Skip to main content
Log in

Conversion of 1-butanol into High Value-Added Chemicals by Mixed Metal Oxides: The Influence of Co2+, Ni2+, and Zn2+ into Condensed Phase Products Distribution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The catalytic transformation of 1-butanol into condensed products by mixed metal oxides, based on Mg2+ and Al3+, containing Co2+, Ni2+, and Zn2+, into ethers, aldehydes, alkenes, ketones, alkylbenzenes, and phenolic compounds is described. The reactions were conducted at 550 and 600 °C, with and without methanol co-feeding. The presence of Co2+, Ni2+, and Zn2+ in the catalyst structure, together with the reaction temperature and methanol co-feeding, allowed the modulation of the yield and selectivity of each class of product. Also, to the best of our knowledge, this is the first time that phenolic compounds were produced from 1-butanol, and due to the nature of the condensed products found, the Robinson annulation was proposed as the reaction mechanism. The methodology herein described uses a renewable carbon source, is greener than the current ones for synthesizing the classes of compounds mentioned earlier, and can be an alternative for raw materials currently obtained exclusively from petroleum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Rodríguez-Padrón D, Puente-Santiago AR, Balu AM et al (2019) Environmental catalysis: present and future. ChemCatChem 11:18–38. https://doi.org/10.1002/cctc.201801248

    Article  CAS  Google Scholar 

  2. Li H, Riisager A, Saravanamurugan S et al (2018) Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals. ACS Catal 8:148–187. https://doi.org/10.1021/acscatal.7b02577

    Article  CAS  Google Scholar 

  3. Friend CM, Xu B (2017) Heterogeneous catalysis: A central science for a sustainable future. Acc Chem Res 50:517–521. https://doi.org/10.1021/acs.accounts.6b00510

    Article  CAS  PubMed  Google Scholar 

  4. Zimmerman JB, Anastas PT, Erythropel HC, Leitner W (2020) Designing for a green chemistry future. Science 367:397–400. https://doi.org/10.1126/science.aay3060

    Article  CAS  PubMed  Google Scholar 

  5. Wu L, Moteki T, Gokhale AA et al (2016) Production of fuels and chemicals from biomass: condensation reactions and beyond. Chem 1:32–58. https://doi.org/10.1016/j.chempr.2016.05.002

    Article  CAS  Google Scholar 

  6. Wijaya YP, Kristianto I, Lee H, Jae J (2016) Production of renewable toluene from biomass-derived furans via diels-alder and dehydration reactions: a comparative study of lewis acid catalysts. Fuel 182:588–596. https://doi.org/10.1016/j.fuel.2016.06.010

    Article  CAS  Google Scholar 

  7. Majumdar R, Tantayanon S, Gopal Bag B (2016) A novel trihybrid material based on renewables: an efficient recyclable heterogeneous catalyst for C−C coupling and reduction reactions. Chem - An Asian J 11:2406–2414. https://doi.org/10.1002/asia.201600773

    Article  CAS  Google Scholar 

  8. Brahmachari G (2016) Design for carbon-carbon bond forming reactions under ambient conditions. RSC Adv 6:64676–64725. https://doi.org/10.1039/c6ra14399g

    Article  CAS  Google Scholar 

  9. Rechi Siqueira M, Micali Perrone O, Metzker G et al (2019) Highly selective 1-butanol obtained from ethanol catalyzed by mixed metal oxides: Reaction optimization and catalyst structure behavior. Mol Catal 476:110516. https://doi.org/10.1016/j.mcat.2019.110516

    Article  CAS  Google Scholar 

  10. Perrone OM, Siqueira MR, Metzker G et al (2021) Copper and lanthanum mixed oxides as catalysts for ethanol Guerbet coupling: The role of La3+ on the production of long-chain alcohols. Environ Prog Sustain Energy. https://doi.org/10.1002/ep.13541

    Article  Google Scholar 

  11. Mora Vargas J, Tofaneli Morelato LH, Orduna Ortega J et al (2020) Upgrading 1-butanol to unsaturated, carbonyl and aromatic compounds: A new synthesis approach to produce important organic building blocks. Green Chem 22:2365–2369. https://doi.org/10.1039/d0gc00254b

    Article  CAS  Google Scholar 

  12. Barrett JA, Jones ZR, Stickelmaier C et al (2018) A pinch of salt improves n-butanol selectivity in the guerbet condensation of ethanol over Cu-doped Mg/Al oxides. ACS Sustain Chem Eng 6:15119–15126. https://doi.org/10.1021/acssuschemeng.8b03589

    Article  CAS  Google Scholar 

  13. Larina OV, Valihura KV, Kyriienko PI et al (2019) Successive vapour phase Guerbet condensation of ethanol and 1-butanol over Mg-Al oxide catalysts in a flow reactor. Appl Catal A Gen 588:1–11. https://doi.org/10.1016/j.apcata.2019.117265

    Article  CAS  Google Scholar 

  14. Luggren PJ, Di Cosimo JI (2020) Deactivation of Cu–Mg–Al mixed oxide catalysts for liquid transportation fuel synthesis from biomass-derived resources. Mol Catal 481:1–11. https://doi.org/10.1016/j.mcat.2018.08.008

    Article  CAS  Google Scholar 

  15. Metzker G, Mora Vargas JA, de Lima LP et al (2021) First row transition metals on the ethanol Guerbet reaction: products distribution and structural behavior of mixed metal oxides as catalysts. Appl Catal A Gen 623:118272. https://doi.org/10.1016/j.apcata.2021.118272

    Article  CAS  Google Scholar 

  16. Eagan NM, Kumbhalkar MD, Buchanan JS et al (2019) Chemistries and processes for the conversion of ethanol into middle-distillate fuels. Nat Rev Chem 3:223–249. https://doi.org/10.1038/s41570-019-0084-4

    Article  CAS  Google Scholar 

  17. Hernández WY, De Vlieger K, Van Der Voort P, Verberckmoes A (2016) Ni−Cu hydrotalcite-derived mixed oxides as highly selective and stable catalysts for the synthesis of β-branched bioalcohols by the guerbet reaction. Chemsuschem 9:3196–3205. https://doi.org/10.1002/cssc.201601042

    Article  CAS  PubMed  Google Scholar 

  18. Gabriëls D, Hernández WY, Sels BF et al (2015) Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization. Catal Sci Technol 5:3876–3902. https://doi.org/10.1039/c5cy00359h

    Article  Google Scholar 

  19. Palla VCS, Shee D, Maity SK (2020) Production of aromatics from n -butanol over HZSM-5, H-β, and γ-Al 2 O 3: role of silica/alumina mole ratio and effect of pressure. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.0c04888

    Article  Google Scholar 

  20. Palla VCS, Shee D, Maity SK (2016) Conversion of n-butanol to gasoline range hydrocarbons, butylenes and aromatics. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2016.07.026

    Article  Google Scholar 

  21. Kella T, Vennathan AA, Dutta S et al (2021) Selective dehydration of 1-butanol to butenes over silica supported heteropolyacid catalysts: Mechanistic aspect. Mol Catal 516:111975. https://doi.org/10.1016/j.mcat.2021.111975

    Article  CAS  Google Scholar 

  22. Kella T, Shee D (2021) Enhanced selectivity of benzene-toluene-ethyl benzene and xylene (BTEX) in direct conversion of n-butanol to aromatics over Zn modified HZSM5 catalysts. Microporous Mesoporous Mater 323:111216. https://doi.org/10.1016/j.micromeso.2021.111216

    Article  CAS  Google Scholar 

  23. Wang D, Liu Z, Liu Q (2019) Efficient conversion of ethanol to 1-butanol and C5–C9 alcohols over calcium carbide. RSC Adv 9:18941–18948. https://doi.org/10.1039/c9ra02568e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kruger JS, Dong T, Beckham GT, Biddy MJ (2018) Integrated conversion of 1-butanol to 1,3-butadiene. RSC Adv 8:24068–24074. https://doi.org/10.1039/c8ra02977f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Deischter J, Schute K, Neves DS et al (2019) Aromatisation of bio-derivable isobutyraldehyde over HZSM-5 zeolite catalysts. Green Chem. https://doi.org/10.1039/c9gc00483a

    Article  Google Scholar 

  26. de Souza RJ, Perrone OM, Siqueira MR et al (2019) Effect of lanthanide ion doping on Mg−Al mixed oxides as active acid−base catalysts for fatty acid ethyl ester synthesis. Renew Energy 133:367–372. https://doi.org/10.1016/j.renene.2018.10.038

    Article  CAS  Google Scholar 

  27. Perrone OM, Lobefaro F, Aresta M et al (2018) Butanol synthesis from ethanol over CuMgAl mixed oxides modified with palladium (II) and indium (III). Fuel Process Technol 177:353–357. https://doi.org/10.1016/j.fuproc.2018.05.006

    Article  CAS  Google Scholar 

  28. Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 11:173–301. https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  29. Chui M, Metzker G, Bernt CM et al (2017) Probing the lignin disassembly pathways with modified catalysts based on Cu-doped porous metal oxides. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.6b02954

    Article  Google Scholar 

  30. Farley NRS, Staddon CR, Zhao LX, et al (2003) New Sol-Gel Synthesis of Ordered Nanostructured Doped ZnO Films. arXiv Prepr cond-mat/ 8

  31. Ramasamy KK, Gray M, Job H et al (2016) Role of calcination temperature on the hydrotalcite derived MgO-Al2O3 in converting ethanol to butanol. Top Catal. https://doi.org/10.1007/s11244-015-0504-8

    Article  Google Scholar 

  32. Yadav AK, Vaidya PD (2019) A study on the efficacy of noble metal catalysts for butanol steam reforming. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.07.191

    Article  Google Scholar 

  33. Palma V, Ruocco C, Cortese M, Martino M (2020) Bioalcohol reforming: An overview of the recent advances for the enhancement of catalyst stability. Catalysts 10:665

    Article  CAS  Google Scholar 

  34. Cheng YT, Huber GW (2012) Production of targeted aromatics by using Diels-Alder classes of reactions with furans and olefins over ZSM-5. Green Chem 14:3114–3125. https://doi.org/10.1039/c2gc35767d

    Article  CAS  Google Scholar 

  35. Nolan PE, Schabel MJ, Lynch DC, Cutler AH (1995) Hydrogen control of carbon deposit morphology. Carbon N Y 33:79–85. https://doi.org/10.1016/0008-6223(94)00122-G

    Article  CAS  Google Scholar 

  36. Becker A, Hu Z, Hüttinger KJ (2000) Hydrogen inhibition model of carbon deposition from light hydrocarbons. Fuel 79:1573–1580. https://doi.org/10.1016/S0016-2361(00)00030-2

    Article  CAS  Google Scholar 

  37. Bannov AG, Popov MV, Kurmashov PB (2020) Thermal analysis of carbon nanomaterials: advantages and problems of interpretation. J Therm Anal Calorim 142:349–370. https://doi.org/10.1007/s10973-020-09647-2

    Article  CAS  Google Scholar 

  38. Wang H, Kou X, Zhang JIE, Li J (2008) Large scale synthesis and characterization of Ni nanoparticles by.pdf. Bull Mater Sci 31:97–100

    Article  Google Scholar 

  39. Morales MV, Asedegbega-Nieto E, Iglesias-Juez A et al (2015) Role of exposed surfaces on zinc oxide nanostructures in the catalytic ethanol transformation. Chemsuschem 8:2223–2230. https://doi.org/10.1002/cssc.201500425

    Article  CAS  PubMed  Google Scholar 

  40. Sun Y, Chen L, Bao Y et al (2016) The applications of morphology controlled ZnO in catalysis. Catalysts. https://doi.org/10.3390/catal6120188

    Article  Google Scholar 

  41. Tsuchida T, Yoshioka T, Sakuma S et al (2008) Synthesis of biogasoline from ethanol over hydroxyapatite catalyst. Ind Eng Chem Res 47:1443–1452. https://doi.org/10.1021/ie0711731

    Article  CAS  Google Scholar 

  42. Gangadharan A, Shen M, Sooknoi T et al (2010) Condensation reactions of propanal over CexZr 1-xO2 mixed oxide catalysts. Appl Catal A Gen 385:80–91. https://doi.org/10.1016/j.apcata.2010.06.048

    Article  CAS  Google Scholar 

  43. Shen W, Tompsett GA, Hammond KD et al (2011) Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl Catal A Gen 392:57–68. https://doi.org/10.1016/j.apcata.2010.10.023

    Article  CAS  Google Scholar 

  44. Di Cosimo JI, Apesteguía CR, Ginés MJL, Iglesia E (2000) Structural requirements and reaction pathways in condensation reactions of alcohols on MgyAlOx catalysts. J Catal 190:261–275. https://doi.org/10.1006/jcat.1999.2734

    Article  CAS  Google Scholar 

  45. Ogo S, Onda A, Yanagisawa K (2011) Selective synthesis of 1-butanol from ethanol over strontium phosphate hydroxyapatite catalysts. Appl Catal A Gen 402:188–195. https://doi.org/10.1016/j.apcata.2011.06.006

    Article  CAS  Google Scholar 

  46. Sad ME, Neurock M, Iglesia E (2011) Formation of C-C and C-O bonds and oxygen removal in reactions of alkanediols, alkanols, and alkanals on copper catalysts. J Am Chem Soc 133:20384–20398. https://doi.org/10.1021/ja207551f

    Article  CAS  PubMed  Google Scholar 

  47. Corma A, García H (1997) Organic reactions catalyzed over solid acids. Catal Today 38:257–308. https://doi.org/10.1016/S0920-5861(97)81500-1

    Article  CAS  Google Scholar 

  48. Qian J, Yi W, Huang X et al (2015) One-pot synthesis of 3,5-disubstituted and polysubstituted phenols from acyclic precursors. Org Lett 17:1090–1093. https://doi.org/10.1021/ol503615n

    Article  CAS  PubMed  Google Scholar 

  49. Ueda W, Kuwabara T, Ohshida T, Morikawa Y (1990) A low-pressure guerbet reaction over magnesium oxide catalyst. J Chem Soc Chem Commun. https://doi.org/10.1039/C39900001558

    Article  Google Scholar 

  50. Izawa Y, Pun D, Stahl SS (2011) Palladium-catalyzed aerobic dehydrogenation of substituted cyclohexanones to phenols. Science. https://doi.org/10.1126/science.1204183

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keßler MT, Prechtl MHG (2012) Palladium catalysed aerobic dehydrogenation of C-H bonds in cyclohexanones. ChemCatChem 4:326–327. https://doi.org/10.1002/cctc.201100361

    Article  CAS  Google Scholar 

  52. Boger DL, Mullican MD (1984) Regiospecific Total Synthesis of Juncusol. J Org Chem 49:4045–4050. https://doi.org/10.1021/jo00195a034

    Article  CAS  Google Scholar 

  53. Katritzky AR, Belyakov SA, Fang Y, Kiely JS (1998) Polymer-supported preparation of substituted phenols: A new example of simultaneous cyclization-cleavage reaction on solid phase. Tetrahedron Lett 39:8051–8054. https://doi.org/10.1016/S0040-4039(98)01771-7

    Article  CAS  Google Scholar 

  54. Houghton TJ, Choi S, Rawal VH (2001) Efficient assembly of the phomactin core via two different macrocyclization protocols. Org Lett 3:3615–3617. https://doi.org/10.1021/ol0163833

    Article  CAS  PubMed  Google Scholar 

  55. Wang S, Dai Y, Qi H et al (2020) Flash/distillation for separating 2-pentanone/4-heptanone/water azeotropic mixture based equilibrium data and process design. Sep Purif Technol 242:116790. https://doi.org/10.1016/j.seppur.2020.116790

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Sao Paulo Research Foundation (FAPESP) for the financial support (grants No. 2013/23886-4 (BIOEN), 2017/13230-5 and 2020/02471-4) and the fellowship to J.A.M.V (grant No. 2017/09520-8), the Universidad Santiago de Cali for J.O.O doctoral fellowship and for the fellowship to J.A.M.V (Convocatoria Interna DGI No. 06-2023: Joven Investigador Santiaguino) and the financial support (Proyecto No. 939-621121-2827) and the National Council for the Improvement of Higher Education (CAPES) for the post-doctoral fellowship (grant No.1760327) to G.M.

Author information

Authors and Affiliations

Authors

Contributions

JMV, RMPD, LPL, JOO: Investigation, methodology and data curation. MB: Funding acquisition, project administration, conceptualization and original draft. GM: Conceptualization, supervision, original draft, writing—review and editing.

Corresponding author

Correspondence to Gustavo Metzker.

Ethics declarations

Conflict of Interest

The authors declare no financial nor personal competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1927 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, J.A.M., de Paula Dias, R.M., de Lima, L.P. et al. Conversion of 1-butanol into High Value-Added Chemicals by Mixed Metal Oxides: The Influence of Co2+, Ni2+, and Zn2+ into Condensed Phase Products Distribution. Catal Lett 154, 2305–2313 (2024). https://doi.org/10.1007/s10562-023-04476-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-023-04476-y

Keywords

Navigation