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Observation of a Higher-Order End Topological Insulator in
a Real Projective Lattice

Ce Shang, Shuo Liu, Caigui Jiang, Ruiwen Shao, Xiaoning Zang, Ching Hua Lee,*
Ronny Thomale, Aurélien Manchon, Tie Jun Cui,* and Udo Schwingenschlögl*

The modern theory of quantized polarization has recently extended from 1D
dipole moment to multipole moment, leading to the development from
conventional topological insulators (TIs) to higher-order TIs, i.e., from the
bulk polarization as primary topological index, to the fractional corner charge
as secondary topological index. The authors here extend this development by
theoretically discovering a higher-order end TI (HOETI) in a real projective
lattice and experimentally verifying the prediction using topolectric circuits. A
HOETI realizes a dipole-symmetry-protected phase in a higher-dimensional
space (conventionally in one dimension), which manifests as 0D topologically
protected end states and a fractional end charge. The discovered bulk-end
correspondence reveals that the fractional end charge, which is proportional
to the bulk topological invariant, can serve as a generic bulk probe of
higher-order topology. The authors identify the HOETI experimentally by the
presence of localized end states and a fractional end charge. The results
demonstrate the existence of fractional charges in non-Euclidean manifolds
and open new avenues for understanding the interplay between topological
obstructions in real and momentum space.

1. Introduction

A fundamental model of a topological phase[1–13] is the 1D
Su-Schrieffer-Heeger (SSH) model, characterized by a quan-
tized dipole moment. Due to the presence of inversion

C. Shang, X. Zang, U. Schwingenschlögl
King Abdullah University of Science and Technology (KAUST)
Physical Science and Engineering Division (PSE)
Thuwal 23955-6900, Saudi Arabia
E-mail: udo.schwingenschlogl@kaust.edu.sa
S. Liu, R. Shao, T. J. Cui
State Key Laboratory of Millimeter Waves
Southeast University
Nanjing 210096, China
E-mail: tjcui@seu.edu.cn

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/advs.202303222

© 2024 The Authors. Advanced Science published by Wiley-VCH GmbH.
This is an open access article under the terms of the Creative Commons
Attribution License, which permits use, distribution and reproduction in
any medium, provided the original work is properly cited.

DOI: 10.1002/advs.202303222

symmetry,[14] the bulk polarization (pri-
mary topological index) is 1/2 (unit: ele-
mentary charge e), resulting in a dipole-
symmetry-protected phase with charges of
±1/2 at the ends of the 1D chain.[15]

Recently, the concept of dipole moment
as bulk polarization was generalized to
multipole moment, such as quadrupole
and octupole moment, leading to the dis-
covery of higher-order topological insu-
lators (HOTIs) characterized by a frac-
tional corner charge (secondary topolog-
ical index).[5,6] However, the predictive
power of the fractional corner charge is
limited in higher-order topological crys-
talline insulators,[16] where boundaries with
higher co-dimension do not always have in-
gap spectral features. For instance, the in-
gap edge states in the 2D SSH model do
not carry the complete information of the
bulk and the corner states cannot be iso-
lated due to coincidental degeneracy with
the bulk states.[17,18]

Here, we put forward a higher-order end TI (HOETI) in a
real projective lattice (RPL) with (i) dipole-symmetry protection,
(ii) 0D end states, and (i) a fractional end charge of 1/2 (sec-
ondary topological index). We extend the first-order bulk-end cor-
respondence, which refers to end states with co-dimension one
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Figure 1. RP2 and HOETI. a) RP2 and its quotient space with the boundaries indicated by colors (orange and purple) and the corners indicated by letters
(A and B). b) HOTI with edge polarizations (px and py) and fractional corner charges (Qcorner). c) HOETI with fractional end charges (±Qend). d) 2D
dipole moment with fractional charges at disclinations. e) 1D dipole moment with fractional end charges of ±1/2. f) Zoomed view of the disclination with
Frank angle Ω=−𝜋. g) Filling anomaly of a HOTI with the Wannier centers contributing to both the fractional edge and corner charges. h) Filling anomaly
of a HOETI with the Wannier centers contributing only to the fractional end charges, as the edges are glued together. Further details of Figures 1a,b, and
d are available in Figures S1, S2, and S3 (Supporting Information), respectively.

(as in the 1D SSH model), to higher order, i.e., end states with
co-dimension higher than one. The fractional end charge origi-
nates from the symmetry-protected bulk charge, which can thus
serve as a generic bulk probe of higher-order topology, providing
a means for characterizing crystalline insulators.

2. Results

We introduce the RPL as a quadrangular tiling of the real
projective plane (RP2), which is a non-Euclidean and non-
orientable manifold without boundaries. By Whitney’s embed-
ding theorem,[19,20] one cannot embed the RP2 in a 3D space
without it intersecting itself, which inhibits physical realization.
Instead of realizing the complicated manifold in its entirety, we
can equivalently study its quotient space (the unfolded manifold
equipped with gluing rules), i.e., a unit square ([0, 1] × [0, 1]) with
opposite sides connected with a half-twist, (0, y) ∼ (1, 1 − y) for
0 ⩽ y ⩽ 1 and (x, 0) ∼ (1 − x, 1) for 0 ⩽ x ⩽ 1 (twisted boundary
conditions[21–23]). Diagonally opposite corners of the square are
connected, forming two singularities in the RP2 (Figure 1a). Ac-
cordingly, we can realize the RPL as a square lattice with real pro-
jective boundary conditions (twisted boundary conditions applied
to both the x and y-directions with one connection of the corners
removed to ensure the homogeneousness of the geometry).

A quantized multipole insulator, as a pioneering example of
HOTIs with in-gap corner states, is difficult to be realized in
a material due to its non-commutative mirror symmetries.[5,6]

HOTIs without quantized multipole moments (mostly higher-
order topological crystalline insulators) but with corner states
embedded into the bulk spectrum have been proposed.[18] In
the schematic of such a HOTI[24,25] in Figure 1b, px and py are
the edge polarizations and Qcorner denotes the corner charge.
Qcorner can be calculated by integrating the charge density over

the adjacent quadrant of the lattice. In quadrant III, for exam-

ple, Qcorner(−x,−y) + Qedge−x + Qedge−y =
∑nx∕2

rx=1

∑ny∕2

ry=1 𝜌r , where 𝜌r is

the charge density, r = (rx, ry) is the lattice index with rx ⩽ nx and
ry ⩽ ny, ±x and ±y label the edges, and (±x, ±y) labels the quad-
rants of the square lattice. In the case of a HOETI, the in-gap edge
states of the HOTI are annihilated by the real projective bound-
ary conditions and in-gap end states are created by coupling the
corners. In the schematic of a HOETI in Figure 1c, the edge po-
larizations vanish, which leaves the end charge decoupled from
the bulk. The end charge is given by

Qend± = Qcorner(+x,±y) + Qcorner(−x,∓y) (1)

where + denotes the A–A and − denotes the B–B end. Qend can
be calculated by integrating the charge density over diagonally
opposite quadrants of the lattice. According to Figure 1d, there
exists always an inversion-symmetric pair of 0D ends (A–A and
B–B with Frank angle Ω=−𝜋, see Figure 1f and the Methods sec-
tion for details). The 2D dipole moment of a HOETI is an ana-
log of the 1D dipole moment shown in Figure 1e (e.g., dipole
moment in the inversion-symmetric 1D SSH model). The fill-
ing anomaly (mismatch between the number of electrons in the
occupied bands and the number of electrons required for charge
neutrality) of a HOTI (Figure 1g), which results from the fact that
the Wannier centers are located at the corners of the unit cell,
leads to a nontrivial phase with fractional corner charges of 1/4
and fractional edge charges of 1/2. In contrast, the filling anomaly
of a HOETI (Figure 1h) leads to only fractional corner charges
of 3/4, which are combined to give a fractional end charge of
1∕2 (= 6∕4 mod 1).

We consider a C4-symmetric tight-binding model with four
sites per unit cell, in which each site is strongly coupled to its
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Figure 2. Topological properties. a) Tight-binding band structure (w = 1, v = 0.22). The bands are labeled by the little group representations A, B, and
1E2E. b,c) Considering a lattice of N × N unit cells, the number of eigenstates below and above the energy gaps is distinct between a HOTI and a HOETI.
The four degenerate partially occupied corner states of a HOTI are projected to become two pairs of end states of a HOETI. d) Eigenvalue spectrum of
a HOETI as a function of ϕ. e) Spatial distributions of the charge density in a HOETI (7 × 7 unit cells) at 1/4 and 3/4 filling. The eigenvalue spectra,
fillings, and spatial distributions of the charge density are compared in Figure S4 (Supporting Information) for the trivial and nontrivial phases.

nearest neighbors in adjacent unit cells (coupling w) and weakly
coupled to its nearest neighbors within the same unit cell (cou-
pling v). The obtained band structures are shown in Figure 2a
and can be characterized by the fractional corner charge

Qcorner =
1
4

([
X(2)

1

]
+ 2

[
M(4)

1

]
+ 3

[
M(4)

2

])
mod 1 (2)

deduced from the symmetry indicators,[12,26,27] where [Π(n)
p ] ≡

#Π(n)
p − #Γ(n)

p and #Π(n)
p is the number of occupied bands at the

high-symmetry point Π (= X, M) with the Cn rotation eigenval-
ues e2𝜋i(p − 1)/n (p= 1, …, n). The bulk-corner correspondence yields
Qcorner = 0 for the trivial phase and Qcorner = 1/4 for a HOTI. Since
the middle two bands in Figure 2a touch each other at 1/2 fill-
ing, Qcorner obtained for the first occupied band cannot identify
the specific arrangement of the corner states at zero energy.[28]

By imposing the real projective boundary conditions, the four

degenerate partially occupied corner states with representation
A⊕B⊕1E2E[21–23] in Figure 2b are projected to become two pairs
of end states with representations A⊕B and 1E2E, which are par-
tially occupied at 1/4 and 3/4 filling (Figure 2c). To capture the
previously identified topological end states, we extend the formu-
lation of topological defect response (see the Methods section for
details) as

Qend = 1
2

(
−
[
X(2)

1

]
+ 2

[
M(4)

1

]
+ 3

[
M(4)

2

])
mod 1 (3)

which manifests the bulk-end correspondence and yields Qend =
0 for the trivial phase and Qend = 1/2 for a HOETI, making it
possible to identify the bulk topology.

In the RPL, the discrete translation symmetry is broken and
the topological phase can be analyzed by exact diagonalization to
compute the energy spectrum.[29] The topological phase diagram
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Figure 3. RPL. a) Deformation from a square lattice to the RPL. b) Rotations of the RPL with views of the A–A and B–B ends. c,d) Tight-binding repre-
sentations of the RPL with trivial and nontrivial unit cells consisting of four sites. The red and blue lines represent strong and weak couplings.

of a HOETI in Figure 2d is found to change smoothly as a func-
tion of the parameter ϕ ∈ [0, 𝜋/2] describing the couplings w and
v via w/(w + v) = sin2(ϕ) and v/(w + v) = cos2(ϕ). For ϕ < 𝜋/4 (w/v
> 1), the fractional end charge of a HOETI is proportional to the
fractional corner charge as Qend = 2Qcorner and two pairs of end-
localized energy-degenerate in-gap states are associated with the
end charges. The global inversion symmetry protects the degen-
eracy of the end states and the additional local C2 symmetry pins
the end states to gaps I and II, see Figure 2c. For ϕ > 𝜋/4 (w/v <
1), both the end charges and end states vanish. We thus have a
trivial phase for w/v < 1 and a HOETI for w/v > 1. The end states
originate from an anomalous spatial distribution of the nontrivial
bulk states and result in an anomalous distribution of the charge
density at 1/4 and 3/4 filling (Figure 2e), where an infinitesimal
on-site perturbation is introduced to split the degeneracy of the
end states. The overall charge density is zero in the bulk and frac-
tional end charges of ±1/2 are localized at the two ends of the
RPL, representing the filling anomaly of a HOETI.

2.1. Origin from Topological Obstructions

Mapping a model onto a topologically equivalent model allows
a physical system to be pictured in a different, often more in-

tuitive way. We visualize the RPL in a 3D Cartesian space and
show that there are always end vertices corresponding to the end
states in the RPL. Figure 3a illustrates that a square lattice can
be transformed into the RPL while maintaining the same real-
space topology. After rotating the RPL, the two ends form a pair of
degenerate topological obstructions (merged diagonally opposite
corners), as shown in Figure 3b. If G is a graph embedded in the
RP2, its Euler characteristic is given by 𝜒 = #V − #E + #F, where
#V , #E, and #F represent the numbers of vertices (sites), con-
nections (nearest-neighbor bonds), and faces (plaquettes) of the
tiling, respectively. The RPL has a demigenus (or non-orientable
genus or Euler genus) of 1, independent of the embedding. One
can determine the embedding of a quadrangular tessellation us-
ing the identities

#V = #Vbulk + #Vend

2#E = 4#Vbulk + 3#Vend

4#F = 4#Vbulk + 3#Vend

(4)

where the vertices consist of bulk vertices Vbulk and end vertices
Vend, with each connection linking two vertices and each face
comprising four connections. Each Vbulk contributes to four ad-
jacent faces and four connections, while each Vend contributes
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Figure 4. Experimental and simulated results. a,d) Topolectric circuit of the trivial phase (a) and HOETI (d). Insets show the unit cells. Note the different
capacitors C1 and C2. Topological end states are expected to occur in the red areas. The boundary couplings are designed by connecting the connectors
with DuPont lines. b,e) Admittance spectra obtained by simulation (top panels) and experiment (bottom panels) as functions of the driving frequency
in the trivial phase (b) and HOETI (e). c,f) Impedance spectra obtained by simulation (top panels) and experiment (bottom panels) as functions of
the driving frequency for the trivial phase (c) and HOETI (f). g) Experimental admittance spectrum and corresponding density of states (DOS) at the
resonance frequency (blue dotted line in e). The insets show selected bulk and end states. h) Due to the filling anomaly, fractional end charges are
observed for the HOETI. Analogous results for the trivial phase in Figure S5 (Supporting Information) show no filling anomaly, implying that there are
no fractional end charges.

to three adjacent faces and three connections. Solving Equa-
tion (4), we find #Vend = 4. Each of the four end vertices con-
tributes equally to the topological invariant 𝜒 and corresponds to
an end state in the RPL. The constraint #Vend = 4 implies that the
topological obstructions in the RPL are minimally represented
by four end vertices, regardless of how the bulk vertices are ar-
ranged. However, the real-space topology is only concerned with
the existence of connections and not with their physical realiza-
tion. In crystallography, graphs are used to describe the crystal
structure, with the vertices and connections corresponding to
atoms and bonds, respectively. As shown in Figure 3c (Figure 3d),
both a trivial phase and a HOETI can be realized with the same
3D geometry but with different alternate couplings. The topologi-

cal property of a HOETI is determined not only by the topological
obstructions in the real space but also by the topological obstruc-
tions in the momentum space.[30]

2.2. Experimental Realization

Since topolectric circuits are defined in terms of discrete ele-
ments and their connections,[31–34] a circuit can explicitly repre-
sent the RPL. We demonstrate the bulk-end correspondence as
a hallmark of a HOETI using coupling capacitors C1 = 1000 pF
and C2 = 220 pF, and grounding inductors L1 = 33 μH. The cir-
cuits are shown in Figures 4a,d, with the unit cells as the insets.

Adv. Sci. 2024, 2303222 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2303222 (5 of 8)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

The real projective boundary conditions are realized by connect-
ing the connectors at the boundary with DuPont lines. Figures 4e
(4b) and 4f (4c) show the admittance and impedance spectra ob-
tained for the nontrivial (trivial) phase, respectively, demonstrat-
ing agreement between simulation and experiment. In the non-
trivial phase, the red and grey dots represent the end and bulk
states in the admittance spectra, respectively, and the red and
grey curves represent the impedance spectra at the end and bulk
sites. In the trivial phase, no evidence of end states or impedance
peaks at the end sites is found. We obtain the admittance spec-
trum and corresponding density of states at the resonance fre-
quency f0 = 1∕2𝜋

√
2(C1 + C2)L1 with delocalized bulk states and

localized end states (Figure 4g).
In addition to the localized end states, we demonstrate exper-

imentally the fractional end charge as secondary evidence of the
bulk-end correspondence. Integrating the local density of states
over the bulk bands and normalizing the result to the number of
states in the unit cell yields a mode density analogous to charge
density.[35,36] Considering band I, we find for each unit cell in
the bulk region an integer charge, while in the end regions the
charges are fractional (Figure 4h; see the Methods section for de-
tails). By adding the charges of diagonally opposite corners, we
have

Qend = 2𝜌corner mod 1 (5)

The experimental result of Qend = 0.54 (≃ 1/2) confirms that the
HOETI has a fractional end charge of 1/2.

3. Conclusion and Outlook

We have introduced the HOETI in the RPL as a new topological
phenomenon. A HOETI is a dipole-symmetry-protected phase
with a fractional end charge, extending the first-order bulk-end
correspondence (0D end states with co-dimension one) to higher
order (0D end states with co-dimension higher than one). Us-
ing topolectric circuits, we have observed a HOETI and con-
firmed the bulk-end correspondence through the localized end
states and fractional end charge. The discovery of a HOETI re-
veals the interplay between topological obstructions in real and
momentum space, and lets the fractional end charge emerge as
a powerful tool for probing higher-order topology. Our design
of topolectric circuits facilitates advanced Hamiltonian engineer-
ing, enables the realization of manifolds not accessible to the ex-
isting platforms, and paves the way to the emulation of uncharted
physics in non-Euclidean space.[37–41]

4. Methods
Deformations and Fractional Charge: The design of ends through a

cutting-gluing procedure is illustrated in Figure S1 (Supporting Informa-
tion). A square can be divided into four quadrants. By removing two quad-
rants and gluing the two remaining quadrants together, an oval-shaped
geometry can be obtained by deformation. In this way, a disclination with
Frank angle Ω=−𝜋 can be created using two quadrants of a square lattice.
In the RP2, two pairs of diagonally opposite quadrants can be deformed
into two such geometries. Similarly, in the RPL, two pairs of corners of
diagonally opposite quadrants can be deformed into two ends.

The deformation of the unit square ([0, 1] × [0, 1]) into the RP2 by twist-
ing and gluing of the edges is shown in Figure S2 (Supporting Informa-
tion). The 2D Cartesian coordinates can be mapped to latitude-longitude

coordinates as (x, y)↦(𝜃, 𝜑) = (2𝜋x, 𝜋(y − 1/2)) with 𝜃 ∈ [0, 2𝜋] and 𝜑 ∈

[−𝜋/2, 𝜋/2]. In 3D Cartesian coordinates, the RP2 can be denoted as

x(𝜃,𝜑) = 1
2

d2 sin(2𝜃) sin2 𝜑

y(𝜃,𝜑) = 1
2

d2 sin 𝜃 cos(2𝜑)

z(𝜃,𝜑) = 1
2

d2 cos 𝜃 sin(2𝜑)

(6)

where d is a constant. The implicit representation of the RP2 for d = 1 is[42]

x2y2 + x2z2 + y2z2 − xyz = 0 (7)

The creation of fractional charges is illustrated in Figure S3 (Support-
ing Information). A tight-binding model for a unit cell of four sites can de-
scribe a C4-symmetric HOTI, which exhibits fractional charges of 1/2 at the
edges and 1/4 at the corners. In the case of a HOETI, when the quadrants
are combined with real projective boundary conditions, the fractional edge
charges sum to identical integer charges everywhere in the bulk, while the
fractional corner charges of 1/4 sum to a fractional end charge of 1/2.

In the trivial phases of the square lattice and RPL, see Figures S4a1–
a3 and c1–c3 (Supporting Information), respectively, the eigenvalue
spectrum shows no in-gap states. As there is no filling anomaly, the
Wannier centers do not give rise to fractional charges. In the HOTI,
see Figure S4b1–b3 (Supporting Information), the eigenvalue spectrum
shows in-gap edge states and in-band corner states. As there is a fill-
ing anomaly, the Wannier centers give rise to fractional edge and corner
charges. The in-band corner states are not robust due to hybridization with
the bulk states. In the HOETI, see Figure S4d1–d3 (Supporting Informa-
tion), the eigenvalue spectrum shows topologically protected in-gap end
states. As there is a filling anomaly, the Wannier centers give rise to frac-
tional end charges.

Topological Indices: In the presence of rotation symmetry the Bloch
Hamiltonian h(k) satisfies Cnh(k)C†

n = h(Rnk), where Cn is the n-fold ro-
tation operator and Rn is an n-fold rotation acting on the momentum
k. At the high-symmetry point Π(n) satisfying RnΠ(n) = Π(n) we have
[Cn, h(Π(n))] = 0. Given the eigenstates u(Π(n)) of h(Π(n)), we therefore
can calculate the eigenvalues of Cn at Π(n) by diagonalizing the matrix
〈ul(Π(n))|Cn|um(Π(n))〉, where l and m run over the occupied bands. We
denote these eigenvalues as Π(n)

p = e2𝜋i(p−1)∕n (p = 1, …, n) and define the
rotation invariants

[
Π(n)

p

]
= #Π(n)

p − #Γ(n)
p (8)

where #Π(n)
p is the number of occupied bands with eigenvalue Π(n)

p .
The crystalline topology can be deduced from the symmetry indica-

tors (band representations).[26] The primary topological index of a C4-
symmetric HOTI is[12]

𝜒 (4) =
([

X(2)
1

]
,
[
M(4)

1

]
,
[
M(4)

2

])
(9)

A disclination is characterized by the net translation (denoted by the Burg-
ers vector B) and net rotation (denoted by the Frank angle Ω) accumulated
under parallel transport of a vector along a loop enclosing the disclination.
The secondary topological index of the disclination is given by[43]

Qdisclination = Ω
2𝜋

𝜂 + Bxpy − Bypx mod 1 (10)

where the polarizations px and py and the Wannier representation index 𝜂
capture the topology of the occupied band. In the case of C4-symmetry, we
have[13]

𝜂 =
[
X(2)

1

]
+ 3

2

[
M(4)

3

]
− 1

2

[
M(4)

1

]
(11)

Adv. Sci. 2024, 2303222 © 2024 The Authors. Advanced Science published by Wiley-VCH GmbH2303222 (6 of 8)

http://www.advancedsciencenews.com
http://www.advancedscience.com


www.advancedsciencenews.com www.advancedscience.com

The topological invariant of a C4-symmetric HOTI is governed by the
following relations: i) The number of bands is constant,

∑
p #Π

(n)
p =

∑
p #Γ

(n)
p , i.e.,

∑
p[Π(n)

p ] = 0. ii) The time-reversal symmetry implies

[M(4)
2 ] = [M(4)

4 ].[12] With px = py =
1
2

[X(2)
1 ] mod 1 and Ω = −𝜋, the frac-

tional end charge is

Qend = 1
2

(
−
[
X(2)

1

]
+ 2

[
M(4)

1

]
+ 3

[
M(4)

2

])
mod 1 (12)

The primary topological index is 𝜒 (4) = (0, 0, 0) in the trivial phase and
𝜒 (4) = (−1, 1, 0) in the nontrivial phase. Considering Equation (2), we find

Qend = 2Qcorner (13)

Simulation and Experiment: The Agilent Design System software
was employed for the numerical simulation of a circuit of 7 ×
7 unit cells, using the exact values of the components in the
fabricated sample. Chip multilayer ceramic capacitors of 1000 pF
±5% (Murata, GCM2165C1H102JA16D) and 220 pF ±5% (Murata,
GCM2165C1H221JA16D) capacitance are chosen for realizing the alter-
nate couplings. Wire-wound inductors (Murata, LQH32NH330J23L) of 33
μH ±5% inductance, 1.14 Ω resistance, and a self-resonance frequency
above 20 MHz are chosen for the grounded inductors. The scattering ma-
trix S of the circuit can be transformed into the circuit Laplacian J−1 =
Z0(S + I)(I − S)−1, where Z0 is the characteristic impedance and I is the
identity matrix. In a scattering parameter measurement between two sites,
the other sites are connected with 50 Ω load terminators to ensure zero
reflection. The spectrum of J ia obtained by reconstructing S using a vector
network analyzer (Tektronix TTr500) and physics-graph-informed machine
learning.[44]

Calculation of the Filling via the Local Density of States: To calculate
the filling, we use the retarded Green’s function GR(E) = lim𝜀→0+ (E + i𝜀 −
H)−1, where H is the Hamiltonian. GR(E) defines a meromorphic function
of the parameter E.[45] Defining GR(r, r′; E) = 〈r|GR(E)|r′〉, with r denoting
the position, the local density of states is given by 𝜌r(E) = ImGR(r, r; E).
After normalization to the number of states in the unit cell, we obtain the
filling between Ea and Eb as

∫
Eb

Ea

𝜌r(E)dE
/
∫ 𝜌r(E)dE (14)

In a circuit, the current Ir flowing into site r at frequency f follows Kirch-
hoff’s law

Ir =
∑
r′

Jr,r′ (2𝜋f )Vr′ (15)

where Vr′ is the voltage at site r′. Considering that the ratio of the coupling
capacitors equals the ratio of the coupling constants in the tight-binding
model, i.e., C1/C2 = w/v, we have[46]

J(2𝜋f0) = i2𝜋f0C1H (16)

The filling is calculated using H = ImJ(2𝜋f0) and Equation (14).
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