932±0.001 0.890±0.002 0.591±0.007 0.937±0.001 0.527±0.008

+ TTA E25 LE 0.934 0.891 0.595 0.937 0.533

+ TTA E25 LE 0.941 0.895 0.611 0.940 0.550

− TTA E25 LE 0.942 0.912 0.672 0.949 0.621

Table 1: Performance for the rule-out task for the different model configurations. Met-
rics are: the area under the receiver operating curve (AUC), accuracy (ACC),
sensitivity (Sens), specificity (Spec), and Matthews correlation coefficient (MCC).
“+/−” denotes whether two orthogonal or one single longitudinal view is fed into
the CNN, “TTA/TTA” whether TTA is used, “Ei” the number of models en-
sembled, “LE/LE” whether labels are encoded as described in Section. 3.2 and
“0/∗/∀” whether the views extracted for the first, retrospectively best or all eval-
uated angles were considered. Baseline refers to the results reported in Reference
(Denzinger et al., 2020b).

Config/Metric AUC ACC Sens Spec MCC

Baseline 0.923 0.860 0.891 0.802 0.692

+ TTA E1 LE 0 0.932±0.003 0.854±0.006 0.887±0.005 0.794±0.009 0.680±0.014

+ TTA E1 LE ∗ 0.937±0.004 0.860±0.007 0.892±0.005 0.803±0.009 0.695±0.015

+ TTA E1 LE ∀ 0.933±0.004 0.856±0.004 0.888±0.003 0.797±0.006 0.686±0.010

+ TTA E1 LE 0.940±0.004 0.861±0.005 0.893±0.003 0.804±0.007 0.697±0.011

+ TTA E5 LE 0.943±0.000 0.860±0.002 0.892±0.001 0.803±0.003 0.695±0.005

+ TTA E25 LE 0.943 0.861 0.892 0.803 0.696

+ TTA E25 LE 0.944 0.861 0.892 0.803 0.696

− TTA E25 LE 0.950 0.877 0.905 0.827 0.731

Table 2: Performance for the hold-out question for the different model configurations.
Abbreviations as in Table 1.

angle with the best overall performance or the initial angle as an example, the performance
is better than the baseline performance. This also nicely demonstrates why TTA is crucial.
With TTA, a clear improvement in general performance is observed. This is easily explained
by the fact that lesions cannot be missed by an unfortunate angle anymore. Ensembling
multiple models leads to another performance boost, with an obvious improvement in sta-
bility when observing the decrease in standard deviation as the metric. Our proposed label
encoding results in no improvement for the hold-out case, as the class balance is less severe
in this case. However, for the rule-out case, an improvement from an AUC of 0.934 to
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Config/Metric ACC Sens Spec MCC

Baseline 0.840 0.904 0.520 0.424

+ TTA E1 LE 0/∗ 0.839±0.005 0.904±0.003 0.518±0.017 0.422±0.021

+ TTA E1 LE ∀ 0.834±0.004 0.900±0.002 0.504±0.014 0.405±0.017

+ TTA E1 LE 0.841±0.005 0.904±0.003 0.522±0.017 0.426±0.020

+ TTA E5 LE 0.842±0.001 0.905±0.000 0.525±0.004 0.430±0.005

+ TTA E25 LE 0.844 0.906 0.532 0.438

+ TTA E25 LE 0.845 0.907 0.535 0.442

− TTA E25 LE 0.859 0.916 0.578 0.493

Table 3: Performance for the six-class problem averaged over all classes for the different
model configurations. Abbreviations as in Table 1.

0.941 is observed. This illustrates that this change improves differentiation of less frequent
classes. Finally, we tested decreasing the dimensionality by only having a single longitudinal
view combined with TTA for each segment as an input for the network. This yielded far
better results for all targets. A possible explanation for this may be the increased training
stability that we observed and that the same information is fed to the system due to TTA.
Moreover, beforehand the ordering of the two orthogonal longitudinal slices led to different
results as different features were extracted for each, which should not be of relevance for the
targets at hand. Especially the metrics for the six-class problem benefited the most from
this change.

5. Conclusion

In this paper, we improve the automatic deep learning-based assessment of patients regard-
ing the CAD-RADS score. We propose the use of TTA, model ensembling, task-specific
label encoding, and reduced model input dimensionality for this task. Moreover, we intro-
duce a novel task-specific heuristic centerline labeling approach, which by itself does neither
lead to improved nor worse performance. However, it is easy to implement and makes the
whole model pipeline easier to reproduce, while being theoretically more robust to technical
variations due to its heuristic nature. Overall, we improve previously reported performance
on the data set at hand: the accuracy for the six-class problem is increased to 0.859 from
0.840 and the AUC for the rule-out case to 0.942 from 0.914. For the hold-out case, we
were able to reach an AUC of 0.950 compared to a previously reported 0.923. Further steps
for this method are to apply it to data at different sites and/or scanner types.
Disclaimer: The methods and information here are based on research and are not com-
mercially available.
Acknowledgement: K.B. gratefully acknowledges the support of the project “Dhip cam-
pus - bavarian aim”.

8

88 Chapter 6. Coronary Artery Disease Classification

Copyright 2022.



CAD-RADS Scoring using DL

References

Arthur S Agatston, Warren R Janowitz, Frank J Hildner, Noel R Zusmer, Manuel Viamonte,
and Robert Detrano. Quantification of coronary artery calcium using ultrafast computed
tomography. Journal of the American College of Cardiology, 15(4):827–832, 1990.

Sema Candemir et al. Automated coronary artery atherosclerosis detection and weakly
supervised localization on coronary CT angiography with a deep 3-dimensional convolu-
tional neural network. Computerized Medical Imaging and Graphics, 83:101721, 2020.
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Viergever, and Ivana Išgum. Automatic calcium scoring in low-dose chest CT using deep
neural networks with dilated convolutions. IEEE transactions on medical imaging, 37(2):
615–625, 2017.

Xinghua Ma, Gongning Luo, Wei Wang, and Kuanquan Wang. Transformer Network for
Significant Stenosis Detection in CCTA of Coronary Arteries. In International Conference
on MICCAI, pages 516–525. Springer, 2021.

9

6.3. MIDL 89

Copyright 2022.



Denzinger et al.

Christopher D Maroules et al. Coronary artery disease reporting and data system (CAD-
RADSTM): Inter-observer agreement for assessment categories and modifiers. Journal of
cardiovascular computed tomography, 12(2):125–130, 2018.

Zhenxing Niu, Mo Zhou, Le Wang, Xinbo Gao, and Gang Hua. Or-
dinal Regression with Multiple Output CNN for Age Estimation. In
Proceedings of the IEEE conference on CVPR, pages 4920–4928, 2016.

Ahmed Abdel Khalek Abdel Razek et al. Inter-observer agreement of the coronary artery
disease reporting and data system (CAD-RADSTM) in patients with stable chest pain.
Polish journal of radiology, 83:e151, 2018.

Gregory Roth et al. Global burden of cardiovascular diseases and risk factors, 1990–2019:
update from the GBD 2019 study. Journal of the American College of Cardiology, 76
(25):2982–3021, 2020.

John Rumberger and Leon Kaufman. A rosetta stone for coronary calcium risk stratifi-
cation: agatston, volume, and mass scores in 11,490 individuals. American Journal of
Roentgenology, 181(3):743–748, 2003.

Jelmer M Wolterink, Tim Leiner, Richard AP Takx, Max A Viergever, and Ivana Išgum. An
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6.4 Discussion

With both publications presented, it is crucial to provide a broader context by ex-
amining related work and discussing the advantages and disadvantages of our ap-
proaches.

Overall, our method demonstrates high performance and consists of a clinically
motivated data representation and architecture design. In comparing with other
approaches, we can analyze their similarities and differences. For instance, Paul et
al. [Paul 22] also focus on patient-level CAD-RADS grading, specifically the rule-out
and hold-out differentiation. They employ curved planar reformation (CPR) views
instead of the stretched MPR format used in our work. While their method shares
similarities with ours, such as the use of TTA to incorporate differing angles, we
introduce a heuristic centerline labeling approach that includes the second largest sub-
branches for the left artery descending (LAD), circumflex artery (CX), and the ramus
intermedius (RI) in our input, while Paul et al. only focus on the three main branches.
This inclusion allows for potential detection of lesions in these branches, which could
be missed by Paul et al.’s approach. However, the impact of such lesions may be less
significant as most relevant lesions tend to be in the proximal regions and/or in the
primary branches. Hence, we acknowledged this limitation and maintained a similar
drawback in our approach.

Jin et al.[Jin 22] proposed an approach that solely utilizes the coronary CT an-
giography (CCTA) volume as input for five-class CAD-RADS grading, excluding
CAD-RADS 0. In contrast to the centerline extraction we leveraqge, they employ
a object detection and segmentation step. While their approach provides a definite
lesion localization and explainable predictions, it may also introduce error propa-
gation throughout the pipeline. In our approach, although we lack distinct lesion
localization, the most important segment for the final prediction can be determined
through the global max pooling, and the angle with the highest score from TTA can
be extracted to present the most impactful 2D input to the physician. This enables
an understanding of the network’s reasoning behind the final prediction.

As another approach, Penso et al.[Pens 23] also consider the main branches as
input, leading to similar limitations as Paul et al.[Paul 22]. Their approach primarily
focuses on branch-wise classification and propagates the most severe grading to the
patient level. This procedure can be applied to other methods discussed in Chapter 4
and Chapter 5. Contrary to this, our approach incorporates a global max pooling
operation at the feature level, allowing for information aggregation across multiple
segments and a holistic and comparative aspect. However, it is important to note that
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this reasoning has not been validated. Nonetheless, we conducted experiments where
only the feature representation of the segment with the highest overall activation
was propagated to the patient level, and the results showed a worse performance,
confirming our initial reasoning.

In summary, the comparison with related work highlights the unique aspects and
contributions of our approach. While other studies have explored patient-level CAD-
RADS grading using different techniques, such as alternative image views or object
detection and segmentation, our method stands out for its clinically motivated data
representation and architecture design. We address limitations in centerline labeling,
incorporate additional sub-branches for analysis, and provide interpretability through
feature pooling and angle extraction. These modifications lead to a comprehensive
evaluation of the CAD-RADS grading task.
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Clinical Applicability
7.1 Influence of Scan Parameters to Deep Learning-based CAD-RADS
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With a well-performing coronary artery disease (CAD) classification approach
presented, the open question regarding generalizability of the method with respect
to differing image formation parameters is evaluated in this chapter. Furthermore,
efforts were made to introduce and evaluate a strategy for handling data where an-
notators were not able to label all samples confidently. Here, also learning with
abstention was explored with a novel quantile-based abstention strategy.

7.1 Influence of Scan Parameters to Deep Learning-
based CAD-RADS Scoring

Taking the approach described in Section 6.3.2 as a basis we released the following
research:

[Denz 23a] F. Denzinger, M. Wels, K. Breininger, O. Taubmann, A. Mühlberg,
T. Allmendinger, M. A. Gülsün, M. Schöbinger, F. André, S. J.
Buss, J. Görich, M. Sühling, and A. Maier. “How scan parame-
ter choice affects deep learning-based coronary artery disease as-
sessment from computed tomography”. Scientific Reports, Vol. 13,
No. 1, p. 2563, 2023

The main novelties of this work include:

• Evaluating deep learning (DL)-based coronary artery disease-reporting data
system (CAD-RADS) scoring with respect to the influence of selected recon-
struction parameters.

• Being the first approach to perform this analysis on this task with paired data.

• Examining how the pre-processing steps influence the final prediction.
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• Drawing conclusions, which computed tomography (CT) reconstruction param-
eters need to be treated with caution.

7.1.1 Publication Overview

Throughout this thesis, it is emphasized that CAD scoring using coronary CT an-
giography (CCTA) data involves multiple interconnected steps, from scan acquisition
to the final prediction. The image formation process itself plays a crucial role in
influencing the subsequent pipeline steps and the overall CAD grading outcome. In
an ideal scenario, the prediction of an artificial neural network (ANN) for CAD grad-
ing would rely solely on the underlying biological information. To assess the need
for disentangling biological and technical information, we conduct a study using the
following setting. For a subset of data we utilize in Chapter 6, we obtain the raw
acquisition data and reconstruct it with various CT reconstruction parameters often
altered in clinical practice. These include the advanced modeled iterative recon-
struction (ADMIRE) strength, stacking strategy, and reconstruction kernel, which
are detailed in Chapter 2. We then examine the change in prediction resulting from
these parameter alterations.

By conducting this analysis with paired data, we gain a more precise understand-
ing of causality compared to statistical observations over a larger data population.
We also separate the influence of the image formation parameters from the ANN
component by propagating the centerline extraction results of a default configura-
tion to other parameter variations. Our findings revealed an intriguing pattern for
most parameter configurations, wherein the overall performance did not exhibit sig-
nificant changes, but individual patient grades were affected. This raises ethical
considerations regarding the importance of robust global performance versus patient-
wise accuracy. Notably, we obtained definitive conclusions regarding the choice of
the stacking strategy, where the true stack configuration demonstrated significantly
lower performance for the rule-out case. Additionally, sharper reconstruction kernels
resulted in more individual class changes. Furthermore, we observed that the center-
line extraction step in our pipeline was also influenced by changes in image formation
parameters, indicating the need for further research in this area.

7.1.2 Discussion

After defining the scope and presenting our work’s results, it is essential to place
it within a broader context. The initial motivation behind this research was to ad-
dress the question of whether it is necessary to disentangle biological and technical
information. As demonstrated, there is a significant variation in patient-wise CAD-
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RADS gradings due to changes in image formation, which is an undesirable behavior.
Therefore, it is crucial to develop techniques to overcome this challenge.

One possible approach is to employ a training setting where the feature represen-
tations for different parameter configurations are enforced to be similar. This concept
was introduced in the form of Barlow Twins for pretraining purposes [Zbon 21]. An-
other simpler approach is to leverage data augmentation to make the network more
aware of these potential variations. To move further in this direction, test time aug-
mentation (TTA) can be used to incorporate multiple reconstruction types as input
for a more robust combined prediction. However, a careful cost-benefit analysis must
be conducted as each additional parameter variation increases the computational bur-
den. A third approach involves mitigating potential technical bias during training,
building upon our previous work on a similar task [Lang 23].

As a side note, this paper also includes an ablation study evaluating the perfor-
mance of our DL-based approach trained with only 10 % or 20 % of the data. The
results of these experiments indicate that achieving the overall good performance of
our method requires a substantial amount of training data, especially for the rule-out
task, where the data imbalance is more pronounced. This once again underscores two
crucial considerations in the field of medical image classification: the limited avail-
ability of data often restricts the final performance, and direct comparisons between
approaches trained on different data collections are not feasible.
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How scan parameter choice affects 
deep learning‑based coronary 
artery disease assessment 
from computed tomography
Felix Denzinger 1,2*, Michael Wels 2, Katharina Breininger 3, Oliver Taubmann 2, 
Alexander Mühlberg 2, Thomas Allmendinger 2, Mehmet A. Gülsün 2, Max Schöbinger 2, 
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Recently, algorithms capable of assessing the severity of Coronary Artery Disease (CAD) in form of the 
Coronary Artery Disease‑Reporting and Data System (CAD‑RADS) grade from Coronary Computed 
Tomography Angiography (CCTA) scans using Deep Learning (DL) were proposed. Before considering 
to apply these algorithms in clinical practice, their robustness regarding different commonly used 
Computed Tomography (CT)‑specific image formation parameters—including denoising strength, slab 
combination, and reconstruction kernel—needs to be evaluated. For this study, we reconstructed a 
data set of 500 patient CCTA scans under seven image formation parameter configurations. We select 
one default configuration and evaluate how varying individual parameters impacts the performance 
and stability of a typical algorithm for automated CAD assessment from CCTA. This algorithm consists 
of multiple preprocessing and a DL prediction step. We evaluate the influence of the parameter 
changes on the entire pipeline and additionally on only the DL step by propagating the centerline 
extraction results of the default configuration to all others. We consider the standard deviation of 
the CAD severity prediction grade difference between the default and variation configurations to 
assess the stability w.r.t. parameter changes. For the full pipeline we observe slight instability (± 
0.226 CAD‑RADS) for all variations. Predictions are more stable with centerlines propagated from 
the default to the variation configurations (± 0.122 CAD‑RADS), especially for differing denoising 
strengths (± 0.046 CAD‑RADS). However, stacking slabs with sharp boundaries instead of mixing 
slabs in overlapping regions (called true stack ± 0.313 CAD‑RADS) and increasing the sharpness of 
the reconstruction kernel (± 0.150 CAD‑RADS) leads to unstable predictions. Regarding the clinically 
relevant tasks of excluding CAD (called rule‑out; AUC default 0.957, min 0.937) and excluding 
obstructive CAD (called hold‑out; AUC default 0.971, min 0.964) the performance remains on a high 
level for all variations. Concluding, an influence of reconstruction parameters on the predictions is 
observed. Especially, scans reconstructed with the true stack parameter need to be treated with 
caution when using a DL‑based method. Also, reconstruction kernels which are underrepresented in 
the training data increase the prediction uncertainty.

CAD continues to be one of the most severe human diseases with a frequent deadly  outcome1. Commonly, its 
root cause is inflammation of perivascular tissue, leading to atherosclerosis, i.e., aggregation of plaque deposits 
within the vessel walls. These deposits may cause a narrowing of the vessel—so-called stenosis—which may lead 
to a malperfusion of the heart muscle and therefore cardiac ischemia and a higher risk of acute cardiac  death2. 
Also, these plaques can rupture, leading to thrombus formation and thus potentially causing stroke or myocardial 
infarction. A non-invasive modality capable of assessing the severeness of CAD is CCTA. Contrast agent injected 
during a Computed Tomography (CT) acquisition enhances the vessels, allowing stenotic lesions to be detected. 
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Commonly, the severeness of CAD, as manifested in CCTA scans, is assessed using the CAD-RADS  score3). 
The most severe stenotic lesion within a patient’s coronary tree is the main contributor to this score. However, 
also the location of this culprit lesion and some qualitative aspects are considered when determining this score. 
Relevant subgroups within the six grades of the CAD-RADS score are CAD-RADS 0, referring to no CAD being 
present, CAD-RADS 1–2, referring to a non-obstructive CAD without need for further (invasive) assessment and 
CAD-RADS 3–5 being assigned to patients who should undergo immediate further assessment. The resulting 
clinical questions are whether a patient has CAD or not (rule-out) and whether a patient has obstructive CAD or 
not (hold-out). In general, the CAD-RADS score is determined manually by a human reader grading the whole 
coronary artery tree. This procedure is time-consuming, and with the increasing workload radiologists need to 
cope with, interest in supporting algorithms is high.

We recently proposed such an  algorithm4 which is Deep Learning (DL)-based and directly predicts the 
CAD-RADS score using a task-specific data representation and architecture design. A high-level overview of 
this method is displayed in Fig. 2. It consists of multiple steps: First, the heart is roughly isolated from the rest of 
the  scan5. Then, centerlines of the coronary arteries are extracted from the CCTA  volume6 and subdivided into 
sub-segments. Next, for each of these sub-segments a Multi Planar Reformatted (MPR) volume stack is extracted 
by interpolating planes orthogonal to each centerline point. Finally, from these MPR volumes, longitudinal 
views through the centerline are sliced for each respective sub-segment and individually fed into a shared 2D 
feature extraction Convolutional Neural Network (CNN). The resulting feature representation is used to pre-
dict a segment-wise stenosis degree label and global max-pooling of the representations is leveraged to predict 
the patient-wise CAD-RADS grade and the Agatston score binned according to Rumberger and  Kaufman7 as 
additional auxiliary target.

This method reaches high performance on the task of regressing all six CAD-RADS grades as well as for the 
rule-out and hold-out task, with an average accuracy of 0.859 for the six class problem and an AUC of 0.942 and 
0.950 for the rule-out and hold-out case, respectively.

Before we go into detail on our methodology in this paper, we want to sketch the bigger picture and discuss 
variances within the whole measurement system of a CCTA analysis. First, a patient, who exhibits different 
characteristics like weight, shape, disease state, position, etc., undergoes a CT scan. The resulting projection 
data is not only influenced by the patient’s characteristics but also by the type of scanner, the tube voltage, and 
the dosage of contrast agent applied. Next, the projection images are reconstructed, whereby the choice of 
reconstruction kernel, the amount of applied denoising, the heart phase for which the scan is reconstructed, the 
way neighboring slabs from different heart cycles are stacked together influence the appearance and content of 
the final volume. Finally, the resulting images are interpreted by a human or Artificial Intelligence (AI) reader. 
An experienced human reader might be able to disentangle the change in visual perception caused by different 
acquisition parameters from the actual biological information. However, an AI system, which may have only 
seen training samples from a subset of fixed scan and reconstruction parameters, is probably influenced by these 
different technical variations.

Examples for this are already described in literature and can be divided into analyses focusing on the impact 
of image formation parameter choice on classical Machine Learning (ML)8–11 on the one hand and on  DL12–14 
approaches on the other.

Wielpütz et al.10 examined the influence of the tube voltage selection and whether Filtered Back Projection 
(FBP) or Iterative Reconstruction (IR) is used for the volume reconstruction for the task of detecting artificial 
nodules in an ex vivo study. They found that there was no significant impact on the evaluated classical ML algo-
rithm. In contrast, Berenguer et al.8, and Li et al.9 showed that Radiomic features (which include shape-based 
and first- and second-order statistics on a selected Region of Interest (ROI)) are often not reproducible if one of 
various scan parameters or the scanner type is  varied8. Also, the performance of models based on these features 
may  drop9. Moreover, Reiazi et al.11 confirmed that feature distributions vary for different scanner types. For 
classical ML algorithms, research to compensate differing image formation parameters exist based on statistical 
 assumptions15 or technical fingerprints in control  regions16.

For DL-based algorithms, analysis of the influence of the image formation parameter was mainly performed 
on the task of CT lung imaging. Li et al.12 demonstrated that the performance on the task of detecting nodules 
changes slightly when the tube voltage or the reconstruction type is varied in a phantom study. A comparable 
study was conducted by Blazis et al.13 with a commercially available AI-based system for nodule detection. They 
used raw data from 24 patients and evaluated 16 different reconstruction settings varying the kernel, denoising 
strength and reconstruction type. They found an impact of all parameters on the sensitivity of the examined 
system. Another paper published by Hoang Thi et al.14 evaluated whether reconstructions with both sharp and 
soft kernels should be included within training of an algorithm to segment lung nodules. They concluded that 
the performance is only transferable between kernel types if all options are included in the training step of the 
algorithm. Recently, the impact of acquisition and patient parameters on an AI-guided CAD assessment system 
was  evaluated17. The underlying pipeline consists of ML-based centerline extraction and labeling, inner and 
outer wall segmentation and lesion detection and scoring systems. However, the final prediction of each step 
is double-checked by a human reader to prevent error propagation. They explore several different variations of 
acquisition and patient parameters including the scanner type, tube voltage, gating technique, several clinical 
parameters, etc.. Limitations of this work are that the individual subgroups differ in size and that the impact of a 
single parameter change on the system cannot be directly measured but needs to be statistically assessed over a 
large patient population. Furthermore, the influence of the variations on the AI components cannot be separated 
from the additional human reader.

After this brief overview of related work, we will define the scope of this work. The image formation param-
eter choice often differs for different clinical sites and personal preference. Therefore, when considering the 
clinical application of an AI-based CAD approach, it is crucial to evaluate how well this algorithm performs for 
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differing reconstruction parameters. With this work, we aim to analyse the influence of a set of reconstruction 
parameters on our previously published CAD-RADS scoring  system4. These parameters are defined in more 
detail in “Raw prediction changes” and include the ADMIRE strength, stacking and reconstruction kernel choice. 
Image impressions of these altered reconstruction parameters are depicted in Fig. 1. To systematically evaluate 
the influence of each of these parameters on our AI system, we leverage a collection of 500 raw data sets, and 
reconstruct all samples with one default configuration and single parameter variations. The CAD-RADS grading 
method consists of several preprocessing and a Neural Network (NN) prediction step. To be able to separate the 
variation changes’ impact on the NN step of the pipeline from the impact on the preprocessing, we evaluate the 
full pipeline and the pipeline with the centerlines propagated from the default configuration to all variations. 
Our contributions can be summarized as follows:

• To the best of our knowledge, we conduct the first evaluation of scan parameter dependency of a DL-based 
approach for automatic assessment of CCTA scans with paired data, i.e. the sole difference between the 
individual reconstructions being the parameter change.

• We separate the influence of the parameter changes on the preprocessing results from the change in image 
data.

• We provide guidance regarding which image formation parameters need to be treated with caution.

Methods
All the methods in this study were performed in accordance with the Declaration of Helsinki.

Data. Before going into detail about the data used in this study, the distribution of labels and reconstruction 
parameters, we want to define the parameter space we evaluate. An exemplary case for each parameter configu-
ration is displayed in Fig. 1.

ADMIRE strength. A parameter that might influence the prediction and is sometimes altered in clinical prac-
tice is the number of iterations of the reconstruction algorithm. In this study, we use the ADMIRE  algorithm18 
to denoise already during reconstruction. Depending on the number of iterations, the algorithm reduces noise 
but also may introduce denoising artifacts. A popular choice in clinical practice is a ADMIRE strength of 3 
(default) with variations to 2 or 4 depending on the image quality and personal reader preference. We therefore 
reconstructed our raw data with these three parameter choices.

Stacking. Mostly, CCTA projection images are acquired over multiple heart cycles as the field of view of the 
detector is usually not large enough to cover the whole heart in one rotation. Therefore, the patient table is 
moved along the superior-inferior axis during the acquisition. In addition, depending on the motion occurring 
between heart cycles, e.g. breathing motion, the projections for different z-positions may not match each other 
directly at their boundaries. Since there are usually overlapping regions for the patient positions, there are two 
possible strategies to cope with this: either the overlapping regions are merged using interpolation strategies 
(mixed stack, default), or only the information of a single position is preserved (true stack). As the first strategy 
may introduce artifacts when a lot of motion occurs between the heart cycles, physicians prefer the true stack 

Figure 1.  Sagittal views of a CCTA scan reconstructed with different parameters. The default configuration (A) 
reconstructed with an Advanced Modeled Iterative Reconstruction (ADMIRE) strength of 3, mixed stack and 
Bv36 kernel is varied by using: an ADMIRE strength of 2 (B) or 4 (C), using true stack (D) and utilizing a Bv40 
(E), Bv44 (F) or Bv49 (G) reconstruction kernel.
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option in these cases. However, it leads to sharp boundaries between the individual stacks, which do not neces-
sarily impact human readers but may impact the performance of algorithms processing the volume (cf. Fig. 4).

Reconstruction kernel. Finally, another important parameter that is often changed in clinical practice is the 
reconstruction kernel. By adapting it, the sharpness of the edges can be increased at the cost of an increased 
noise level. Each vendor offers its own set of reconstruction kernels. For our experiments, we choose the Siemens 
Healthineers specific Bv36 kernel as the default, which is a medium sharp kernel specifically designed for the 
heart anatomy and therefore commonly used for CCTA scans. As we observed an increase in instability cor-
relating with kernel sharpness during initial experiments we chose the increasingly sharp Bv40, Bv44, and Bv49 
kernels as variations. With all of these variations, the volume content should be consistent while the appearance 
may change (cf. Fig. 1).

Data characteristics. We use two data collections in this study. Once, a data collection of 2596 reconstructed 
CT scans (data set A) as training set for the CAD-RADS scoring system. Additionally, we leverage a data collec-
tion containing raw CT data of 500 patients (data set B). Both data collections were collected at the same center 
with Siemens SOMATOM Force scanners. All samples in data collection A were reconstructed using the Bv36 
reconstruction kernel with a slice thickness of 0.6 mm. Furthermore, the ADMIRE reconstruction algorithm 
was applied with a strength of 3. 55 cases were reconstructed using true stack and all others with mixed stack-
ing. The CAD-RADS class frequency in the training set (A) is 370, 551, 828, 542, 281, 24 for CAD-RADS 0 to 5 
respectively. For the raw data collection B 7 configurations (examples displayed in Fig. 1) were reconstructed for 
all 500 data samples: a default configuration (ADMIRE strength = 3; stacking = mixed; kernel = Bv36) varied by 
using an ADMIRE strength of 2 or 4, true stacking and a Bv40, Bv44 or Bv49 reconstruction kernel. Reconstruc-
tion was performed with ReconCT (version 15.0, Siemens Healthineers). For data set B the class distribution is 
more balanced with 73, 61, 81, 85, 146, 54 samples for each respective CAD-RADS grade.

Algorithm. A high-level overview of the method evaluated in this work is depicted in Fig. 2. As this scien-
tific publication focuses on the evaluation of scan parameter influences, we refer to the publication where the 
evaluated method was  proposed4 for most details. Still, we want to mention some properties which have impact 
on the robustness analysis. From the CCTA scan data to the final prediction, multiple different algorithms are 
utilized. These include an algorithm for creating a rough segmentation of the  heart5, extracting the  centerlines6, 
and labeling  them4. As each of the later steps depends on the preceding ones, differences are propagated through 
the whole pipeline, altering the final prediction. Centerline labeling does not depend on the image data but solely 
leverages the centerline coordinates. The last pipeline step is the data processing through a task-specific DL-
based architecture. One forward pass of this architecture takes one longitudinal slice of each labeled coronary 
segment as an input. In order to include all information in the final prediction the concept of Test Time Augmen-
tation (TTA) is leveraged by extracting these longitudinal slices at 16 equidistant angles around the centerline 
as rotation axis within a range of [0, π ] from the volume. The average prediction over all angles is considered 
the final prediction for a single model. This is done to prevent the algorithm from missing information due to 
unfortunate angle choices. Also, the models of 25 training runs with different randomly chosen training and 
validation splits are ensembled to increase the method’s stability and performance. We encode the prediction in a 
multi-label format. As, if a patient belongs, e.g., to the CAD-RADS 3 category, he also fulfills the criteria of CAD-
RADS 0-2 due to a gradual nature of the score (i.e., (1, 1, 1, 1, 0, 0) represents CAD-RADS 3). We consider the 
predicted cumulative probability of all classes as the raw output score. Due to class imbalance default thresholds 
of .5 between the raw predictions do not necessarily lead to optimal class predictions. To circumvent this prob-
lem we determine more optimal thresholds: we define them as the percentiles of the raw prediction histogram. 
The percentile values are defined by the class frequencies. E.g. if 73 cases belong to the CAD-RADS 0 and 61 to 
the CAD-RADS 1 class, the threshold between CAD-RADS 1 and CAD-RADS 2 is the 134th lowest prediction.

Figure 2.  Overview of the used AI approach. First the heart is isolated from the CCTA scan using the 
algorithm proposed by Zheng et al.5. Then the coronary centerlines are  extracted6. These are subdivided into up 
to 11 equally sized sub-segments4. For each sub-segment, longitudinal slices are interpolated orthogonal to the 
centerline and fed into a NN.
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As we focus on having the best possible class separation for the robustness analysis, we calculated the thresh-
olds on the test set predictions of the default configuration reconstructions. For the performance analysis we use 
the threshold invariant AUC metric.

Evaluation. As the focus of this work is the evaluation of the stability of our CAD-RADS estimation approach, 
we choose to compare predictions of the default parameter configuration to the individual parameter variations. 
Since with the step of binning the network’s CAD-RADS predictions to distinct scores a lot of information is lost 
we choose to evaluate the difference in raw prediction scores. These also encode a kind of certainty regarding the 
prediction. To render the raw scores comparable for all individual CAD-RADS grades we rescale the predictions 
such that the value range between two thresholds always equals 1. As metrics, we evaluate whether the parameter 
change leads to a shift in the mean prediction and how much the standard deviation over all patients changed. 
Also, the number of cases where the parameter change leads to a different binned prediction is of interest, 
although outliers may influence it. Finally, the overall performance of the method regarding the hold-out and 
rule-out case may vary. Here, we decide to focus on the AUC as a threshold independent metric, also because 
the thresholds were defined on the test set. Also, to separate the influence of the parameter change on the NN 
component; we evaluate the influence of the deviations if we propagate the centerlines extracted from the default 
configuration to all others. Furthermore, as our approach relies on model ensembling, TTA, and a large training 
data cohort, which are all known factors to increase the robustness of DL-based models, we conduct additional 
experiments without model ensembling, without TTA, and with random subsets of only 10% (259 patients) or 
20% (519 patients) of the training data.

Ethical standards. The CT examinations were clinically indicated by the referring physicians and conducted 
in accordance with current clinical standards, guidelines, and recommendations. The study was performed in 
accordance with the Declaration of Helsinki and was approved by the local ethics committee (S-226/2016 and 
S-758/2018, Ethikkommission der Medizinischen Fakultät Heidelberg, Germany). Subjects included as of Janu-
ary 2019 gave informed consent in the scientific data analyses. For the retrospective analyses of the datasets 
acquired before January 2019, a waiver of consent was granted by the aforementioned ethics committee.

Results
Raw prediction changes. First, we want to report the changes in raw predictions caused by varying the 
image formation parameters. Therefore, the prediction difference between the default and the respective varia-
tion for the whole data set is visualized as boxplot in Fig. 3. The standard deviation of the distributions displayed 
in Fig. 3 can be seen in Table 1. From a first glance, it is apparent that propagating the centerlines from the default 
to the varied configuration leads to a decreased variance. This holds true for all variations when comparing the 
standard deviations. For a differing amount of denoising iterations of the ADMIRE algorithm, the variance is 
relatively low in the case centerlines are propagated. For sharper kernels, mean offsets are observed ( µBv40 = 
0.054; µBv44 = 0.101; µBv49 = 0.094). The most considerable offset of the mean value with an amplitude of 0.167 
is observed for the true stack variation with centerline propagation. When using true stack the standard devia-

Figure 3.  Boxplot of the rescaled raw prediction difference between the default configuration and all 
variation configurations (Ad2, Ad4 = ADMIRE strength of 2/4; TS = true stack; Bv40, Bv44, Bv49 = different 
reconstruction kernels), with and without centerline propagation.
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tion and therefore the variance of the prediction change is higher than with all other variations. An explanation 
for this behavior is that vessels at the slab edges may have the visual impression of being narrowed due to the 
sharp slab boundaries. A visual example of this effect is shown in Fig. 4. Analyzing different reconstruction ker-
nels, the resulting variance in prediction seems to correlate with the sharpness of the kernel.

Above mentioned trends observed for the variations hold when assessing the model without ensembling, TTA, 
or using less training data (cf. Table 1). However, the general robustness decreases for each of these experiments 
compared to the default model. The highest standard deviation (± 0.390) of the prediction changes is observed 
when using just 10 % of the data without propagating the centerline extraction results. Results are again more 
robust when propagating the centerlines. However, the standard deviation still increases by at least 32% when 
not using TTA and up to 44% when only using 10% of the data.

Binned prediction changes. To more directly assess the impact on the resulting clinical scores and deci-
sions, we also show how many times the prediction changed due to the changed image formation parameters. 
We therefore present the number of class changes in Fig. 5. Overall, for all configuration and the full pipeline 
between 12 and 20% of the cases changed the predicted CAD-RADS score. A low number changes between the 
clinically relevant cases of rule-out and hold-out. Moreover, the same trends as described for the other metric 
hold true for all varied configurations.

Appearance changes. To foster intuition on why the reconstruction parameter changes lead to different 
predictions, we depict the stretched proximal RCA segment as fed into the NN for the cases with the respec-
tive largest CAD-RADS prediction change for each variation in Fig. 6 (all other segments are provided in the 

Table 1.  Standard deviation of the raw prediction change for all individual variations (abbreviations as in 
Fig. 3) compared to the default. “Centerline (CL) Transfer” refers to the centerlines being propagated from the 
default to the varied configurations.

CL transfer Ad2 Ad4 TS Bv40 Bv44 Bv49 Mean

Default Without 0.220 0.225 0.355 0.243 0.233 0.307 0.226

No ensembling Without 0.270 0.280 0.397 0.292 0.309 0.418 0.281

No TTA Without 0.267 0.280 0.398 0.286 0.305 0.392 0.275

10% of data Without 0.405 0.411 0.462 0.413 0.468 0.569 0.390

20% of data Without 0.297 0.318 0.360 0.304 0.340 0.464 0.298

Default With 0.035 0.057 0.313 0.080 0.143 0.227 0.122

No ensembling With 0.048 0.087 0.340 0.110 0.199 0.334 0.160

No TTA With 0.043 0.075 0.347 0.108 0.192 0.296 0.152

10% of data With 0.030 0.077 0.286 0.148 0.261 0.433 0.176

20% of data With 0.051 0.077 0.308 0.106 0.209 0.376 0.161

Figure 4.  Curved Planar Reformatted (CPR) view of the Right Coronary Ascending (RCA) proximal segment 
for a reconstruction with mixed stacking (left) and true stacking (right) of the same raw data set. Due to the 
sharp slab boundaries the visual perception suggests a narrowing of the vessel.
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Supplementary material). When changing the ADMIRE strength to 2 or 4 the visual appearance is quite similar 
for a human reader, but the difference image shows slight deviations, especially around the vessel wall, which 
may explain the slightly different scores. For the true stack variations, the reason for the differing prediction is 
already apparent when looking at the deviation image: the slab boundary cuts through the vessel obscuring the 
image information. Lastly, we assess how the reconstruction kernel choice changes the appearance. Here we can 
see incrementally higher noise levels which appear slightly localized at the vessel wall as seen in the difference 
images.

Overall performance. Besides individual prediction changes, the method’s overall performance is of inter-
est. For the default configuration an AUC of 0.957 (95% CI [0.942, 0.971]) for the rule-out task and 0.971 (95% 
CI [0.961, 0.981]) for the hold-out task is achieved as displayed in Fig. 7 and in Table 2. The deviation from the 
results reported in Denzinger et al.4 is caused by the different class balance/test set evaluated. In Fig. 7 the perfor-
mance deviation for the different variations is displayed as well. Interestingly, the deviation is mostly within the 
CI and, therefore, insignificant in these cases. The only variation leading to a significant performance drop is the 
use of true stack instead of mixed stacking, but only for the rule-out task. A possible explanation for this is that 
vessels at the stack boundaries may appear stenotic due to the sudden jump between stacks (see Fig. 4). Above 
observations also hold true when the centerlines are propagated from the default to the variation configurations.

Assessing the performance changes for different model configurations (no ensembling, no TTA, less training 
data), the findings for the default configuration hold when using no ensembling and no TTA. When training 
with only 10% or 20%, we can observe a significant drop in performance of our approach with larger confidence 
intervals, especially on the rule-out task, indicating a model that did not generalize as well. Interestingly, the 
performance actually improves for some of the variations. This indicates that the model focuses on different 
features when trained with less data and that these features are actually enhanced when the noise level varies 
compared to the default configuration. This reasoning at least applies to the rule-out task, where the task inher-
ent class imbalance impacts the generalization of the model more when reducing the amount of data. Overall, 
the performance changes are still mostly within the 95% CIs.

Figure 5.  Number of samples for which the class prediction changed due to the parameter change 
(abbreviations as in Fig. 3). Total class changes refers to all CAD-RADS grades, RO to the rule-out and HO to 
the hold-out task. Note: predictions close to the thresholds easily change class bin even with small prediction 
changes.

Figure 6.  Proximal RCA segments for the cases with the largest CAD-RADS prediction deviation for each 
parameter configuration (note that the same patient showed the largest deviation for all possible kernel choices). 
Raw predictions with propagated preprocessing results are displayed for each respective configuration.
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Discussion
For all evaluation metrics, it becomes apparent that the preprocessing steps have an impact on the prediction if 
the scan parameters are varied. The centerline extraction is likely a larger contributor regarding this behaviour 
as small changes in the heart isolation mask are not expected to lead to much of a difference and the centerline 
labeling approach only depends on the centerline points. A detailed evaluation regarding the influence of scan 
parameters on the centerline extraction results is not the main focus of this work, but should be subject of further 
research. That said, looking at the overall performance of the method, there is mostly no significant performance 
drop, also when considering the full pipeline. A possible explanation for this behavior is that a similar number 
of cases are correct for any one variation as were previously erroneous as no parameter variation causes a mean 
shift. However, there are two perspectives (global vs. local) regarding performance, and knowing that a slight 
parameter change may lead to a different diagnosis by the system for a single patient does not build trust. On the 
other hand, when comparing algorithms with the current gold standard—manual assessment by physicians—one 
must acknowledge that different readers (or one reader over time) may also grade the same or different recon-
structions differently. In literature, the inter-observer variability of manual CAD-RADS scoring is reported 
with an inter-observer correlation (IOC) of 0.748 (average pairwise inter-observer agreement (IOA) 0.847)19, 
an IOA of 0.88520, or an IOC of 0.95821, depending on the study design and reader experience. When consider-
ing the ratio of unchanged predictions (cf. Fig. 5, right) as a metric comparable to the IOA, varying parameters 
like the denoising strength, and a slightly sharper reconstruction kernel are within this range. However, for the 
true stack configuration and even sharper kernels, the number of changed predictions increases. Looking at 
Fig. 1 and Fig. 6, these variations have the largest impact on the visual perception of human readers as well and 

Figure 7.  Performance on the data set A with all configurations (abbreviations as in Table 1) compared to 
the default for the rule-out and hold-out task, with and without centerline propagation. The dashed lines 
correspond to the 95% Confidence Interval (CI) for the default configuration. Note that the performance of the 
default configuration does not depend on the preprocessing as the centerlines of the default configuration are 
propagated.
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may even change the perception regarding the disease state as can be seen in Fig. 4. Also, reconstruction with 
a sharper kernel might lead to such a high noise level that the resulting volumes are hard to read. However, no 
study comparing the performance of readers on the task of CAD-RADS grading for differing reconstruction 
kernels exist. Such a study would be hard to design as readers might be biased by their first reading under a dif-
ferent reconstruction configuration.

Therefore, the algorithm’s variance in prediction appears to be within the range of human readers. However, 
this is usually not the motivation to use algorithms as assistance tools. Algorithms are expected to yield con-
sistent outcomes for the same patient. In particular, since the used algorithm embodiment mostly behaves as a 
black box, a higher robustness with respect to parameter variation is required to allow for clinical acceptance. 
A possible way to achieve this robustness is to include different parameter configurations into  training14. This 
idea seems promising, as in the current training pipeline only reconstructions with a softer kernel are included. 
An additional possibility to increase robustness might be to transfer algorithms aiming to disentangle biological 
and technical  information16 into the deep learning world.

Another aspect to elaborate on is whether the results reported here are transferable to other methods proposed 
in  literature22–30. These mostly focus on the determination and detection of significant stenosis which is similar 
to the hold-out task. Usually, these approaches also rely on a prior centerline extraction usually followed by an 
MPR volume  construction22–27,29. Additionally, for all approaches a CNN is used as a feature extractor. Therefore, 
findings presented here should be largely transferable to different architecture embodiments. Exceptions may 
be the works of Muscoguiri et al.28, who directly operate on the 3D data, and Paul et al.30, who operate on the 
curved views instead. Furthermore, all of the above-mentioned approaches were trained from data collected from 
a respective single site. As there usually is an internal consensus on how data is reconstructed at each individual 
clinical site, our choice of training our method with the data reconstructed as part of the clinical workflow is a 
valid and transferable choice.

Also, we evaluate whether our CAD-RADS scoring NN behaves similarly if no robustness enhancing measures 
like ensembling and TTA, or a smaller data collection are used. We have shown that model ensembling and TTA 
did not alter the findings of our study. However, a limited amount of training data leads to a less generalized 
model, especially regarding the rule-out task, which is most severely impacted by the task inherent class imbal-
ance. Related works usually perform analysis on a per-vessel basis and are therefore not impacted as severely 
by this class imbalance. Still, the uncertainty when considering the standard deviation of the raw CAD-RADS 
prediction changes as a metric, behaves comparable to the default configuration.

Conclusion
In this work, we analyzed the effects of varying image formation parameters on an existing AI-based system 
to automatically grade CCTA scans with the CAD-RADS score. To this end, we reconstructed 500 raw CCTA 
scans under eight parameter configurations, which to our knowledge are commonly applied in clinical practice. 
Parameter changes evaluated include the denoising strength, slab combination, and reconstruction kernel choice. 

Table 2.  Performance deviation for all individual variations (abbreviations as in Fig. 3) compared to the 
default. “CL Transfer” refers to the centerlines being propagated from the default to the varied configurations. 
AUC is either displayed with 95% CI or the standard deviation over all respective single models or angles.

Task CL transfer AUC [%] Ad2 Ad4 TS Bv40 Bv44 Bv49

Default Rule-out Without 95.72 [94.21, 97.07] − 0.14 − 0.15 − 2.07 − 0.08 − 0.08 − 0.36

No ensembling Rule-out Without 94.65 ± 0.74 + 0.03 − 0.15 − 1.98 + 0.05 − 0.06 − 0.23

No TTA Rule-out Without 94.59 ± 0.39 − 0.09 − 0.04 − 1.58 + 0.04 − 0.15 − 0.68

10% of Data Rule-out Without 86.73 [84.01, 89.52] + 1.25 + 1.97 − 0.40 + 1.29 + 1.95 + 2.41

20% of Data Rule-out Without 87.84 [85.00, 90.43] + 1.07 + 0.99 − 0.69 + 0.78 + 1.07 + 1.15

Default Hold-out Without 97.11 [96.06, 98.12] + 0.08 − 0.04 − 0.34 − 0.03 − 0.06 − 0.48

No ensembling Hold-out Without 96.79 ± 0.18 + 0.12 − 0.13 − 0.44 − 0.06 − 0.16 − 0.62

No TTA Hold-out Without 96.66 ± 0.32 − 0.09 + 0.08 − 0.42 − 0.08 − 0.30 − 0.88

10% of data Hold-out Without 93.01 [90.97, 94.86] + 0.39 + 0.20 + 0.08 + 0.14 − 0.14 − 0.06

20% of data Hold-out Without 96.00 [94.75, 97.20] − 0.19 + 0.09 − 0.57 − 0.35 − 0.79 − 1.01

Default Rule-out With 95.72 [94.21, 97.07] − 0.06 − 0.04 − 1.66 + 0.06 − 0.06 − 0.54

No ensembling Rule-out With 94.65 ± 0.74 − 0.05 − 0.13 − 1.42 + 0.12 + 0.02 − 0.51

No TTA Rule-out With 94.59 ± 0.39 − 0.12 − 0.12 − 2.12 − 0.11 − 0.10 − 0.42

10% of data Rule-out With 86.73 [84.01, 89.52] + 0.05 + 0.07 − 0.59 + 0.75 + 1.02 + 1.24

20% of data Rule-out With 87.84 [85.00, 90.43] + 0.13 − 0.27 − 1.48 + 0.52 + 1.10 + 0.92

Default Hold-out With 97.11 [96.06, 98.12] − 0.05 + 0.05 − 0.20 − 0.05 − 0.25 − 0.71

No ensembling Hold-out With 96.79 ± 0.18 − 0.04 + 0.02 − 0.36 − 0.10 − 0.30 − 0.83

No TTA Hold-out With 96.66 ± 0.32 + 0.07 − 0.10 − 0.48 − 0.08 − 0.17 − 0.70

10% of data Hold-out With 93.01 [90.97, 94.86] + 0.10 − 0.18 − 0.08 + 0.07 + 0.11 − 0.20

20% of data Hold-out With 96.00 [94.75, 97.20] − 0.07 + 0.10 − 0.83 − 0.12 − 0.33 − 0.88
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We found that the preprocessing steps as well as the NN prediction step are not robust to all parameter variations. 
Using true stack to combine slabs of different heart phases leads to a slight overestimation of the CAD-RADS 
score for patients with movement between slabs as stack artifacts occurred. These artifacts can create the visual 
perception of a narrowed vessel at slab boundaries. We conclude that one should consider excluding datasets 
reconstructed with this parameter from training and application. For varied reconstruction kernels, the variance 
of the prediction change increased with increasing kernel sharpness. Globally, the performance remained on a 
high level for all variations. However, individual prediction changes occurred, which may not built trust in clinical 
application of such an algorithm if a patient’s scoring depends on the way their scan was reconstructed. Therefore, 
we conclude that strategies to create more robust predictions for individual patients need to be developed. These 
may include the use of a more diverse training set. However, also the preprocessing steps need some additional 
attention as they were contributors to the prediction changes. We have shown that the same findings hold true 
when leaving out robustness-enhancing measures like model ensembling and TTA. Furthermore, the method 
at hand behaves slightly differently when trained with less samples due to reduced generalization.

Data availability
The data are not publicly available due to data protection regulations. They are available from the authors upon 
reasonable request.
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7.2 Handling Label Uncertainty and Shepherd’s Crook
RCA Detection

The final research topic to be discussed within this thesis was published as:

[Denz 23b] F. Denzinger, M. Wels, O. Taubmann, F. Kordon, F. Wagner,
S. Mehltretter, M. A. Gülsün, M. Schöbinger, F. André, S. Buß,
J. Görich, M. Sühling, A. Maier, and K. Breininger. “Handling La-
bel Uncertainty on the Example of Automatic Detection of Shep-
herd’s Crook RCA in Coronary CT Angiography”. In: 2023 IEEE
20th International Symposium on Biomedical Imaging, pp. 1–5,
IEEE, 2023

Within it, we contributed the following aspects to the field of research:

• Providing the first approach to automatically determine the Shepherd’s crook
(SC) right coronary artery (RCA) from centerline data.

• Evaluating a set of strategies to handle non-confidently labeled samples during
training time.

• Proposing a straight forward quantile-based abstention rule.

7.2.1 Publication Overview

Let’s begin by discussing the clinical motivation behind this research. As explained in
Section 1.1.3, the SC RCA is a norm variant characterized by a highly tortuous turn
immediately after the ostium. It is important to automatically detect the presence
of SC RCA in screening scans, as it complicates minimally invasive procedures. To
address this task, we curated a dataset of 519 cases and annotated them with respect
to SC RCA presence. However, during the annotation process, some samples could
not be confidently labeled as exhibiting SC RCA or not, leading us to designate a
subset of samples as unsure. Consequently, strategies were developed to incorporate
these unsure samples during network training.

The network utilized for this task is a WaveNet-inspired approach [Oord], which
takes the centerline points starting from the ostium with a fixed length as input. To
enhance the robustness of the model, techniques such as TTA and model ensembling
are employed. Several approaches for handling unsure samples during network train-
ing are evaluated, including exclusion, random class assignment per ensemble and per
individual model, and the assignment of a soft label. As we have the intuition that
the non-confidently labeled cases form a distinct distribution within the probability
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space over a test population, we assess whether abstaining from predictions for these
samples would lead to a more robust performance. To accomplish this, we propose a
quantile-based abstention rule that considers the a priori probability of SC RCA as
an anchor and to preserve class balance after abstention.

Our results demonstrate an overall strong performance for the task at hand,
achieving an area under the receiver operating characteristic curve (AUC) of 0.938
on the confidently labeled cases. We found that including the unsure samples in
the training process, regardless of the method used, improved performance, with a
slight advantage observed for the soft label assignment approach. Regarding our ab-
stention rule, we observed better performance when considering the underlying label
distribution instead of relying solely on the a priori probability provided in the liter-
ature, especially when excluding only a limited number of samples. Furthermore, we
were able to confirm our assumption that the unsure cases form a distinct distribu-
tion, as the performance gap between the best and worst possible label assignment
significantly decreased with an exclusion rate of 25 %.

In conclusion, our study successfully addressed the clinical need for automatic
detection of SC RCA in screening scans. The developed WaveNet-inspired network,
along with TTA and model ensembling, demonstrated strong performance. The in-
clusion of unsure samples during training, particularly through soft label assignment,
proved beneficial. Additionally, our proposed quantile-based abstention rule, consid-
ering the label distribution, yielded improved results compared to relying solely on
the a priori probability. These findings contribute to the advancement of automated
screening for SC RCA, enhancing patient care and minimizing procedural complica-
tions.

7.2.2 Discussion

Within the project encompassing this thesis, the original motivation behind the re-
search conducted in this paper is a much broader objective. As alluded to in Sec-
tion 1.1.3 and also Section 3.1, there are numerous norm variants and anomalies of the
coronary arteries and the heart in general. In clinical practice, physicians are knowl-
edgeable about these variants as part of their training and these are highlighted when
encountered in routine clinical scenarios. However, incorporating a focus on rare norm
variants or anomalies into an artificial intelligence (AI) solution can be challenging.
One of the primary reasons is the scarcity of data, which is even more pronounced for
these exceptional cases. Consequently, evaluating the performance of CAD grading
systems on these norm variants and anomalies is of significant interest. Some variants
may have a substantial impact on the overall CAD analysis, such as duplicate RCA
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or a missing left main (LM) segment. An automated system intended for clinical
deployment must be able to handle these cases. However, given the data sparsity
and the potential for earlier pipeline steps to fail in such cases, it becomes crucial to
develop robust detection systems for these outliers. This can involve sanity checking
the outcomes of the pre-processing steps. A final system should notify physicians
that the confidence in the prediction for a given sample may be lower than usual.

Another important aspect derived from this research pertains to the handling
of annotations in general. In our opinion, it is preferable to refrain from assigning
a definitive label rather than assigning a non-confident one. We hope that such
annotation practices find wider adoption in research, as they synergize with learning
with abstention, where a similar line of thinking is applied to the neural network
itself.
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ABSTRACT

Coronary artery disease (CAD) is often treated minimally
invasively with a catheter being inserted into the diseased
coronary vessel. If a patient exhibits a Shepherd’s Crook
(SC) Right Coronary Artery (RCA) – an anatomical norm
variant of the coronary vasculature – the complexity of this
procedure is increased. Automated reporting of this vari-
ant from coronary CT angiography screening would ease
prior risk assessment. We propose a 1D convolutional neu-
ral network which leverages a sequence of residual dilated
convolutions to automatically determine this norm variant
from a prior extracted vessel centerline. As the SC RCA is
not clearly defined with respect to concrete measurements,
labeling also includes qualitative aspects. Therefore, 4.23 %
samples in our dataset of 519 RCA centerlines were labeled
as unsure SC RCAs, with 5.97 % being labeled as sure SC
RCAs. We explore measures to handle this label uncertainty,
namely global/model-wise random assignment, exclusion,
and soft label assignment. Furthermore, we evaluate how
this uncertainty can be leveraged for the determination of
a rejection class. With our best configuration, we reach an
area under the receiver operating characteristic curve (AUC)
of 0.938 on confident labels. Moreover, we observe an in-
crease of up to 0.020 AUC when rejecting 10 % of the data
and leveraging the labeling uncertainty information in the
exclusion process.

Index Terms— Label Uncertainty, Shepherd’s Crook
RCA, Coronary CT Angiography

1. INTRODUCTION

Coronary artery disease (CAD) is an often deadly disease
commonly linked to atherosclerotic plaque deposits narrow-
ing the coronary vasculature [1]. These lesions are usually
treated minimally invasively in the cath lab, where a catheter
is inserted through the femoral artery. This catheter is then

guided toward the location of the lesion. The vessel at the le-
sion is then widened and stabilized using a balloon and a stent.
One anatomical norm variant of the coronary vasculature –
the Shepherd’s Crook right coronary ascending artery (SC
RCA) – may complicate this procedure as the RCA branch
takes a high and tortuous turn directly after the ostium (cf.
Fig. 1 right) [2]. Furthermore, this variant is suspected to in-
crease the risk of developing CAD [3]. Therefore, automated
detection of SC RCA, e.g., from coronary CT angiography
(CCTA) scans, is of interest. However, to the best of our
knowledge, no prior work on this topic exists.

To develop a deep learning-based algorithmic solution, we
build a data collection of 519 patients with labels indicating
whether patients exhibit an SC RCA or not. However, as the
sole definition of this norm variant is the high, tortuous turn,
we did not only identify 31 cases we consider sure SC RCAs
but also 22 border cases which we labeled as unsure, with
an example displayed in Fig. 1. As these cases could not be
labeled with high confidence by human readers, a machine
learning approach should also rather not report a prediction
for such samples instead of confidently predicting a label.
Therefore, methods from uncertainty estimation or abstention
learning are considered, where instead of just learning to dis-
tinguish presence from absence, a rejection class is addition-
ally determined from the output of a machine learning model.

In summary, we formulate the following research ques-
tions:
1. Can we automatically determine whether a patient has a

SC RCA using a data-driven algorithm?
2. How should samples be handled for which the annotator

is not confident?
3. Can we leverage the labeling uncertainty to enhance or at

least better evaluate learning with abstention?
We tackle them with the following contributions:
1. Development of a deep learning approach which analyzes

the centerline course of the RCA using a WaveNet-like 1D
convolutional neural network.
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Fig. 1. Volume rendering of the aortic stem and coronary arteries of three different patients: left) patient without a Shepherd’s
Crook (SC) RCA, center) patient labeled as having an unsure SC RCA as the RCA does take a tortuous high turn but to a lesser
extent, and right) patient with a SC RCA defined by a high, tortuous turn after the origin of the RCA segment.

2. Analysis of four different ways to handle the cases labeled
as unsure: exclusion during training, randomly assigning
a class either globally or for each model in an ensemble,
or assigning a soft label.

3. Proposal of a non-invasive percentile-based rejection
scheme and examination of whether information about
the frequency of uncertain samples can improve it.

2. MATERIAL AND METHODS

2.1. Data

Within this study, a data collection of 519 CCTA scans is
used. Of these, 31 (5.97 %) are labeled as positive SC RCA
cases, and 22 (4.23 %) as unsure. Labeling was performed by
a doctoral researcher with four years of experience in the field
of CAD assessment from CCTA scans. Centerlines of these
scans were extracted using the well-established and robust al-
gorithm of Zheng et al. [4]. From these, the first 64 mm (256
points, spacing of 0.25 mm) of the RCA were extracted by
combining the proximal and middle RCA segments as pro-
vided by the labeling algorithm of Denzinger et al. [5]. We
consider the coordinates of the centerline as features that are
normalized by subtracting the coordinates of the first cen-
terline point (ostium) from all points and then dividing by
64 mm, as this is the maximal possible length of an input cen-
terline.

2.2. Deep Learning-based Shepherd’s Crook Detection

As the local and global curvature and the overall course of the
centerline are key features to be determined by a classifier, we
propose to use a WaveNet-inspired [6] deep learning archi-
tecture as depicted in Fig. 2. It leverages 1D convolutions of
differing dilation grades to model short and long-range depen-
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Fig. 2. Overview of the WaveNet-inspired 1D convolutional
neural network for the classification of SC RCA. The input
to the network are the 3D centerline coordinates, which are
processed by a set of 1D convolutional layers with increasing
dilation grade. The features created from different percep-
tive fields are summed up and fed into a second WaveNet-like
block. The final feature representation is then processed by a
multi-layer perceptron to predict the presence of SC RCA.
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dencies, which are combined and weighted by a multi-layer
perceptron [7].

To prevent overfitting, we randomly rotate our training
data with the ostium as the rotation center in a range of up
to 45 ◦ in all directions.Furthermore, we use a binary cross-
entropy loss, an Adam optimizer with the default learning
rate of 0.001, and default batch size of 32. At test time, data
is augmented by rotations of [−15 ◦, 0 ◦, 15 ◦], with the final
prediction being the mean across all rotations. We use a fixed
amount of 100 epochs to omit the need for a validation set due
to the small number of SA RCA in the dataset. To improve the
robustness of the prediction under this setting, we combine
five training runs to form one final model by averaging the
predictions of the five sub-models. Due to the limited amount
of data, the performance statistics differed for repeated exper-
iments. To obtain reproducible results, we performed a 5-fold
cross-validation and repeated it 25 times. Data was split in a
stratified manner regarding both positive and unsure samples.

2.3. Label Uncertainty Handling

In this work, we evaluate four different strategies to handle
samples with unsure labels: randomly assigning them to one
class globally (“Fixed”) or for each training run (“Varied”),
not including them in the training phase (“Exclusion”), or as-
signing a soft label of 0.5 (“0.5”).

The global random assignment of all samples mimics the
usual handling of unsure cases, which are, in practice, not
labeled as such, but some class assignment is enforced. With
the random assignment for each individual training run of the
ensemble and then combining the prediction over 5 of these
runs, the output probabilities for the unsure cases should lie
in between the distributions of the sure cases.

Not including the unsure samples is also a valid strategy
but decreases the amount of data seen by the network.

Assigning a soft label of 0.5 to the unsure samples en-
courages the probabilities of the network to form a separate
distribution between the negative and positive classes.

2.4. Percentile-based Abstention

As there are samples marked as unsure, evaluating whether
this labeling uncertainty can be confirmed by model uncer-
tainty is an obvious choice. Therefore, we perform learning
with abstention, i.e., determining which samples should be
rejected. Because of the class imbalance, defining an absten-
tion rule around the probability value of 0.5 (anchor) is not
applicable. Instead, we propose a percentile-based approach:
a frequently reported value for the prevalence p(y1) of the SC
RCA is 5 %[8]. Therefore, for an ideal classifier the highest
5 % of the test-set predictions would belong to the positive
class. To account for this, we run inference on the entire test
set and select the prediction value at the 95th percentile (1-
p(y1)) in the probability histogram as the anchor of our ab-
stention interval.

From our defined anchor, we define our exclusion interval
as:

pmin = 1− p(y1)− e ∗ p(y0)
pmax = 1− p(y1) + e ∗ p(y1)

(1)

with pmin and pmax also referring to percentile values in the
histogram and e ∈ [0; 1] denoting the exclusion rate, which
can be varied to specify the amount of coverage, i.e., the
amount of data kept after abstention. With this interval, we
keep the class balance also after abstention, as samples are ex-
cluded in relation to the prior probability of both classes. Note
that the probability values corresponding to the percentiles
can be transferred to new single samples as well.

Additionally, we examine whether a better abstention in-
terval can be achieved by additionally leveraging the infor-
mation of the frequency of the unsure samples observed in
the training data. To this end, we replace p(y1) with p(y1) +
p(y0.5) and p(y0) with p(y0)−(p(y1)+p(y0.5)) in the interval
defined above. We call this configuration “p(y0.5)”.

2.5. Evaluation

Since there are no ground truth labels for the unsure samples,
we propose using the following three performance measures:
we calculate the AUC for all possible permutations of class
assignment for the unsure cases to get the best and worst pos-
sible AUC value. Additionally, we report the performance
solely on the sure samples. As discussed in Section 2.2, 5-
fold cross validation with 25 repetitions was used to obtain
robust results given the small number of overall samples.

3. RESULTS

Our results for the different evaluated configurations are dis-
played in Table 1. From a high-level perspective, there is a
relatively large gap between the best and worst possible AUC,
indicating how much of an impact the relatively small num-
ber of unsure cases can have during test time. Generally, we
reach excellent performance on the data set consisting of high
confidence labels with an AUC of up to 0.940 at 100 % cov-
erage.

The choice of how to handle unsure cases during training
had a small effect. There is a clear trend that the exclusion
of the borderline cases leads to a worse performance. Having
a random assignment for each single training run or globally
performed comparably, with a soft label of 0.5 performing
best.

Regarding abstention, one can recognize that the metrics
stayed mostly the same when only excluding 5 % of the data
and increased slightly at 10 %. Paired with the observation
that the distance between the best and worst possible AUC
is not decreasing, it becomes apparent that only a limited
amount of unsure samples lies in this initial exclusion inter-
val.
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Config AUC 100 % 95 % 90 % 75 %
Exclusion Best 0.942 0.942 0.946 0.963
Fixed Best 0.944∗ 0.946 0.951 0.971
Varied Best 0.944 0.945 0.950 0.969
0.5 Best 0.945 0.947 0.954 0.971
0.5 p(y0.5) Best 0.945 0.951 0.958 0.970
Exclusion Worst 0.878 0.874 0.877 0.922
Fixed Worst 0.885∗∗∗ 0.885 0.890 0.939
Varied Worst 0.885 0.885 0.892 0.940
0.5 Worst 0.887 0.887 0.894 0.941
0.5 p(y0.5) Worst 0.887 0.899 0.914 0.950
Exclusion Sure 0.934 0.931 0.933 0.954
Fixed Sure 0.937∗∗ 0.937 0.941 0.965
Varied Sure 0.937 0.937 0.941 0.964
0.5 Sure 0.938∗ 0.939 0.945 0.966
0.5 p(y0.5) Sure 0.938 0.945 0.953 0.967

Table 1. Performance with respect to the AUC for different
handling of unsure cases with differing amount of coverage.
“Best” and “Worst” are determined by calculating the AUC
for all possible label assignments of the unsure samples. The
“Sure” AUC is calculated only using the samples labeled with
high confidence. Note that 0.5 and 0.5 p(y0.5) refer to the
same training configuration with different abstention parame-
terization. Significance was determined using paired-sample
t-test. For 100 % coverage, the significance levels are dis-
played as ∗ in relation to the next worst configuration with
respect to the AUC with the following p-value thresholds:
∗ := p < .05, ∗∗ := p < 0.01 and ∗∗∗ := p < 0.002
p∗ := 0.002 according to Bonferroni correction.

However, when including the information about the fre-
quency of both true positive and unsure cases (p(y0.5)) in
the determination of the abstention interval, we notice an im-
provement of up to 0.021 for the worst possible AUC at a
coverage of 90 %. Also, the distance between the best and
worst possible AUC decreases to a great extent, especially at
a coverage of 75 %. This indicates that a majority of the un-
sure samples lies within this exclusion interval and therefore
form a distinct distribution in the probability space.

4. DISCUSSION

First, we want to discuss the model design choice. We are
unaware of any work performing classification regarding the
course of the centerline. However, there are related works
on registration or segment labeling of centerlines which ei-
ther utilize 1D convolutions without dilation [9] or recurrent
neural networks [10, 11]. We tested these approaches in ini-
tial experiments, but the model proposed in this manuscript
yielded better results. Therefore, this WaveNet-like feature
extraction might also be applicable to other approaches in this
area.

Architectures like PointNet [12] or ones based on graph
deep learning [13] are more complex alternatives for the task
at hand. These approaches might face additional challenges
due to overfitting on a global structure or struggle to learn
the internal connectivity of the centerline but this could be
explored in future work.

Regarding our second research question of how to handle
unsure samples, two related research fields come into mind:
combating label noise and how to merge multiple annotators.
Methods to combat label noise might be able to improve re-
sults presented in this paper. However, these algorithms do
not answer the question on how to handle the unsure cases
in the first place. With multiple annotators, strategies like
taking the majority vote as confident label or ensembles, for
which every sub-model is trained on a different annotator ex-
ist. These concepts are very similar to the strategies we eval-
uated here. A similar concept for introducing soft labels from
multiple annotators was proposed very recently [14]. How-
ever, there are no works linking this concept to abstention yet.

Regarding abstention, we propose a strategy that can be
directly applied to a trained model. There are other meth-
ods for uncertainty estimation and abstention which either try
to estimate an underlying gamma distribution in the proba-
bility space for each sample [15] or include a dedicated ab-
stention class [16]. However, these are usually more invasive
in that it needs more adaptations and a trained model can-
not be taken as is.In contrast, the abstention strategy we pro-
pose is simple and non-invasive. The most similar approach
we found directly predicts uncertainty as a side-task and per-
forms percentile-based abstention based on this uncertainty
output [17].

5. CONCLUSION

We tackled three research questions in our work: can we au-
tomatically detect SC RCA, how should unsure samples be
handled and does the information on how many of these sam-
ples exist help to form a rejection class?

An affirmative answer to the first question is given by the
strong performance of 0.938 AUC on the confidently labeled
data. For the second research question we evaluated a set
of strategies and found small differences in the performance
yield. Overall, soft label assignment performed best. We hope
that our work inspires others to perform similar analyses, es-
pecially as the concept of uncertain labels for single annota-
tors is currently not widely applied in the medical domain.
Finally, we proposed a percentile-based abstention strategy.
Here, we showed that adding information regarding the fre-
quency of unsure cases improved the performance by a large
margin for different levels of coverage.
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6. COMPLIANCE WITH ETHICAL STANDARDS

The CT examinations were clinically indicated by the refer-
ring physicians and conducted in accordance with current
clinical standards, guidelines, and recommendations. The
study was performed in accordance with the Declaration of
Helsinki and was approved by the local ethics committee (S-
226/2016 and S-758/2018, Ethikkommission der Medizinis-
chen Fakultät Heidelberg, Germany). Subjects included as
of January 2019 gave informed consent in the scientific data
analyses. For the retrospective analyses of the datasets ac-
quired before January 2019, a waiver of consent was granted
by the aforementioned ethics committee.
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C H A P T E R 8

Outlook

Having presented the diverse range of research conducted within this thesis and
establishing the broader context of grading coronary artery disease (CAD) from coro-
nary CT angiography (CCTA) scans, it is essential to discuss potential future research
directions and open questions.

Overall, CAD scoring systems aim to provide insight into individual patient risk
and guide clinical decisions with the ultimate goal of mitigating major adverse car-
diac events. However, directly predicting these events or deriving risk factors poses
significant challenges, as patients at high risk typically receive intensive care. This
in turn, leads to a decreased risk for the event actually manifesting which is a chal-
lenge known as the prevention paradox. Consequently, relying on established scoring
systems used in clinical practice remains necessary. However, these scoring systems
are continuously assessed for their effectiveness, and a combination of approaches
is typically employed. A recent development in this field is the recommendation of
coronary artery disease-reporting data system (CAD-RADS) score 2.0 by Cury et
al. [Cury 22]. The main difference from the previous CAD-RADS is the inclusion of
computed tomography (CT)-derived fractional flow reserve (FFR) to guide decision-
making for patients with confirmed significant stenosis. Additionally, CT scans can
directly assess heart muscle perfusion [Gonz 15], providing further insights into the
haemodynamic impact of single lesions and the overall risk of a patient. Conse-
quently, computer-assisted diagnosis systems need to incorporate various tasks and
appropriately weigh their importance, including stenosis grades, haemodynamic sig-
nificance, heart muscle perfusion, and the presence of stents or other grafts. This
provides numerous challenges for future research, e.g., automated analysis and the
exploration of synergies between these different aspects. Furthermore, leveraging in-
formation across multiple modalities may offer a more comprehensive view of patient
risk.

To achieve these goals, it is crucial to aggregate data with both high variance and
high-quality annotations. One potential approach is to deepen our understanding of
the anatomy and variability of the heart and coronary arteries, in conjunction with
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downstream imaging systems. This knowledge could facilitate the generation of large
quantities of synthetic data, including rare anomalies and norm variants, to enhance
performance on these challenging cases [Meis 20]. Image synthesis algorithms have
gained attention and are already being applied to CT volume synthesis [Khad 23].
However, to be applicable for the tasks at hand, anatomically plausible image data,
in a holistic manner, i.e., for the whole disease state, must be simulated. Additionally,
generating a large volume of data necessitates a substantial need for data annotations,
which remain expensive.

Moreover, the field is poised for significant transformation with ongoing technical
advancements in the field of computed tomography CT. The emergence of photon
counting CT has paved the way for various exciting research avenues. This includes
the potential to gain a deeper understanding of vulnerable plaques through the uti-
lization of ultra-high-resolution scans and material decomposition techniques. Addi-
tionally, it offers the possibility of improving the assessment of stenosis degree and
CT-derived FFR by mitigating the impact of calcium blooming artifacts.

Several challenges persist regarding the work conducted in this thesis, including
the explainability of network decisions, enhancing robustness against technical vari-
ations, developing a reliable approach to handle anatomical outliers, and enabling
learning with abstention. As discussed throughout previous chapters, there is defi-
nite value in creating an explainable system that allows readers to easily understand
the network’s decision-making process. Various approaches have been suggested, such
as highlighting the highest activating subsegment or displaying the angle with the
highest outputted probability. However, these approaches require careful qualitative
clinical evaluation for validation. Furthermore, as demonstrated in Section 7.1.3, both
the pre-processing algorithms and the proposed artificial neural network (ANN) are
sensitive to technical variations. As previously discussed, disentangling the biological
from the technical information may offer potential solutions to overcome this limita-
tion. Additionally, addressing norm variants and coronary anomalies requires robust
detection algorithms to exclude them from further processing or specific collection to
enhance the robustness of an automated artificial intelligence (AI) system.

Given the overall strong performance our method achieves, we assume that our
model is currently limited by the availability of lesion-wise annotations and inter-
/intra-operator agreement. To address the latter limitation, conducting studies with
data collections annotated by multiple readers, or as we propose, annotations that
include reader confidence, is necessary. These studies would enable us to assess how
well our system performs in comparison to a trained radiologist and also give an
intuition on the maximum achievable performance.



C H A P T E R 9

Summary

To allow a better overview of the overall content of this thesis, it will wrap up
with a summary. As seen, coronary artery disease (CAD) is an impactful disease,
and research to automatically detect it is of high interest. It is usually related to
atherosclerotic plaque deposits that narrow the coronary artery lumen, obstructing
blood flow. The degree of stenosis caused by these lesions is frequently assessed in
the clinics as it is an established indicator of the impact on the patient’s health. A
modality to examine these lesions in a non-invasive manner is coronary CT angiogra-
phy (CCTA). From CCTA scans, the coronary artery disease-reporting data system
(CAD-RADS) score is determined, which is mainly influenced by the most severe
stenosis for a patient. The coronary artery is subdivided into three branches includ-
ing the right coronary artery (RCA), left artery descending (LAD), and circumflex
artery (CX). For the RCA a norm variant called Shepherd’s crook (SC) RCA exists,
which may complicate minimally invasive procedure due to its tortuous high turn
after the ostium. Coming from this medical background, we define the main research
question of this thesis being: Can we create a computer-assisted diagnosis system to
automatically determine CAD from CCTA data? To answer this question, we con-
ducted research in three areas: in the first part, we perform characterization of single
plaque lesions with respect to significant stenosis degree and revascularization deci-
sion using deep learning (DL). Next, we propose DL-based methods to automatically
determine the CAD-RADS score. Finally, we evaluate differing aspects of the clinical
applicability of such methods.
To foster a superficial understanding of the concept of CCTA acquisition and recon-
struction, Chapter 2 provides a brief basic overview of these topics. By acquiring
X-ray projection images from multiple angles, a 3D computed tomography (CT) vol-
ume can be reconstructed by leveraging the filtered back projection (FBP) algorithm.
For CCTA acquisition specifically, there are some important concepts including the
parameterization of the FBP algorithm and how neighboring imaging stacks acquired
at different heart cycles are combined. Parameters to select include the reconstruction
kernel and the number of iterations for the advanced modeled iterative reconstruction
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(ADMIRE) algorithm, which is an iterative FBP variant.
Next, some basic concepts behind machine learning (ML) are elaborated on in Chap-
ter 3. These are the foundation of the methods applied in this thesis. In a first step,
the main terminologies including measurements, features, predictions and ground
truth are introduced together with the pattern recognition pipeline. The latter de-
scribes the workflow on how a ML system is trained and then deployed during in-
ference. Some key challenges of ML in medical image analysis include the scarcity
of data and that annotations are not always without variance, i.e., there may be
some inherent label uncertainty for hard-to-label cases. Furthermore, medical image
analysis tasks usually suffer from class imbalance and there are often prevalence and
domain shifts for different populations and sites. The chapter continues with a brief
recap of decision trees – which form a simple rule-based classifier – and an extension
of them named eXtreme Gradient Boosting (XGBoost). The latter leverages ensem-
bling of multiple decision trees where new trees are added based on greedy search.
Next, DL-based ML is explained where multiple input features are processed by a
series of functions. Commonly, scaling functions and non-linear activation functions
are alternated, which enables the approximation of any function. By propagating
the gradient with respect to a suitable loss function backwards through this chain of
functions – leveraging the chain rule on the way – the gradient with respect to the
weight parameters of the scaling functions can be calculated. These gradients can
then be used to update the weights. This same principle can be applied on images
using convolutional neural networks (CNNs), and on time series data using recurrent
neural networks (RNNs).
Due to a high quantity of novel literature in the field, it rendered necessary to provide
an overview of the most recent related work in Chapter 4. First, intuition on how
CAD is assessed in the clinical workflow is fostered. The usual pipeline leverages al-
ready established pre-processing including centerline extraction and labeling to help
with the localization of lesions. Furthermore, multi planar reformation (MPR) and
curved planar reformation (CPR) images which utilize the centerlines for efficient
visualization of the area of interest are employed. To narrow down the problem and
input a good data representation to any artificial neural network (ANN) approach,
most related work leverage the MPR or CPR views as an input. Furthermore, to
incorporate the prior knowledge on the cylindrical structure of vessels in the MPR
format, polar transformation can be leveraged. There exists a variety of architectures
employed. The most commonly used method design utilizes local feature extractors
along the centerline and then analyzes the sequence information using RNNs.
With the theoretical foundation and related work defined, research work on coronary
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plaque characterization is presented in Chapter 5. Here, the targets are significant
stenosis grade and the revascularization decision on lesion-level. In the first presented
paper, three different approaches are proposed. The first approach takes a segmen-
tation of a coronary plaque as input, calculates several different features from the
mask and CCTA volume and then predicts the targets at hand using the XGBoost
classifier. A second approach extracts features from MPR cubes along the centerline
transformed into a cylindrical coordinate system and analyzes the resulting sequence
using an RNN. As a final approach, a combination of the first two approaches is
proposed, where masks along the centerline are segmented and for each mask, shape
features are extracted. The sequence of features is then analyzed using an RNN. As
two of these approaches require a prior segmentation, which is an additional error-
prone step, further research is conducted. Here, an efficient data representation is
leveraged where only two orthogonal longitudinal slices along the MPR volume are
taken as an input. Additionally, a lightweight CNN and test time augmentation
(TTA) are employed. Overall, the choice of input representation and architectural
design are motivated by the characteristics of the pathology at hand. We are able
to find a well-working data representation and network design. Result-wise the best
performing method of our first paper reaches an area under the receiver operating
characteristic curve (AUC) of 0.96 and 0.88 for the tasks of significant stenosis and
revascularization decision, respectively. However, this method had the need for prior
segmentation as a major drawback. With the best segmentation-agnostic method,
we are able to reach an AUC of 0.92 and 0.90 on the respective stenosis degree and
revascularization decision classification tasks.
In the subsequent Chapter 6, learnings from the previous chapter are leveraged to
enable patient-wise CAD-RADS grading. Here, a multi-step pipeline is proposed.
First, the coronary centerlines are extracted and subsequently divided into subseg-
ments according to the american heart association (AHA) guidelines with respective
ML approaches. Then, MPR volumes for each subsegment are extracted and inter-
polated to one common length. Subsequently, a hierarchical network architecture is
leveraged, which takes orthogonal longitudinal views cut from the MPR volumes as
utilized for our prior research as input. For each segment, features are extracted using
a CNN. These features are then combined using a global max pooling operation to
have a global feature representation, which is next used to predict the CAD-RADS
grade with a multi-layer perceptron (MLP). Apart from this, the segment-wise fea-
tures are used to predict the stenosis grade as an auxiliary target. An additional
auxiliary target is the Agatston score (AS) at patient-level. To get rid of the in-
terpolation step necessary due to the segments of varying sizes and to have a more
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robust centerline labeling altogether, we published a further paper on this topic. A
simple rule-based centerline labeling approach is proposed, along with some minor
improvements including a label encoding suited for ordinal classification and TTAs.
This centerline labeling approach subdivides the coronary artery tree into segments
of the same size. These may not be anatomically correct, but it enables comparison
across patients and allows us to get rid of the interpolation step. With the final
approach, we manage to rule-out patients to have CAD with an AUC of 0.942 and
hold-out patients from further invasive assessment with an AUC of 0.950. These
demonstrated strong results may allow for clinical application in a screening or sec-
ond reader scenario.
However, there are some questions regarding the clinical applicability we evaluate in
Chapter 7. As our proposed method is embedded into a larger pipeline, it is essential
to evaluate its robustness with respect to deviation in the earliest pipeline steps. As
one of the first steps to allow for CCTA interpretation is the CCTA reconstruction, we
evaluate the influence of a set of clinically often varied image formation parameters
on the final network prediction. Namely, we alter the ADMIRE strength, the choice
of reconstruction kernel, and the stacking strategy. In order to disentangle the influ-
ence of these variations on the pre-processing steps from our ANN prediction, we also
evaluate the performance changes with the pre-processing results propagated from a
default configuration to all others. We observe that the overall performance of our
method does not show a significant drop for all but the true stack configuration. This
can be qualitatively explained, as the resulting stacking artifacts may lead to vessels
appearing narrowed. Moreover, we observed changed predictions on a per-patient
level. As one expects the prediction of a CAD system to mainly rely on biological
information, we conclude that future work needs to disentangle the biological from
the technical variation. Another aspect of the clinical applicability is how rarer norm
variants or anomalies are handled. As a proof of concept, we propose a method to
predict the SC RCA from centerline data. Since we find that assigning a confident
label is not possible for all of the samples, we experiment with a border case class and
tried to exclude samples from it using a strategy to abstain from assigning a class to
some of the samples.
Moving forward from this, we outline various future research directions in Chapter 8.
In a broader scope, they include the combination of different clinical scores and the
synthesis of large quantities of data with generative models. For the methods pre-
sented in this work in particular, we identify the disentanglement of biological and
technical variation, detection of anatomical outliers, explainability of the predictions,
and a comparison with the maximum human performance as open topics.
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J. Eckert, M. Sühling, A. Schmermund, and A. Maier. “Coronary artery
plaque characterization from CCTA scans using deep learning and ra-
diomics”. In: International Conference on Medical Image Computing and
Computer-Assisted Intervention, pp. 593–601, Springer, 2019.

[Denz 20a] F. Denzinger, M. Wels, K. Breininger, M. A. Gülsün, M. Schöbinger,
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