Skip to main content
Log in

Selenium Injection in Dam Rabbits During Gestation Has Important Effects on Progeny Productive Performance

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Micromineral elements have a fundamental participation in the processes of organogenesis and fetal development. The objective of this study was to assess the effect of selenium (Se) injection in pregnant female rabbits, during organogenesis or rapid fetal growth, on the productive performance of their progeny. An experiment was carried out with 30 New Zealand female rabbits, with an average age of 6 months. At the end of mating (day 0), using a randomized complete design, the female rabbits were distributed into three experimental groups, which were assigned to the following treatments: Control, female rabbits were injected intramuscularly (IM) with 0.5 ml of saline on days 13 and 23 of gestation; Early administration, female rabbits that were injected IM with Se (0.10 mg/kg BW) on day 13 of gestation (organogenesis) and 0.5 ml of saline on day 23 of gestation; and Late administration, female rabbits that were injected IM with 0.5 ml of saline on day 13 of gestation and Se (0.10 mg/kg BW) on day 23 of gestation (rapid fetal growth). No differences were found on kindling performance of dams and pre-weaning growth of rabbit offspring. However, an injection of Se to pregnant rabbits affected the growth and development of their progeny, with the treatment leading to changes in the yield of some carcass traits (forelimb weight and forelimb muscle weight) and weights of some organs (liver, lungs, and spleen). The Se treatment (both early and late) also resulted in lower concentrations of glucose, triglycerides, and cholesterol when compared to the control group. These effects were different when Se injection was performed during organogenesis or rapid fetal development. The results from this study suggest that there are beneficial effects of gestational Se injection of rabbit dams on important productive traits of their progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data from this study are included within the published article.

References

  1. Minich WB (2022) Selenium metabolism and biosynthesis of selenoproteins in the human body. Biochem Mosc 87:S168–S177. https://doi.org/10.1134/S0006297922140139

    Article  CAS  Google Scholar 

  2. Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777. https://doi.org/10.1152/physrev.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Quisirumbay-Gaibor J, Vílchez Perales C (2021) Suplementación de selenio sobre el rendimiento reproductivo, productivo, concentración tisular y actividad de glutatión peroxidasa en cerdas y lechones: un metaanálisis. Rev Investig Vet Perú 32:e21334. https://doi.org/10.15381/rivep.v32i5.21334

    Article  Google Scholar 

  4. Pappas AC, Zoidis E, Chadio SE (2019) Maternal selenium and developmental programming. Antioxidants 8:145. https://doi.org/10.3390/antiox8050145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang Y, Roh YJ, Han S-J et al (2020) Role of selenoproteins in redox regulation of signaling and the antioxidant system: a review. Antioxidants 9:383. https://doi.org/10.3390/antiox9050383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mou D, Ding D, Yan H et al (2020) Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct 11:7748–7761. https://doi.org/10.1039/D0FO00832J

    Article  CAS  PubMed  Google Scholar 

  7. Yunusova RD, Neville TL, Vonnahme KA et al (2013) Impacts of maternal selenium supply and nutritional plane on visceral tissues and intestinal biology in 180-day-old offspring in sheep1. J Anim Sci 91:2229–2242. https://doi.org/10.2527/jas.2012-5134

    Article  CAS  PubMed  Google Scholar 

  8. Vonnahme KA, Luther JS, Reynolds LP et al (2010) Impacts of maternal selenium and nutritional level on growth, adiposity, and glucose tolerance in female offspring in sheep. Domest Anim Endocrinol 39:240–248. https://doi.org/10.1016/j.domaniend.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Symeon GK, Goliomytis M, Bizelis I et al (2015) Effects of gestational maternal undernutrition on growth, carcass composition and meat quality of rabbit offspring. PLoS One 10:e0118259. https://doi.org/10.1371/journal.pone.0118259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hassan FA, Abdel-Azeem NM, Abdel-Rahman SM et al (2019) Effect of dietary organic selenium supplementation on growth performance, carcass characteristics and antioxidative status of growing rabbits. J World’s Poult Res 9:16–25. https://doi.org/10.36380/scil.2019.wvj3

    Article  Google Scholar 

  11. Hostetler CE, Kincaid RL, Mirando MA (2003) The role of essential trace elements in embryonic and fetal development in livestock. Vet J 166:125–139. https://doi.org/10.1016/S1090-0233(02)00310-6

    Article  CAS  PubMed  Google Scholar 

  12. National Research Council (1977) Nutrient requirements of rabbits,: second revised edition, 1977. National Academies Press, Washington, D.C.

    Google Scholar 

  13. Lopez-Tello J, Arias-Alvarez M, Gonzalez-Bulnes A, Sferuzzi-Perri AN (2019) Models of Intrauterine growth restriction and fetal programming in rabbits. Mol Reprod Dev 86:1781–1809. https://doi.org/10.1002/mrd.23271

    Article  CAS  PubMed  Google Scholar 

  14. Benson KG, Paul-Murphy J (1999) Clinical pathology of the domestic rabbit: acquisition and interpretation of samples. Vet Clin North Am Exot Anim Pract 2:539–551. https://doi.org/10.1016/S1094-9194(17)30109-3

    Article  CAS  PubMed  Google Scholar 

  15. SAS Institute Inc (2014) SAS® OnDemand for academics: user’s guide. SAS Institute Inc., Cary, NC

    Google Scholar 

  16. Schwarz K, Foltz CM (1957) Selenium ad an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79:3292–3293. https://doi.org/10.1021/ja01569a087

    Article  CAS  Google Scholar 

  17. Biswas K, McLay J, Campbell FM (2022) Selenium supplementation in pregnancy-maternal and newborn outcomes. J Nutr Metab 2022:1–9. https://doi.org/10.1155/2022/4715965

    Article  CAS  Google Scholar 

  18. Lin Y, Yan H, Cao L et al (2022) Maternal organic selenium supplementation during gestation enhances muscle fiber area and muscle fiber maturation of offspring in porcine model. J Anim Sci Biotechnol 13:121. https://doi.org/10.1186/s40104-022-00773-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou S, Wu B, Liu Z, Zhang T (2021) Effects of different selenium sources on sow reproductiveperformance and piglet development:a meta-analysis. J Anim Feed Sci 30:260–270. https://doi.org/10.22358/jafs/138774/2021

    Article  Google Scholar 

  20. Hall JA, Isaiah A, McNett ERL et al (2022) Supranutritional selenium-yeast supplementation of beef cows during the last trimester of pregnancy results in higher whole-blood selenium concentrations in their calves at weaning, but not enough to improve nasal microbial diversity. Animals 12:1360. https://doi.org/10.3390/ani12111360

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jin XH, Kim CS, Gim MJ, Kim YY (2022) Effects of selenium source and level on the physiological response, reproductive performance, serum Se level and milk composition in gestating sows. Anim Biosci 35:1948–1956. https://doi.org/10.5713/ab.22.0104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muegge CR, Brennan KM, Schoonmaker JP (2017) Supplementation of organic and inorganic selenium to late gestation and early lactation beef cows effect on progeny feedlot performance and carcass characteristics1. J Anim Sci 95:1356–1362. https://doi.org/10.2527/jas.2016.0960

    Article  CAS  PubMed  Google Scholar 

  23. Shao T, Brattain RS, Shike DW (2020) Effects of maternal supplementation with an injectable trace mineral containing copper, manganese, zinc, and selenium on subsequent steer finishing phase performance and carcass characteristics. Animals 10:2226. https://doi.org/10.3390/ani10122226

    Article  PubMed  PubMed Central  Google Scholar 

  24. Diniz WJS, Bobe G, Klopfenstein JJ et al (2021) Supranutritional maternal organic selenium supplementation during different trimesters of pregnancy affects the muscle gene transcriptome of newborn beef calves in a time-dependent manner. Genes 12:1884. https://doi.org/10.3390/genes12121884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bao B, Kang Z, Zhang Y et al (2023) Selenium deficiency leads to reduced skeletal muscle cell differentiation by oxidative stress in mice. Biol Trace Elem Res 201:1878–1887. https://doi.org/10.1007/s12011-022-03288-2

    Article  CAS  PubMed  Google Scholar 

  26. Mousaie A (2021) Dietary supranutritional supplementation of selenium-enriched yeast improves feed efficiency and blood antioxidant status of growing lambs reared under warm environmental condition. Trop Anim Health Prod 53:138. https://doi.org/10.1007/s11250-021-02588-4

    Article  PubMed  Google Scholar 

  27. Dahlen CR, Reynolds LP, Caton JS (2022) Selenium supplementation and pregnancy outcomes. Front Nutr 9:1011850. https://doi.org/10.3389/fnut.2022.1011850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ojeda ML, Nogales F, Romero-Herrera I, Carreras O (2021) Fetal programming is deeply related to maternal selenium status and oxidative balance; experimental offspring health repercussions. Nutrients 13:2085. https://doi.org/10.3390/nu13062085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ewuola EO, Akinyemi DE (2022) Physiological response of rabbits to organic selenium: serum metabolites, liver and kidney function tests and hematological indices. Ghana J Agric Sci 57. https://doi.org/10.4314/gjas.v57i1.5

  30. Uyoyo Ukperoro J, Offiah N, Idris T, Awogoke D (2010) Antioxidant effect of zinc, selenium and their combination on the liver and kidney of alloxan-induced diabetes in rats. Mediterr J Nutr Metab 3:25–30. https://doi.org/10.1007/s12349-009-0069-9

    Article  Google Scholar 

  31. Jablonska E, Reszka E, Gromadzinska J et al (2016) The effect of selenium supplementation on glucose homeostasis and the expression of genes related to glucose metabolism. Nutrients 8:772. https://doi.org/10.3390/nu8120772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu L, Lu Y, Wang N, Feng Y (2022) The role and mechanisms of selenium supplementation on fatty liver-associated disorder. Antioxidants 11:922. https://doi.org/10.3390/antiox11050922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Novoselec J, Klir Šalavardić Ž, Đidara M et al (2022) The effect of maternal dietary selenium supplementation on blood antioxidant and metabolic status of ewes and their lambs. Antioxidants 11:1664. https://doi.org/10.3390/antiox11091664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the directors of the Cinco Ases Rabbit Farm for providing the necessary facilities for the conduct of this study. They also thank Dra. Sherezada Esparza for his professional comments and feedback on this manuscript. Mention of trade names or commercial products is solely for providing specific information and not a recommendation or endorsement.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization of study, J.F.V.A.; funding acquisition, A.G.M., L.B.M.; formal data analysis, A.G.M., G.M.P.B., N.L.V., J.F.V.A.; writing—original draft preparation, A.G.M., J.F.V.A.; writing—review, C.A., A.G.M., G.M.P.B., N.L.V., J.F.V.A.; editing, C.A., A.G.M., G.M.P.B., N.L.V., J.F.V.A.; visualization, L.B.M., F.S.D., J.C.G.V.; supervision, C.A., L.B.M., F.S.D., J.C.G.V.; management of reference, A.G.M., F.S.D., J.F.V.A.; language editing C.A., G.M.P.B., B.A.P., N.L.V.; figures design, L.B.M., B.A.P., J.C.G.V. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to José Fernando Vázquez-Armijo.

Ethics declarations

Competing Interests

The authors declare no competing interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 11 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Medina, A., Becerril-Martínez, L., Parra-Bracamonte, G.M. et al. Selenium Injection in Dam Rabbits During Gestation Has Important Effects on Progeny Productive Performance. Biol Trace Elem Res 202, 3119–3127 (2024). https://doi.org/10.1007/s12011-023-03899-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03899-3

Keywords

Navigation