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1 Summary / Zusammenfassung 

1.1 Summary 

The development of targeted immunotherapies in the last decade has opened novel treatment modalities for 

many cancer entities. In particular, antigen-based treatment systems have received significant attention. 

These methods deliver tumor-derived antigens to the patient’s immune system intending to stimulate a 

specific and lasting immune response. Prominent methods in use for the delivery of antigens are antigen-

encoding mRNA- or DNA-laden vectors like lipid nanoparticles or adenoviruses, as well as externally matured 

autologous dendritic cells or externally expanded autologous T cells. During the application of these 

immunotherapies, several challenges became apparent. First, the discovery of suitable target genes has 

proven difficult since the antigens need to be restricted to the tumor, i.e., not found or, at most, very lowly 

expressed in the rest of the body. Secondly, antigen loss from the tumor under pressure by the immune 

system is a repeated occurrence and must be mitigated to ensure long-lasting therapeutic efficacy. Finally, 

unavoidable off-target effects must be limited in their severity. This thesis aimed to develop novel 

computational tools and algorithms to address and overcome the above-presented issues. 

In the first part of this project, we created a pipeline based on next-generation sequencing data to select 

overly expressed genes in a tumor model which are not or only minimally expressed in survival-critical tissues. 

As a feasibility study, we predicted antigens against metastatic melanoma and found 35 candidate genes. We 

predicted all possible peptides with a length of 9 to 12 amino acids and their corresponding binding affinity 

to different HLA Class I alleles. Using a multivariate score, we ranked all derived peptides and their allele-

specific epitopes and provided them to the community in an online database. With our algorithm being free 

of prior knowledge and based only on primary data, we deemed the selection of the well-known metastatic 

melanoma marker MAGE-A3 as validation of our approach. In addition, our tolerability evaluation effectively 

filtered out a known MAGE-A3-derived antigen that had caused severe side effects in a clinical trial. In the 

second part of this project, we set out to improve several aspects of our pipeline. First, to implement a 

generalizable prediction procedure; second, to evaluate the biological relevance of the antigen for the tumor 

and third, to perform experimental validation of the efficacy of our candidates. We adapted our prediction 

system by integrating a machine learning model that evaluates both binding and immunogenic activity 

probability in a generalized manner. We also developed a network model that tries to gauge an antigen's 

relevance for the tumor to reduce the chances of antigen loss. We implemented this approach with data 

derived from metastasized primary uveal melanoma and found a set of 22 candidate genes. Several 

experiments with autologous T-cells were performed for validation, showing that our predicted peptides 

elicited an immune response in an in vitro setting for some of our healthy donors. Further, a cytotoxicity assay 

showed that the peptide-stimulated T-cells killed the uveal melanoma cell line 92.1 in an antigen-specific 
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fashion. Using in silico and in vitro methods, we strived to discover novel tumor antigens and to provide a 

decision support system to facilitate applicability. 

 

1.2 Zusammenfassung 

Die Entwicklung zielgerichteter Immuntherapien im letzten Jahrzehnt hat neue Behandlungsmöglichkeiten 

für viele Krebsarten eröffnet. Insbesondere Antigen-basierte Behandlungssysteme haben große Aufmerk-

samkeit erfahren. Bei diesen Methoden wird dem Patienten ein gegen den Tumor gerichtetes Antigen ver-

abreicht, mit dem Ziel, eine spezifische und dauerhafte Immunantwort zu stimulieren. Prominente Metho-

den für die Verabreichung von Antigenen sind Antigen-kodierende mRNA- oder DNA-beladene Vektorsys-

teme wie Lipid-Nanopartikel oder Adenoviren sowie extern maturierte autologe dendritische Zellen oder ex-

tern expandierte autologe T-Zellen. Bei der Anwendung dieser Immuntherapien traten mehrere Herausfor-

derungen zutage. Erstens hat sich die Entdeckung geeigneter Zielgene als schwierig erwiesen, da sie auf den 

Tumor beschränkt sein müssen, also im übrigen Körper nicht oder nur in geringem Maße exprimiert sein 

dürfen. Zweitens besteht die Möglichkeit, dass Antigene unter dem Druck des Immunsystems auf den Tumor 

verloren gehen. Dies muss verhindert werden, um eine langanhaltende Wirkung der Therapie zu erzielen. 

Schließlich kann es zu Off-Target-Effekten kommen, deren Schwere unter Kontrolle bleiben muss. Im ersten 

Teil dieses Projektes haben wir eine bioinformatische Pipeline entwickelt, welche basierend auf Next-Gene-

ration Sequencing Daten Gene in einem Modelltumor auswählt, die im Tumor überexprimiert sind, aber in 

überlebenswichtigen gesunden Geweben kaum oder gar nicht exprimiert wurden. Im Rahmen einer Studie 

haben wir Antigene gegen metastasierte kutane Melanome vorhergesagt und 35 Kandidatengene gefunden. 

Wir sagten alle möglichen Peptide mit einer Länge von 9 bis 12 Aminosäuren und ihre Bindungsaffinitäten zu 

verschiedenen HLA-Allelen der Klasse I voraus. Anhand eines mehrdimensionalen Bewertungssystems ord-

neten wir alle abgeleiteten Peptide und ihre allelspezifischen Epitope und stellten sie in einer Online-Daten-

bank anderen Wissenschaftlern zur Verfügung. Da unser Algorithmus kein etabliertes Wissen nutzt und nur 

auf Primärdaten basiert, sahen wir das Auftauchen des bekannten Melanom-Markers MAGE-A3 als Bestäti-

gung unseres Ansatzes an. Zudem entfernte unsere Verträglichkeitsbewertung ein bekanntes, von MAGE-A3 

abgeleitetes Melanom-Antigen, das in klinischen Studien schwere Nebenwirkungen verursacht hat. Im zwei-

ten Teil dieses Projekts und als Erweiterung dieser Methodik haben wir versucht, mehrere Abschnitte unserer 

Pipeline zu verbessern. Wir haben deshalb erstens das Voraussagemodell generalisiert, zweitens die biologi-

sche Relevanz des Antigens für das Tumorüberleben abgeschätzt und drittens die Wirksamkeit unserer Kan-

didaten experimentell validiert. Zu diesem Zweck haben wir unser Vorhersagesystem angepasst. Wir imple-

mentierten ein auf maschinellem Lernen basierendes Modell, das sowohl die generalisierte Bindung als auch 

die immunogene Aktivität bewertet. Zudem wurde ein Netzwerkmodell erstellt, um die Relevanz eines Anti-

gens für das Tumorwachstum zu beurteilen und die Wahrscheinlichkeit eines Antigenverlusts zu verringern. 



 

3 

 

Wir haben dieses neue System mit Daten von primären Aderhautmelanomen getestet, die bereits Metasta-

sen gebildet hatten. Zur Validierung wurden mehrere Experimente mit autologen T-Zellen durchgeführt, die 

zeigten, dass die von uns vorhergesagten Peptide bei einigen unserer gesunden Spender in vitro eine Immun-

antwort hervorriefen. Darüber hinaus konnte ein Zytotoxizitätstest zeigen, dass die Peptid-stimulierten T-

Zellen die Aderhautmelanom-Zelllinie 92.1 antigenspezifisch abtöteten. Insgesamt konnten wir mit Hilfe von 

in silico und in vitro Methoden neue Tumorantigene entdecken und eine Methodik zur Entscheidungsfindung 

bereitzustellen. 
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2 Introduction 

The past decade has seen an increase in therapeutic options for patients suffering from cancer. Novel 

immunotherapies like the so-called immune checkpoint blockade (ICB) have dramatically increased patients' 

survival time, especially in metastatic cutaneous melanoma (MCM). Response rates to these novel 

treatments, however, remain modest. For ICB, long-term response rates range from 10% to 44%, depending 

on the study and clinical circumstances (Robert et al., 2015; Wolchok et al., 2017). While prognoses have seen 

remarkable improvement, many patients still have minimal options for treatment once the tumor returns or 

fails to respond. 

Additionally, in other melanocyte-derived malignancies, like the most common cancer of the eye, uveal 

melanoma (UM), the prognosis is bleak, and response rates are low, especially after the tumor has spread to 

distant metastases (Wessely et al., 2020). While more options for treatment have been developed over the 

past years, there is still an urgent need for adjuvant or monotherapies that can open therapeutic routes for 

patients and doctors. Without a doubt, therapies that actively target tumor-specific antigens through the 

patient’s immune system will play a significant role in filling this gap. With various delivery systems for tumor-

associated antigens existing today, like vaccine-based approaches, the task is to identify and validate novel 

tumor-associated antigens (TAAs) for their efficacy and safety. Every element of the immune system is 

relevant for the rational design and selection of TAAs for therapy, ranging from phagocytes which take up 

antigens, to lymphocytes which create lasting immunity and mediate the elimination of the targeted tumor. 

Hence, in the following, a brief introduction to the mechanisms and cell types of the immune system is 

provided while focusing on relevant elements for targeted immunotherapy.  

 

2.1 A primer on the human immune system 

All higher organisms, especially mammals and by the nature of things, including humans, have evolved 

complex defense systems to counter pathogens, toxins, or physical damage (Yuan et al., 2014). These systems, 

comprised of physical, chemical, and cellular elements, are generally referred to as the immune system and 

are characterized by complex regulatory networks and biological processes that can respond to a challenge 

from the external environment and internal dysfunction. The primary goal of this system is to distinguish the 

self, the host’s body, from the non-self, a foreign challenge.  Under the current understanding, the human 

immune system is separated into two discrete categories. They are defined as innate immunity and adaptive 

immunity. Innate immunity includes passive mechanisms and tools generally considered germline-encoded 

and invariant over time and between individuals. These passive tools contain elements like skin, mucosa, and 

other anatomical features to prevent or hinder infection, as well as active elements ranging from specific cell 

types, soluble factors like small molecules or proteins, and molecular sensors. Once activated, the different 
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components of the innate immunity trigger an acute state of inflammation (Janeway and Medzhitov, 2002; 

Chaplin, 2010). This complex process can cause a wide range of changes in an organism, from local effects like 

swelling to system-wide effects like increased body temperature. With the release of small signaling 

molecules or cytokines and local effects in the cellular environment, the innate immunity provides the link to 

the activation of adaptive immunity (Chaplin, 2010; Gasteiger et al., 2017). Two core abilities define the 

adaptive immunity. The first ability is to react specifically to novel antigens through somatic recombination 

processes whose resulting receptors are not germline-encoded. These receptors are created and improved 

to combat specific challenges. The second core ability is the generation of memory of encountered challenges 

or antigens. In its reaction time, the adaptive immunity is comparatively slow at first exposure, usually taking 

days to weeks to mount a response. In contrast, innate immunity reacts with a far shorter delay, with local 

effects occurring within minutes of the challenge (Marshall et al., 2018).  

The B and T lymphocytes are the two main cell types involved in the adaptive immune response. These two 

cell types provide the functional backbone for the adaptive response regarding memory and specificity. B 

cells produce specific antibodies while T cells mediate several immune activities, e.g., reinforcement to B cell 

activation or directly killing infected or aberrant cells (Bonilla and Oettgen, 2010; Jain and Pasare, 2017). 

Additionally, while providing this highly specific response, T cells also eradicate dangerous cell populations 

within the body by patrolling and checking cells for atypical internal products. This feature is made possible 

by a system called antigen presentation, which allows the display of internal products of the cell to the T cells. 

Presentation of internal products is crucial in clearing cells that may have been infected with intracellular 

pathogens like viruses, bacteria, or protozoa or may have suffered cancerous mutations (Stenger et al., 1998; 

Huster, Stemberger and Busch, 2006; Jhunjhunwala, Hammer and Delamarre, 2021). While the two categories 

are semantically distinct, innate and adaptive immunity are highly interdependent. For example, many cells 

of the innate immunity are required in the specific activation of T and B cells. They are thus essential for 

creating a targeted response and an immunological memory. 

 

2.1.1 Innate Immunity and its cellular components 

Evolutionarily speaking, the innate immune system is a highly conserved defense system in which some 

hallmark elements are shared between all multicellular life (Buchmann, 2014).  Innate immunity in humans 

encompasses many tools, including physical barriers like the skin or mucosa on exposed tissue like the 

respiratory tract. Its principal task is mounting a quick response with a short reaction time through molecular 

pattern recognition receptors (PRRs) to situations like infection, tissue damage, or other stresses. The reaction 

to these effects can be mediated in many several different ways. Firstly, an immediate response can occur 

through soluble elements secreted by specialized cell types, like antimicrobial peptides, complement factors, 

cytokines, or chemokines. Cell-dependent effector functions may occur like phagocytosis or cytotoxicity 
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(Lubbers et al., 2017). While many cells, also structural cells of the epithelium, can be considered part of the 

cells of the innate immunity, effector cell populations play a more direct role in host defense. These 

populations are derived from the hematopoietic system, involved in the generation of the cellular 

components of the blood, and may be characterized by their maturation sites. Some finish their development 

in the myeloid tissue, while others do in the lymphoid. Generally, innate immunity's myeloid effector cells 

lack adaptive elements tailored to the challenge but are generally equipped with tools to fight infection 

unspecific (Gasteiger et al., 2017). A major subset of these effector cells are the granulocytes, which feature 

the name-giving granules in their cytoplasm. These granules generally contain broad-spectrum defense 

elements like defensins, hydrolases and harsh chemical properties like low pH and reactive oxygen species. 

The four most prominent granulocytes are basophils, eosinophils, neutrophils, and mast cells, with the most 

common population being neutrophils (Breedveld et al., 2017). While basophils, eosinophils, and mast cells 

primarily secret pro-inflammatory and anti-pathogen factors into the environment, neutrophils have another 

critical function. They are part of the effector cell population deemed phagocytes capable of taking up and 

digesting pathogens from the environment. This ability allows them to act as processing cells for pathogen-

derived products and shuttle them to other cells of the immune system via different mechanisms like antigen 

presentation or through entering programmed cell death (apoptosis) themselves and exposing other 

phagocytes to their contents (Abdallah et al., 2011; Vono et al., 2017). The uptake and processing of external 

or internal proteins by phagocytes is an essential link between innate and adaptive immunity, so crucial that 

there are two cell populations that are considered professional antigen-presenting cells (APC) in the innate 

immunity. These cell populations are macrophages (MΦ) and dendritic cells (DCs). 

As the name suggests, MΦ are relatively large phagocytes and are found widely distributed through many 

tissues in the body. They play an essential role in the host’s defense and homeostasis management by clearing 

out dead or dying cells and processing fragments derived from them in the phagocytosis process. If pathogens 

have infected cells, pieces from these will also be processed and presented (Ovchinnikov, 2008). While MΦ  

have a broad range of functions, from maintaining tissue integrity to managing metabolism, DCs are far more 

specialized in cross-linking the different parts of the immune system (Wynn, Chawla and Pollard, 2013). DCs, 

named for their filament-like structure, are deemed the sentinel of the immune system with necessary 

functionality in bridging the innate and the adaptive immunity. While peripheral MΦ, once engaged, will stay 

in an area and perform mainly phagocytic activities, DCs will preferentially migrate after being stimulated 

through the uptake of foreign antigens or external signals like cytokines. The stimulated DCs will drain in far 

greater numbers to the lymph nodes of the area and proceed there to activate T cells and B cells responsible 

for mounting targeted response (Tamoutounour et al., 2013). Additionally, while DCs are also considered 

professional phagocytes like MΦ and Neutrophils, they are far less aggressive in the digestion of material they 
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have taken up. Thus, they can conserve more information from potential threats for the further activation of 

specialized components of the immune response (Savina and Amigorena, 2007).  

To this end, they feature another characteristic capability called cross-presentation, a process in which DCs 

can present exogenous antigens through a protein complex generally reserved for presenting internal 

antigens (Gutiérrez-Martínez et al., 2015; Embgenbroich and Burgdorf, 2018). Innate immunity, especially 

with its phagocytes and APCs, is essential in hosting a defense and is vital in eradicating threats, including 

cancer. Since cancers can show a disturbed gene expression and sometimes also a high occurrence of 

mutations in protein-coding genes, it is upon the APC elements of the innate immunity to take up these 

aberrant gene products and present them to the adaptive immunity (An et al., 2015; Kang et al., 2020). In 

cancer therapy, different approaches have been under research to exploit APCs to deliver TAAs to the patient’s 

immune system and stimulate an appropriate response by vaccination-based methods or autologous transfer 

of APC (El Ansary et al., 2013; Elias A. T. Koch et al., 2022). However, a significant hurdle has been in identifying 

immunogenic and safe TAAs that could be used as a therapeutic option (Feola et al., 2020). 

 

2.1.2 Adaptive immunity and its hallmark features 

With APCs and DCs especially being able to take up and present elements of a destroyed pathogen or cell to 

other cells, it is in the lymph nodes (LN) where they fulfill one of their primary roles. They form a bridge 

between innate and adaptive immunity (Bonneau et al., 2006; den Haan, Arens and van Zelm, 2014). With 

their specialized surface molecules, called the major histocompatibility complex (MHC), APCs can present 

fragments to one of the two significant cell populations of the adaptive immunity, the T lymphocytes. The 

other considerable population of the adaptive immunity, B lymphocytes, are APCs themselves and feature 

antigen-specific receptors that can be activated upon encountering peripheral antigens (Yuseff et al., 2013). 

These two groups characterize and facilitate two hallmark elements of adaptive immunity – antigen specificity 

and memory. The first hallmark element, antigen specificity, is a feature that allows cells to produce target-

specific antibodies in the case of B cells or receptors in the case of T cells. Importantly, this occurs without 

needing to encode millions of specific receptors as single genes in the genome. This feat is achieved through 

the generation of diversity by somatic V(D)J recombination. This remarkable process of diversity generation 

allows for the exons of the regions that code for the antigen-specific site of an antibody (AB), or antigen 

specific receptors to be generated by repeated breaks and reassembly of DNA during the development of the 

lymphocytes. These assembled exons are derived from the blocks called V (Variable), D (Diversity) and J 

(Joining) elements which function by a cut and paste mechanism with some degrees of freedom in the spacer 

regions between the fragments. Through this combinatorial system of using different V, D or J blocks while 

also allowing for small insertions or deletions in the nucleotide sequence, it is possible to generate a large 

repertoire of antigen recognition for ABs or T cell receptors (TCR) (Roth, 2015). While there are additional 
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mechanisms for AB diversity creation in B cells, for T cells, the primary avenue is VDJ recombination. The 

human immune system consists of an estimated 1011 T cells and each expressing one TCR only, it is still 

possible to generate a large spectrum of immunological coverage (Clark et al., 1999).  

The second hallmark of the adaptive immunity is memory generation. While recent studies have shown that 

the innate immunity also undergoes a habituation or training process, no currently established cell types of 

the innate immunity are known to impart this memory (Netea et al., 2020). In contrast, the adaptive immunity 

features dedicated subpopulations that are specifically committed to impart long-term storage of the 

memory of a pathogen encounter and its response for its primary cell types. After encountering strong 

enough stimulation through exposure to their specific antigen, B cells can proliferate and differentiate into 

different subpopulations. Given an immunological challenge and the activation of unexposed or naïve B cells, 

one population of the progeny of the B cell will become either a plasma cell, specialized in producing large 

quantities of AB and thus directly supporting the current immune reaction. In contrast, the other part of the 

population will turn into memory B cells that circulate through the body in a hibernation state and show 

decades-long lifespans. These memory cells require repeated exposure to the antigen to be reactivated and 

thus provide long-lasting immunity (Taylor, Jenkins and Pape, 2012; Seifert and Küppers, 2016).  

Like B cells, T cells can form long-lasting memory populations. Although their exact development path is still 

unclear, two models are currently being discussed regarding how memory populations of T cells are formed. 

The first model, the circular or on-off model, poses that once a naïve T cell has been exposed to its antigen, 

it differentiates into its effector phenotype and clears the infection or cancerous cell population. After 

clearance and the subsiding of an acute phase of inflammation, a proportion of the effector cells die due to 

programmed cell death (apoptosis). At the same time, another set differentiates into a memory T cell 

phenotype. Should the antigen be reencountered, these memory T cells will regain their effector phenotype 

and proliferate again (Youngblood, Hale and Ahmed, 2013). Notably, the cyclic nature of this model would 

require the re- and dedifferentiation of these cell populations, a process highly debated and yet to be 

observed in the non-stem cell, somatic cell populations (Henning, Klebanoff and Restifo, 2018).  In an 

alternative model, deemed the linear differentiation model, memory T cells do not derive from an effector 

population but directly from a naïve T cell population. The central assumption of this model poses that a 

gradual process, given continuous and antigenic signaling, turns naïve T cells into memory T cells and 

subsequently and terminally into effector T cells. This linear path depends on a consistent and increasing 

antigenic signaling environment that triggers the differentiation of the naïve T cells into memory T cells and, 

finally, effector T cells (Restifo and Gattinoni, 2013). Both models have shown evidence, and both ways to 

generate the memory in the T cell population may be true depending on circumstances and tissue (Henning, 

Roychoudhuri and Restifo, 2018).  
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Memory and antigen specificity form the foundation for long-lasting and effective immunity in the human 

immune system. Both aspects, however, also create challenges for the rational design of therapies. The most 

obvious one is antigen specificity. Short of designing the antigen-specific receptors de novo, which has been 

done for both antibodies and TCRs, it is difficult to find and evaluate possible antigens because of the sheer 

breadth of possible antigen-receptor diversity. Designing and deploying an artificial TCR or AB is a lengthy 

process, and in the context of cancer, antigen loss of the tumor is a constant problem, rendering a newly 

designed TCR or AB useless. While there has been tremendous success and benefit to the patient in tumors 

with well-defined antigens like the CD19 or CD20 surface molecules in some forms of leukemia, the search 

for similar markers or antigens remains elusive for other tumor entities (Brentjens et al., 2003, 2013; Smith, 

2003; Casan et al., 2018). 

Additionally, continuous high antigen signaling, usually necessary to form memory T cells, can lead to a 

phenotype of T cells with a yet-to-be-established clear lineage. Christened an exhausted T cell characterized 

by hypo functionality and reduced effector function, these T cells appear to be impaired in their cytotoxic 

abilities (Blank et al., 2019). Parallels have been observed between memory T cell populations and the 

exhausted T cell phenotype since similar mechanisms seem to be involved in developing these cell states 

(Pauken et al., 2016; Yao et al., 2019). Chronic exposure to antigens may trigger this inert state of T cells to 

limit damage during chronic infection. For cancer, a long-lasting immune challenge, this creates problems for 

the therapy design around defined antigens. Naturally, therapy against one antigen may produce this 

exhausted phenotype by introducing high quantities during treatment (Alfei et al., 2019; McLane, Abdel-

Hakeem and Wherry, 2019). Hence more research is required to offer a wide range of different antigens 

circumventing or mitigating the issue of exhaustion by optimizing their selection methodology to avoid or 

minimize the overall presence of the antigen in other cell populations or tissues of the body. 
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2.1 Antigen presentation through MHC Class I and Class II   

Antigen presentation is an essential part of the immune system. With T cells helping to destroy pathogens 

and supporting B cells in the generation and adaption of ABs, it is necessary to have a system capable of 

presenting pieces of immunobiological information, antigens, to the cellular outside. Especially since T cells, 

as a large effector population of the cellular immune response, cannot directly interact with the intracellular 

environment nor perform phagocytosis. Hence, a system that can sample and present the intracellular 

environment to the extracellular space has evolved.  

Phagocytes and APCs use this system to take up, process, and present targetable information about a 

challenge to elements of the adaptive immunity. This molecular-level self / non-self-discrimination system is 

managed by the major histocompatibility complex (MHC), a name derived from its discovery in tissue 

rejection after transplantation (Allen, 1955; Cunningham, 1977). Encoded by one of the most polymorphous 

loci in the human genome, the Human Leucocyte antigen (HLA) locus, the MHC Class I (MHC-I) and MHC Class 

II (MHC-II) proteins are responsible for presenting endogenously produced antigens and exogenously 

acquired ones, respectively. Since MHC-I is tasked with presenting intracellular products for self-recognition, 

it is expressed on all nucleated cells, while MHC-II is only found on professional antigen-presenting cells and 

foremost on DCs (Ting and Trowsdale, 2002; Li and Raghavan, 2010). Especially with MHC-I being so 

ubiquitously expressed with its task being specifically signaling self or non-self to effector T cells, it lends itself 

to be exploited for therapeutical purposes. In searching for restricted genes or transcripts expressed by a 

tumor, we can attempt to design adjuvant or mono therapies around antigenic peptides derived from these 

genes, which can preferentially bind these MHC molecules to stimulate T cells against our intended target 

artificially. 

 

2.1.1 Papers, please – the immunological self-identification process through MHC-I 

Under homeostasis, cells present autologous peptides bound to MHC-I to patrolling T cell populations which 

are, under healthy conditions, tolerant to these self-antigens. These antigens are short, 8 to 12-AA-long 

peptides non-covalently bound to the MHC-I molecule. They need to be processed and transported to the 

surface to arrive there. For the protein fragment to be displayed on MHC-I and for the immune system to 

interact with it, the source protein must undergo several processing steps. The first step is the ubiquitin-

proteasome pathway which degrades proteins into peptide fragments (Michalek et al., 1993). These 

fragments are, in part, further digested and destroyed by peptidases, with some surviving this process. The 

surviving peptides can be shuttled into the endoplasmatic reticulum (ER) by potentially having a favorable 

affinity towards a transporter protein complex. This transporter protein is the mediator of the first formal 

step in loading MHC-I with peptides and is aptly called the transporter associated with antigen processing 

(TAP). Together with the chaperones Tapasin and Calreticulin, the isomerase ERp57 and the empty MHC-I 
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molecule, TAP forms the peptide loading complex (PLC) in the ER. Tapasin especially plays a vital role in loading 

stored MHC-I molecules in the ER since it keeps the empty MHC-I molecule stable in a sterical state that allows 

for the peptides to bind into the dedicated binding groove. Together with ERp57, Tapasin manages the loading 

of MHC-I with different peptides (Wearsch and Cresswell, 2007; Garstka et al., 2015). During the loading, 

multiple peptides can bind non-covalently to the MHC-I molecule until a peptide with a sufficiently high 

affinity is bound. If the peptides are too long, two peptidases (ERAP1/2) can perform N-terminal trimming of 

the peptides to improve their binding characteristics (Chang et al., 2005). After a bound peptide stabilizes the 

complex, it is transported to the cell surface through the Golgi, where it can present the endogenously 

produced peptide (Figure 1). Although this pathway shows a straightforward way for an internal protein 

product to be presented to the immune system, specialized cells like DCs can present antigens on MHC-I 

which have been taken up from the extracellular environment in a process deemed cross-presentation (Joffre 

et al., 2012). Although some details of the cross-presentation mechanism are not entirely understood, two 

main models have been proposed. One pathway suggested is the phagosome-to-cytosol pathway, in which 

internalized material in a DC enters the cytosol through export from the phagosomal compartment, a vesicle 

containing low pH and hydrolytic enzymes (Ackerman et al., 2003; Palmowski et al., 2006). Once in the 

cytosol, the antigen or peptide can follow the classical path through proteasome degradation and loading in 

the ER. Alternatively, the vacuolar pathway allows the loading of MHC-I directly in the phagosome after 

pathogens are degraded. The loading requires the shuttling of ER-derived components like the PLC to the 

phagosome, which has been demonstrated under some conditions, but the mechanism is still under 

investigation (Nair-Gupta et al., 2014; Blander, 2018).  

Since, from a therapeutical perspective, we must bring antigens somehow to the attention of the effector 

cells, antigen presentation and cross-presentation by APCs and DCs are important processes. However, they 

also create difficulties in developing predictive computer models and therapies. Especially predicting the 

probability of presentation of any given peptide has proven complex due to the many cellular elements 

involved. Computational models that factor in some of these variables, like the TAP affinity of peptides, have 

been developed but have yet to produce robust predictions which can be reliably validated, although 

significant progress has been made (Bhasin, Lata and Raghava, 2007; O’Donnell, Rubinsteyn and Laserson, 

2020). Most notably, the lack of training data and missing pieces in the molecular understanding of how 

antigen presentation and cross-presentation work are persisting issues in constructing accurate, predictive 

computational models. Thus, current approaches try to model and predict a peptide's chemical affinity to the 

MHC-I molecule as a generalizable and measurable feature. 
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Figure 1: Abstracted illustration of the MHC-I processing pathway. Intracellular proteins are degraded in the cytosol 
by the Proteasome. Through the TAP transporter, they are translocated into the ER lumen and loaded onto the empty 
MHC-I molecule. The chaperones Calreticulin and Tapasin stabilize the peptide loading complex, while the isomerase 
ERp57 aids in peptide loading. If the peptide is too long, trimming through the aminopeptidases ERAP 1 and ERAP2 
may occur. Once the complex is stable, it is exported to the plasma membrane through the secretory pathway via the 
Golgi to the cell’s surface to present intracellular products to T cells. 
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2.1.2 HLA Class I Polymorphisms - Defense in diversity, scorn for the modeler 

The self/non-self-presentation machinery of the immune system has to handle a lot of possible variabilities. 

Viruses, bacteria, or cancer may all produce different protein variations and, subsequently, peptide subsets 

that need to be bound and presented to effector T cells reliably for an effective immune response. Evolution 

has created a highly complex system with human leukocyte antigen (HLA) complex to solve this problem. This 

set of genes encoded on chromosome 6 is one of the most polymorphic regions in the genome, with an 

unparalleled number of alleles known. Three major genes, HLA Class I A, B, and C, which are co-dominantly 

expressed, provide the immune system with a high degree of flexibility to present a large variety of peptides. 

The IPD-IMGT/HLA database currently holds over 24,000 alleles known for these three subtypes (Robinson et 

al., 2020). A high degree of polymorphism is predominantly found in the exons coding for the peptide binding 

pocket, which explains the increased flexibility of these molecules in accepting different peptides (Solberg et 

al., 2008; Buhler and Sanchez-Mazas, 2011).  

This feature is deemed the heterozygous advantage model and was formulated by Doherty and Zinkernagel. 

It is built on the idea that diversity in these loci confers evolutionary fitness advantage for the individuals in 

contrast to a homozygous genotype. It is proposed that this results from co-evolution with a high variety of 

pathogens (Doherty and Zinkernagel, 1975; Meyer and Thomson, 2001). While this complex system allows 

our immune system to be adaptable to a wide variety of challenges, it creates a significant degree of variables 

needed to be considered when trying to model binding properties or probabilities of the peptides in silico. It 

has been shown that different HLA alleles have other length preferences, with, for example, HLA-A*01:011  

preferring peptides of length 10 to 15 while HLA-A*02:01 preferentially bindings 8 to 12 in vitro. Through 

elution of naturally presented peptides, however, it has been determined that most peptides found on MHC-

I are of the lengths 9 to 12 AA. Thus, predictive models usually only cover this length space (Trolle et al., 

2016).  

Additionally, different positions within the peptide are weighted more importantly, and T cells prefer different 

distributions of AAs bound for a given allele. Adding to this, T cells may not recognize other positions, 

especially terminal ones in the peptide, since they act as anchor residues to the binding groove of the MHC-I 

molecule, with some data suggesting that they may yet be recognized by T cells (Calis et al., 2013; Guillaume 

et al., 2018; Zajonc, 2020). Accounting for all these dimensions immensely increases the number of candidate 

epitopes (the combination of peptide and MHC-allele). Hence, modeling binding and immune activity is an 

ongoing research field trying to establish reliable computational models to predict the binding of a peptide 

to any known HLA allele in silico and to help find immunogenic candidates for experimental validation. 

 
1 HLA nomenclature is a specific system which establishes notation rules for these polymorphic loci. Designating an 
allele, A*01:01 means that this allele belongs to the group of alleles that encode for the A1 serological antigen with :01 
referring to a specific, unique HLA protein. If alleles differ in these digits, this means that they differ in at least one coding 
nucleotide change between them. 
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2.2 Cytotoxic T lymphocytes their role in immunity and immunotherapy 

T lymphocytes, originating from the bone marrow, migrate to the thymus, where they undergo a maturation 

process before they enter the periphery. After exiting the thymus, T cells are naïve, meaning they have not 

yet encountered their cognate antigen through their TCR. Two distinct subsets of naïve T cells are released 

into circulation, characterized by their defining surface markers. The CD4+ subset, also classified as T helper 

cells, is mainly responsible for managing and boosting immunity by activating B cells. The other subgroup 

comprises the cytotoxic CD8+ T cells (CTLs), which play a more direct role in eradicating an infection or 

immunological challenge. As the name suggests, they can induce apoptosis in cells through different 

mechanisms if they present the appropriate antigen through the MHC-I surface receptors to the T cell, 

provided there are secondary activation signals. This ability makes them a highly studied cell type for 

immunotherapeutic purposes since they aim to employ their antigen-dependent cytotoxic ability against 

cancer or other diseases (Waldman, Fritz and Lenardo, 2020). 

 

2.2.1 Cellular hunters – Target identification and destruction by T cells 

T cells form their TCR during early development in the thymus from randomly combined V(D)J-recombination 

events. This recombination event leads to a unique TCR for each developing lymphocyte that designates them 

as a specific T cell clone. While the TCR may be antigen-specific in the context of an ongoing immune 

response, its binding behavior, with respect to all possible antigens one T cell could encounter, is considered 

degenerate. This means a T cell can be cross-reactive to achieve a high immunity coverage against foreign 

antigens. Hence, different TCRs can bind the same antigen, while one TCR may recognize many antigens 

(Sewell, 2012; Wooldridge et al., 2012).  

Fundamentally, once a CTL has been activated by encountering an APC-presenting peptide that its TCR 

recognizes in the context of MHC Class I, it patrols the periphery outside the lymphatic system for its target 

cells. These could be cells infected by viruses or cancerous cells expressing mutated or damaged genes. First 

contact between a CTL and a potential target cell occurs antigen-independent and is mediated by adhesion 

molecules like LFA-1 on the CTL and ICAM-1/2 on the subject cell (Bierer and Burakoff, 1988; Harjunpää et al., 

2019). Should the cell present the antigen on its MHC Class I molecule, the interaction between the target 

and the CTL increases in strength. It thus extends the contact time between the two cells forming what is 

generally considered an immunological synapse (Xie, Tato and Davis, 2013). The contact surface between the 

cells increases through cytoskeletal rearrangements, and more TCRs engage peptide-MHC (pMHC) complexes 

(Huppa and Davis, 2003). The TCRs recognize non-self-peptides bound on MHC-I through their TCR variable 

domains. Other molecules like the MHC-I specific CD8 receptor act as a co-stimulatory signal transduction 

molecule and aid in the final confirmation of the target and subsequent activation of the CTL.  
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If the CTL was naïve, additional co-stimulatory signaling from an APC through CD28 is necessary to fully 

activate the CTL (Zumerle, Molon and Viola, 2017). After activation, CTLs clonally expand, meaning that a 

single CTL with a single TCR proliferates, increasing the amount of antigen-specific CTLs in the body to fight 

off a threat. Additionally, activated CTLs show increased production of several cytokines and chemokines like 

Interleukin-2 (IL-2) and Interferon-𝛾 (IFN-𝛾) (Tomiyama, Matsuda and Takiguchi, 2002). Both of these 

cytokines can stimulate further CTL differentiation and activation, thus promoting the acute immune 

response (Castro et al., 2018; Ross and Cantrell, 2018).  

Commonly, IFN-𝛾 is used as a marker for in vitro confirmation of antigen-specific CTL activation (Schoenborn 

and Wilson, 2007).  Once there are enough peripheral stimuli, the killing machinery is engaged. With close 

spatial proximity, the CTL begins to secret targeted cell death-inducing granules filled with granzymes, 

perforin, cathepsin C, and granulysin, which can fuse with the membrane of the targeted cell. Through the 

action of perforin, pores form in the target cell's membrane through which pro-apoptotic proteases can 

diffuse (Trapani, 1995).  Once in the target cell’s cytoplasm, they trigger apoptosis programs, like the caspase-

3 cascade, which in turn activates DNA-digesting enzymes. Releasing these apoptotic factors leads to the 

fragmentation of the cells and potential intra-cellular pathogen debris, and subsequent cell death. The 

remnants of apoptotic cells are quickly taken up by APCs, which can increase the immune response, thus 

creating self-sustaining and reinforcing loops (Figure 2). While more options exist for the T cell to kill its target, 

the fundamental aspects remain constant (Gordy and He, 2012). A target is identified, confirmed, and 

eliminated. This hunting-like approach to antigen-specific killing of target cells by a mobile cell population is 

particularly interesting for clinical research.   

Figure 2: Simplified process of antigen-specific cancer cell killing by a cytotoxic CD8+ T cell. (I) Antigen-presenting 
cell (APC) or Dendritic cell (DC) presents cancer-derived antigen (red molecule) on its MHC-I receptor (blue receptor) 
to a CD8+ T cell. In the process, if the T cell’s TCR (orange receptor) binds the antigen-MHC-I complex, the T cell gets 
activated and can clonally expand. (II) The activated CD8+ T cells migrate to the tumor site where they can recognize 
cancer cells antigen-dependent. Through the secretion of cytotoxic molecules, cancer cells are eliminated. (III) Cancer 
cells are killed through CD8+ T cells. Upon death, the cells leave behind debris which in turn can be taken up by APCs. 
The APCs can, then, again, stimulate a further reaction from the immune system or stimulate additional T cell clones 
to react.  
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Therapeutically exploiting the T cell population has been discussed in some form or another for the past 50 

years and has roots going back even further (Oiseth and Aziz, 2017).  Recent exploitations of the cytotoxic 

potential of T cells have been made with the advent of ICB treatment, an AB-based method to blockade 

molecules acting as anti-apoptotic signaling molecules strongly expressed by tumors (Favero et al., 2015). 

Another approach is extracting T cells from a tumor biopsy, stimulating them to expand clonally, and re-

transfusing them into the patient. This therapy, called autologous T-cell transfer (ATC), has also shown 

promising results (Rosenberg et al., 1994; Zacharakis et al., 2018). Circumventing the MHC restriction of T 

cells, artificially constructed antigen receptors can be introduced into the T cell, making it respond to surface 

antigens, like ABs.  This method, called chimeric antigen receptor (CAR) T cell therapy, has yielded significant 

results in non-solid tumors. Anti-cancer vaccines or the autologous transfer of APCs are also heavily studied 

areas of anti-cancer therapy (Raskov et al., 2021).  

All methods but checkpoint blockade therapy rely on the presence of tumor-specific T-cell antigens. While 

ATC can be naïve of antigens, it has been shown that expanding the T cells specifically against tumor antigens 

yields a better response (Zacharakis et al., 2018). By definition, CAR T cells require a tumor-restricted antigen 

expressed on the surface of tumor cells, which is not ubiquitously found in the healthy tissue, or the loss of 

the healthy cells is tolerable and not survival critical. Vaccines and autologous APC transfer rely heavily on 

prior knowledge of T cell antigens for the vaccine design or APC loading (Van Der Bruggen et al., 1991). Taken 

together, the study of T cell antigens derived from tumor-restricted gene expression is essential to leverage 

the cytotoxic potential of T cells. 

 

2.2.2 Central and peripheral tolerance – Managing cytotoxic cells 

As we have established, CTLs can kill cells through the recognition of antigen-specific small, generally 9 to 12 

amino acid-long peptides bound to the MHC-I molecule. It is immediately apparent that combined with a 

large population of cytotoxic cells and the nature of the random generation of their antigen receptor, there 

exists a potential for unintended autoreactivity, which may cause damage in healthy tissue. Hence, a system 

that efficiently trains CTLs to discriminate between self-antigens and non-self-antigens and select out those 

T cells that carry a self-reactive receptor must exist. This system is multipronged and generally separated into 

the central element, an integral part of the maturation of T cells in the thymus, and the peripheral element, 

a redundancy and post hoc method to tamper CTL activity. During development, T cells in the thymus must 

first demonstrate that their generated TCR can bind to the host’s MHC-I alleles, ensuring that base 

functionality has been established (Davis et al., 1998; Takaba and Takayanagi, 2017). This initial testing 

process includes an affinity-based selection determining if a T cell will differentiate into a CD8+ CTL or a CD4+ 

T helper cell by either binding MHC-I or MHC-II preferentially (Anderson and Takahama, 2012). After it has 

been established that T cells can bind to an MHC receptor, specialized cells and APCs in the thymus will 
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present self-antigens to the nascent T cells. Medullary thymic epithelial cells (mTECs) will express almost all 

encoded peripheral genes by a process deemed promiscuous gene expression. This includes genes, which 

under normal homeostasis, are restricted to highly specialized tissues like the muscle-enriched gene MYLK2 

or the thyroid gland-restricted thyroid stimulating hormone receptor (TSHR) (Gabrielsen et al., 2019). These 

genes are thus known as tissue-restricted antigens (TRA).   

However, not every individual mTEC will express all TRAs, but each TRA will only be expressed and presented 

by a small percentage of the collective with numbers ranging from 1 to 20% (Peterson, Org and Rebane, 2008; 

Klein et al., 2014; Gabrielsen et al., 2019). Once a CTL encounters a self-antigen on an mTEC and binds the 

encountered MHC-I self-peptide combination too strongly, it will be clonally deleted through apoptosis. Thus, 

the escape of a strongly self-reactive T cell clone into the periphery is averted. This system ensures that the 

randomly generated TCRs, which show a high affinity to self-antigens, are not circulating through the body. 

However, as with most biological systems, this process is stochastic, restricted by spatial interactions in the 

thymus, and simply imperfect (Klein et al., 2009). 

Autoimmunity induced by self-reactive T cells is a common pathological occurrence, like in type 1 diabetes or 

inflammatory bowel disease (Kappeler and Mueller, 2000; Pugliese, 2017). In order to manage escaped 

autoreactive CTLs, several elements are in place roughly characterized by the term peripheral tolerance. 

Regulatory T cells (T regs), a subset of CD4+ T helper cells, are immune suppressive and actively tamper 

autoreactive T cells through the excretion of inhibitory cytokines to resolve an ongoing inflammation or 

maintain self-tolerance during acute inflammation (Kearley et al., 2005). Additionally, suppose a CTL 

repeatedly encounters its specific antigen without adequate co-stimulatory signals. In that case, the CTL will 

enter a long-term hypo responsiveness called anergy, characterized by suppressed effector function even 

when encountering its antigen. This anergic state has been compared and likened to the exhaustion in 

activated T cells after chronic exposure to antigens in the immune response to cancer (Crespo et al., 2013; 

Tabana et al., 2021). Immune checkpoint receptors like programmed death receptor 1 (PD-1) and the 

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) act as off-switches for activated CTLs and can induce an 

anergy state (Xing and Hogquist, 2012; Syn et al., 2017).  While these molecules have been extensively 

exploited in therapy, dysfunction of CTLs is still an ongoing issue and might be antigen-dependent. Since most 

tumor-associated antigens (TAA) are, by definition, self-antigens, we must assume that the central tolerance 

may screen out a large portion of CTLs which may provide therapeutical efficacy. Hence, we also need to 

consider how much peripheral presence exists, e.g., expression in a TAA's non-tumor tissue, and factor this 

into our selection methodology. Selection systems need to determine the degree of potential cross-reactivity 

of a TAA with other tissues, judging what is tolerable regarding autoimmunity and the potential to induce 

peripheral anergy while balancing it with anti-tumor immunogenicity. 
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2.3 A perspective on Bioinformatics in antigen based targeted immunotherapy 

With the many degrees of variability to be included in the study and the development of targeted 

immunotherapies, iterative approaches are not feasible anymore. Combined with the availability of high 

throughput quantitative technologies like transcriptome sequencing, it is apparent that manual experimental 

approaches may not be sufficient anymore to discover novel targets robustly. With immunotherapies like 

cancer vaccines or adoptive T-cell transfer aiming for quick turnaround treatment schedules, the accurate 

prediction of efficacious and tolerable antigens poses a complex and vital task for bioinformaticians (Bulik-

Sullivan et al., 2019; Ooki, Shinozaki and Yamaguchi, 2021).  

Assuming a median protein length of 375 AAs and with a range of 9 to 12 AAs that preferentially bind MHC-

I, we arrive at an average set of 1462 peptides per protein coding sequence in the genome (Brocchieri and 

Karlin, 2005). Without making prior assumptions, each of these peptides may have the same potential to be 

a good binder to MHC-I or might elicit an immune response under optimal conditions. While 1462 peptides 

may still be in the range of batch-testing procedures, each patient can express six different HLA alleles in a 

worst-case scenario, increasing the candidate number to 8772. This number assumes one gene of interest. In 

a more realistic scenario, we expect several potential candidate genes, which would increase this number five 

or ten-fold. Given time, one might be able to test several hundred or thousand antigens for their efficacy.  

However, suppose relative haste is required in a clinical setting. In that case, this is not feasible, and manual 

curation is generally not viable if a rational design is to be followed. 

To help remedy this problem and to provide possible off-the-self-treatment options from a large pool of 

candidates, bioinformatics and in silico methods can be employed to rationalize antigen candidate selection. 

Several key aspects must be addressed for deterministic target design and discovery. First, a data basis must 

be established regarding which genes may characterize the tumor and differentiate it from other tissues. 

While many technologies are available today, a robust and cost-effective methodology is high-throughput 

transcriptomics or RNA Sequencing (RNA-Seq). Provided with isolated RNA from a sample, RNA-Seq uses Next 

Generation Sequencing (NGS) to quantify transcriptome-wide gene expression of the sample. Briefly, 

messenger RNA molecules (mRNA) are isolated through their poly-Adenine tail and are reverse transcribed 

to DNA (cDNA). The cDNA is then fragmented into 200 base pair long molecules, and the nucleotide sequence 

is established through a process called sequencing by synthesis, which generates reads from the cDNA 

fragments. By allocating or mapping these reads, to their gene of origin and counting, we can determine the 

abundance of an mRNA and make assumptions about the expression of the gene (Stark, Grzelak and Hadfield, 

2019).  

Having established a data basis, we need to address MHC binding probabilities since, as previously 

mentioned, we can derive many peptides from one protein-coding gene. Different approaches to predict 

allele-specific binding have been proposed over the years. Some models work by integrating experimentally 
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determined physiochemical characteristics of peptides into mathematical models, like quantitative matrices, 

support vector machines, or artificial neural nets (Bhasin and Raghava, 2004). Other models have used 

peptide motifs, secondary structure prediction, chain flexibility estimations, and solvent accessibility, to name 

some prominent features used (Novotny et al., 1986; Alix, 1999; Reboul et al., 2012). Machine learning 

models have unquestionably reigned supreme in recent years, with prominent predictors like MHC-Flurry and 

NetMHCpan demonstrating pan allele prediction capabilities (Stranzl et al., 2010; O’Donnell, Rubinsteyn and 

Laserson, 2020). Both solutions also offer predictions of elements of the antigen binding machinery like TAP 

affinity or immunogenic activity. While significant advances have been made, the overall low power in 

predicting an MHC-I-restricted antigen's actual presence and biological activity remains a complex issue to 

address (Bassani-Sternberg et al., 2015). Additionally, it has recently been shown that there are still many 

issues with epitope prediction, like the lack of adequately curated training data to improve or develop 

predictive computational models (Prachar et al., 2020).  

Further, the existence of an allele-specific binder candidate in a set of predicted epitopes leads to the third 

issue bioinformatics needs to address. Even if only 1% of potential peptides are binders, the number is 

extensive, considering six alleles and millions of peptides. Thus, decision support or ranking is a challenging 

problem but an integral part of the tool suite of bioinformatics. By establishing a rank order of candidates, 

peptides can be shortlisted for experimental testing that may lead to further understanding of the biological 

mechanisms leading to their success or failure in eliciting the desired response. Optimally, one would 

establish a feed-forward loop in which information about their immunogenicity features is re-integrated into 

the models. A commonly used ranking method is the chain probability approach, in which probabilities are 

used in a product to arrive at a conservative estimate or rank of a peptide. Conservative, because of the 

nature of probabilities only being in the range of 0 to 1, including more variables can only keep the overall 

probability estimate equal or decrease it for the event of interest. For example, one can multiply allele-specific 

affinity predictions with immunogenicity predictions to refine probabilities of efficacy. Using this method, one 

can provide a comprehensive, although potentially too strict, ranking for multi-variable selection problems 

and narrow the field of candidates. There are many more issues bioinformatics or data-driven approaches 

can address in immunotherapy, like immune evasion modeling through biological pathway analysis, patient 

response prediction through liquid biopsy, and many more (Fattore et al., 2021; Ischenko et al., 2021). 

However, all these approaches must be firmly anchored into a biological framework and provide concrete 

claims that can be tested and validated. Hence in silico screening methods should focus, when faced with 

high dimensional datasets, on producing clearly defined and ranked candidates that, together with 

experimental experts, can be translated into experimental or clinical validation settings. This outlines a goal 

we tried to achieve during this project by providing many options for manual input and freedom of selection 

for users like clinicians or biomedical experts. 
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2.4 Cutaneous and uveal melanoma – oncology and therapy 

Melanoma is a type of cancer that develops from the cells producing pigment, so-called melanocytes. While 

it is most commonly found as a cancer of the melanocytes in the skin (cutaneous melanoma; CM), it can also 

stem from the pigmented cells located within the uvea, which are responsible for giving eye coloration (uveal 

melanoma; UM). In the case of CM, recently, a trend has been observed that while population-wide 

frequencies have been rising, survival rates have improved over the past decade (Henley et al., 2020). This 

increase in survival rates is attributed to the development of ICB treatment, which changed the therapy 

paradigm for the disease. To put this into perspective, therapy for metastatic cutaneous melanoma (MCM) 

was limited in the not-too-distant past, with a 10-year survival rate of around 10% (Balch et al., 2009). With 

the development of ICB treatment, especially those targeting PD-1 and CTLA4,  these rates could be doubled 

by showing 10-year survival rates of 22% (Schadendorf et al., 2015). While these are very promising treatment 

options, patient response rates remain limited. Current data shows that the overall response rate is in the 

range of 37% to 45%, while complete response demonstrates percentages in the 13 to 19% range. With 

increasing disease frequencies, alternative or complementary treatments are necessary to supplement 

existing approaches (Hamid et al., 2019; Curti and Faries, 2021). 

The situation is far bleaker in the case of UM. Although it has a low population-wide occurrence, it is the most 

common ocular cancer in adults and has very limited treatment modalities. Standard approaches include 

radiation therapy and enucleation of the affected eye, which offers a good prognosis for up to 50% of the 

patients while the other half develops distant metastasis predominantly in the liver (Kujala, Mäkitie and 

Kivelä, 2003; Weis et al., 2016). After metastasis, overall survival rates drop to 13.4 months, with the 

prognosis not significantly changed for the last 30 years. With treatment protocols derived from MCM, ICB 

treatment has been under clinical investigation for UM for several years with mixed results. Depending on 

the treatment, overall response rates were quite diverse, ranging from 0% to 25%, with limited improvements 

in overall survival (Wessely et al., 2020). The reasons for these discrepancies are a multitude. Data suggests 

that MCM is more prone to generate antigens due to the high mutational burden, while the mutations in UM 

are comparatively few (Mallet et al., 2014). Additionally, the expression of checkpoint molecules is low in UM, 

making it not an optimal candidate for ICB treatment. The need for additional treatment modalities in both 

these tumors is high. 

Thus, treatment options like vaccination-based approaches and autologous transfer of immune cells, be it 

APCs or CTLs, are under investigation (Figure 3)(Schuler-Thurner et al., 2015; Bol et al., 2016; Maurer, 

Butterfield and Vujanovic, 2019; Nathan et al., 2021). These therapy avenues are all necessitating the 

discovery and validation of tumor-restricted antigens (TAAs) that can be used to design vaccines, discover 

antigen-specific TCRs, or may be employed to expand naïve populations of immune cells. The discovery of 

these antigens and their reliable prediction is a problem we set out to address in this project. 
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Figure 3: Workflow of an example approach to antigen-based immunotherapy. First, a tumor or multiple 
tumors are excised or biopsied. From this material, antigen predictions are performed using, for example, 
transcriptomics measurements. In parallel, a blood sample from the patient is collected, and the autologous 
immune cells are isolated. Once high-confidence antigen candidates have been established, they may be used 
to either stimulate autologous T cells or loaded onto autologous DCs. Afterward, the cells are getting re-
transfused with the intention of fighting the cancer using the primed and stimulated autologous immune cells. 
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2.5 Tumor-associated antigens – threading the immunological needle 

The concept of tumor-associated antigens (TAAs) is based on the observation that some genes are heavily 

overexpressed in tumors compared to healthy cell populations. By extension, this leads to the presentation 

of peptides derived from these heavily overexpressed genes on MHC-I and the subsequent possibility of CTLs 

to mount an immune response against these antigens under the right conditions (Boon and Van der Bruggen, 

1996; Sadozai et al., 2017). Generally, the assumption is that a gene not mutated during tumorigenesis is still 

a self-antigen and is thus covered by the central tolerance. However, in some cases, genes are sequestered 

from the immune system due to their expression being limited to either very early developmental states 

(oncofetal antigens) or highly specialized cell populations like male germ cells (cancer-testis antigens, CTAs). 

It has been shown that cancers can express these genes in large quantities, and it is assumed that they convey 

essential steps during malignant transformation by providing many necessary features like motility, 

colonization abilities, and unrestricted proliferation (Gjerstorff, Andersen and Ditzel, 2015). One of the first 

TAAs discovered is the melanoma-associated antigen 1 (MAGE-A1). It was found by characterizing T cell clones 

of melanoma patients with a favorable disease course, showing that these antigens are immunogenic (Van 

Der Bruggen et al., 1991). These characteristics and their specificity to the tumors make them valuable targets 

of interest for therapy. Hence, efforts have been made to find and characterize more TAAs through modern 

high-throughput technologies like transcriptomics or proteomics, and especially for CTAs, databases have 

been created to curate the findings (Almeida et al., 2009; Olsen et al., 2017; Koşaloğlu-Yalçın et al., 2021). 

Many targets for different cancer types have been discovered over the recent years, with the question 

manifesting: How do we know which antigens to further investigate for therapy? The amount of TAAs we can 

now find far exceeds screening capabilities, with one database like TANTIGEN holding 292 different TAAs and 

more than 1000 tumor peptides, of which many are not yet characterized in terms of their immunogenic 

potential (Olsen et al., 2017). 

Several obstacles are intrinsic when using self-antigens. One acute problem is the possible lack of reactive 

lymphocytes for the antigen. Even though the antigens may not be screened by central tolerance, the 

possibility exists that few or no T cell clones are generated against these antigens. Thus, poor immunogenicity 

is an ongoing problem (Higgins, Bernstein and Hodge, 2009). If antigen-specific T cell clones exist and are not 

yet rejecting the tumor, exogenously applied co-stimulation, like cytokine administration or ICB treatment, to 

overcome the tolerance might induce severe autoimmune side effects with drastic consequences. Indeed, it 

has been observed that targeting MART1 in melanoma patients has caused autoimmunity while treating 

against MAGE-A3 has caused severe neurotoxicity in a recent trial (Morgan et al., 2013; Chodon et al., 2014). 

Hence, using TAAs in therapy is threading the immunological needle by balancing possible toxicities with a 

lack of immunity. With our project, we hope to contribute to a rational design strategy that effectively allows 

the screening of TAAs concerning their potential efficacy and autoimmunity. 
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2.6 Aims 

With an ongoing need for anti-cancer therapies, the growing 

availability of sequencing data, and the expansion of vector 

systems able to deliver antigens directly to a patient, targeted 

antigen-based immunotherapies can play a significant role in 

cancer therapy. As of May 2022, over 500 trials against many 

different neoplasms are registered under clinicaltrials.gov 

and labeled with “Tumor-associated antigens | Cancer.” 

However, there is a distinct lack of reproducible and rational 

workflows to discover new antigen candidates 

comprehensively.  

Hence, we aimed to create a pipeline that integrates various 

first principal data sources to perform predictions to fill this 

gap (Figure 4). We integrated transcriptomics and histology 

to predict self-tolerant, immunogenic anti-cancer antigen 

candidates for translation into in vitro testing or clinical trials. 

In detail, we describe the development of a pipeline 

constructed to identify TAAs with limited to no expression in 

the healthy periphery outside the tumor for peptide or 

antigen-based tumor immunotherapy. Our shortlisted 

antigens and their source genes provide several predicted 

favorable characteristics for use in therapy. Our predicted 

antigens are non-mutated, making them applicable to large 

cohorts of patients. They are further expected to be self-

tolerant, producing possibly fewer autoimmune reactions, 

and are ranked with multi-variable scores, making their 

selection easier for clinical or in vitro validation. All antigens 

and their meta-information, like expression, have been 

aggregated into a comprehensive database that provides 

functionality for selecting user-defined antigen lists for trial 

design or in vitro testing. 

 

 

Figure 4: Abstracted illustration of the core 
concepts of the pipeline. To discover novel 
tumor-associated antigens, we use patient 
cohort sequencing data to compare it with 
healthy tissue by a sequential filtering 
procedure. Finally, we implement several 
evaluation criteria to help select candidates 
for application. 
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3 Materials and Methods 

3.1 Acquisition, generation, and processing of transcriptomic data 

During this project, several transcriptomic datasets were used that were either obtained from publicly 

available repositories or generated from in-house patient biopsies. In the project part relating to MCM, two 

paired-end sequencing cohorts of publicly available melanoma biopsies were downloaded from the Gene 

Expression Omnibus repository. There were 27 pre-treatment MCM metastasis samples from GSE78220 (Liu, 

Beyer and Aebersold, 2016), excluding GSM2069836 and all five samples from GSE96619 (Garcia-Diaz et al., 

2017) for a total of 31 metastatic cutaneous melanoma samples. These samples compose our melanoma 

sample cohort. In the project part relating to UM, transcriptomic data was generated from primary tumor 

material obtained from in-house patient biopsies. These samples were obtained and processed by scientific 

and clinical collaborators in the group of Experimental Immunotherapy and the Group of RNA-based 

Immunotherapy at the Dermatology Department, University Hospital Erlangen.  In accordance with current 

regulatory and ethics standards within the context of the clinical trial registration NCT01983748, informed 

consent was obtained, and uveal melanoma (UM) biopsies were taken after enucleation from the afflicted 

eye of 14 patients. Samples were stored and persevered for further processing in RNAlater™ (ThermoFisher 

Scientific, Waltham, MA, USA). The RNA was extracted with RNeasy Mini kits (Qiagen, Hilden, Germany) 

according to the manufacturer’s protocol and shipped to a commercial sequencing provider, where 

sequencing and primary quality control of the RNA were performed (Table 1).  Transcriptomic sequencing 

was performed by a commercial service provider (CeGaT Tübingen). For all mentioned samples, data was 

stored in the FASTQ format and was further processed using in-house pipelines (Peter J.A. Cock et al., 2009). 

Table 1: Results of entry quality 
control at sequencing facility using 
Bioanalyzer RNA Nano. Listed are the 
sample identifiers, the RNA 
concentration, the RNA integrity 
number, and the sample volume. 

 

 

 

 

 

  

Sample RNA ng/µl RIN Volume [µl] 

S727Nr1 103 9 13 

S727Nr2 122 10 13 
S727Nr3 168 10 13 
S727Nr4 107 10 13 

S727Nr5 147 10 13 
S727Nr6 111 9 13 
S727Nr7 123 9 13 

S727Nr8 127 10 13 
S727Nr9 90 10 13 

S727Nr10 111 9 13 

S727Nr11 107 9 13 
S727Nr12 139 9 13 
S727Nr13 104 9 13 

S727Nr14 118 10 13 
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3.1.1 Primary quality control 

For the 31 MCM samples, primary quality control (QC) was performed using FASTQC, checking for possible 

technical adapter contamination and overall basecall (Phred) quality (Andrews et al., 2012). GSM2069836 

was subsequently excluded for overall unfavorable Phred scores (Bonfield and Staden, 1995). If necessary, 

adapters were removed, and reads were quality-trimmed using BBduk, part of the BBTools suite (Bushnell, 

2014). After all primary QC was concluded, samples were processed using in-house software pipelines. 

For just the 14 primary UM samples, primary QC, including adapter removal and read quality filtering and 

trimming, was performed by the commercial service provider. Before further processing and analysis using 

in-house pipelines, delivered FASTQ files were assessed for overall Phred score. (Bonfield and Staden, 1995; 

Peter J.A. Cock et al., 2009). 

  

# Exemplary usage of the bbduk function included in the bbmap package. 

Additional options allow for quality trimming and read length filtering 

as necessary. Adapter references for the most used illumine sequencing 

adapters are included in the bbmap resource package. 

#!/usr/bin/bash 

ADAPTERS="/home/lischecr/permanent/App/bbmap/resources/adapters.fa" 

bbduk.sh in1="Sample1_1.fq.gz“ \ 

in2="Sample1_2.fq.gz“ \ 

out1="Sample1_1.qc.fq.gz" \ 

out2="Sample1_2.qc.fq.gz" \  

ref="$ADAPTERS" \  

overwrite=true 
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3.1.2 Read alignment 

All samples were aligned using the short-read, splice-aware mapper STAR (Dobin et al., 2013) in version 2.2.1. 

As a reference, the nucleotide sequence of the human genome assembly GRCh38  in fasta (.fa) format was 

used in combination with the comprehensive GENCODE annotation set (Schneider et al., 2017; Frankish et 

al., 2019). Before mapping the samples, the genome reference was indexed using STAR's inbuilt indexing 

function using the following default command: 

After the genome index was created, we applied STAR to map the reads to the reference using the following  

command and options derived from the recommendations in the documentation: 

#!/usr/bin/bash 

GENOME="/home/_common/NGS_mapping/human-9606/hg38-indices/" 

STAR --runThreadN 20 \ 

--runMode genomeGenerate \  

--genomeDir $GENOME \ 

--genomeFastaFiles “$GENOME/hg38.fa“ \ 

--sjdbOverhang 99 

 

#!/usr/bin/bash 

GENOME="/home/_common/NGS_mapping/human-9606/hg38-indices/" 

ANNOTATION="/home/lischecr/permanent/Src/hg38-annotation/gencode.v28.an-

notation.gtf" 

STAR --genomeDir "$GENOME" \  

--sjdbGTFfile "$ANNOTATION" \  

--runThreadN 20 \  

--readFilesIn "Sample1_1.qc.fq.gz" "Sample1_2.qc.fq.gz" \  

--readFilesCommand zcat \  

--outFileNamePrefix "Sample1" \  

--outSAMstrandField intronMotif \  

--outSAMtype BAM SortedByCoordinate \ 

--alignIntronMin 20  

--alignIntronMax 500000 \ 

--alignMatesGapMax 1000000 \ 

--sjdbOverhang 99 \ 

--outFilterMultimapNmax 20 \ 

--outFilterMismatchNoverLmax 0.04 \ 

--outFilterIntronMotifs RemoveNoncanonical 



 

27 

 

3.1.3 Quantification of transcript abundance 

After mapping the raw read files, the output of STAR was stored in the binary alignment map (BAM) format 

(Li et al., 2009) and sorted in ascending order by chromosomal coordinates for further processing in the 

quantification pipeline. We used two tools to generate relative transcript expression abundance estimates 

from the BAM files. First, for the MCM samples, we applied the tool Cufflinks in version 2.2.1 to generate 

transcript-level fragments per kilobase o transcript per million fragments mapped (FPKM), a common unit to 

utilized to measure transcript or gene-level expression, using the same GENCODE annotation set as previously 

used for mapping (Mortazavi et al., 2008; Trapnell et al., 2012; Conesa et al., 2016).  

Since many published databases do not report their expression in FPKM but in the transcripts per million 

(TPM) metric, which is considered more comparable and robust, we transformed FPKM to TPM using the 

formula: 

 

𝑇𝑃𝑀𝑖 =
𝐹𝑃𝐾𝑀 𝑖

𝑠𝑢𝑚(𝐹𝑃𝐾𝑀)
∙ 106 (𝑰) 

 

With the TPM of a 𝐺𝑒𝑛𝑒𝑖 being defined as the FPKM of 𝐺𝑒𝑛𝑒𝑖 divided by the sum of all FPKMs in the sample 

scaled by a million. In our subsequent work on the UM cohort, we applied the more modern quantification 

solution StringTie in version 2.1.5  to our BAM files (Pertea et al., 2015). StringTie, by default, returns the TPM 

metric as well as FPKM; hence no transformation was necessary.  

The commands used for Cufflinks and StringTie:  

#!/usr/bin/bash 

 

# Command used for all cutaneous melanoma samples: 

cufflinks -p 20 \  

-o "Sample1.FPKM.csv” \ 

-G " gencode.v28.annotation.gtf" \ 

"Sample1.bam" 

 

# Command used for all uvea melanoma samples: 

stringtie "Sample1.bam" \  

-o "Sample1.gtf" \ 

-G "gencode.v28.annotation.gtf" \ 

-p 20 
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3.1.4 Externally processed transcriptomics data 

To bolster our data basis on the rare cancer UM, we downloaded the UM transcriptomics dataset from a 

previous study with 80 primary UM samples (Robertson et al., 2017). Due to patient data protection rules, 

public access to FASTQ and BAM files was restricted, and only non-sequence level data was freely available. 

Thus, we acquired the gene-level FPKM and transformed FPKM to TPM, as described in section 3.1.3. 

3.2 Databases and annotation sets 

3.2.1 Selection of protein-coding genes from transcriptomics data 

To confirm that the expressed and selected genes in the tumor transcriptomics data would indeed be able to 

produce targetable MHC-I restricted antigens, it was necessary to control that they were annotated as having 

any protein product. To this end, we used several databases and annotation sets throughout our pipeline to 

verify the presence of a protein product. For the first iteration of our selection system, selecting targets for 

MCM, we applied the API provided by biomaRt to link a gene's unique identifier to its presence in different 

databases (Durinck et al., 2009).  We used all genes found by our processing pipeline for the MCM samples 

and ensured that we would only have protein-coding genes in our dataset. By applying biomaRt, an R package 

for database cross-linking and data mining, we determined if the genes were present in the consensus coding 

sequence database (CCDS), the Human Protein Atlas (HPA), or the Ensemble genome annotation database 

(Pruitt et al., 2009; Uhlén et al., 2015; Howe et al., 2021). If a gene was found to be annotated as protein-

coding in any of these databases, we included it in downstream analysis.  

For the UM analysis of our project, searching for new targetable antigens for primary uveal melanoma, we 

forwent using biomaRt and implemented a new validation mechanism. The replacement of biomaRt was 

done to improve performance and usability since biomaRt queries require an internet connection and depend 

on the online status and user load of the Ensemble servers while also being comparatively slow for large bulk 

queries. We constructed an internal database from the human reference proteome for the human reference 

genome assembly GRCh38 provided by the Ensemble database project release 94 (Howe et al., 2021). The 

database consisted of a key-value pair construct, with the key being a gene’s unique identifier and the value 

being a list of all the protein sequences stored in the reference proteome, allowing us to input a gene 

identifier and retrieve all its associated protein products.  
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3.2.2 Reference Expression Databases 

To integrate and develop a tolerance filter for putative TAAs, we downloaded Human Protein Atlas (HPA)’s 

normal tissue immunohistochemistry database, which features a table of genes by their ensemble gene 

identifier and a given tissue (Uhlén et al., 2015). It further quantifies the protein profile by tissue microarray 

into qualitative levels of detection (high, medium, low, and not detected) for 58 tissues and provides protein 

abundance data for 13207 genes. We retrieved HPA Version 18, which is based on the Ensemble release 

version 88.38. The tissues included in the database are as follows, adrenal gland, appendix, bone marrow, 

breast, bronchus, caudate, cerebellum, cerebral cortex, cervix uterine, choroid plexus, colon, duodenum, two 

samples of the endometrium, epididymis, esophagus, eye, fallopian tube, gallbladder, hair, heart muscle, 

hippocampus, hypothalamus, kidney, lactating breast, liver, lung, lymph node, nasopharynx, oral mucosa, 

ovary, pancreas, parathyroid gland, pituitary gland, placenta, prostate, rectum, retina, salivary gland, seminal 

vesicle, skeletal muscle, three samples skin, small intestine, smooth muscle, two samples soft tissue, sole of 

the foot, spleen, two samples of stomach tissue, testis, thymus, thyroid gland, tonsils, urinary bladder, and 

vagina (Uhlén et al., 2015). As a secondary level of evidence for the presence of a protein in each healthy 

tissue, we downloaded an RNA sequencing-based body map from the Genotype-Tissue Expression (GTEx) 

project, which provides TPMs for known genes over the entire human body (Carithers et al., 2015). This 

dataset contains 11688 individual sequencing runs of 57 healthy tissues and cell lines, ranging from 5 to 564 

samples per tissue. We removed all cell line-derived samples for a final set of 51 tissues. Using manual 

curation, we classified a subset of tissues in the database as “critical tissue”, meaning that in these tissues, 

side effects are less or not tolerable due to their importance for survival. For an overview of the tissues found 

in the GTEx expression database, official release 7, and their classification, see Table 2. 

Table 2: List of GTEx recorded tissues used in our analysis. If the tissue was deemed survival critical, it is marked as such 
in the third column. The link to the original repository is included. 

Tissue GTEx Portal Link Critical 
Tissue 

Adipose.Subcutaneous https://gtexportal.org/home/tissue/Adipose_Subcutaneous 
 

Adipose.Visceral_Omentum https://gtexportal.org/home/tissue/Adipose_Visceral_Omentum 
 

AdrenalGland https://gtexportal.org/home/tissue/Adrenal_Gland x 

Artery.Aorta https://gtexportal.org/home/tissue/Artery_Aorta  

Artery.Coronary https://gtexportal.org/home/tissue/Artery_Coronary x 

Artery.Tibial https://gtexportal.org/home/tissue/Artery_Tibial  

Bladder https://gtexportal.org/home/tissue/Bladder  

Brain.Amygdala https://gtexportal.org/home/tissue/Brain_Amygdala x 

Brain.Anteriorcingulatecortex_BA24 https://gtexportal.org/home/tissue/Brain_Anterior_cingulate_corte
x_BA24 

x 

Brain.Caudate_basalganglia https://gtexportal.org/home/tissue/Brain_Caudate_basal_ganglia x 

Brain.CerebellarHemisphere https://gtexportal.org/home/tissue/Brain_Cerebellar_Hemisphere x 

Brain.Cerebellum https://gtexportal.org/home/tissue/Brain_Cerebellum x 

Brain.Cortex https://gtexportal.org/home/tissue/Brain_Cortex x 
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Brain.FrontalCortex_BA9 https://gtexportal.org/home/tissue/Brain_Frontal_Cortex_BA9 x 

Brain.Hippocampus https://gtexportal.org/home/tissue/Brain_Hippocampus x 

Brain.Hypothalamus https://gtexportal.org/home/tissue/Brain_Hypothalamus x 

Brain.Nucleusaccumbens_basalganglia https://gtexportal.org/home/tissue/Brain_Nucleusaccumbens_basal
ganglia 

x 

Brain.Putamen_basalganglia https://gtexportal.org/home/tissue/Brain_Putamen_basal_ganglia x 

Brain.Spinalcord_cervicalc.1 https://gtexportal.org/home/tissue/Brain_Spinal_cord_cervical_c-1 x 

Brain.Substantianigra https://gtexportal.org/home/tissue/Brain_Substantianigra x 

Breast.MammaryTissue https://gtexportal.org/home/tissue/Breast_Mammary_Tissue  

Cervix.Ectocervix https://gtexportal.org/home/tissue/Cervix_Ectocervix  

Cervix.Endocervix https://gtexportal.org/home/tissue/Cervix_Endocervix  

Colon.Sigmoid https://gtexportal.org/home/tissue/Colon_Sigmoid x 

Colon.Transverse https://gtexportal.org/home/tissue/Colon_Transverse x 

Esophagus.GastroesophagealJunction https://gtexportal.org/home/tissue/Esophagus_Gastroesophageal_J
unction 

x 

Esophagus.Mucosa https://gtexportal.org/home/tissue/Esophagus_Mucosa x 

Esophagus.Muscularis https://gtexportal.org/home/tissue/Esophagus_Muscularis x 

FallopianTube https://gtexportal.org/home/tissue/Fallopian_Tube  

Heart.AtrialAppendage https://gtexportal.org/home/tissue/Heart_Atrial_Appendage x 

Heart.LeftVentricle https://gtexportal.org/home/tissue/Heart_Left_Ventricle x 

Kidney.Cortex https://gtexportal.org/home/tissue/Kidney_Cortex  x 

Liver https://gtexportal.org/home/tissue/Liver x 

Lung https://gtexportal.org/home/tissue/Lung x 

MinorSalivaryGland https://gtexportal.org/home/tissue/Minor_Salivary_Gland  

Muscle.Skeletal https://gtexportal.org/home/tissue/Muscle_Skeletal  

Nerve.Tibial https://gtexportal.org/home/tissue/Nerve_Tibial  

Ovary https://gtexportal.org/home/tissue/Ovary  

Pancreas https://gtexportal.org/home/tissue/Pancreas x 

Pituitary https://gtexportal.org/home/tissue/Pituitary  

Prostate https://gtexportal.org/home/tissue/Prostate  

Skin.NotSunExposed_Suprapubic https://gtexportal.org/home/tissue/Skin_Not_Sun_Exposed_Suprap
ubic 

 

Skin.SunExposed_Lowerleg https://gtexportal.org/home/tissue/Skin_Sun_Exposed_Lower_leg  

Small intestine.TerminalIleum https://gtexportal.org/home/tissue/Small_Intestine_Terminal_Ileum x 

Spleen https://gtexportal.org/home/tissue/Spleen   

Stomach https://gtexportal.org/home/tissue/Stomach x 

Testis https://gtexportal.org/home/tissue/Testis  

Thyroid https://gtexportal.org/home/tissue/Thyroid  

Uterus https://gtexportal.org/home/tissue/Uterus  

Vagina https://gtexportal.org/home/tissue/Vagina  

WholeBlood https://gtexportal.org/home/tissue/Whole_Blood x 
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3.2.3 Curation of known melanoma antigens from additional sources 

By querying databases like CAPED (Vigneron et al., 2013), TANTIGEN (Olsen et al., 2017), and CTPedia 

(Almeida et al., 2009), as well as literature research, we compiled a list of known melanoma antigens as 

reference points (Table 3). 

Table 3: Manually curated melanoma-associated antigens reported in the literature and public databases. We curated 
a list of known peptides that have been shown to generate an immune response in different studies involving metastatic 
melanoma. If no preferentially bound allele was provided for the peptide, the allele filed holds “NA” for stating not 
available.  

Gene Symbol Peptide Sequence Allele Source PMID 

CDKN2A AVCPWTWLR A*11:01 Huang,2004 15128789 

CLPP ILDKVLVHL A*02:01 Corbière, 2011 21216894 

CSNK1A1 GLFGDIYLA A*02:01 Robbins, 2013 23644516 

CTAG1B MSLQRQFLR NA Wang, 1996 8642255 

CTAG1B LSLLMWITQC A*02:01 Robbins, 2016 25538264 

CTAG1B SLLMWITQC A*02:01 Gibney, 2015 25524312 

CTAG1B SLLMWITQCFL A*02:01 Nicholaou,2011 21698545 

DCT ANDPIFVVL C*08:02 Castelli, 1999 9973437 

DCT LLGPGRPYR A*31:01 Wang, 1996 8976176 

DCT LLGPGRPYR A*33:01 Wang, 1998 9551926 

DCT TLDSQVMSL A*02:01 Noppen, 2000 10861482 

DCT SVYDFFVWL A*02:01 Parkhurst, 1998 9809996 

FOLH1 GLPSIPVHPV A*02:01 Weber, 2013 21760528 

GAS7 SLADEAEVYL A*02:01 Robbins, 2013 23644516 

GPR143 LYSACFWWL A*24:02 Touloukian, 2003 12538723 

HAUS3 ILNAMIAKI A*02:01 Robbins, 2013 23644516 

MLANA AAGIGILTV A*02:01 Kawakami, 1994 7516411 

MLANA AEEAAGIGIL B*45:01 Schneider, 1998 9455808 

MLANA AEEAAGIGILT B*45:01 Schneider, 1998 9455808 

MLANA EAAGIGILTV B*35:01 Benlalam, 2003 14634146 

MLANA EAAGIGILTV A*02:01 Fleischauer, 1996 8752930 

MLANA RNGYRALMDKS C*07:01 Larrieu, 2008 18097665 

MLANA ILTVILGVL A*02:01 Castelli, 1995 7807017 

PMEL ALLAVGATK A*03:01 Skipper, 1996 8943411 

PMEL ALNFPGSQK A*03:01 Kawashima, 1998 9797143 

PMEL ALNFPGSQK A*11:01 Kawashima, 1998 9797143 

PMEL AMLGTHTMEV A*02:01 Tsai, 1997 9029118 

PMEL LLDGTATLRL A*02:01 Wang, 1998 9551926 

PMEL HTMEVTVYHR A*68:01 Sensi, 2002 12135425 

PMEL IALNFPGSQK A*03:01 Kawashima, 1998 9797143 

PMEL LPHSSSHWL B*35:01 Vigneron, 2005 15713214 

PMEL MLGTHTMEV A*02:01 Tsai, 1997 9029118 

PMEL RLMKQDFSV A*02:01 Kawakami, 1998 9862734 

PMEL RLPRIFCSC A*02:01 Kawakami, 1998 9862734 
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PMEL RSYVPLAHR A*32:01 Michaux, 2014 24453253 

PMEL RTKQLYPEW A*32:01 Vigneron, 2004 15001714 

PMEL SEIWRDIDFD NA Brichard, 1996 8566071 

PMEL SLADTNSLAV A*02:01 Tsai, 1997 9029118 

PMEL ITDQVPFSV A*02:01 Kawakami, 1995 7706734 

PMEL KTWGQYWQV A*02:01 Kawakami, 1995 7706734 

PMEL LHHAFVDSIF NA Lennerz, 2005 16247014 

PMEL YMDGTMSQV NA Skipper, 1996 8627164 

PMEL IYMDGTADFSF NA Dalet, 2011 21670269 

PMEL SSPGCQPPA B*07:02 Lennerz, 2005 16247014 

PMEL VLYRYGSFSV A*02:01 Kawakami, 1995 7706734 

PMEL VPLDCVLYRY B*35:01 Benlalam, 2003 14634146 

PMEL VYFFLPDHL A*24:02 Robbins, 1997 9200467 

PMEL YLEPGPVTA A*02:01 Cox, 1994 7513441 

PMEL LIYRRRLMK A*03:01 Kawakami, 1998 9862734 

PPP1R3B YTDFHCQYV A*01:01 Robbins, 2013 23644516 

PRAME ISPEKEEQYIA A*02:01 Weber, 2013 21760528 

PRAME SLLQHLIGL A*02:01 Weber, 2013 21760528 

RAB38 VLHWDPETV A*02:01 Walton, 2006 17114498 

TYR AFLPWHRLF A*24:02 Kang, 1995 7543520 

TYR CLLWSFQTSA A*02:01 Riley, 2001 11394498 

TYR LPSSADVEF B*35:01 Morel, 1999 10597191 

TYR MLLAVLYCL A*02:01 Woelfel,1994 8125142 

TYR QCSGNFMGF A*26:01 Lennerz, 2005 16247014 

TYR KCDICTDEY A*01:01 Kittlesen, 1998 9498746 

TYR TPRLPSSADVEF B*35:01 Benlalam, 2003 14634146 

TYR SSDYVIPIGTY A*01:01 Kawakami, 1998 9862734 

TYR YMDGTMSQVA A*02:01 Powell, 2008 17056585 
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3.3 Selection of candidate genes 

The core of our developed methodology is constructed through a multi-level and multi-variable evaluation 

step that selects candidate genes from transcriptomics data for any tumor model of interest. The final goal of 

this framework is to provide a set of genes and their derived MHC-I restricted epitopes that allow for precise 

targeting of the tumor entity while minimizing potential side effects or off-site damage. Each step is designed 

to provide additional levels of evidence to support the final selection of target genes, of which then allele-

specific epitopes are generated and deposited in a database. The following sections will describe the core 

selection mechanism in detail, while an overview of the methodology is provided in Figure 5. 

Figure 5: Abstraction of the epitope generation and selection process. Tumor RNA-Seq from a melanoma patient cohort 
was analyzed and filtered only to contain protein-coding genes. All genes too lowly expressed in 90% of the melanomas 
were excluded. Next, all genes were filtered against histochemical evidence available in the Human Proteome Atlas. If 
present in any tissue, the gene was removed. We then selected genes that showed a high-in-tumor, low-in-tissue 
phenotype. The expression of the genes in a curated list of tissues deemed critical for survival was evaluated, and genes 
were separated into two tolerability sets. The predicted epitopes for those genes were finally filtered against the available 
proteome and added to the database if they did not occur in any other sequence. 

 

3.3.1 Determining overly expressed genes in tumor models against healthy tissue 

The fundamental concept of our selection methodology was to establish a set of protein-coding genes, which 

were, to a degree, restricted in expression to the tumor model in question. We thus constructed a pipeline 

that would select genes, given tumor and tissue expression data, for a high-in-tumor, low-in-tissue-

phenotype. To this end, we used the previously processed MCM cohort, consisting of 31 samples, and the 80 

primary UM cohort. We calculated the mean, median, 99th, 90th, and 10th percentile TPM values for all 

genes for the MCM, UM, and GTEx samples. We then kept all genes from the tumor cohorts that showed 

sufficient expression, which we defined as having a 10th percentile expression larger than 1. To filter candidate 

genes for a high-in-tumor, low-in-tissue expression phenotype, we selected genes through a transcriptomic 

filter so that 90% of the tumor samples showed a higher expression level in TPM than 90% of the tissue 

samples. Accordingly, this was formally defined as the requirement for the 10th percentile of tumor expression 
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to be greater than the 90th percentile of tissue expression. We compared all genes in the tumor data against 

all 51 tissues in the GTEx data set. 

Additionally, using the input from medical and scientific collaborators, we annotated the 51 tissues in the 

GTEx database with their survival criticality (Table 2), thereby judging which tissues off-site targets may be 

tolerated and, conversely, in which they are to be avoided. In parallel to the transcriptomics filter, we relied 

on histological evidence provided by HPA. We retrieved the database and filtered our gene set by removing 

every gene annotated to have any expression level of the protein above “Not detected” in the database. In 

the case of our MCM cohort, the candidate set of genes filtered through all three filtering steps (protein 

coding, GTEx, and HPA filtering) was further classified into two sets of expected tolerability. We defined a 

gene as superior tolerable if its expression was less than 10 TPM in all our GTEx-derived survival-critical 

tissues. If this condition was not true for all critical tissues, the gene was allocated to the enhanced tolerance 

set of genes since the gene shows residual expression in some survival critical tissues. This additional filtering 

into two discrete tolerance sets was not performed for the UM cohort’s candidate genes. In that case, all 

genes derived from the previous filtering steps showed no residual expression in healthy tissue and were thus 

all deemed superior tolerance and highly tumor restricted. 

 

3.4 Processing of candidate genes and their derived peptides 

3.4.1 Peptide k-mer extraction and post-hoc screening 

Once genes had passed through the filtering steps, extracting peptides of length k ranging from 9 to 12 amino 

acids from a gene’s annotated protein product was necessary. While MHC I molecules can bind peptides with 

lengths outside this range, it covers the preferentially bound lengths of most alleles and thus simplifies the 

generation of peptide k-mers (Trolle et al., 2016). To this end, a fasta file of the human proteome was used to 

retrieve all annotated protein sequences from our gene candidates. We further implemented a simple k-mer 

extraction algorithm that would take as input a protein’s complete AA sequence and return all overlapping k-

mer peptides of length 9 to 12 AAs. Given all extracted peptides from our gene set, we screened each peptide 

against the complementary part of the human proteome (e.g., all non-selected genes), excluding peptides 

with literal sequence matches. 
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3.4.2 Decision support ranking of peptides 

Since one can derive many peptides of lengths 9 to 12 from a single protein sequence and given that there is 

a high allele variability in the HLA locus with peptides binding one or more alleles, it is necessary to provide 

a ranking system to facilitate candidate selection for clinical or experimental use. To this end, a crucial part of 

our selection pipeline is the decision support system implemented for specific MHC-I-restricted tumor 

antigens. In the first phase of our project, we implemented a score based on several variables derived from 

the peptide’s source gene or the peptide-allele combination. Further, we extended this score in the second 

phase using a machine learning and network approach.  

 

3.4.3 Implementation of a continuous multivariate score for MCM 

While developing our system on the MCM cohort, we implemented the generalized Predicted Immuno-

Efficacy score (gPIE), which evaluates parameters to judge if an epitope is a valid candidate for targeting MCM. 

The gPIE is constructed from the predicted binding affinity between peptide and HLA allele (𝑓1), the predicted 

immunogenicity (𝑓2), our cohort’s median transcript expression of a peptide’s transcript of origin (𝑓3), and an 

expression index comparing the gene of origin’s expression in MCM with its maximum expression in healthy 

tissue (𝑓4). Formally, the gPIE is defined as follows: 

 

𝑔𝑃𝐼𝐸𝐸𝑝𝑖𝑡𝑜𝑝𝑒 = 100 ⋅  𝑓1(𝐵𝑖𝑛𝑑𝐴𝑓𝑓𝐸𝑝𝑖𝑡𝑜𝑝𝑒) 

 ⋅  𝑓2(𝐼𝑚𝑚𝑢𝑛𝑜𝑔𝑒𝑛𝐸𝑝𝑖𝑡𝑜𝑝𝑒) 

                                                                        ⋅  𝑓3(𝑀𝑒𝑙𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒)      (𝑰𝑰) 

⋅  𝑓4(𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝐼𝑛𝑑𝑒𝑥𝑃𝑒𝑝𝑡𝑖𝑑𝑒) 

 

The gPIE has a value range from 0 to 100 and is to be interpreted in a higher-is-better manner. Each score 

element is normalized and restricted to unit distances 0 to 1 and will be explained in more detail in the 

following subsections. 
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3.4.3.1 Allele-specific binding affinity prediction 

Since a significant determinant for a peptide’s efficacy as a targetable 

antigen is its binding affinity to an MHC-I allele, we included an established 

allele-specific affinity prediction in our scoring system that predicts the 

binding affinity.  Generally, the binding affinity is expressed as the half-

maximal inhibitory concentration (IC50). In general terms, IC50 measures 

the concentration at which the ligand occupies half of all binding pockets 

on a given target in the absence of competition. To predict the binding 

affinity for a given peptide, we first curated a set of 36 HLA alleles (Table 4) 

that are well-characterized and common in the European population 

(Sanchez-Mazas et al., 2017). We predicted the binding affinity for each 

allele using netMHCpan 4.0, a machine learning-based affinity predictor 

commonly used in the field (Jurtz et al., 2017). After prediction, we filtered 

all peptides with a binding affinity of less than 500 nM as a cut-off value.  To 

integrate the affinity value into the score, we performed a min-max 

normalization based on the observed total range of all predicted affinities, 

with a scale inversion due to lower IC50 values representing higher binding 

affinities. The function 𝑓1 generates a normalized IC50 value per epitope, 

and the procedure is described in Equation III with 𝐵𝑖𝑛𝑑𝐴𝑓𝑓𝐸𝑝𝑖𝑡𝑜𝑝𝑒 

denoting the predicted IC50 of a given epitope to be normalized, 

max (𝐵𝑖𝑛𝑑𝐴𝑓𝑓) the maximum and min(𝐵𝑖𝑛𝑑𝐴𝑓𝑓) the minimum of the 

set of all predicted IC50 values across all alleles. 

 

 

𝑓1(𝐵𝑖𝑛𝑑𝐴𝑓𝑓𝐸𝑝𝑖𝑡𝑜𝑝𝑒) =  
𝐵𝑖𝑛𝑑𝐴𝑓𝑓𝐸𝑝𝑖𝑡𝑜𝑝𝑒 −max (𝐵𝑖𝑛𝑑𝐴𝑓𝑓)

min(𝐵𝑖𝑛𝑑𝐴𝑓𝑓) − max (𝐵𝑖𝑛𝑑𝐴𝑓𝑓)
     (𝑰𝑰𝑰) 

  

Table 4: HLA alleles used in 

the affinity prediction.  

For each allele and peptide 

combination, the 

corresponding IC50 was 

predicted. 

HLA-A HLA-B HLA-C 

01:01 07:02 01:02 
02:01 08:01 02:02 
03:01 13:02 05:01 
11:01 15:01 06:02 
24:02 18:01 07:01 
25:01 27:02 08:02 
26:01 35:01 12:03 
29:02 41:01 15:02 
31:01 44:02 16:01 
32:01 44:03  
33:01 45:01  
68:01 49:01  

 50:01  
 51:01  
 57:01  
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3.4.3.2 Allele-specific immunogenicity prediction 

We used a prediction tool published by the Immune Epitope Database and Analysis Resource (IEDB) to 

evaluate if an epitope has a high probability of immunological activity. The tool evaluates the contribution 

and positional relevance of amino acids in a peptide to its immunogenicity (Calis et al., 2013). It leverages 

measured amino acid preferences of T-cell receptors which are supposed to approximate the likelihood of a 

peptide being recognized by T cells. Additionally, it uses allele-specific anchor positions in the peptides to 

mask the contribution of said positions in calculating the score. The tool has been validated using viral 9-mers 

and was used in version 1.1. For the model's output to be used in our multi-variate score, we applied the min-

max normalization function 𝑓2 to constrain the score range to the interval between 0 and 1, as described in 

Equation IV. Here, 𝐼𝑚𝑚𝑢𝑛𝑜𝑔𝐸𝑝𝑖𝑡𝑜𝑝𝑒 denotes the predicted immunogenicity value of a given epitope while 

max(𝐼𝑚𝑚𝑢𝑛𝑜𝑔) and min(𝐼𝑚𝑚𝑢𝑛𝑜𝑔) represent the maximum and minimum predicted immunogenicity 

over all epitopes respectively. 

 

𝑓2(𝐼𝑚𝑚𝑢𝑛𝑜𝑔𝐸𝑝𝑖𝑡𝑜𝑝𝑒) =  
𝐼𝑚𝑚𝑢𝑛𝑜𝑔𝐸𝑝𝑖𝑡𝑜𝑝𝑒 −min(𝐼𝑚𝑚𝑢𝑛𝑜𝑔)

max(𝐼𝑚𝑚𝑢𝑛𝑜𝑔) − min(𝐼𝑚𝑚𝑢𝑛𝑜𝑔)
     (𝑰𝑽) 

 

3.4.3.3 Transcript specific expression 

Since the RNA abundance of a gene is a generally accepted surrogate for the abundance of a protein product 

and thus may have a major impact on peptide availability for presentation, we integrated a measure of 

expression into the score (Conesa et al., 2016). We used transcript-specific expression measured in TPM to 

estimate the abundance of a peptide’s source gene. Since the value range of TPM goes from 0 to 106, we took 

care to cap the influence of high expression values on the gPIE. Hence, we hypothesized that a TPM of 100 

would saturate the availability of a peptide for presentation. Thus, the integration function 𝑓3 for transcript-

specific expression into the gPIE score is a piece-wise equation designed so that all normalized expression 

values were constrained to 0 to 100. In which 𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒 describes the TPM expression of a transcript 

that may give rise to the protein and subsequently the peptide. 

 

 

𝑓3(𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒) = { 

𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒
100

, 𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒 < 100

1, 𝑇𝑟𝑎𝑛𝑠𝑐𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒 ≥ 100
   (𝑽) 
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3.4.3.4 Gene expression index 

Since our goal is to select peptides that are restricted to the tumor as much as possible, we designed a metric 

to penalize low differences between a peptide’s source gene’s expression in the tumor and healthy tissues. 

This metric, deemed the gene expression index, is generated by the function 𝑓4. It evaluates the 10th 

percentile of a gene’s expression, denoted as 𝑀𝑒𝑙𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒, in the MCM samples compared to its 

highest 90th percentile expression in healthy tissue, described by the term  𝑇𝑖𝑠𝑠𝑢𝑒𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒. This 

comparison has the effect that this parameter gets lower the closer the expression values are, thus penalizing 

a low expression difference. The gene expression index was calculated as follows: 

 

𝑓4(𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝐼𝑛𝑑𝑃𝑒𝑝𝑡𝑖𝑑𝑒) =  
10𝑡ℎ𝑝𝑐𝑡 𝑀𝑒𝑙𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒

10𝑡ℎ 𝑝𝑐𝑡 𝑀𝑒𝑙𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒 + max (90
𝑡ℎ𝑝𝑐𝑡 𝑇𝑖𝑠𝑠𝑢𝑒𝐺𝑒𝑛𝑒𝐸𝑥𝑝𝑃𝑒𝑝𝑡𝑖𝑑𝑒)

 (𝑽𝑰)  
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3.4.4 Extension of the multivariate score into an ensemble model 

During the first phase of this project, we derived a multi-parameter decision support ranking for helping to 

find epitope candidates for the treatment of MCM. We expanded this ranking approach by implementing a 

more complex scoring system in the second phase. This novel system should evaluate the biological necessity 

of a candidate antigen to circumvent or estimate antigen-loss likelihood in the tumor and provide a more 

generalizable prediction of binding and immunogenicity probability.  

To this end, we conceived the extended generalized predicted immuno-Efficacy Score (ES). It was designed to 

be broadly applicable to different tumor entities and thus uses gene-level expression values, which are 

available through anonymized data portals like The Cancer Genome Atlas Program (TGCA). We implemented 

this approach to generate new TAA candidates for metastasized primary uveal melanoma (UM) and provide 

novel therapeutic possibilities for further testing. The fundamental pillars of the ES are the extension of our 

ranking function by two own-trained machine learning models (ML) and one network model, assessing 

biological functionality. The two ML models were designed to provide generalized probability predictions for 

binding to MHC-I and immunogenic activity. Also, a network-based method was implemented that constructs 

a gene-specific biological indispensability metric to minimize the probability of the tumor losing the antigen 

due to immune escape. We retained the predicted binding affinity in the ES to supply an allele-specific metric. 

Formally, we define the ES as follows: 

 

𝐸𝑆(𝑃) = 𝑐𝑜𝑛𝑠𝑇𝑀𝐸(𝑔𝑒𝑛𝑒(𝑃)) ⋅ consIC50(𝑒𝑝𝑖𝑡𝑜𝑝𝑒(𝑃))  ⋅ 𝐼𝑑𝑠𝑝𝑥(𝑔𝑒𝑛𝑒(𝑃)) ⋅ 𝑔𝐵𝑃(𝑃) ⋅ 𝑔𝐴𝑃(𝑃) (𝑽𝑰𝑰) 

 

Similarly to the gPIE mentioned before (section 3.4.3), each parameter in the score is constrained to a range 

between 0 and 1 (also called unit distance) to ensure an unweighted contribution. In this formula, P denotes 

a peptide with gene(P) indicating the corresponding gene of origin. Accordingly, an epitope(P) denotes the 

combination of P with a specific HLA allele. The individual subfunctions of the ES are the constrained tumor 

median expression consTME, the indispensability index (Idspx), the generalized binding predictor gBP, the 

generalized activity predictor gAP, and the constrained allele-specific binding affinity consIC50. Firstly, the 

consTME of a gene G was calculated as follows: 

 

𝑐𝑜𝑛𝑠𝑇𝑀𝐸(𝐺) = {
1 𝑖𝑓𝐸𝑥𝑝𝑟(𝐺) > 100
1

100
⋅ 𝐸𝑥𝑝𝑟(𝐺)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (𝑽𝑰𝑰𝑰) 
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We followed the same previously described (section 3.4.3.3) rationale by capping the upper bound for a 

gene’s TPM at 100, thus ensuring that very high expression alone would not immediately lead to a higher 

score. The subfunction consIC50 was calculated in a similar manner. The variables G and E denote gene(P) 

and epitope(P), respectively, with Expr(G) denoting G’s RNA abundance. IC50(E) denotes the allele-specific 

binding affinity predicted with netMHCpan 4.0 (Jurtz et al., 2017). Binding affinity upper and lower bounds, 

2000nM and 30 nM, respectively, were derived from a logistic regression applied to the training dataset of 

the machine learning model after annotating them with predicted IC50 values. 

  

consIC50(𝐸) =

{
 
 

 
 

0 𝑖𝑓 IC50(𝐸) > 2000𝑛𝑀

1 𝑖𝑓 IC50(𝐸) < 30𝑛𝑀

𝐿(IC50(𝐸)) − (𝐿(2000 nM))

𝐿(30 nM) − (𝐿(2000 nM))
with 𝐿(𝑥) = −𝑙𝑜𝑔10(𝑥)𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (𝑰𝑿) 

 

The bounds were selected to obtain a high positive predictive value and to discard presumptive non-binders 

reliably. The additional parameters Idspx, gBP, and gAP were derived from a network analysis and machine 

learning model and are already returning unit distance probabilities. 

 

3.4.4.1 Physiochemical annotation for peptides 

With the ES score including two ML models, we first used properties directly derivable from the AA sequence 

of a peptide kmer as a feature. We selected properties that we deemed suitable encodings of a peptide's 

biological characteristics or are known to play a role in binding to MHC-I (Altuvia et al., 1994; Huang, Kuhls 

and Eisenlohr, 2011; Chowell et al., 2015). The features used were molecular weight in Dalton, instability 

index according to dipeptide occurrence (Guruprasad, Reddy and Pandit, 1990), isoelectric point, grand 

average of the hydropathy index (GRAVY)  according to Kyte and Doolittle (Kyte and Doolittle, 1982) and a 

polarity score.  For all features but the polarity score, we used the Python library ‘Biopython’ and its included 

function ‘ProtParam’ to derive the values (Peter J A Cock et al., 2009). The polarity score was calculated as 

the average of the AA chain. Raw AA polarity values were derived from Zimmerman et al. (Zimmerman, Eliezer 

and Simha, 1968) and can be found in Table 5.  
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Table 5: Amino acid polarity values derived from literature and used in the manual computation of the polarity score  
(Zimmerman, Eliezer and Simha, 1968). As a reference, the 1-letter symbol and IUPAC names of the amino acids are 
listed here since in the supplementary code used for the computation, only 1-letter notation is used. 

Aminoacid 1-letter 
symbol 

Aminoacid Polarity values 

A Alanine 0.00 

R Arginine 52.00 

D Aspartate 49.70 

N Asparagine 3.38 

C Cysteine 1.48 

E Glutamate 49.90 

Q Glutamine 3.53 

G Glycine 0.00 

H Histidine 51.60 

L Leucine 0.13 

I Isoleucine 0.13 

K Lysine 49.50 

M Methionine 1.43 

F Phenylalanine 0.35 

P Proline 1.58 

S Serine 1.67 

T Threonine 1.66 

W Tryptophan 2.10 

Y Tyrosine 1.61 

V Valine 0.13 
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3.4.4.2 Generalized binding and activity probability prediction 

One core element of our novel approach for predicting cancer-associated antigens and their presumptive 

targetable epitopes was implementing an allele-independent measure of peptide immunogenicity. We 

constructed two random forest (RF) models to predict which peptides have a high chance of generalized MHC-

I binding (gBP) and of eliciting an immune response (gAP) (Breiman, 2001). The RF model was selected for its 

ability to work well in settings where the number of variables is far larger than the number of observations  

(Boulesteix et al., 2012). Our two models were implemented in R with the library ‘randomForest’ version 4.7-

1.1 and designed to accept a peptide’s physiochemical properties as features. MHC-I-restricted training 

peptides for both models were extracted from the MHCBN database 4.0 by selecting only peptides with 

unambiguous (i.e., yes or no) classification for binding and activity, respectively (Lata, Bhasin and Raghava, 

2009). The training set of 3777 entries for binding was supplemented with 201 peptides classified as binders 

or non-binders through crystallography in the Protein Data Bank (PDB) and literature research to bolster our 

data basis. Since we expected the distribution of predicted peptides to skew towards non-binders heavily, as 

most peptides generated by cells will not be presented on MHC-I, we modeled the distribution in the training 

data such that the distribution of binders to non-binders would be 1:10 (Yewdell, Reits and Neefjes, 2003). 

Since this led to a reduction in the input size of the training data, we decided to construct an ensemble model, 

which would repeatedly perform weighted sampling from the total training data. Using 100 iterations of this 

weighted sampling approach, we trained a model with 10,000 trees in each iteration. Accordingly, for the 

generalized probability of activity, we performed balanced sampling (active to non-active, 1:1) since, in 

theory, any peptide should be able to elicit an immune response given a complementary TCR and the right 

environment. For both models, response was discretized at the decision threshold of 0.5. Predictive 

performance evaluation was performed by resampling from the entire dataset and comparison to published 

alternatives (Figure 6).  
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Figure 6: Detailed illustration of the ensemble model approach used for generating generalized binding and 
activity predictions. The training data was used to construct two ensemble random forest models, one for the 
probability of binding to MHC-I and one for eliciting an immune response. For each condition, we trained 100 
models with 10,000 trees each while sampling training data in a weighted manner for binding prediction and a 
balanced manner for activity. Weighted sampling was done to emulate the heavy skew towards non-binding 
peptides expected and observed in empirical data. Thus, we applied a 1:10 ratio. This also had the effect of heavily 
biasing our models towards a high positive predictive value per model at the cost of the type II error rate. 

 



 

44 

 

3.4.4.3 A network model for indispensability estimation 

Antigen loss, and the subsequent immune evasion by a tumor, is a problem we tried to address by creating a 

network model whose primary task is to quantify the indispensability of a gene for the tumor entity. First, a 

list of 90 cancer-relevant gene ontology (GO) terms (Table 6) was gathered through subject-expert level 

curation. We calculated the sum of associations to these terms for each gene to estimate its intrinsic 

importance. Additionally, we counted the occurrence of a gene in four cancer biology databases, Oncogene, 

the Cancer Proteomic Database (http://apoptoproteomics.uio.no/), the Epithelial-Mesenchymal Transition 

Gene Database, and DriverDBv3 (Liu, Sun and Zhao, 2017; Liu et al., 2020). Occurrence in the GO term list 

and occurrence in the cancer biology databases was summed to determine an individual gene’s importance 

(GI). These calculations were performed for our candidate genes derived from our pipeline and genes 

annotated in DriverDBv3 to establish a generalized distribution of gene importance independent of the tumor 

model of interest. Since proteins are generally embedded into a biological network and act within pathways, 

we implemented a gene’s indispensability estimate, which is assumed to be higher when its loss would 

influence other genes of high biological relevance. Using in-house software, we reconstructed an interaction 

network from our candidate genes and all genes found in DriverDBv3 and expanded it with direct interaction 

partners extracted from the databases TRANSFAC, HTRIdb, miRecords, and miRTarBase (Matys et al., 2006; 

Xiao et al., 2009; Bovolenta, Acencio and Lemke, 2012; Chou et al., 2016). 

Each node or gene G in the network was assigned a neighborhood importance (NI) calculated as the sum of 

its own and its direct interaction partner’s gene importance (GI), defined as: 

 

𝑁𝐼𝑖(𝐺𝑖)  =  𝐺𝐼(𝐺𝑖)  + ∑𝐺𝐼(𝐺𝑗) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐺𝑗  𝑤ℎ𝑒𝑟𝑒 𝑎𝑑𝑗𝑒𝑛𝑐𝑦 𝑡𝑜 𝐺𝑖 =  1 (𝑿) 

 

The underlying assumption is that the higher the NI, the more relevant the gene is for the tumor’s survival. 

We further assumed that beyond some threshold of NI, there is no actual increase of importance for a gene 

(Figure 7). Hence, following this reasoning, all genes whose NI is more significant or equal to this threshold 

are assumed to be equally important for the cancer cell.  

Additionally, for practical purposes in modeling, it is sensible to constrain outlier values so as not to skew the 

model too harshly in this direction. Accordingly, we transformed our network's empirical distribution of NI 

values to a distribution with saturation properties. Since Michaelis-Menten functions lend themselves to 

model saturation characteristics, we derived a Michaelis-Menten type function which defines the threshold 

of not gaining more importance for a gene as 90% of the maximum. To derive the numerical value of the 

threshold (t), we multiplied two cutoffs derived from the empirical distributions of the variables of NI. The 
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variables are the node degree (the node's number of neighbors) and the gene importance (the summed-up 

occurrences in cancer-related databases).  

To do this, we first had to set an arbitrary threshold for what we would define as “sufficiently important”. We 

assumed this threshold to be at five occurrences. Then, we plugged the value five into the gene importance’s 

cumulative distribution function F to obtain the value. After establishing this, we used the empirical 

cumulative probability p to derive the node degree distribution's corresponding p-quantile (indicated by 

function Q in Equation XII). This value corresponds to the quantile Q in the distribution of node degree values 

at which the gene is also sufficiently important in the gene importance table. The threshold parameter t was 

calculated as the product of five and Q. 

 

𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑡 =  𝐺𝐼𝑆𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡 𝑔𝑒𝑛𝑒  ∙  𝑁𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒 𝐹𝑜𝑟 𝑔𝑒𝑛𝑒𝑠 𝑠𝑢𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑙𝑦 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑡    (𝐗𝐈) 

 

𝐾𝑀 = 
1 − 0.9

0.9
 ∙ 𝑡 =  

1 − 0.9

0.9
 ∙ ( 5 ∙  𝑄 𝑁𝑜𝑑𝑒 𝑑𝑒𝑔𝑟𝑒𝑒(𝑝 =  𝐹𝐺𝐼(5)))    (𝐗𝐈𝐈) 

 

The interval-constrained neighborhood importance (NI) value of a gene G with saturation behavior was 

labeled the indispensability index. 

   

𝐼𝑛𝑑𝑖𝑠𝑝𝑒𝑛𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐺) =  
𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝐺)

𝐾𝑀 +𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒(𝐺)
    (𝐗𝐈𝐈𝐈) 

 

With this method, we set out to estimate the biological importance value of a gene for the tumor entity and 

ensure that if the gene is targeted, the possibility of evasion is minimal while the disruption of the cancer 

phenotype is maximal due to the high potential cost of losing this gene. 
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Figure 7: Process for the generation of an indispensability estimate for a candidate gene in the context of it getting 
targeted during therapy. After filtering procedures, a candidate list is supplied to the algorithm. Genes are 
characterized in terms of their connectivity and importance in an expanded gene signaling network and the sum of 
their occurrences in cancer-related databases. The neighborhood importance of a gene is the sum of these values for 
all its direct neighbors. 
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Table 6: Selected gene ontology (GO) terms from which gene importance values were derived. 

GOID TERM 

GO:0001569 branching involved in blood vessel morphogenesis 

GO:0001833 inner cell mass cell proliferation 

GO:0001834 trophectodermal cell proliferation 

GO:0002040 sprouting angiogenesis 

GO:0002041 intussusceptive angiogenesis 

GO:0002174 mammary stem cell proliferation 

GO:0002674 negative regulation of acute inflammatory response 

GO:0002677 negative regulation of chronic inflammatory response 

GO:0002862 negative regulation of inflammatory response to antigenic stimulus 

GO:0002941 synoviocyte proliferation 

GO:0003347 epicardial cell to mesenchymal cell transition 

GO:0003419 growth plate cartilage chondrocyte proliferation 

GO:0006925 inflammatory cell apoptotic process 

GO:0008284 positive regulation of cell population proliferation 

GO:0008285 negative regulation of cell population proliferation 

GO:0008637 apoptotic mitochondrial changes 

GO:0010463 mesenchymal cell proliferation 

GO:0010657 muscle cell apoptotic process 

GO:0010717 regulation of epithelial to mesenchymal transition 

GO:0010718 positive regulation of epithelial to mesenchymal transition 

GO:0010719 negative regulation of epithelial to mesenchymal transition 

GO:0014009 glial cell proliferation 

GO:0014029 neural crest formation 

GO:0016525 negative regulation of angiogenesis 

GO:0033002 muscle cell proliferation 

GO:0033028 myeloid cell apoptotic process 

GO:0033687 osteoblast proliferation 

GO:0034349 glial cell apoptotic process 

GO:0035172 hemocyte proliferation 

GO:0035492 negative regulation of leukotriene production involved in inflammatory response 

GO:0035726 common myeloid progenitor cell proliferation 

GO:0035736 cell proliferation involved in compound eye morphogenesis 

GO:0035988 chondrocyte proliferation 

GO:0036093 germ cell proliferation 

GO:0042127 regulation of cell population proliferation 

GO:0042981 regulation of apoptotic process 

GO:0043065 positive regulation of apoptotic process 

GO:0043066 negative regulation of apoptotic process 

GO:0043276 anoikis 

GO:0044340 canonical Wnt signaling pathway involved in regulation of cell proliferation 

GO:0044346 fibroblast apoptotic process 

GO:0045765 regulation of angiogenesis 
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GO:0045766 positive regulation of angiogenesis 

GO:0048134 germ-line cyst formation 

GO:0048144 fibroblast proliferation 

GO:0050673 epithelial cell proliferation 

GO:0051402 neuron apoptotic process 

GO:0051450 myoblast proliferation 

GO:0060055 angiogenesis involved in wound healing 

GO:0060266 negative regulation of respiratory burst involved in inflammatory response 

GO:0060317 cardiac epithelial to mesenchymal transition 

GO:0060722 cell proliferation involved in embryonic placenta development 

GO:0060809 mesodermal to mesenchymal transition involved in gastrulation 

GO:0060886 clearance of cells from fusion plate by epithelial to mesenchymal transition 

GO:0060978 angiogenesis involved in coronary vascular morphogenesis 

GO:0061323 cell proliferation involved in heart morphogenesis 

GO:0061351 neural precursor cell proliferation 

GO:0070341 fat cell proliferation 

GO:0070661 leukocyte proliferation 

GO:0071335 hair follicle cell proliferation 

GO:0071838 cell proliferation in bone marrow 

GO:0071839 apoptotic process in bone marrow cell 

GO:0071887 leukocyte apoptotic process 

GO:0072089 stem cell proliferation 

GO:0072104 glomerular capillary formation 

GO:0072111 cell proliferation involved in kidney development 

GO:0090255 cell proliferation involved in imaginal disc-derived wing morphogenesis 

GO:0097152 mesenchymal cell apoptotic process 

GO:0097190 apoptotic signaling pathway 

GO:0097194 execution phase of apoptosis 

GO:0097360 chorionic trophoblast cell proliferation 

GO:0106015 negative regulation of inflammatory response to wounding 

GO:0140208 apoptotic process in response to mitochondrial fragmentation 

GO:0150079 negative regulation of neuroinflammatory response 

GO:1900016 negative regulation of cytokine production involved in inflammatory response 

GO:1902362 melanocyte apoptotic process 

GO:1902489 hepatoblast apoptotic process 

GO:1902742 apoptotic process involved in development 

GO:1903594 negative regulation of histamine secretion by mast cell 

GO:1904019 epithelial cell apoptotic process 

GO:1904516 myofibroblast cell apoptotic process 

GO:1904606 fat cell apoptotic process 

GO:1990009 retinal cell apoptotic process 

GO:1990654 sebum secreting cell proliferation 

GO:2000793 cell proliferation involved in heart valve development 



 

49 

 

3.4.5 Aggregation of results into an accessible database 

Since we envision that our predictions could be used for further in vitro or pre-clinical experiments by thirds 

parties, we designed and deployed a publicly accessible database, developed in RStudio, a development 

platform for the language R and using the Shiny framework (RStudio, 2011; Chang et al., 2023). Martin 

Eberhardt, at the Laboratory of Systems Tumor Immunology at the Department of Dermatology, University 

Hospital Erlangen, has designed the front end of the database and performed deployment and management 

of web services and domain services. The databases are available at www.curatopes.com. 

  

http://www.curatopes.com/
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3.5 Validation procedures for a subset of selected antigen candidates 

3.5.1 Candidate selection for experimental validation 

We selected three distinct groups of peptides from our pipeline’s output for validation since we had to 

constrain the number of experiments to perform.  The chosen groups were labeled the high efficacy (HE), low 

efficacy (LE), and alternative predictor (AP), respectively. The high-efficacy (HE) group contained the highest-

ranked peptides, which by our score, we deemed to be the best-suited for therapy.  

To maximize donor availability for experimental validation, we selected peptides with high efficacy scores for 

the locally prevalent HLA allele A*02:01 (abbreviated A2) as follows: For each scored peptide, we first 

assessed its potential to engage bystander alleles, i.e., any of the other 35 considered alleles beyond A2 (Table 

4). This was done since donors are rarely fully HLA-typed in practice, and we had to account for possible 

presentation by other alleles, which could add noise to the readout. The probability of binding at least one 

bystander allele by the peptide, thus forming an epitope, was estimated by interpreting an epitope’s (Ep) 

efficacy scores (ES) for a bystander allele, denoted as b, as probabilities of success and calculating the 

probability of at least one success across all bystander alleles, i.e., the non-failure probability PNF according to 

Equation XIV. 

 

P𝑁𝐹 = 1 − ∏ (1 − 𝑝𝑏)

𝑏 ∈ 𝑏𝑦𝑠𝑡𝑎𝑛𝑑𝑒𝑟

, 𝑤𝑖𝑡ℎ 𝑝𝑏 = ES(𝐸𝑝𝑏) (𝐗𝐈𝐕)  

 

Further, the maximum bystander efficacy scores per peptide were calculated. Peptides were then ranked by 

multi-sorting their attributes in the following order: bystander non-failure probability (ascending), maximum 

bystander efficacy scores (ascending), and A2 efficacy score (descending). This multi-sort step prioritizes 

discarding peptides with undesirable binding to bystander HLA alleles. In a subsequent step coined 

Levenshtein filter, we ensured that no two peptides in the final selection were highly similar when considering 

pure AA sequence similarity. For this, we sequentially discarded peptides whose sequences differed by only 

one AA substitution, insertion, or deletion (i.e., showed a Levenshtein string distance of 1) from a peptide of 

higher ES ranking (Levenshtein, 1966). The top 20 peptides from the remaining list made up the HE tier.  

Low-efficacy (LE) peptides had minimal efficacy scores across all 36 considered HLA alleles. Since we found 

many peptides with a score of zero, the LE peptide order was randomized, ensuring an unbiased selection of 

the many peptides with efficacy scores of zero across all alleles. Then, for each peptide, the product, 

maximum, and mean of its scores across all 36 alleles were calculated, and the amount of its non-zero scores 

was counted. A subsequent all-ascending multi-sort on these four features ranked the peptides in order of 

increasing efficacy profile. After applying a Levenshtein filter described above, the top twenty peptides were 

selected for the LE tier. The 20 peptides in the alternative-predictor (AP) tier served as theoretically efficacious 
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counterparts to the HE peptides to examine how our selection pipeline performs compared to established 

methods. Our methodology chose them from the set of peptides assigned an A2 efficacy score of zero. After 

applying the Levenshtein filter, the AP tier was filled by selecting the 20 peptides with the closest marginally 

better IC50 value predictions to the HE tier. 

 

3.5.2 An alternative in silico testing through molecular docking 

As a complementary in silico methodology to cross-evaluate our subset of selected candidate peptides, 

molecular docking simulations were performed by the Department of Systems Biology and Bioinformatics of 

the University Rostock in the Gupta Group. Independent structure prediction of the peptides was performed 

using the Build and Edit Protein tool in Discovery Studio 2020 software suite (DS2020) on the amino acid 

sequence. The generated 3D structure was subjected to geometry optimization using smart minimization 

algorithm for 5000 steps with the CHARMM force field (Brooks et al., 2009). The minimization cutoff was set 

to 0.001 root mean square gradient in a Generalized Born implicit solvent model. The 3D structure of the 

HLA-A*02:01 protein was obtained from Protein Data Bank entry 5YXN, which contains a T-cell receptor in 

complex with HLA-A*02:01 and a hepatitis-C virus peptide. The HLA-A*02:01 alpha chain was extracted and 

corrected for possible errors, including missing atoms in incomplete residues, missing loop regions, alternate 

conformations (disorder), nonstandard atom names, and incorrect protonation state of titratable residues 

with DS2020’s Prepare Protein. The 3D conformation of the HLA-A*02:01 alpha chain was subsequently 

optimized using the same protocol mentioned before. All the epitope poses were further refined using 

RDOCK, a CHARMM-based procedure for refinement and scoring. For each peptide, the ten best binding 

poses were generated using ZDOCK and further refined with RDOCK for selecting the best pose by the 

E_RDock score. 

 

3.5.3 In vitro validation using autologous PBMC stimulation 

To test our prediction algorithm in an in vitro environment, we designed an experimental setup that would 

test our three selected tiers of peptides in a controllable and blind setting. In accordance with our 

collaborators, a testing strategy was devised to use donor-derived peripheral blood mononuclear cells 

(PBMCs) and stimulate them with our peptide groups (Figure 8). Each group, HE, LE, and AP, were divided 

into four pools of five peptides and supplied without disclosure of the tier (blind testing) to our experimental 

collaborators. In vitro validation assays were performed by Dr. Cindy Flamann in the group of PD Heiko Bruns 

at the Universitätsklinikum Erlangen, Department of Hematology. 

Leukapheresis products were obtained from four donors selected for their positive CMV and HLA-A*02:01 

status while adhering to current regulatory and ethical standards, including obtaining informed consent. 

PBMCs were purified by Ficoll gradient centrifugation (800 g, 20 min, 20 °C, break off) and subsequently 
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cryopreserved in liquid nitrogen at a concentration of 100 million/ml in a freezing medium containing 10% 

DMSO. After thawing, 1 – 2 million/ml cells were recovered for 18-24 h in serum-free TexMACS™ GMP 

medium (Miltenyi Biotec, Bergisch-Gladbach, Germany) at 37 °C. Before peptide stimulation, cells were 

harvested by centrifugation and counted. Batches of 20 million live PBMCs were stimulated per peptide pool 

or CMV positive control (human PepTivator® CMV pp65, Miltenyi Biotec, Bergisch-Gladbach, Germany) at a 

total peptide concentration of 1 µg/ml. Stimulation was performed in 20 ml of prewarmed serum-free 

medium for two hours at 37 °C. Afterward, cells were spun down and washed with a medium to eliminate 

unbound peptides. Cells were then incubated at an initial concentration of 2 million/ml for nine days at 37 °C 

in RPMI 1640 medium (Gibco by Life Technologies GmbH, Darmstadt, Germany) supplemented with 1% (v/v) 

GlutaMAX (Gibco by Life Technologies GmbH, Darmstadt, Germany), 50 IU/ml IL-2 (Aldesleukin, Novartis 

Pharma GmbH, Nürnberg, Germany) and 1% (v/v) human AB serum (Anprotec, Bruckberg, Germany). During 

day 5 of incubation, culture volume was increased with fresh RPMI 1640 medium with supplements to a total 

of 2.5 times the volume on day 0. On day nine after stimulation, culture supernatant was used for IFN-γ ELISA 

(ELISA MAX™ Deluxe Set, Biolegend, San Diego, USA) and stimulated PBMCs investigated with IFN-γ Secretion 

Assay (Miltenyi Biotec, Bergisch-Gladbach, Germany) as well as Incucyte® Live Cell Imaging (Sartorius, 

Göttingen, Germany) according to the manufacturer’s instructions. The HLA-A*02:01-positive UM cell line 

92.1 (De Waard-Siebinga et al., 1995) was selected as a cytotoxicity target and cultivated in uveal melanoma 

medium containing RPMI1640 (Gibco by Life Technologies GmbH, Darmstadt, Germany), 2 mM L-glutamine 

(Gibco by Life Technologies GmbH, Darmstadt, Germany), 10% fetal bovine serum (Merck, Darmstadt, 

Germany), and 1x Antibiotics-Antimycotics (Gibco by Life Technologies GmbH, Darmstadt, Germany) at 37 °C 

with 5% CO2. The 92.1 cells were stained with 0.75 µM Cytolight Green (Sartorius, Göttingen, Germany) in 

PBS for 20 min at 37 °C before the Cytotox Assay. After two washing cycles, stained 92.1 cells were seeded in 

a 96-well plate and incubated for 30 min at 37 °C to allow for reattachment. Peptide-stimulated PBMCs were 

then added in an effector:target-ratio of 4:1 (final volume 200 µl) and the culture medium supplemented with 

Annexin V Red Dye (Sartorius, Göttingen, Germany) to facilitate ongoing staining of apoptotic cells. Green and 

red fluorescence channels were recorded once every 60 min for a total of 45 hours, and the colocalization of 

the green and red area (µm2/Image) was automatically evaluated. 

Figure 8:  Schematic of the experimental procedures conducted for validation. 
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4 Results 

In this project, we created a computational selection pipeline for novel self-tolerant non-mutated 

therapeutically viable MHC-I-restricted tumor-associated antigens for metastatic cutaneous melanoma 

(MCM) and metastasized primary uveal melanoma (UM). To this end, we first conceptualized the underlying 

self-tolerance model so that gene expression and transcript expression were used to filter the potential list 

of genes to a set that we would deem immune tolerable in healthy and/or survival-critical tissues. Secondly, 

since the first iteration of this methodology lacked generalizability and an evaluation of the biological 

relevance of an antigen, we endeavored to improve these aspects utilizing the second tumor model, UM, as 

a case study. Since we envision the translation of our antigens into treatment options, we set up in vitro 

validation assays in collaboration with experts in these experimental procedures. 

 

4.1 Tumor-associated antigens in metastatic cutaneous melanoma 

In the first phase of this project, we focused on creating a comprehensive filtering procedure that would allow 

us to find tumor-restricted genes from transcriptomics data quickly. We created this workflow for the tumor 

model of metastatic cutaneous melanoma (MCM), which, although having improved prognosis through ICB, 

still needs treatment alternatives for patients non-responsive to ICB.  

 

4.1.1 Transcriptomics-based gene filtering procedures 

The first levels in establishing a set of candidate genes for tumor-associated antigens in MCM were 

comparative filtering procedures to identify genes that were only expressed in the tumor model. We designed 

our pipeline to be highly restrictive to ensure a high degree of tumor exclusivity, with only a few genes fulfilling 

the general conditions (Figure 9). Using the transcriptomics data extracted from the published sample cohorts 

GSE78220 and GSE96619, we processed the samples as described in section 3.1 and combined them into one 

dataset containing 58,368 genes. We applied our transcriptomics-based filtering steps against the 31-sample 

strong MCM cohort’s transcriptomic data to select potential tumor-restricted genes. 

Figure 9: Transcriptomics filter for metastatic cutanous 
melanoma (MCM). To illustrate the restrictiveness of our 
TPM-based filtering procedure, the log2 fold change of the 
10th percentile Tumor expression against the 90th 
percentile maximum tissue expression is shown. The 
dotted horizontal lines represent the maximum positive 
fold change (tumor expresses the gene higher) and 
maximum negative fold change (tissue expresses the gene 
higher), respectively, while the dashed horizontal line 
indicates parity in expression. Only 317 genes show a 
desirable expression profile. This amount represents less 
than 1% of the initial 44,334 overall expressed genes. 
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In the first step, we removed 24,117 genes from the total set of 58,368 that were not annotated as protein-

coding in any of the three databases (CCDS, HPA, Ensembl). We then pruned this set further to remove genes 

with very low expression in the tumor by discarding genes with a 10th expression percentile smaller than 1; 

this led to the removal of 13,486 genes and left us with 10,631. Since transcript expression level does not 

always translate to protein expression levels, we applied a histopathological filter, removing all genes whose 

protein presence was detected in histological screenings through the Human Protein Atlas (HPA). Hence, we 

removed another 8,663 genes from this set, concluding these filtering steps with 1,968 genes. Using the 

Genotype-Tissue Expression (GTEx) sequencing data, we intersected the remaining gene set with genes 

expressed in healthy tissue. This step generated an overlap between the two datasets to ensure a reference 

basis for further analysis. This overlap consisted of 1,893 genes that were present in both datasets. As we 

advanced with these genes, we applied our high-in-tumor, low-in-tissue filter, which removed all genes whose 

10th expression percentile in the tumor was smaller than the 90th expression percentile in any healthy tissue, 

yielding 40 genes. To further narrow down this selection, we decided to group these genes into tolerability 

sets to reduce the risk of severe autoimmunity. We defined a gene as tolerable in each tissue when 90% of 

the tissue samples would express the gene at a TPM of less than 10.  Genes that were tolerable in all defined 

critical tissues (Table 2) were collected into the superior-tolerance set, while the others were collected into 

the enhanced tolerance set. Each set was composed of 20 genes (Figure 10). Our strict pipeline filters a large 

set of genes to a condensed version for further investigation. While we described an iterative filtering process 

here, all individual steps are independent of each other, and changing the order of operations will not yield a 

different result. 
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Figure 10: Expression of genes in the superior- and enhanced-tolerance sets in the 29 critical tissues. Expression is 
shown as log2 of the gene’s TPM value with values at exactly zero (before log transformation) in black. Additionally, 
these values have been excluded from the log transform. Further, the fraction of tumor expression is shown in percent. 
Genes with an expression of precisely 0 (before log transformation) in peripheral tissue reach a value of 100% here, 
meaning the tumor contributed exclusively to the expression of this gene. 
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4.1.2 Candidate gene-derived peptide sequence-based post-hoc screening 

With our predicted tolerant 40 candidate genes established, we continued with peptide-level post-hoc 

screening (section 3.4.1). Since the antigenic peptide bound to the MHC-I molecule is the primary 

determinant of CTL engagement, we began sequence level-filtering procedures. Since it is possible for 

homologies between proteins to lead to identical subsequences originating from different genes, we collected 

the 165 protein-coding transcripts originating from our 40 candidate genes and extracted peptides of lengths 

9 to 12. In total, from all 20 genes in the superior-tolerance set, we generated 31,733 unique peptides. For 

the Enhanced-tolerance set, we generated 22,793 peptides, for a total of 54,526 peptides. Each peptide was 

compared in a literal sense, AA by AA, to all known complementary sequences in the human proteome, 

excluding the protein sequences derived from our selected 40 genes. For the Superior-tolerance set out of 

31,733 peptides, 17,670 failed this filtering procedure, while 14,063 passed. 

Additionally, five Superior-tolerance genes ultimately failed literal comparison since they showed high 

redundancy in the proteome. Accordingly, we established that of the 22,973 peptides for the enhanced 

tolerance set, 20,164 passed filtering procedures. All 20 genes passed this filtering procedure (Figure 11). The 

five superior-tolerance genes removed during peptide-level filtering were RGPD5, SERF1A, SERF1B, POLR2J2, 

and IGLC1. Notably, the expression of these genes was not extraordinarily high in the tumor, with 1.77, 7.99, 

11.02, 5.90, and 1.17, respectively. However, since expression does not linearly translate into immunogenicity 

or presence on MHC-I, filtering out genes that show a high sequence identity with other genes is still relevant 

to avoid potential side effects. Straightforward sequence comparison may thus present an appropriate 

systematic approach to filter antigen candidates to minimize the chance for cross-reactivity.  

  

Figure 11: Candidate 
genes are shown with the 
amount of derived 9- to 
12-mers. Colors indicate 
the filtering result of 
peptides regarding the 
literal comparison to the 
complementary proteome. 
Genes that failed this filter 
because of all their 
peptides appearing in 
other known proteins are 
indicated with a black 
arrow. Five genes in the 
superior-tolerance set and 
no genes in the enhanced-
tolerance set failed this 
procedure.  

 



 

57 

 

4.1.3 Characterization of predicted efficacious peptides 

Since the previous processing steps focused on filters regarding the peripheral presence of peptides, meaning 

anywhere outside the tumor, through either expression or homology, it was necessary to establish their 

validity as MHC-I-restricted antigenic targets. Hence, we established a ranking system for the short-listed 

peptides which remained. A total of 34,277 peptides were processed in this step. Using netMHCpan 4.0, we 

predicted allele-specific binding affinities for 36 HLA alleles as described in section 3.4.3.1, yielding 1,232,172 

epitopes. To reduce the candidate list further and bring it closer to the realm of applicability, we used an 

affinity-based filter, removing all epitopes if their predicted binding affinity between the peptide of interest 

and the HLA allele was higher than 500 nmol/L, a commonly used cut-off to determine presumed binders 

(IC50<500 nmol/L) from non-binders (IC50>500 nmol/L)(Zhao and Sher, 2018). Most epitopes were not 

predicted to be high-affinity binders, and the list was reduced to 10,597 epitopes with 6,397 unique peptides 

since a peptide may be predicted to bin several alleles.  Generally, the distributions of binding affinities over 

all alleles were unimodal, with the peak in low-affinity ranges, demonstrating that the principal expectation 

should be that most peptides are predicted to be weak binders (Figure 12).  

Figure 12: Binding affinity 
distributions per HLA 
allele for all 34,277 
peptides not discarded in 
the sequence identity 
filter. All distributions are 
relatively unimodal and 
left-tailed, with high 
counts of epitopes in the 
low-affinity regions. Some 
alleles, like HLA-A*02:01 or 
HLA-A*11:01, showed a 
secondary peak in the 
high-affinity regions. Since 
we try to cover a broad 
population with our 
predictions, it is necessary 
to ensure that we can 
achieve good coverage of 
binders and find potential 
alleles for which we have 
gaps in our candidates. 
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The range of the predicted affinity values was 2.46 to 49,739.3 nmol/L. Since HLA alleles are patient-specific, 

it is relevant to observe if there are gaps in the predictive modeling of our pipeline where some alleles would 

not produce valid candidates for possible clinical use. Indeed, while the overall distributions presented as 

homogenous, we found that the alleles HLA-C*04:01 and HLA-B*52:01 did not have any predicted epitopes 

with an affinity lower than 500 nmol/L. Generally, Superior-tolerance and Enhanced-tolerance sets produced 

comparable binders (IC50<500nmol/L). The behavior was likewise observable for the non-binders for each 

allele (IC50>500nmol/L) (Figure 13). 

 

Figure 13: Amount of binding (high-affinity) or not-binding (low-affinity) peptides produced per tolerance set and per 
allele on a log2 scale for ease of comparison. Shown are the predicted binder status for each allele and its associated 
epitopes. Since the relation of non-binders to binders is heavily skewed towards non-binders, the x-axis of the counts is 
log2 transformed. Generally, no significant imbalance in the sets was observed. Enhanced- or superior-tolerance sets 
produced comparable amounts of binders and non-binders. Two alleles, HLA-B*52:01 and HLA-C*04:01, did not give rise 
to any binders, making them gaps in our predictive pipeline.  
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We further investigated if there are peptides that are promiscuous in their affinity characteristics since, for 

an off-the-shelf therapy option, a broad high-affinity profile would be advantageous from both therapy and 

manufacturing perspectives. We found that one peptide would at most bind 11 different alleles while most 

of the peptides were only highly affine to one allele (Figure 14A). Additionally, we did not observe any 

significant clustering of peptides according to alleles, with all high-affinity peptides distributed broadly over 

the investigated alleles (Figure 14B).  

Figure 14: (A) The distribution of high-affinity alleles by peptide count. 3940 of the 6,397 peptides are only highly 
affine to one allele. Taking together peptides binding one, two, or three alleles covers 93% of all peptides. The X-axis 
of Figure A Is also the title of the histogram of Figure B. Both show the number of alleles bound. (B) Binary heat map 
for the peptides and their binding profiles over the HLA alleles. Peptides are presented on the columns with red 
indicating an IC50 smaller than 500 nm and blue conversely indicating an affinity greater than 500 nm. Few good 
general binders exist, with the maximum being 11 bound alleles for the peptide YTVENSRVY, while there are three 

peptides that bind ten alleles and one that binds nine. However, we did not find general binders that may be used 
supertype-wide, for example, in all HLA-A alleles. 
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Since no single peptide would be predicted to bind a majority of alleles and with a large set of peptides 

available to select from, we deemed it necessary to implement an easy-to-understand ranking system to 

facilitate selection decisions. Hence, we designed a ranking scheme based on a multi-criteria score, as 

discussed in section 3.4.3. Briefly, the score evaluates several epitope features, which are commonly used in 

the community, like immunogenicity predictions performed through IEDB (Calis et al., 2013), affinity 

predictions (IC50) performed through netMHCpan4.0 (Jurtz et al., 2017) and expression characteristics in 

TPM, and combines them into a single value that is easily interpretable. We named this value the gPIE score 

and calculated it according to section 3.4.3. The score represents a multiplicative metric that combines all our 

considered parameters. All predicted efficacious epitopes from our two candidate gene sets considered for 

the database included the transcript-specific expression for the peptide’s source gene into the score. This step 

from gene-level to transcript-level expression increases the total database size since the same peptide can 

potentially be produced from several transcripts due to redundant exon usage. This, however, allows a more 

granular ranking of peptides since the total gene expression is resolved into individual-transcript expression. 

When computing the gPIE score, it became apparent that while its hypothetical range is 0 to 100, its limits in 

our data were ranging from 0 to 52.36 The highest values were calculated in the Enhanced-tolerance set while 

the Superior-tolerance set reached a maximum of 17.3 for its highest-ranking epitope derived from the known 

melanoma antigen MAGEA3. We also included other previously described melanoma antigens in our 

database (Table 3). We found, however, that most of them did not rank particularly highly with the maximum 

score being 5.49 (Figure 15). 

  

Figure 15: Distribution of the gPIE score for all sets in the database. A high quantity of epitopes were assigned a score 
of zero and are thus not considered particularly efficacious for application in therapy. The highest score was found in 
the Enhanced-tolerance set, perhaps reinforcing the idea that a balance between autoimmunity risk and anti-tumor 
immunogenicity must be struck. 
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The observation that many epitopes were assigned a score of zero begs the question as to which factor is 

causative. The nature of a multiplicative score necessitates that the entire score will be zero if one element is 

zero. An investigation into the dominating cause for zero-scored epitopes showed that, in most cases, 

normalized transcript expression (Figure 16, F3) was the culprit in both the Superior-tolerance and the 

Enhanced-tolerance set. Surprisingly, the binding affinity for the known antigens was the leading cause for 

zero-scored epitopes, together with the total contribution of the source gene’s expression to the total gene 

expression in our analyzed MCM cohort (Figure 16, F1 and F4). Otherwise, the elements of the gPIE score 

were distributed evenly and covered almost the entire range, with F1 (normalized IC50) having high-affinity 

binders with a score of 0.99 and a mean of 0.50. 

Similarly, F2 (normalized predicted immunogenicity) showed a broad range with a minimum of 0, a maximum 

of 0.84, and a mean of 0.62. As mentioned, F3 (normalized transcript expression as observed in our cohort) 

had the most drastic effect on the zero-scored candidates while still having a high overall range with a very 

skewed distribution with a maximum of 1 and a mean of 0.03, implying that highly expressed tumor 

transcripts were still filtered out through other variables. Finally, F4 (the gene expression index) demonstrated 

a similarly broad range with 0.82 as a maximum and 0.54 as a mean. This shows that highly tumor-restricted 

transcripts, with an 0.82 expression index (most expression originates from the tumor), also may be filtered 

out (Figure 16, F4).  

 

  

Figure 16: Epitopes that were assigned a gPIE score of zero. Heatmap shows the elements of the gPIE score 
normalized IC50 (F1), normalized predicted immunogenicity (F2), normalized transcript expression (F3), and 
expression index (F4) for the epitopes that were scored zero in the gPIE annotated as the set from which they 
originate. Generally, transcript expression was shown to be the most common cause for the Superior- and Enhanced-
tolerance set, while for the known antigens, both the expression index and the binding affinity were the cause. 
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Accordingly, we investigated the individual elements' contribution to the epitopes' overall score to see if one 

factor would dominate positively or negatively. To this end, we filtered out all zero-scored elements to see 

the effects of the other variables on the positively scored epitopes. We did not observe similar trends in the 

positive score epitopes compared to the removed ones. Transcript expression was still a dominant factor in 

decreasing the overall score of an epitope (Figure 17, F3). While expression was again an important factor in 

scoring, we made efforts to combine all usually applied metrics to derive a comprehensive score that helps 

users make quick and parameter-based decisions.  

  

Figure 17: Contribution of the individual elements of the gPIE for each epitope scored above 0. The gPIE scale 
visualization is presented in log2 scale after addition of 1 to each value for ease of interpretation. It is apparent that 
transcript expression (F3) in the tumor is still a major contributor to the score, while all other factors show a 
homogenous distribution with no dominating element between them. It is of note that the known antigens are widely 
distributed between the sets and are hard to make out in the overall map due to the high-class imbalance. 
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4.1.4 Curatopes 1.0 – Database design and functionality 

We created a database of our scored epitopes available to the public. The landing page of the database, which 

is available under www.curatopes.com/melanoma, features an overview of the superior-tolerance set and 

serves as a first introductory portal for further use (Figure 18). The overall design is separated into a tutorial 

document, available to download, a detailed documentation that explains the database's elements, a legal 

disclaimer in case the database is used in clinical settings, and a link to the peer-reviewed scientific article 

introducing Curatopes.  

One can also download the whole database or select entries using the filtering fields below the table headers. 

Immediately accessible data columns are a gene of origin with a link to the corresponding Genecards 

(www.genecards.org) entry, the peptide’s AA sequence, its three best-scored HLA alleles, the epitope’s gPIE 

score, and finally, how many collateral tissues we detected expression of the gene of origin.  

If needed, additional columns for binding affinity, immunogenicity, transcript expression, tumor 10th 

percentile expression, maximum tissue 90th percentile expression, peptide start position in the native AA 

chain, and the peptide length can be made visible by the user but are initially hidden as to not overload the 

page with information. 

Figure 18:  Landing page of the Curatopes Melanoma database available to the public. The highest-scoring epitopes in 
the superior-tolerance set are shown. Additionally, all the additional functionalities can be accessed from here. First, the 
page offers a tutorial explaining how to query the database and download tables for further use. Detailed documentation 
on each parameter shown in the table is linked at the top. Since this is predicted data, there is a legal disclaimer in case 
somebody wants to use peptides or epitopes in clinical settings. Finally, there is a link to the published article covering 
the database. The fundamental functions to operate on the data are exploring the gene sets, sorting, subset, filtering 
them as needed, and downloading selected subsets. 
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One can access the tutorial document by clicking on the Tutorial button if interested in more detailed 

information on how to use the database. This will download a short document addressing questions like the 

analysis's fundamental idea and resulting database. If a more in-depth understanding is needed, users can 

access complete documentation via the “Documentation” link, which elaborates in greater detail on how the 

database was curated methodologically and how elements of the gPIE score were calculated (Figure 19). 

Figure 19: Quick access buttons for the tutorial (A) and the documentation (B) documents on the web platform. 
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4.2 Tumor-associated antigens in primary uveal melanoma 

In the second phase of this work, we implemented an extension of our methodology for the search for TAAs 

in the ocular cancer uveal melanoma (UM). This phase focused on extending the score by including network 

modeling and supplementing existing elements with novel prediction systems. Additionally, while including 

the peripheral tissue filter developed during the first part of this project, we now set out to check the 

plausibility of our predictions with in vitro experiments. The pipeline is built to create a rational and 

deterministic prediction-to-validation workflow that can be repeated for different tumor entities as necessary 

(Figure 20). 

 

Figure 20:  Overview of study scope. Our approach can be conceptualized as four interleaved workflows: an in-silico 
ranking pipeline (blue), a permanent database of ranked candidates available to clinicians (cyan), a validation 
protocol for proof-of-principle tests (green), and paths to application in the clinics (salmon). During ranking, we 
evaluated and filtered genes based on their expression profiles to create a database of tumor antigens that we 
propose as optimized candidates for targeted anti-cancer therapy. To check whether high-ranked peptides can elicit 
an immune response, we performed blinded in-vitro tests with PBMCs from healthy donors. The immunogenic 
candidates can then be tested in clinical trials or applied in a personalized setting by way of different delivery systems. 
GTEx, Genotype-Tissue Expression. HPA, Human Protein Atlas. IC50, binding affinity. Altern. Pred., alternative 
predictor. GMP, good manufacturing practice. APC, antigen-presenting cell. ES, efficacy score. 
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4.2.1 In-house and model cohort transcriptomics 

First, we curated a study cohort for uveal melanoma. Through a clinical trial headed by the group of 

Experimental Immunotherapy at the Universitätsklinikum Erlangen, we had access to 14 primary UM samples 

sequenced using NGS.  In parallel, we downloaded 80 samples of primary UM from a published study 

(Robertson et al., 2017). In a first exploratory analysis, we investigated how heterogeneous the samples were 

across cohorts. To this end, we performed principal component analysis on the combined TPMs of our in-

house-produced data and the external cohort. It became immediately apparent that the two groups were 

separated distinctly by their respective processing locations, thus showing a strong batch effect commonly 

seen for data generated at different institutions (Leek et al., 2010). We decided to leave our in-house 

generated samples out of the primary workflow and use them later for validation analysis since 80 samples 

would provide a broader sampling basis from the UM expression landscape without the need to correct batch 

effects (Figure 21). 

  

Figure 21: Principal component analysis of the in-house-generated expression data and the publicly available 
dataset. A high degree of variation on the first PC separates the two groups. This may indicate strong technical or 
processing differences between the samples, which we cannot separate from biological differences. 
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4.2.2 Transcriptomics-based filtering procedures 

As described in section 3.3, we applied our transcriptomics filter for candidate gene selection to the 80-

sample strong UM cohort to identify protein-coding genes with a high-in-tumor, low-in-tissue expression 

profile from the empirically measured mRNA abundances. We observed again that the filtering procedures 

developed in the first phase and applied now to UM were quite strict and yielded 22 candidates out of 10,514 

genes with a 10th-quantile expression above 1 (Figure 22 A). In our in-house dataset, we checked whether the 

22 genes were detectable and expressed to see if our candidates generalize to the larger UM patient 

population. We found that all 22 genes were stably expressed in the independent in-house cohort, albeit with 

a wide range of expression intensities (Figure 22 B), increasing our confidence that these genes are targetable 

across UM patients in a general manner. This is an essential feature for TAAs since we must avoid overfitting 

our set of selected genes on a small subset of patients, which is especially difficult for a rare tumor-like UM 

with limited sampling opportunities. It is of note that known melanocyte-derived antigens like MLANA, TYR, 

and PMEL could be shown to be stably expressed across our selected UM samples (Rähni et al., 2022). Even 

though the melanocytes forming these tumors are located in different tissues, these antigen’s expression 

profiles seem relatively stable, at least in a malignant state.  

  

 

 

Figure 22:  Selection and cross-comparison of candidate genes. Selection funnel representing a cascade of in-silico filters 
for genes. Each slice of the funnel lists the feature criterion and the number of genes meeting it. Tumor expression 
statistics were calculated using a published set of 80 primary UM samples. Ultimately, 22 candidate genes passed all 
filters. (B) Heat map of gene expression of the 22 candidate genes in an independent set of 14 primary UM biopsies 
produced in-house. Log2-transformed transcripts per million (TPM) estimates are shown. Stable expression levels of the 
22 candidate genes were observed across individuals. 
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4.2.3 Generation of an indispensability network index 

One element by which we extended the functionality of our pipeline was the evaluation of the biological 

significance of a gene. To this end, we generated what we deemed the indispensability index (Idspx), a score 

that should estimate the costliness of a tumor to suppress a particular gene. In the context of targeted 

immunotherapy, the Idspx measures how difficult it is for cancer to evade the therapy by not expressing the 

antigen anymore, a phenomenon known as antigen loss. If we take the network perspective on this question, 

how central is a gene in the context of a broader functional biological network that governs a tumor's 

biological viability, stability, and transformation? We first used our 22 genes as a seed to generate a candidate 

network. We queried their immediate connections to other genes according to different interaction 

databases and thus generated a network consisting of 167 nodes and 349 edges (Figure 23 A). In a second 

step, we grouped our 22 candidates with known oncogenes derived from published resources to generate a 

background network that calculated how well-connected these oncogenes are (Figure 23 B). The background 

network comprised 20,057 nodes and 290,657 edges (section 3.4.4.3).  

 
  

Figure 23: Networks were created for the generation of a biological gene importance index. (A) Candidate network 
estimating the connectivity and the functional distance between candidate genes. (B) Candidate genes are embedded 
into an extensive background network that contextualizes them to other oncogenes. From this network, we derived 
metrics like node degree, which were used in the indispensability index. 
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From the networks, we generated a node degree (ND) table which listed to how many other genes a single 

gene was immediately connected to. From cancer-related databases and a curated list of cancer-relevant GO 

terms, we derived a gene importance (GI) value by counting how often any gene in the network was 

associated with cancer (Table 6, section 3.4.4.3). We found that the GI values had a wide range, with some 

outlier genes occurring very often in this scoring setting. For example, TP53 had the highest GI value of 235, 

with TNF in the second rank with 122.  In general, 95% of the genes showed a GI below 15. Our candidate 

genes had a maximum GI value of 14 for the TEMEM200C, while two genes, C14orf169 and PNMA6A, had a 

GI value of zero, pointing to no known association with cancer. The melanocyte antigen MLANA had a GI value 

of two, the same as the melanoma-associated gene TYRP1 (Figure 24 A, Panel 1).  

Having established the GI scores of our genes, we proceeded to investigate the previously calculated node 

degrees. We interpreted the node degrees as a measure of the biological embeddedness of a particular gene 

into larger biological pathways and, thus, necessary for tumor functionality.  

Overall, the node degree had a wide range of values, with genes like YBX1 having extremely high node degrees 

(5991) in the background network. Our candidate genes were generally located in the lower regions of the 

node degree distribution, considering that the maximum was 43 for CABLES1, followed by TYRP1 with 28. 

Three candidate genes did not have any connection to other nodes: SCL45A2, ACCSL, and ALX1 (Figure 24 A, 

Panel 2). By multiplying the adjacency matrix, a binary matrix indicating with binary (0,1) values if a 

connection (edge) exists between two genes (nodes), with the occurrence vector (GI values), we derived the 

neighborhood importance (NI). The NI value estimated the importance of a gene within its local community 

and, by extension, how sensitive its targeting would be in the global tumor network. Again, we found the 

gene CABLES1 to have a high score here, with a NI of 76, followed by TRPM1 with 47 and TYRP1 with 46. 

Interestingly, the candidate’s distribution over the three parameters looked somewhat similar (Figure 24 A). 

Using all these metrics, we plugged the values into the formulae described in section 3.4.4.3, Equations XI to 

XII. The computed parameter for a value of five in the empirical distribution function of the node degree was 

0.675 or the 67.5th percentile. Calculating the corresponding p-quantile from the ND distribution, we derived 

a value of 18, which we deemed “sufficiently connected” by analogy. Plugging this into our equations, we 

arrive at a KM parameter of 10 and finally calculate the normalized NI values, now termed the Idspx. The Idspx 

was constrained to unit distance using a Michaelis-Menten-like function with saturation behavior to make it 

easier to interpret and compare to our other subfunctions. We calculated this value over all background genes 

to estimate how highly relevant cancer genes would be evaluated. We found that YBX1, FOXP3, TP53, and 

MYC were all in the top-ranked genes in our Idspx table, with YBX1 holding the top rank, FOXP3 ranked second, 

MYC ranking nine, and TP53 ranking 13. The values for these highly ranked genes were all very near one, with 

0.99959, 0.99953, 0.99728, and 0.99939, respectively, for the mentioned genes.  
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Our candidate genes were widely distributed. CABLES1, at rank 679, was the highest evaluated gene with 

0.8837, while C11orf71 ranked lowest with 0.375 at rank 12,928 (Figure 24B). We hypothesize that this novel 

method estimates the biological importance of a particular gene to the tumor entity, in this case, UM, which 

may be generalizable to other cancers. 

 

  

Figure 24: Elements of the network score and normalized indispensability index for the selected candidate genes that 
had non-zero values in either gene importance or node degree. (A) The three panels show the individual ordered 
elements from which we derived our indispensability index. Red shows our candidate genes, while grey indicates an 
oncogene from the curated database. The panels primarily show that our genes are rarely located in the extreme value 
ranges but rather in the lower to mid ranges, giving robust estimates of their biological relevance for UM. (B) 
Distribution of the indispensability index, which was calculated from the elements shown above. 
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4.2.1 Candidate gene-derived peptide sequence-based post-hoc screening 

To avoid possible cross-reactivities based on sequence identity, we applied post-hoc peptide level screening 

to all peptide k-mers derived from the 22 candidate genes (section 3.4.1). From 71 protein-coding transcripts, 

we extracted 51,374 unique peptides on which post-hoc k-mer-based peptide filtering was performed. During 

this filtering, 11,343 peptides were removed upon finding cross-matches, while 40,031 were kept. In contrast 

to our model for MCM, no genes were lost in this filtering step since no candidate showed such high AA 

sequence homology with another annotated gene that all of its derived 9- to 12-mers were discarded (Figure 

25).  

  

Figure 25: Candidate TAA for UM shown with the amount of derived 9 to 12 mers. Colors indicate the filtering state of 
peptides regarding the literal comparison to the proteome. No genes failed the sequence-based filter. 
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4.2.2 Ensemble model prediction for binding and activity 

Having a set of 40,031 peptides with MHC-I-preferred lengths and screened against the proteome, we now 

implemented a novel generalized prediction model to gauge a peptide’s potential efficacy in binding MHC-I 

and inducing an immunological response. We used the MHCBN database, which includes binding and T-cell 

reactivity data. We constructed two random forest predictors derived from the peptides’ physiochemical 

properties as features (hydrophobicity, polarity, stability, isoelectric point, and molecular weight)(section 

3.4.4.1) (Lata, Bhasin and Raghava, 2009). Since generating all possible peptides from the primary protein 

sequence yields a large dataset, including peptides that would, under normal physiological circumstances, 

get discarded during the processing leading up to MHC-I loading, we designed our predictor to handle this 

highly imbalanced data. We plotted the receiver operation characteristics (ROC) curves to test the overall 

performance of our two models. A random process, meaning when the true positive rate is equal to the false 

positive rate at every threshold, lies on the diagonal. Our binding model performed better, having an area 

under the curve (AUC) of 0.853 compared to the activity model with an AUC of 0.636. However, comparable, 

already published alternatives for binding prediction and immunogenic activity performed overall similarly 

but slightly worse than our models. The binding predictor NetMHCpan4.0 showed an AUC of 0.815 for binding 

prediction, while IEDB’s `predict_Immunogenicty` produced an AUC of 0.559 (Figure 26) (Calis et al., 2013; 

Jurtz et al., 2017). 

Figure 26: Random forest based binding and activity predictor performance benchmarks validated against 
sampling from the input training compared to the predictive performance of published tools. We tested each model 
against sampling from the entire training set and found that our models performed slightly better in terms of area 
under the curve (AUC) compared to two standard tools for immunogenicity prediction (IEDB) or binding prediction 
(netMHCpan4.0). 
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After benchmarking and demonstrating our models' performance, we predicted the generalized binding 

probability (gBP) and the generalized activity probability (gAP) for all unique peptides. We predicted gBP and 

gAP for 40,031 unique peptides derived from our 22 candidate genes. After predictions were performed, we 

first investigated if there was a dependence between the gAP and gBP. We did not find a direct relationship 

between these two components, with the correlation being 0.07. This suggested that a high binding 

probability does not translate into a high probability of immunogenic activity and vice versa (Figure 27).  

 

Figure 27: Scatter plot of our set's predicted generalized binding and activity probability for each unique peptide. Since 
predictors were trained without regard to HLA alleles’ binding preferences, just sequence derivable features, each unique 
peptide receives a generalized (cross-allele) probability value for activity (gAP) and binding (gBP). Our predictors did not 
show an appreciable correlation against each other. High-probability binders could have low activity probability and vice 
versa. 
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4.2.3 Characterization of predicted efficacious peptides 

To aggregate our parameters into the efficacy score (ES), we integrated an expression estimate, an affinity 

estimate, the network model-derived indispensability index, and two probabilities generated by the ML 

model. Using these parameters, we calculated the ES according to section 3.4.4, Equation VII, for all 

combinations of the 36 alleles and 40031 unique peptides which passed filtering. Hence, we scored 

approximately 1.4 million epitopes and assessed how the ES distributed over the epitopes. The range of the 

ES was designed to be between 0, the worst score, and 100, the best score. Most epitopes received a score 

of 0, with only 47408 epitopes receiving a non-zero score. This translates roughly to a ratio of 1 in 30 or 33 in 

1000 epitopes having a positive, non-zero score. While the ES is unitless and dimensionless, it can be 

interpreted as a probability for the epitope to be efficacious. Investigating the zero-score epitopes further, we 

found that two genes, FNDC10 and SMIM10L1, were assigned scores of 0 for all their 31176 and 8352 

epitopes, respectively. In both cases, the gene’s Idspx was 0, causing the ES for these two genes’ peptides to 

be 0. For illustrative purposes, we will only consider predicted epitopes with an ES of at least 1 in the 

subsequent distribution. This reduces the total set drastically by only considering 1534 epitopes derived from 

17 genes (Figure 28). 

 

 
 

  

Figure 28: Distribution of efficacy scores of epitopes with a score higher than 1. Most epitopes still score 
comparatively low in our ES score. Percentile-wise, 99% of the considered epitopes we scored below an ES of 28.84. 
The minimum was set to 1 to reduce the number of close-to-zero epitopes skewing the distribution too strongly. 
The maximum ES was 42.27. The mean and median were both in low one-digit percent ranges. 
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Since a principal goal is to provide both individual epitopes and tumor-specific genes for further analysis, we 

investigated how the ES was distributed over the 17 remaining (above 0 ES scoring) candidate genes. We also 

explored where the top-scoring epitopes originated from in terms of source genes and potential overall rele-

vance for UM. When considering all genes, we found that most candidates offered a broad range of potential 

epitopes to select from. However, MLANA, a known immunogenic MCM gene, had a relatively low score range 

(1 to 15.81) compared to the other prominent MCM antigens like PMEL (1 to 31.05) or TYR (1 to 36.55)(Figure 

29). Few of our discovered genes were directly relatable to UM. Recently the TMEM200C was identified to be 

a potential marker for progression in UM (Ness et al., 2021). While it scored in the lower ranges in this anal-

ysis, it might present a worthy target for further investigation. 

 

Figure 29: Distribution of efficacy scores per gene. Both the y and x axis have been fixed to the same 
intervals row-wise and column-wise for easier comparison. 
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While the overall distributions showed many options for targeting UM, we were interested in the best-pre-

dicted epitopes. Hence, we extracted the top 1% of epitopes for a closer investigation. The cutoff for the top 

1% of epitopes was calculated as 28.81. Sixteen epitopes generated from 6 genes cleared this threshold (Table 

7). 

Table 7: List of the top 16 epitopes with their gene of origin, predicted preferred allele, and overall efficacy score. 

Peptide Gene name HLA allele Efficacy 
Score 

GLLALAIGL TSPAN10 HLA-A*02:01 42.26 

IAIAVVGAL TYRP1 HLA-C*16:01 37.45 

MLLAVLYCL TYR HLA-A*02:01 36.55 

SLLGLLALA TSPAN10 HLA-A*02:01 35.69 

CIFFPLLLF TYRP1 HLA-A*29:02 33.32 

FPFSLLGLL TSPAN10 HLA-B*3501 32.94 

MAAAAAAAT CABLES1 HLA-B*3501 32.45 

SLGCIFFPL TYRP1 HLA-A*02:01 32.03 

LAVLYCLLW TYR HLA-B*57:01 31.52 

AVIGALLAV PMEL HLA-A*02:01 31.05 

ALGGLVVSA TSPAN10 HLA-A*02:01 30.62 

MAVVLASLIY PMEL HLA-B*35:01 29.98 

FPMMVVSCTV OCA2 HLA-A*02:01 29.95 

AVVLASLIY PMEL HLA-A*29:02 29.09 

FSLLGLLAL TSPAN10 HLA-C*16:01 29.08 

LMYALAFGA OCA2 HLA-A*02:01 28.96 

 

Interpreting the ES as a probability, our top candidate, derived from the gene TSPAN10, had an overall prob-

ability of 42% of being efficacious. TSPAN10, from a biomedical perspective, would pose an interesting target 

since it has been associated with cell migration and metastasis (Seong et al., 2012). A therapy that would 

exclusively target this in an MCM or UM clinical setting may inhibit cancer mobility and curb the risk of me-

tastasis. TSPAN10 generated five highly efficacious epitopes, making it a prominent element in our selection 

for three different alleles; with one being HLA-A*02:01, broad applicability may be feasible for this antigen. 

The runner-up candidate gene, which produced three high-ranking epitopes, was TYRP1. This melanocyte-

specific gene is a potential TAA and has been investigated in some clinical trials using monoclonal antibodies 

with limited success in relapsed or refractory MCM patients (Kobayashi et al., 1999; Khalil et al., 2016). TYR, 

another known MCM gene, ranked third among our top candidates, producing two highly-ranked epitopes 

for two different alleles. Like TYRP1, TYR plays a role in pigmentation, is considered melanocyte-specific and 

has been under translational investigation in the context of MCM (Bentley, Eisen and Goding, 1994; Wolchok 

et al., 2007; Parlar et al., 2019). CABLES1 presented with only one highly ranked candidate and is generally 

not associated with UM or MCM other than being a potential carrier of a driver mutation site in MCM (Dbniak 
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et al., 2019). Biologically, the gene is involved in cell cycle regulation, having known interactions with several 

cyclin-dependent kinases (Sakamoto et al., 2008). Curiously, this candidate epitope with the low-complexity 

peptide sequence MAAAAAAAT is restricted to the HLA allele C*16:01, which is relatively rare in Caucasian 

populations with an overall allelic frequency of 4.1% but prevalent in African populations, e.g., 28.3% in Mali 

(Middleton et al., 2003; Gonzalez-Galarza et al., 2020). The fifth gene, PMEL, another pigmentation gene and 

MCM antigen, presented itself as a highly-ranked candidate in the context of UM (Zhang et al., 2021). It gave 

rise to three highly efficacious peptides on three distinct alleles. Finally, the gene OCA2 produced two effica-

cious peptides for the allele A*02:01. This gene is attractive as a target for direct epitope intervention and 

other therapeutic options since it is a transmembrane protein playing a role in pigmentation and melanin 

synthesis (Sajid et al., 2021). Indeed, this gene is a prognostic and predictive marker for cutaneous MCM and 

primary UM. 

After exploring the biological and biomedical properties of the efficacious epitopes, we checked how the five 

features in the model contributed to the ranking. Since the model will likely be further expanded or modified, 

we analyzed how the individual features correlated with poorly ranked (a score of absolute zero) and posi-

tively ranked epitopes to inform possible modifications of the models (Figure 30).  

Figure 30: (A) Co-correlation matrix of constituents of the ES for all zero-ranked epitopes together with (B) a 
heatmap illustrating overall distribution. Since the ES is 0 for all selected epitopes, it is excluded from this 
illustration. 
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We found that in contrast to our simpler gPIE model, two factors governed the removal of epitope candidates. 

Predominantly, the constrained IC50 and the generalized activity probability (gAP) returned all zero values. 

Of close to 1.43 million zero-ranked peptides, 1.41 million had zero consIC50. The gAP was the second leading 

cause, with 1.07 million epitopes allotted a zero. The overlap between these two groups was high, with 1.05 

million epitopes being zero in consIC50 and gAP. All other factors were negligible, with consTME always being 

greater than zero by design, the Idspx being zero in 39528 cases, and the generalized binding probability being 

zero in 129528 cases. Looking at favorably scoring epitopes, the gAP predictor still had a more substantial 

influence on the overall ES than other factors. Consequently, a modest positive correlation of 0.52 between 

the ES and the gAP was observed (Figure 31 A). In the larger context, no other single feature strongly influ-

enced the ES, with all of them contributing relatively equally (Figure 31 B). 

 

  

Figure 31: (A) Co-correlation matrix of constituents of the ES for all non-zero-ES epitopes together with (B) a heat map 
illustrating overall distribution and log2-transformed ES. 
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4.2.4 Validation of peptide efficacy in silico and in vitro 

Since testing the complete set of 1.4 million ranked MHC-I epitopes is practically impossible, we selected a 

small subset of candidates for validation. For practical purposes like donor availability, we restricted ourselves 

to peptides specific to the regionally frequent HLA allele HLA-A*02:01. In accordance with our project 

partners, we designed experimental procedures that test three different groups of candidates partitioned 

into different tiers of efficacy. We selected twenty high-efficacy (HE), twenty low-efficacy (LE), and twenty 

control peptides that were only predicted by an alternative predictor (netMHCpan4.0) (AP) (Table 8). To 

minimize noise from potential cross-presentation on other expressed HLA alleles, we selected the peptides 

to have minimal efficacy scores for other alleles besides HLA-A*02:01.  

When investigating if the contributing variables of the ES were predominantly governed by specific features 

(e.g., polarity), we observed only weak dependencies (Figure 30 and Figure 31). This averts the fallacy that a 

subset of its contributing variables strongly dominates the ES while others are neglected (Figure 33). Since 

our efficacy tiers were based on a score that abstracted a complex biological process into numerical, 

sequence-depending features, we wanted to compare our predictions with other in silico methods that model 

structural and spatial aspects of the binding between peptides and the MHC-I. Courtesy of the Gupta group 

at the SBI at Uni Rostock, we were supplied with molecular docking simulations for our selected epitopes. 

The simulations were carried out in a blinded manner, i.e., without knowledge by the operator of the tier 

assignment for each of the 60 peptide sequences supplied. Statistical analysis of the extracted free energy 

values (in kcal/mol) demonstrated that they significantly differed between the HE and the other two tiers. 

The HE tier was generally characterized by stronger binding (Figure 32).  

 

  

Figure 32: Predicted binding energies 
between MHC (allele A*02:01) and 
selected peptide candidates grouped by 
tiers. Docking and molecular dynamics 
simulations for the 60 peptides were 
performed blinded for tier assignment. On 
the right-hand side, uncorrected p-values 
for pairwise Mann-Whitney U tests are 
shown, indicating that, on average, the 
high efficacy (HE) peptide tier formed 
energetically stabler complexes than the 
other two tiers. Lower binding energies 
represent more favorable peptide-MHC-I 
pairs. 
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Figure 33: Heat map visualizing patterns in the factors contributing to the efficacy scores of the 60 selected 
peptide candidates. The columns show the physicochemical peptide features used to train the binding and 
activity predictors (left) and the factors in the efficacy score (ES) equation (right) after z-score transformation. 
The IC50 column holds the peptides’ netMHCpan-predicted binding affinity to MHC for the HLA-A*02:01 allele. 
Rows are labeled with the peptide’s amino acid sequence and annotated with the ES, the computationally 
calculated binding energy to MHC (A*02:01), and the allocated ES tier. The high-efficacy group peptides are 
characterized by high hydrophobicity, an observation that is in line with established knowledge. 



 

81 

 

Using a GMP-compliant procedure, our 

collaborators from the Bruns group at 

Medizinische Klinik 5, Universitätsklinikum 

Erlangen, obtained antigen-specific T cells 

through peptide stimulation of leukapheresis 

products (Gary et al., 2018). All 60 peptides we 

had previously allocated to the efficacy tiers were 

ordered from a commercial service provider. 

Three peptides failed synthesis at this point (Table 

8). To streamline experimental demand, we 

prepared peptide mixtures such that each tier of 

twenty peptides was split into four pools of up to 

five, yielding 12 peptide pools. In the HE tiers, we 

assigned peptides to the pools in order of 

descending efficacy. The pools of peptides were 

assigned random labels from 1 to 12 and provided 

to the experimental team without giving further 

information about the efficacy tier. This was 

done to ensure blinded experimental 

conditions. PBMC preparations from four HLA-

A*02:01-positive and CMV-seropositive 

healthy blood donors were stimulated with 

each peptide pool for nine days (Figure 8). 

PBMCs were stimulated with CMV-pp65 as a 

positive control, while unstimulated PBMCs 

were used as a negative control. To quantify 

the antigen-specific T-cell activation, we 

measured interferon-gamma (IFN-γ), a surrogate marker for the activation process, in two different 

modalities. First, nine days after the initial stimulation, the frequency of IFN-γ-producing T cells within the 

whole PBMC culture was measured by flow cytometry. Even though our measurements showed substantial 

inter-donor variability in the responses, we measured an increase in antigen-specific, IFN-γ positive T cells 

when stimulated with pool HE4 (28%±10) expression compared to the positive control (Figure 34 A, B).  

None of the other tested pools showed statistically significant differences. We corroborated this data by 

recording IFN-γ concentration in the culture’s supernatant by enzyme-linked immunosorbent assays (ELISA).  

Figure 34: FACS and ELISA analysis of stimulated PBMCs. (A) 
Cells stained for CD3 and IFN-γ on day 9 after stimulation with 
controls or with two peptide candidate pools from the high-
efficacy (HE4) or alternative-predictor (AP1) groups, respectively. 
Numbers in corners indicate the subpopulation size in the 
corresponding quadrant expressed as percentage of all plotted 
cells. (B, C) Box plots of (B) FACS-derived IFN-γ secretion assays 
and (C) ELISA-derived IFN-γ concentration in culture supernatant 
(both n=4). Pools of HE peptides are sorted and colored according 
to decreasing score. The dashed horizontal lines extend the 
medians of positive and negative controls, respectively, for visual 
comparability. In (B), percentages of IFN-γ positive cells were 
logit-transformed before visualization. 
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Out of the four HE-stimulated pools, two showed evidence of increased IFN-γ secretion. Only one of the four 

AP and LE tiers, respectively, showed higher levels of IFN-γ (Figure 34 C). Since IFN-γ secretion may be strongly 

dependent on individual characteristics of the donor and/or cell viability, we also decided to test the direct 

protective T cell response against a tumor model in a functional cytotoxicity assay. Hence, we co-cultured 

peptide pool-stimulated and -expanded T cells with the HLA-A*02:01-positive UM cell line 92.1 and followed 

the extent of cell death with live microscopy (Figure 35 A). Again, CMV-pp65 peptide-expanded T cells were 

used as a positive control due to their known cross-reactivity with 92.1-expressed tyrosinase and CMV’s tissue 

tropism, which includes the choroid, UM’s tissue of origin (Sugita et al., 2007; Griewank et al., 2012; Xu et al., 

2020). In line with their activated state and 

ability to secret IFN-γ, expanded T cells from the 

most reactive HE pool (HE4) showed more 

cytotoxic activity against the UM cells 

compared to the negative control and the AP1 

tier after 10 hours of culture. A difference in 

apoptotic cell area between HE4 and LE1 was 

visible after 24h of co-culture (Figure 35 B). To 

check our hypothesis that these T cells would be 

self-tolerant, we co-incubated them with 

autologous macrophages. The T cells did not 

show any cytotoxic activity; however, due to low 

cell numbers, we could only perform this 

experiment for one donor (Figure 36). Our data 

suggests that our HE tier-expanded T cells do 

not cause measurable off-target cytotoxicity, at 

least against autologous APC populations. 

Further, our efficacy score (ES) can select 

peptides that can activate and stimulate intended 

T cell populations in an antigen-specific manner 

under in vitro conditions with measurable 

tumoricidal activity and tolerance for other 

autologous cell populations.   

Figure 35: Cytotoxicity analysis with representative 
images taken during live imaging and quantified 
measurements of apoptotic cell area.  (A) Fluorescence 
images taken during the cytotoxicity assays in which 
stimulated PBMCs were co-cultured with the UM cell line 
92.1. Red regions surrounded by yellow borders were 
identified as dead cells via image analysis software. (B) 
Time series analysis and quantification of apoptotic cells 
in the cytotoxicity assays, as illustrated in panel A. 
Shown are the averages of three independent 
experiments with different donor material. HE, high 
efficacy tier; LE, low efficacy tier; and AP, alternative 
predictor tier. 
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Figure 36: Time series quantification of cytotoxicity assays of stimulated T cells co-incubated with autologous 
macrophages. Pool HE4, which induced T-cell expansion after stimulation and a notable cytotoxic activity against 
a UM cell line, did not induce measurable cytotoxicity towards autologous macrophages. This may indicate that 
the stimulation of T cells with our selected peptides indeed produced a self-tolerant response. 
The initial rise in fluorescence values at the start of the experiment is the consequence of a technical artifact. Due 
to scarcity of donor material, this assay was only performed once. 
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Table 8: Peptide candidates selected for experimental validation. Each major column lists peptides of one tier, which 
are partitioned into pools of size five. High-Efficacy peptides are sorted by efficacy score. ES – efficacy score (unitless). ΔE 
– a free-energy gain of MHC-peptide complex after computational docking as calculated by RDOCK (kcal mol-1). * – 
peptide failed synthesis and was absent from the pool during experimental tests. 

 High Efficacy (HE)  Low Efficacy (LE)  Alternative Predictor (AP) 

 Sequence ES ΔE  Sequence ES ΔE  Sequence ES ΔE 

1 

GLLALAIGL 42.3 -14.9  LEAPGLAPLSQ 0.0 -13.7  YLAEADLSYT 0.0 -9.8 

SLLGLLALA 35.7 -6.3  VAQSLENYTSKC 0.0 -1.3  SMDEANQPL 0.0 -1.7 

ALGGLVVSA 30.6 -10.8  AHFIYGYPKK 0.0 -6.2  LLQEGLKPVL 0.0 -5.3 

VLTALLAGL 21.2 -14.5  DTLPVPSGQR 0.0 -1.7  MLQDWCRWMGV 0.0 -18.4 

ALAIGLWGL 20.9 -16.8  LLLAACAPPPC 0.0 -22.2  FTLTNYTYCV 0.0 -14.3 

            

2 

LLAVLYCLL 20.6 -1.1  TDQVPFSVSVSQ 0.0 -8.3  YVAGSVILNI 0.0 -11.0 

TFLILSIAPV 19.6 -2.4  CLPRLPSPPGP 0.0 -12.5  KLNEDMTLL 0.0 -8.3 

ILAFLVLEAV 19.1 -8.0  SLEAALRPMG 0.0 -8.0  YLHSDKLKV 0.0 -13.7 

TLLVVVQPV 18.0 -19.9  DREAVAACQVGD 0.0 -0.1  RMQCESPPV 0.0 -2.9 

LLSLGCIFFPL 18.0 -9.9  YLGALCENTCL 0.0 -1.4  HMSVELLRSV 0.0 -10.4 

            

3 

*LLVALIFGT 16.9 -25.4  VRVLVARLGH 0.0 -11.5  FLQNAVYINL 0.0 -8.1 

MILGILASLV 16.7 -16.5  LAELNRIPSS 0.0 -2.5  FQNMSTFSI 0.0 -3.3 

LLGAAMVGA 15.9 -13.2  APHKEHLYKLL 0.0 -3.5  RMGNPALSV 0.0 -4.5 

FSGGILAFLV 13.6 -18.8  IAHNRGEERN 0.0 1.5  LQLEGRKLWRV 0.0 -9.9 

LLLIGCWYC 12.5 -26.1  DSESKSAVQA 0.0 -1.6  LLLLLAACA 0.0 -15.3 

            

4 

*IYSMIFVILGV 11.8 -17.5  PTSGCLGPVPRE 0.0 -9.4  YQAGCSLRL 0.0 -7.4 

VLIFPSYMTTV 11.5 -8.3  KASKGSYMEVRT 0.0 -3.8  HFLRNQPLTFAL 0.0 -9.0 

*LVLMAVVLAS 11.2 -12.4  AGTDAAGASGLQ 0.0 -14.9  RMAALRTQTL 0.0 -3.7 

GLSVIISFI 9.9 -24.5  VRCQSLGVFSG 0.0 -14.1  FRIYKRICSV 0.0 2.0 

GLLALAIGLWGL 9.2 -18.5  QGPLLGPEAVT 0.0 -12.3  KLKLCSISGL 0.0 -10.7 
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4.2.5 Curatopes 1.5 – Database design and functionality 

The Curatopes 1.5 Uveal Melanoma database features the same basic structure and functionality as 

Curatopes 1.0, designed for MCM. We made some design changes that either resulted from the different 

structure of the data or would improve user experience (Figure 37). The database is accessible under 

https://curatopes.com/uvealmelanoma and is currently embargoed until the corresponding publication has finished 

the peer-review process and requires access credential (user: reviewer, password: curuvom2022). When 

using the database, one has to agree to a legal disclaimer concerning using the peptides in clinical settings. 

Additionally, the code is made available in a public repository, and finally, one can download the background 

network based on curated oncogenes (Figure 37 A).  Since, in the context of molecular tumor boards or 

biomedical research, gene symbols have recognition value in contrast to machine-readable, version-

controlled identifiers commonly used in bioinformatics, we received feedback that putting genes and their 

symbol as the first information layer would improve the user experience.  

The first page lets the user explore different aspects of the genes, such as how many peptides were derived 

from each gene, its full name, and known aliases. This is especially helpful since different communities or 

researchers may refer to genes differently; for example, the prominent cancer treatment target Programmed 

Cell Death 1 gene is referred to as PD1 by the medical community while it also might be known as CD279, 

even though the official name is PDCD1 (https://www.genenames.org/data/gene-symbol-

report/#!/hgnc_id/8760).  

By clicking on a gene symbol, the user is thus taken directly to the GENECARD gateway for further available 

meta information. The second table of the database consists of the 60 peptides we tested in our in vitro 

setting (Figure 37 B). We provide all three tiers – high efficacy (HE), low efficacy (LE), and alternative predictor 

(AP) – for exploration. Each peptide is shown with its gene of origin, AA sequence, predicted tier, HLA allele, 

and median tumor gene expression in TPM. Users can add the allele-specific predicted binding affinity, the 

indispensability index, the generalized binding prediction, the generalized activity prediction, and the peptide 

length. As with Curatopes 1.0, users can download and query the database or subsets as needed. As a final 

table, we provide all three epitopes per gene allele combination with the features used in constructing the 

database. 
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Figure 37: Screenshots of the (A) gene overview and (B) tiered-peptide table on the Curatopes 1.5 website for tumor-
associated antigens in uveal melanoma. The second table holds the 60 tested peptides and their corresponding tiers. 
All relevant data, such as gene expression or physiochemical features, may also be shown. Users are informed by a legal 
disclaimer and can access the code deposited on a public git repository and the background network (DriverDB-based 
network), which can be downloaded and used for further investigation.  

.  
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5 Discussion 

Tumor-associated antigens in dermato-oncology 

Metastatic cutaneous melanoma (MCM) and metastasized primary uveal melanoma (UM) are diseases for 

which we need efficacious treatment options, be they mono or adjuvant therapies. While there have been 

improvements in treatment options for MCM patients with the advent of immune checkpoint inhibitors (ICB), 

complete response rates remain below 20% (Curti and Faries, 2021). Conversely, in UM, these rates are even 

lower, with overall survival rates for patients teetering in the range of slightly over a year with minimal re-

sponses to ICB (Wessely et al., 2020; Elias A.T. Koch et al., 2022). However, while we choose these tumor 

models due to clinical association, many other cancers share similar prognostic and clinical characteristics. 

According to the latest Global Burden of Disease Study, cancer is still the second leading cause of death word 

wide, with fatalities in every age bracket (Abbafati et al., 2020). Thus, methods to leverage the increased 

availability of targeted immunotherapies (IT) are an important area of research. Especially after the advent of 

the next generation of vector systems, like mRNA vaccines or antigen-loaded immune cells, the hunt is on for 

suitable targets (Buonaguro and Tagliamonte, 2020). 

Even though there are tremendous amounts of public data gathered today for many different cancers in pro-

jects like “The Cancer Genome Atlas” (TCGA, https://www.cancer.gov/tcga), there is a distinct lack of pipelines 

available which can leverage this data to help discover novel targets for scientific or clinical use  (Aran et al., 

2017). Hence, in this project, we developed a novel workflow to predict anti-tumor antigen candidates for all 

tumors for which cohort expression data is available. We then rank order these candidates according to pre-

dicted efficacy. We present this algorithm and its derived databases for our two tumor models. Our principal 

approach is to offer multiple options for efficacious targets for further clinical or in vitro investigation, specif-

ically optimized to address the issues of autoreactivity, self-tolerance, and antigen loss. During the first phase 

of developing the Curatopes pipeline, deemed version 1.0, we designed a system to return candidates for 

therapy while negotiating the present risk of autoimmunity (Tran et al., 2013; Chodon et al., 2014).  

Our analysis found that some epitopes from a clinically and scientifically known MCM TAA were highly ranked 

in the superior-tolerance set of version 1.0. Regarding the gPIE, the maximum value was generated by an 

epitope for the allele HLA-A*31:01 and the known MCM tumor-associated antigen (TAA) MAGEA3. In con-

trast, other known antigens were filtered out and generally scored poorly in the gPIE (Figure 15). This begs 

the question of why this occurred. Many known TAAs showed very low tumor restrictiveness in the expression 

index, suggesting similar expression values in healthy and tumor tissue while also having low predicted affin-

ities (Figure 16, F1 and F4). Since many previously known antigens were discovered before high-throughput 

transcriptomics, a reasonable explanation might be that with increasing sample sizes and sequencing resolu-

tion, residual expression of the source genes could be detected by our pipeline, which was not possible at the 

time of their discovery (Table 3, publication dates). Even with the discussed issues, our predicted candidates 
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should be considered since MAGEA3 is an important melanoma TAA, and our method's replication of its dis-

covery lends credence to our system (4.1.3 and Figure 15). While the gene is known and under clinical trial 

investigation (seven active trials when searching for MAGEA3 at www.clinicaltrials.gov, last accessed 

02.02.2023), our suggested peptide is yet unknown. Thus, we propose that while the net being cast may have 

large holes, our algorithm may yet produce novel targets. However, with a lack of experimental validation at 

this stage, we concede that this is speculative.  

For antigens predicted by our pipeline without prior knowledge, cohort restrictions are a factor since we could 

only source 32 melanoma samples with access to raw data (nucleotide sequencing read). Most of our pre-

dicted antigens received a gPIE of zero because of no source transcript expression in the tumor (Figure 16, 

F3). Thus, a more extensive data basis could be helpful on the algorithm side. However, access restrictions to 

patient-derived samples make it hard to collect large cohorts from one source. Public data often suffer from 

unclear annotation, unknown processing steps, or batch effects caused by their diverse origin (Leek et al., 

2010).  

The lack of access to primary sequencing data led us to forgo this requirement in the uveal melanoma (UM) 

database creation phase, and we relied on previously processed expression data. These datasets are made 

available through consortia like TGCA and allow access to a large set of well-annotated cohorts at the cost of 

losing control over the primary data processing for patient security purposes. Hence this data cannot always 

be guaranteed to be comparable with other datasets, e.g., data generated in-house (Figure 21). Nevertheless, 

we feel the trade-off is well worth it, and in-house data may still be used for standalone analysis or validation, 

an equally important step (Figure 22, B). 

Few prior works exist on uveal melanoma (UM) TAAs when considering the uveal UM-associated genes we 

detected. However, many genes that produced highly ranked UM-associated antigens were melanocyte-de-

rived (Table 7, Figure 29). The immediate observation can be made that no melanocyte markers were found 

in our MCM genes, demonstrating the different developmental phases in which cancers were excised. In the 

case of MCM, samples were gathered from metastases since, commonly, those cases require further inter-

vention, and in some patients, the primary site is unknown (Del Fiore et al., 2021).  

In UM, primary tumor samples were collected since, in this tumor, one would like to intervene before metas-

tases occur. Especially after the development of metastases, survival rates plummet with few treatment op-

tions (Elias A.T. Koch et al., 2022). Thus, a preemptive treatment option like a cancer vaccine might be a well-

suited treatment modality after discovering a UM primary tumor in a patient. 
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Implemented filtering and scoring systems 

Investigating our predicted superior-tolerant MCM epitopes from a probabilistic point of view, a score of 17.3 

for the best epitope would translate to roughly 1- in-6 chances of efficaciousness. Similarly, when looking at 

the enhanced-tolerance epitopes for MCM, we reached a score of 52.65, marginally better than 50%, with 

some residual expression in healthy tissues. In the ranking of UM epitopes, the best epitope reached a score 

of 42.26, again translating to a meager 2-in-5 chance. These statements are under the assumption that our 

scores are modeling the probability of success to some degree.  

One reason for relatively low and under strict interpretation close to random scores could be a somewhat 

expected result of our conservative filtering and scoring methodology.  We are potentially filtering out other 

better candidates in earlier stages through the stringent transcriptomics filter (Figure 9, Figure 22 A).  

The peptide level filter could later remove highly affine and efficacious epitopes (Figure 11, Figure 25). A 

philosophical argument can be had as to what is the better approach. The first option would be having a more 

extensive set of potentially highly immunogenic candidates with little consideration of presence in the body 

outside the tumor. The second option would be a more restrictive set that may combine several low to mod-

erate immunogenicity candidates into one potentially potent approach. Both perspectives are valuable and 

should even be applied or investigated, especially in the sometimes bleakness of cancer therapy. In our study, 

we, however, argue for the second approach since the general set of peptides or genes to choose from re-

mains rather large, and choices are plentiful.  

Further, there are already ongoing clinical trials where immune checkpoint blockade treatment is adminis-

tered parallel to an antigen-based treatment (NCT03897881). Hence, when given as an adjuvant therapy, 

targets with known peripheral presence in healthy tissue may pose a more considerable risk. Especially with 

the dangers and risks of autoimmune events being well-established in combined therapies (Champiat et al., 

2016; Huemer et al., 2020). 

Additionally, there is also a point to be made that even well-established MCM antigens that are considered 

to be highly immunogenic in some settings, when given in trials, like PMEL or MLANA-derived antigens,  did 

not yield overall success and lead to tumor remission only in a few patients (Steele et al., 2011; Wilgenhof et 

al., 2011; Chandran et al., 2015). Even when using highly enriched specific T cells in adoptive T cell transfer 

(ATC), the results were mixed, with a few patients responding but sometimes at the cost of autoimmunity 

(Chodon et al., 2014).  

Expanding on this, considering known MCM antigens in our Curatopes 1.0 analysis, their overall scores were 

even lower, with the maximum score being 5.49 in this set (Figure 15, Known-antigen).  

Indeed, the tumor restrictiveness measured by our expression index was a major cause for assigning a score 

of zero to the known antigens, supporting our point that historical discovery methods were not sensitive 

enough to detect the presence in healthy tissues (Figure 16, F4, Known-antigen). This was combined with a 
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considerably lower overall normalized IC50 for this set (Figure 16 and Figure 17). Thus, when applying these 

antigens in therapy, our highly conservative post-hoc peptide filter may have to supplement traditionally used 

low throughput measurements of tumor restrictiveness. 

Supporting this point is the observation that a peptide-specific highly adverse autoimmunity was observed 

using an assumed restricted TAA in some patients in a trial targeting MAGEA3. In this trial, patients were 

treated with an HLA-A2-specific engineered T-cell receptor against the peptide KVAELVHFL (Morgan et al., 

2013). During the study, two patients out of nine treated died due to severe neurotoxicity caused by the 

therapy.  In the following scientific inquiry into the causes of the deaths, it was found that the TCR recognized 

peptide sequences that were present in other MAGE-family members. These MAGE-family members were 

expressed in the brainstem of the patients. In our database, which also contains MAGEA3-derived peptides, 

this specific sequence was removed by the peptide level filter due to the exact match with MAGEA9. The 

MAGE TAA peptide overlap illustrates that while the current problem is usually viewed from too little immune 

response when using targeted therapies, it is a fine line to manage (Hirayama and Nishimura, 2016). The issue 

can quickly shift to mitigating severe autoimmune consequences once success has been achieved in getting 

T cells to engage. Hence, we feel that our a priori conservative approach concerning avoiding the off-tumor 

presence of an antigen is warranted, and our method is compelling, especially considering our preliminary 

experimental data produced in version 1.5 in the context of UM (Figure 36). Since we used primary donor 

material for the UM experiment, we could not perform this experiment for all cytotoxicity assays. We did not 

have enough material available to generate donor APCs in all four assays. However, the testing demonstrates 

that the filtering procedure, applied in both MCM and UM, can select self-tolerant peptides. Coupled with 

the ES score, the tested peptides could also elicit IFN-γ secretion in stimulated T cells and induce cytotoxicity 

against a cell line derived from the targeted tumor entity (Figure 34, Figure 35). In further experiments, it 

would be interesting to perform tolerance and cytotoxicity experiments in the context of MCM, especially 

with the MAGEA3/MAGEA9-derived peptide to show that these highly autoreactive peptides induce auto-

aggression in vitro. With our pipeline capable of selecting reactive antigens and threading the balance to 

tolerance, we believe the cautious, conservative approach is justified. 
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Comparisons with similar prediction tools and pipelines 

A frequent issue in bioinformatics is the “yet-another-tool” problem caused by the re-addressing of an issue 

believed to be already solved. This begs the question of what makes our approach different or what are the 

advantages, compared to well-established and known tools like netMHCpan, MHCFlurry2.0, or HLAthena 

(Jurtz et al., 2017; O’Donnell, Rubinsteyn and Laserson, 2020; Sarkizova et al., 2020). Principally, our pipeline 

is not a predictor of allele-specific MHC-I binding, nor should it be understood as one. Its focus is to return 

tumor-specific results aimed explicitly at clinical applications. The input to our pipeline is wholly transcriptom-

ics based and requires no further specification on what alleles or peptides are of interest. It produces a multi-

variate output and provides in-depth information on gene expression, tolerance, physiochemical properties, 

and ranking for immunotherapy-based settings. The other tools mentioned highly focus on the binding affin-

ity aspect, and they do not produce an aggregate score but generally a prediction of an empirically measura-

ble value – a chemical affinity. Hence, we see Curatopes as a complementary approach directed at clinical 

application. The pipeline integrates concepts and values like affinity predictions from tools like netMHCpan 

directly into its scoring system (Jurtz et al., 2017). Primarily during the first phase of this project, we relied on 

the affinity predictions provided by netMHCpan4.0 and considered it as one element of the overall gPIE. 

Nevertheless, it has recently been shown that many established tools suffer from a significant false-positive 

rate and allele-specific prediction biases (Prachar et al., 2020).  Contrary to intuition, most predictors perform 

worst for one of the most common alleles, HLA-A*02:01, for which the most training data is available (Kim et 

al., 2014; Prachar et al., 2020). We show that our two predictors, implemented during version 1.5, which 

were trained allele-agnostic, would perform slightly better provided our data and testing environment (Figure 

26). We specifically only used AA sequence-derivable features to train the models that did not include any 

information on what MHC-I allele the peptide would preferentially bind. We hypothesize that an allele-ag-

nostic training procedure, while probably losing some potential peptide binders, may be more robust. This 

may especially be the case when predicting self-peptides as we did here, as there might be evolutionary 

pressure on self-peptides to be well presentable on MHC-I in the context of self-non-self-discrimination of 

the immune system. However, we cannot remove allele-specific affinity from the model since it remains a 

significant factor and is generally of high interest to the immunological and medical community that will ulti-

mately decide whether to use an antigen. Consequently, we did not remove allele specificity, but we implicitly 

down-weighed this element in version 1.5 by only including it as one element of the overall ES score. The ES 

was constructed to mitigate a general bias towards a single factor and have a constant trade-off between all 

the variables considered (Tofallis, 2014). We also argue that a chained-probabilities scheme will temper false-

positive rates by being overly conservative. The addition of mopeptide or hold it constant but not increase it. 

Thus, a multi-variate multiplicative score of five independent measurements should generate a more con-

servative estimate than an additive model.  
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Experimental validation and its design 

Looking at our validation data, however, one could argue that we have overcorrected the issue of high false-

positive rates in the model. In one of four low-efficacy pools, high median IFN-γ values were measured, while 

T cells stimulated by these pools were also quite cytotoxic toward the UM cell line (Figure 34 and Figure 35). 

To make a case for our score design and the ES score’s performance, assume for a moment a hypothetical UM 

A2 positive patient is supposed to receive peptide treatment in whatever form, say a peptide vaccination with 

a cocktail of 5 to 10 peptides, as it has been applied recently in other clinical settings (Ikeda et al., 2021; 

Heitmann et al., 2022). 

Further, assume that our score would have been used to select the peptides. In this hypothetical case, the 

patient would have received peptides from pools and showed the capability of creating IFN-γ+ T cells at higher 

rates than the positive control in at least two cases (Figure 34 B). When comparing worst to best, between a 

selection based only on the AP and our ES score, it is apparent that our best pool (HE4) performed significantly 

better than AP1 in all measured categories. 

These measurements include the expansion of CD3+ IFN- γ+ cells, the amount of secreted IFN-γ by these cells  

(Figure 34), and cytotoxicity against a UM target and higher than the negative control (Figure 35). However, 

the in vitro assays showed substantial inter-donor variability, posing a more significant problem in design and 

biology.  Our pool testing design is one cause of this substantial variability and general noisiness. This setup, 

intended for short turnaround times in testing our predictions, likely introduced some errors that must be 

remedied in future setups. 

One of these issues is the fact that HLA typing was only performed to confirm that the donors were A2 posi-

tive. We thus cannot rule out bystander effects even though we took measures to minimize the possibility of 

this occurring. However, we observed in our studies that few peptides were predicted to be bound by multiple 

alleles according to predicted IC50 (Figure 14).  

Additionally, since our antigens are self-peptides, it cannot be ruled out that in some donors, the T-cell rep-

ertoire does not cover the particular peptide, or it might even have an inhibitory effect on the immune re-

sponse through a  regulatory CD4+ T cell clone (Selck and Dominguez-Villar, 2021). This is speculative, how-

ever, since our peptides’ length is generally considered too short to bind MHC-II well, which would be required 

for this inhibitory action (Brown et al., 1993). Also, our experiments were performed with PBMCs derived 

from healthy donors, not patients suffering from UM. 

To gather more pre-clinical data, further experiments must be performed with patient-derived autologous T 

cells. Especially the results from patients under ICB treatment will be quite interesting to see. It is hard to 

speculate what these results will show, will there be an extreme reaction to using any of our predicted TAAs 

or none at all? Valuable data to gather novel insights into the interplay of antigen-based treatments and ICB 

therapy.  
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Another approach to denoise our validation assays would be to test the peptides individually instead of in 

pools. This would also provide the ability to characterize antigen-specific cells. With the wisdom of hindsight, 

pool testing may not be the optimal approach for validation. However, we expected that most of our peptides 

would not elicit an immune response due to the selective effect of the central tolerance and thus opted for a 

more time-efficient approach.  

Our data showed a different result, though, and thus, an investigation into the central tolerance coverage of 

tumor-associated antigens would be a fascinating addition to the analysis. A feasible approach would be to 

investigate the expression profiles of medullary thymic epithelial cells (mTECs) responsible for managing 

clonal T-cell selection (Takaba and Takayanagi, 2017).  One could screen our TAA candidates against these 

profiles to investigate if these TAAs or known drivers fly under the central tolerance's radar. Overall, T cell 

repertoire and clonality characteristics are issues we have not addressed in depth in this thesis. Exploring the 

T cell clonality of the responsive pools through single-cell sequencing would determine if the response was 

monoclonal or oligoclonal (Pai and Satpathy, 2021). Possible monoclonal responses to given epitopes could 

be beneficial for direct clinical translation, like a recently established HLA-A*02:01-specific soluble TCR 

(Nathan et al., 2021). The transcriptomic analysis of the responsive T cells would also provide insights into 

the activated T cells from a phenotypical perspective helping to understand mechanisms of action.  

These deeper analyses must follow the replication of the in vitro assay to test our stimulated T cell popula-

tions' self-tolerance to fundamentally prove one of our core concepts (Figure 36). Additionally, animal exper-

iments may provide a more available, if somewhat more removed, model to test our concepts further. One 

possible approach could be inducing a tumor or xenograft in a mouse model and vaccinating the mice with 

our predicted peptides. This would require human HLA transgenic mice, which have been used historically to 

study T-cell responses to HLA-restricted antigens (Kievits et al., 1987; Belunis, Diseases and Ricerche, 1996; 

Dipiazza et al., 2017).  It also requires fitting the tolerance prediction to the mouse proteome. Also, one may 

ponder the ethics of potentially inducing severe autoimmunity in animals in pre-clinical experiments if a tol-

erance prediction is wrong. Many MCM and UM mouse models exist, and xenografts are generally possible. 

However, a less risky or ethical-debatable option may be the use or organoids or organs on a chip (Kuzu et al., 

2015; Balakrishnan et al., 2020; Richards et al., 2020; Leung et al., 2022). 
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 Clinical application and feasibility of our predictions 

The success of the soluble bi-specific T cell engager Tebentafusp in a Phase III clinical trial in UM demonstrates 

that improvements in the standard of care for UM patients are possible (Nathan et al., 2021). The next task 

is to replicate this success for other HLA alleles. While HLA-A*02:01 has a high allele frequency (AF) in Cauca-

sian populations, ranging from around 25% to up to 50% in some parts of central Europe, it is comparatively 

rare in Asian and African populations, with AFs as low as 1%, making it a minor allele in these populations 

(Gonzalez-Galarza et al., 2020). The top-scored peptides from our candidate set also included alleles with 

broader distribution in terms of populations (Table 7). For example, the allele C*16:01 has an AF of 28% in 

some parts of Africa. Our pipeline can be extended to cover these cases with a larger, more extensive set of 

alleles. If affinity predictions can be performed for an allele, which generally requires a resolved protein se-

quence, our database could be extended at the cost of increased computation time (Venkatesh et al., 2020; 

Reynisson et al., 2021). 

A further issue must be kept in mind that affinity predictions can return no binders at all for a given allele if 

one applies the cut-off 500nm/L (Figure 12 and Figure 13). While it is reasonable to assume that an allele 

may have truly no binders in a given set, this may also be influenced by available training data for these 

models. With rarer alleles, studies on their preferred peptides are also scarce. Also, a general cutoff may not 

be the best option, and an allele-specific cutoff may yield the best results (Bonsack et al., 2019). However, 

this is unpractical for systematic studies like ours, in which the user may be interested in alleles for which this 

has not yet been established or titrated (Paul et al., 2013). Ultimately, this is a problem of complexity and 

where the focus is placed. It seems unrealistic to expect results for appropriately titrated affinities for all 

known HLA alleles, even in the mid-to-long term. Though even if affinity predictions would be perfect, it 

would, for the clinical context, still probably not be enough to select immunogenic antigens reliably. Hence 

our approach tries to optimize several parameters for an efficacious selection. 

One reason for this is the concept of immunodominance, e.g., why only a few antigenic peptides out of many 

viable ones presented on different HLA alleles produce a very strong response while most do not. Despite 

intensive study, how a specific peptide-MHC-TCR combination produces a response remains mechanistically 

poorly understood. Current models suggest a combination of germline-encoded and thymically selected TCR-

peptide-MHC binding preferences since evolution should converge on TCRs being able to bind MHC, and the 

thymus selects functional combinations (Rangarajan and Mariuzza, 2014; Szeto et al., 2021). Nevertheless, 

we still lack a proper understanding of immunogenicity regarding the TCR-epitope interaction, both from the 

T-cell and the target cell perspective. Because of this and from the clinical and translational perspectives, we 

would argue more for the shotgun, not the precision approach. We believe supplying different epitopes for 

different HLA preferences covering different genes is the best option. One could potentially hit an antigen 

that would provoke a strong response with a beneficial feed-forward loop, like reactivating exhausted 
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immune cells or engaging other immune populations, reinforcing the anti-tumor response. Since one gener-

ally does not have the benefit of a highly restricted, cell population-specific antigen for non-solid tumors like 

CD19 or CD20, one must opt to administer several different epitopes simultaneously for tumors originating 

from immunologically less defined tissues. Our databases are designed with specifically this approach in 

mind. Both databases allow the ranking and selection of candidates of interest by different metrics and allow 

for the composition of a set of epitopes to match, for example, a patient’s HLA profile (Figure 18, Figure 37, 

www.curatopes.com). 

With the introduction of the indispensability index in version 1.5, we can now select a set of epitopes that 

may directly target essential tumor functions on several levels. If one considers our candidate network (Figure 

23) as a basic circuit for UM, selecting epitopes that disrupt this network on several different network hubs 

should yield the best results. One might consider not just selecting the highest ES score for application but 

creating a well-balanced mixture of antigens, thus targeting several different axes in the tumor.  For example, 

using our database, one could target the TAA TYR, ES of 21.2, with the peptide VLTALLAGL, covering HLA-

A*02:01, while also targeting PMEL with MAVVLASLIY, ES of 29.99, covering HLA-B*35:01 and OCA2 with 

MVVSCTVGM, preferring HLA-C*16:01 with an ES of 16.6. Three peptides, easily synthesized at GMP grade 

purities and storable for the long term, cover a spectrum of antigens and HLA alleles, making them an off-

the-shelf treatment solution. One could imagine the design of a cancer-specific peptide cocktail from our 

database. The long-term vision would be a ready-made cocktail of immunogenic, self-tolerant peptides, mak-

ing them a low-risk, cost-effective, and fast turnaround therapy option. 
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Remaining issues with the prediction of efficacious antigens 

It would benefit the design of the proposed antigenic cocktails to better understand the fundamental features 

of efficacy. We also tried to elucidate these features in our results. We found, however, that other than high 

hydrophobicity, a well-known attribute of MHC-I binders, we could not show any distinct patterns in the effi-

cacy groups (Figure 33)(Altuvia et al., 1994; Huang, Kuhls and Eisenlohr, 2011; Chowell et al., 2015). However, 

considering we performed pool tests, a significant degree of resolution on individual peptides and their fea-

tures is expected to be lost. This heterogeneous finding was supported by the observation that there was 

little cross-correlation between the constituents of the ES for all above zero-scored epitopes (Figure 31). At 

the same time, affinity and generalized activity prediction were the leading causes of zero scores (Figure 31).  

Naturally, we cannot enhance third-party tools used in our pipeline to improve our predictions. Our binding 

predictor reached an area under the curve (AUC) in its receiver operating curve (ROC) analysis of 0.853, mak-

ing it a robust model according to current considerations of this metric (Lin et al., 2008; Bonsack et al., 2019). 

Applying the alternative predictor, netMHCpan4.0, to our testing condition produced an AUC of 0.815 (Figure 

26). However, we can probably improve the activity predictor, even though it performed slightly better in our 

condition compared to other published tools. Our model reached an AUC of 0.635, making it what would 

generally be considered a poor but not random predictor. Comparatively, one widely applied tool reached 

an AUC of 0.559, making it slightly worse. 

While binding prediction generally performed well, immunogenic activity prediction presents as rather diffi-

cult. The reasons why this is the case may be manifold. One could hypothesize that there are fewer unknown 

variables in binding as the process seems easier to measure and potentially model. However, immunogenicity 

may be a far more complex problem that may also be influenced drastically by milieu effects in which the T 

cell and its target are located. We hypothesize that the problem in training an activity predictor is the messi-

ness of empirical data. Considering current public datasets, the annotation of immunogenicity is not suffi-

ciently accurate or detailed in many instances. Binding is a rather binary event regarding its empirical meas-

uring and ordinal description; a peptide is either present on MHC-I or is not. It may be expressed continuously 

as an affinity but abstracted and measured as a binary readout following an arbitrary threshold. However, the 

accurate measurement and quantification of immunological activity directly or indirectly through surrogate 

values is a very complex issue. 

We explicitly searched for datasets that provided data on immunogenicity but found that this problem is non-

trivial. We discovered that while binary labels were assigned to the data, the assays used to determine these 

labels were highly varied. The MHCBN database we used as training data alone had several different assays 

in use to assign the labels (information provided was, e.g., “CTL ASSAY”, “CYTOXCITY ASSAY”)  (Lata, Bhasin 

and Raghava, 2009). While assays may measure the same readout in the abstract (T cell activation), it is un-

clear if they mean the same regarding training data for a model. For example, increased IFN-γ expression 
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points to antigen-specific activation of a T cell (Haring, Corbin and Harty, 2005; Shen et al., 2017). Does this 

mean the T cell would be cytotoxic when presented with the target in an in vivo context? 

Further, using one of the most extensive databases, IEDB, to query for immunogenicity data, one is often 

presented with mixed labeling schemes over several different assays that, at least from the direct interpreta-

tion of the data, do not transport the same information. For example, a peptide is annotated in the category 

of T cell assays as being “positive-high” for a 3H-thymidine proliferation assay. In contrast, an x-ray crystallog-

raphy assay is returned with the label positive in the same query for another peptide. How are metrics com-

parable or on similar scales? It is not obvious how to translate this into solid training data, which can be used 

in modeling without enormous manual curation.  Considering that this query for “Any” Epitope for MHC-I in 

humans and T cell assays with a positive outcome returned 35,372 entries, this is not an easy task, considering 

that one probably has to go back to the primary source to find what exactly was measured (SMahajan et al., 

2018). Overall, training set availability and cleanliness are significant issues for immunogenicity prediction. 

The complexity is very high, and adequate biological model data is hard to generate in large quantities 

(Prachar et al., 2020).   

With antigen-based immunotherapies and anti-cancer vaccines likely to rise in importance in the coming 

years, we should endeavor to improve our efforts to annotate and aggregate existing data better and more 

precisely. Similarly, while body-map-type sequencing efforts increase and improve our transcriptomic picture 

of the human body, detecting all cell populations that may present off-site targets is hard or even impossible. 

Projects like GTEx and HPA keep improving their resolution and granularity, but systematic integration of the 

two is not widespread. Single-cell technology will help us characterize healthy cell populations by resolving 

tissue-specific gene expression while also allowing new insights into the functionality of T-cell clones stimu-

lated by an immunogenic peptide-MHC-I combination.  

In the meantime, with the results and associated databases presented in this work (Curatopes 1.0 and 1.5), 

we provide a solution for the rational and quick selection of TAAs and MHC-I-restricted epitopes for applica-

tion in different antigen-based cancer immunotherapies. We pay special attention to predicting candidates 

solely based on principle data with being agnostic of prior information while balancing the probability of side 

effects (Lischer et al., 2019). 
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6 Conclusion and Outlook 

In this thesis, we presented two databases of tumor-associated antigens (TAAs) and their derived MHC-I-

restricted epitopes. Our methodology optimizes the selection of TAAs so that, should they be targeted by any 

mode of antigen-based immunotherapy like adoptive T-cell transfer or anti-cancer vaccination, they are 

immunogenic and self-tolerant and minimize the risk of damage in healthy tissue. The selection process is 

designed to work agnostic of prior knowledge on the tumor and is based on a first-principal data source – 

transcriptomics. As a final step in our in-silico pipeline, we validated our antigen selection in vitro.  

We could show that T cells stimulated by our antigens could kill a target cancer cell line. While we observed 

substantial inter-donor variability, our predicted high-efficacy MHC-I-restricted peptides elicited a 

measurable IFN-γ response by T cells. We hope the pipeline can help by finding novel antigens for tumor 

entities needing mono- or adjuvant therapies, like metastatic cutaneous melanoma, uveal melanoma, or 

other solid tumors. With the field moving quickly and companies commercializing antigen-based 

immunotherapies, we must provide rational and empirical target design strategies to ensure reproducibility, 

robustness, and safety to efficiently translate research into clinical testing. 

There are several ways to improve our system in future work. First, we would like to expand experimental 

testing procedures to continue and extend our work with UM. Due to our pools of predicted peptides showing 

a highly variable response in healthy donors, we need to repeat the experiments on a single-peptide level to 

understand whether a particular peptide is highly immunogenic or if the pool composition plays a role. 

Further, performing T-cell receptor sequencing on the peptide-expanded T cells would show us if we are 

observing a mono- or oligoclonal response against the antigens and would allow the cloning and further study 

of this T-cell receptor. In the long term, this could be translated to alternative bi-specific T-cell engagers, like 

Tebentafusp or an engineered T cell, for treating UM. 

On the MCM side, performing similar experimental validation on MCM TAAs would also be of great value 

since the gPIE model still lacks similar validation as the efficacy score. As approaches for novel projects, we 

plan to run and perform in silico analysis and TAA prediction for all tumor entities in TCGA for which 

transcriptomics data are available and accessible. We also intend to perform systematic screening studies and 

hypothesize that there may be shared TAAs between tumor entities, bringing off-the-shelf, cost-effective 

treatment through antigen-based immunotherapy into the realm of possibility.  

These modes of treatment promise quick-turnaround therapy modalities for cancer and other targetable 

entities. As was seen during the coronavirus pandemic, mRNA or viral vector vaccines offer quick adaption 

capabilities to immune evasion events. This rapid cycle from bench to therapy has placed science under a 

new level of scrutiny by the public. The community should hence try to curtail adverse events caused by these 

novel systems as much as possible. We hope to contribute to this goal and the field with the methodology 

presented in this thesis. 
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8 Indices 

8.1 List of Figures 

Figure 1: Abstracted illustration of the MHC-I processing pathway. Intracellular proteins are degraded in the 

cytosol by the Proteasome. Through the TAP transporter, they are translocated into the ER lumen and loaded 

onto the empty MHC-I molecule. The chaperones Calreticulin and Tapasin stabilize the peptide loading 

complex, while the isomerase ERp57 aids in peptide loading. If the peptide is too long, trimming through the 

aminopeptidases ERAP 1 and ERAP2 may occur. Once the complex is stable, it is exported to the plasma 

membrane through the secretory pathway via the Golgi to the cell’s surface to present intracellular products 

to T cells. .......................................................................................................................................................... 12 

Figure 2: Simplified process of antigen-specific cancer cell killing by a cytotoxic CD8+ T cell. (I) Antigen-

presenting cell (APC) or Dendritic cell (DC) presents cancer-derived antigen (red molecule) on its MHC-I 

receptor (blue receptor) to a CD8+ T cell. In the process, if the T cell’s TCR (orange receptor) binds the antigen-

MHC-I complex, the T cell gets activated and can clonally expand. (II) The activated CD8+ T cells migrate to 

the tumor site where they can recognize cancer cells antigen-dependent. Through the secretion of cytotoxic 

molecules, cancer cells are eliminated. (III) Cancer cells are killed through CD8+ T cells. Upon death, the cells 

leave behind debris which in turn can be taken up by APCs. The APCs can, then, again, stimulate a further 

reaction from the immune system or stimulate additional T cell clones to react. .......................................... 15 

Figure 3: Workflow of an example approach to antigen-based immunotherapy. First, a tumor or multiple 

tumors are excised or biopsied. From this material, antigen predictions are performed using, for example, 

transcriptomics measurements. In parallel, a blood sample from the patient is collected, and the autologous 

immune cells are isolated. Once high-confidence antigen candidates have been established, they may be used 

to either stimulate autologous T cells or loaded onto autologous DCs. Afterward, the cells are getting re-

transfused with the intention of fighting the cancer using the primed and stimulated autologous immune 

cells. ................................................................................................................................................................. 21 

Figure 4: Abstracted illustration of the core concepts of the pipeline. To discover novel tumor-associated 

antigens, we use patient cohort sequencing data to compare it with healthy tissue by a sequential filtering 

procedure. Finally, we implement several evaluation criteria to help select candidates for application. ...... 23 

Figure 5: Abstraction of the epitope generation and selection process. Tumor RNA-Seq from a melanoma 

patient cohort was analyzed and filtered only to contain protein-coding genes. All genes too lowly expressed 

in 90% of the melanomas were excluded. Next, all genes were filtered against histochemical evidence 

available in the Human Proteome Atlas. If present in any tissue, the gene was removed. We then selected 

genes that showed a high-in-tumor, low-in-tissue phenotype. The expression of the genes in a curated list of 

tissues deemed critical for survival was evaluated, and genes were separated into two tolerability sets. The 
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predicted epitopes for those genes were finally filtered against the available proteome and added to the 

database if they did not occur in any other sequence. ................................................................................... 33 

Figure 6: Detailed illustration of the ensemble model approach used for generating generalized binding and 

activity predictions. The training data was used to construct two ensemble random forest models, one for 

the probability of binding to MHC-I and one for eliciting an immune response. For each condition, we trained 

100 models with 10,000 trees each while sampling training data in a weighted manner for binding prediction 

and a balanced manner for activity. Weighted sampling was done to emulate the heavy skew towards non-

binding peptides expected and observed in empirical data. Thus, we applied a 1:10 ratio. This also had the 

effect of heavily biasing our models towards a high positive predictive value per model at the cost of the type 

II error rate....................................................................................................................................................... 43 

Figure 7: Process for the generation of an indispensability estimate for a candidate gene in the context of 

it getting targeted during therapy. After filtering procedures, a candidate list is supplied to the algorithm. 

Genes are characterized in terms of their connectivity and importance in an expanded gene signaling network 

and the sum of their occurrences in cancer-related databases. The neighborhood importance of a gene is the 

sum of these values for all its direct neighbors. .............................................................................................. 46 

Figure 8:  Schematic of the experimental procedures conducted for validation. ........................... 52 

Figure 9: Transcriptomics filter for metastatic cutanous melanoma (MCM). To illustrate the restrictiveness 

of our TPM-based filtering procedure, the log2 fold change of the 10th percentile Tumor expression against 

the 90th percentile maximum tissue expression is shown. The dotted horizontal lines represent the maximum 

positive fold change (tumor expresses the gene higher) and maximum negative fold change (tissue expresses 

the gene higher), respectively, while the dashed horizontal line indicates parity in expression. Only 317 genes 

show a desirable expression profile. This amount represents less than 1% of the initial 44,334 overall 

expressed genes. ............................................................................................................................................. 53 

Figure 10: Expression of genes in the superior- and enhanced-tolerance sets in the 29 critical tissues. 

Expression is shown as log2 of the gene’s TPM value with values at exactly zero (before log transformation) 

in black. Additionally, these values have been excluded from the log transform. Further, the fraction of tumor 

expression is shown in percent. Genes with an expression of precisely 0 (before log transformation) in 

peripheral tissue reach a value of 100% here, meaning the tumor contributed exclusively to the expression of 

this gene. ......................................................................................................................................................... 55 

Figure 11: Candidate genes are shown with the amount of derived 9- to 12-mers. Colors indicate the filtering 

result of peptides regarding the literal comparison to the complementary proteome. Genes that failed this 

filter because of all their peptides appearing in other known proteins are indicated with a black arrow. Five 

genes in the superior-tolerance set and no genes in the enhanced-tolerance set failed this procedure. ...... 56 
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Figure 12: Binding affinity distributions per HLA allele for all 34,277 peptides not discarded in the sequence 

identity filter. All distributions are relatively unimodal and left-tailed, with high counts of epitopes in the low-

affinity regions. Some alleles, like HLA-A*02:01 or HLA-A*11:01, showed a secondary peak in the high-affinity 

regions. Since we try to cover a broad population with our predictions, it is necessary to ensure that we can 

achieve good coverage of binders and find potential alleles for which we have gaps in our candidates. ...... 57 

Figure 13: Amount of binding (high-affinity) or not-binding (low-affinity) peptides produced per tolerance 

set and per allele on a log2 scale for ease of comparison. Shown are the predicted binder status for each 

allele and its associated epitopes. Since the relation of non-binders to binders is heavily skewed towards non-

binders, the x-axis of the counts is log2 transformed. Generally, no significant imbalance in the sets was 

observed. Enhanced- or superior-tolerance sets produced comparable amounts of binders and non-binders. 

Two alleles, HLA-B*52:01 and HLA-C*04:01, did not give rise to any binders, making them gaps in our 

predictive pipeline. .......................................................................................................................................... 58 

Figure 14: (A) The distribution of high-affinity alleles by peptide count. 3940 of the 6,397 peptides are only 

highly affine to one allele. Taking together peptides binding one, two, or three alleles covers 93% of all 

peptides. The X-axis of Figure A Is also the title of the histogram of Figure B. Both show the number of alleles 

bound. (B) Binary heat map for the peptides and their binding profiles over the HLA alleles. Peptides are 

presented on the columns with red indicating an IC50 smaller than 500 nm and blue conversely indicating an 

affinity greater than 500 nm. Few good general binders exist, with the maximum being 11 bound alleles for 

the peptide YTVENSRVY, while there are three peptides that bind ten alleles and one that binds nine. 

However, we did not find general binders that may be used supertype-wide, for example, in all HLA-A alleles.

 ......................................................................................................................................................................... 59 

Figure 15: Distribution of the gPIE score for all sets in the database. A high quantity of epitopes were 

assigned a score of zero and are thus not considered particularly efficacious for application in therapy. The 

highest score was found in the Enhanced-tolerance set, perhaps reinforcing the idea that a balance between 

autoimmunity risk and anti-tumor immunogenicity must be struck. ............................................................. 60 

Figure 16: Epitopes that were assigned a gPIE score of zero. Heatmap shows the elements of the gPIE score 

normalized IC50 (F1), normalized predicted immunogenicity (F2), normalized transcript expression (F3), and 

expression index (F4) for the epitopes that were scored zero in the gPIE annotated as the set from which they 

originate. Generally, transcript expression was shown to be the most common cause for the Superior- and 

Enhanced-tolerance set, while for the known antigens, both the expression index and the binding affinity 

were the cause. ............................................................................................................................................... 61 

Figure 17: Contribution of the individual elements of the gPIE for each epitope scored above 0. The gPIE 

scale visualization is presented in log2 scale after addition of 1 to each value for ease of interpretation. It is 

apparent that transcript expression (F3) in the tumor is still a major contributor to the score, while all other 
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factors show a homogenous distribution with no dominating element between them. It is of note that the 

known antigens are widely distributed between the sets and are hard to make out in the overall map due to 

the high-class imbalance. ................................................................................................................................ 62 

Figure 18:  Landing page of the Curatopes Melanoma database available to the public. The highest-scoring 

epitopes in the superior-tolerance set are shown. Additionally, all the additional functionalities can be 

accessed from here. First, the page offers a tutorial explaining how to query the database and download 

tables for further use. Detailed documentation on each parameter shown in the table is linked at the top. 

Since this is predicted data, there is a legal disclaimer in case somebody wants to use peptides or epitopes in 

clinical settings. Finally, there is a link to the published article covering the database. The fundamental 

functions to operate on the data are exploring the gene sets, sorting, subset, filtering them as needed, and 

downloading selected subsets......................................................................................................................... 63 

Figure 19: Quick access buttons for the tutorial (A) and the documentation (B) documents on the web 

platform........................................................................................................................................................... 64 

Figure 20:  Overview of study scope. Our approach can be conceptualized as four interleaved workflows: an 

in-silico ranking pipeline (blue), a permanent database of ranked candidates available to clinicians (cyan), a 

validation protocol for proof-of-principle tests (green), and paths to application in the clinics (salmon). During 

ranking, we evaluated and filtered genes based on their expression profiles to create a database of tumor 

antigens that we propose as optimized candidates for targeted anti-cancer therapy. To check whether high-

ranked peptides can elicit an immune response, we performed blinded in-vitro tests with PBMCs from healthy 

donors. The immunogenic candidates can then be tested in clinical trials or applied in a personalized setting 

by way of different delivery systems. GTEx, Genotype-Tissue Expression. HPA, Human Protein Atlas. IC50, 

binding affinity. Altern. Pred., alternative predictor. GMP, good manufacturing practice. APC, antigen-

presenting cell. ES, efficacy score. ................................................................................................................... 65 

Figure 21: Principal component analysis of the in-house-generated expression data and the publicly 

available dataset. A high degree of variation on the first PC separates the two groups. This may indicate strong 

technical or processing differences between the samples, which we cannot separate from biological 

differences. ...................................................................................................................................................... 66 

Figure 22:  Selection and cross-comparison of candidate genes. Selection funnel representing a cascade of 

in-silico filters for genes. Each slice of the funnel lists the feature criterion and the number of genes meeting 

it. Tumor expression statistics were calculated using a published set of 80 primary UM samples. Ultimately, 

22 candidate genes passed all filters. (B) Heat map of gene expression of the 22 candidate genes in an 

independent set of 14 primary UM biopsies produced in-house. Log2-transformed transcripts per million 

(TPM) estimates are shown. Stable expression levels of the 22 candidate genes were observed across 

individuals. ....................................................................................................................................................... 67 
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Figure 23: Networks were created for the generation of a biological gene importance index. (A) Candidate 

network estimating the connectivity and the functional distance between candidate genes. (B) Candidate 

genes are embedded into an extensive background network that contextualizes them to other oncogenes. 

From this network, we derived metrics like node degree, which were used in the indispensability index. ... 68 

Figure 24: Elements of the network score and normalized indispensability index for the selected candidate 

genes that had non-zero values in either gene importance or node degree. (A) The three panels show the 

individual ordered elements from which we derived our indispensability index. Red shows our candidate 

genes, while grey indicates an oncogene from the curated database. The panels primarily show that our genes 

are rarely located in the extreme value ranges but rather in the lower to mid ranges, giving robust estimates 

of their biological relevance for UM. (B) Distribution of the indispensability index, which was calculated from 

the elements shown above. ............................................................................................................................ 70 

Figure 25: Candidate TAA for UM shown with the amount of derived 9 to 12 mers. Colors indicate the 

filtering state of peptides regarding the literal comparison to the proteome. No genes failed the sequence-

based filter. ...................................................................................................................................................... 71 

Figure 26: Random forest based binding and activity predictor performance benchmarks validated against 

sampling from the input training compared to the predictive performance of published tools. We tested 

each model against sampling from the entire training set and found that our models performed slightly better 

in terms of area under the curve (AUC) compared to two standard tools for immunogenicity prediction (IEDB) 

or binding prediction (netMHCpan4.0). .......................................................................................................... 72 

Figure 27: Scatter plot of our set's predicted generalized binding and activity probability for each unique 

peptide. Since predictors were trained without regard to HLA alleles’ binding preferences, just sequence 

derivable features, each unique peptide receives a generalized (cross-allele) probability value for activity 

(gAP) and binding (gBP). Our predictors did not show an appreciable correlation against each other. High-

probability binders could have low activity probability and vice versa. .......................................................... 73 

Figure 28: Distribution of efficacy scores of epitopes with a score higher than 1. Most epitopes still score 

comparatively low in our ES score. Percentile-wise, 99% of the considered epitopes we scored below an ES of 

28.84. The minimum was set to 1 to reduce the number of close-to-zero epitopes skewing the distribution 

too strongly. The maximum ES was 42.27. The mean and median were both in low one-digit percent ranges.

 ......................................................................................................................................................................... 74 

Figure 29: Distribution of efficacy scores per gene. Both the y and x axis have been fixed to the same intervals 

row-wise and column-wise for easier comparison. ......................................................................................... 75 

Figure 30: (A) Co-correlation matrix of constituents of the ES for all zero-ranked epitopes together with (B) 

a heatmap illustrating overall distribution. Since the ES is 0 for all selected epitopes, it is excluded from this 

illustration. ...................................................................................................................................................... 77 
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Figure 31: (A) Co-correlation matrix of constituents of the ES for all non-zero-ES epitopes together with (B) 

a heat map illustrating overall distribution and log2-transformed ES. ......................................................... 78 

Figure 32: Predicted binding energies between MHC (allele A*02:01) and selected peptide candidates 

grouped by tiers. Docking and molecular dynamics simulations for the 60 peptides were performed blinded 

for tier assignment. On the right-hand side, uncorrected p-values for pairwise Mann-Whitney U tests are 

shown, indicating that, on average, the high efficacy (HE) peptide tier formed energetically stabler complexes 

than the other two tiers. Lower binding energies represent more favorable peptide-MHC-I pairs. .............. 79 

Figure 33: Heat map visualizing patterns in the factors contributing to the efficacy scores of the 60 selected 

peptide candidates. The columns show the physicochemical peptide features used to train the binding and 

activity predictors (left) and the factors in the efficacy score (ES) equation (right) after z-score transformation. 

The IC50 column holds the peptides’ netMHCpan-predicted binding affinity to MHC for the HLA-A*02:01 

allele. Rows are labeled with the peptide’s amino acid sequence and annotated with the ES, the 

computationally calculated binding energy to MHC (A*02:01), and the allocated ES tier. The high-efficacy 

group peptides are characterized by high hydrophobicity, an observation that is in line with established 

knowledge. ...................................................................................................................................................... 80 

Figure 34: FACS and ELISA analysis of stimulated PBMCs. (A) Cells stained for CD3 and IFN-γ on day 9 after 

stimulation with controls or with two peptide candidate pools from the high-efficacy (HE4) or alternative-

predictor (AP1) groups, respectively. Numbers in corners indicate the subpopulation size in the corresponding 

quadrant expressed as percentage of all plotted cells. (B, C) Box plots of (B) FACS-derived IFN-γ secretion 

assays and (C) ELISA-derived IFN-γ concentration in culture supernatant (both n=4). Pools of HE peptides are 

sorted and colored according to decreasing score. The dashed horizontal lines extend the medians of positive 

and negative controls, respectively, for visual comparability. In (B), percentages of IFN-γ positive cells were 

logit-transformed before visualization. ........................................................................................................... 81 

Figure 35: Cytotoxicity analysis with representative images taken during live imaging and quantified 

measurements of apoptotic cell area.  (A) Fluorescence images taken during the cytotoxicity assays in which 

stimulated PBMCs were co-cultured with the UM cell line 92.1. Red regions surrounded by yellow borders 

were identified as dead cells via image analysis software. (B) Time series analysis and quantification of 

apoptotic cells in the cytotoxicity assays, as illustrated in panel A. Shown are the averages of three 

independent experiments with different donor material. HE, high efficacy tier; LE, low efficacy tier; and AP, 

alternative predictor tier. ................................................................................................................................. 82 

Figure 36: Time series quantification of cytotoxicity assays of stimulated T cells co-incubated with 

autologous macrophages. Pool HE4, which induced T-cell expansion after stimulation and a notable cytotoxic 

activity against a UM cell line, did not induce measurable cytotoxicity towards autologous macrophages. This 

may indicate that the stimulation of T cells with our selected peptides indeed produced a self-tolerant 
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response. The initial rise in fluorescence values at the start of the experiment is the consequence of a 

technical artifact. Due to scarcity of donor material, this assay was only performed once. .......................... 83 

Figure 37: Screenshots of the (A) gene overview and (B) tiered-peptide table on the Curatopes 1.5 website 

for tumor-associated antigens in uveal melanoma. The second table holds the 60 tested peptides and their 

corresponding tiers. All relevant data, such as gene expression or physiochemical features, may also be 

shown. Users are informed by a legal disclaimer and can access the code deposited on a public git repository 

and the background network (DriverDB-based network), which can be downloaded and used for further 

investigation. ................................................................................................................................................... 86 
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8.3 Glossary & Abbreviations 

(m)RNA (Messenger) Ribonucleic acid 

AA Amino acid 

AB Antibody 

AP Alternative predictor 

APC Antigen-presenting cell 

BAM Binary alignment map 

CAR Chimeric antigen receptor 

CD3/4/8/19/20 Cluster of differentiation 3/4/8/19/20 (protein 

labels)  

cDNA Complementary DNA 

CMV Cytomegalovirus 

CTA Cancer/testis antigen 

CTL Cytotoxic T Lymphocyte 

DC Dendritic cell 

DNA Deoxyribonucleic Acid 

Epitope The combination between peptide and bound HLA 

allele 

ES Efficacy score 

FASTA Text-based format for representing sequences 

(nucleotide or amino acid) 

FASTQ Text-based form for representing and storing 

sequence and Q quality scores 

FPKM Fragments per kilobase per million (shorthand) 

GI Gene importance 

gPIE generalized epitope Predicted Immuno-Efficacy 

GTEx Genotype-Tissue Expression Portal 

HE High efficacy 

HLA Human leukocyte antigen 

HPA Human proteome atlas 

Idspx Indispensability index 

IFN Interferon 

IL Interleukin 
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LE Low efficacy 

LN Lymph node 

MCM Metastatic cutaneous melanoma 

MHC Major histocompatibility complex 

MΦ Macrophage 

ND Node degree 

NGS Next-generation sequencing 

NI Neighborhood importance 

PBMC Peripheral blood mononuclear cell 

PRR Pattern recognition receptor 

Q Phred score 

TAA Tumor-associated antigen 

TCR T cell receptor 

TGCA The Cancer Genome Atlas 

TPM Transcripts per million 

UM Uveal melanoma 
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