Skip to main content
Log in

The Stokes and Vening-Meinesz functionals in a moving tangent space

  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

The regularized solution of the external sphericalStokes boundary value problem as being used for computations of geoid undulations and deflections of the vertical is based upon theGreen functions S 10, Φ0, Λ, Φ) ofBox 0.1 (R = R 0) andV 10, Φ0, Λ, Φ) ofBox 0.2 (R = R 0) which depend on theevaluation point0, Φ0} ∈ S 2R0 and thesampling point {Λ, Φ} ∈ S 2R0 ofgravity anomalies Δ γ (Λ, Φ) with respect to a normal gravitational field of typegm/R (”free air anomaly”). If the evaluation point is taken as the meta-north pole of theStokes reference sphere S 2R0 , theStokes function, and theVening-Meinesz function, respectively, takes the formS(Ψ) ofBox 0.1, andV 2(Ψ) ofBox 0.2, respectively, as soon as we introduce {meta-longitude (azimuth), meta-colatitude (spherical distance)}, namely {A, Ψ} ofBox 0.5. In order to deriveStokes functions andVening-Meinesz functions as well as their integrals, theStokes andVening-Meinesz functionals, in aconvolutive form we map the sampling point {Λ, Φ} onto the tangent plane T0S 2R0 at {Λ0, Φ0} by means ofoblique map projections of type(i) equidistant (Riemann polar/normal coordinates),(ii) conformal and(iii) equiareal.Box 2.1.–2.4. andBox 3.1.– 3.4. are collections of the rigorously transformedconvolutive Stokes functions andStokes integrals andconvolutive Vening-Meinesz functions andVening-Meinesz integrals. The graphs of the correspondingStokes functions S 2(Ψ),S 3(r),⋯,S 6(r) as well as the correspondingStokes-Helmert functions H 2(Ψ),H 3(r),⋯,H 6(r) are given byFigure 4.1–4.5. In contrast, the graphs ofFigure 4.6–4.10 illustrate the correspondingVening-Meinesz functions V 2(Ψ),V 3(r),⋯,V 6(r) as well as the correspondingVening-Meinesz-Helmert functions Q 2(Ψ),Q 3(r),⋯,Q 6(r). The difference between theStokes functions / Vening-Meinesz functions andtheir first term (only used in the Flat Fourier Transforms of type FAST and FASZ), namelyS 2(Ψ) − (sin Ψ/2)−1,S 3(r) − (sinr/2R 0)−1,⋯,S 6(r) − 2R 0/r andV 2(Ψ) + (cos Ψ/2)/2(sin2 Ψ/2),V 3(r) + (cosr/2R 0)/2(sin2 r/2R 0),⋯,\(V_6 (r) + {{(R_0 \sqrt {4R_0^2 - r^2 } )} \mathord{\left/ {\vphantom {{(R_0 \sqrt {4R_0^2 - r^2 } )} {r^2 }}} \right. \kern-\nulldelimiterspace} {r^2 }}\) illustrate the systematic errors in the”flat” Stokes function 2/Ψ or ”flat”Vening-Meinesz function −2/Ψ2. The newly derivedStokes functions S 3(r),⋯,S 6(r) ofBox 2.1–2.3, ofStokes integrals ofBox 2.4, as well asVening-Meinesz functionsV 3(r),⋯,V 6(r) ofBox 3.1–3.3, ofVening-Meinesz integrals ofBox 3.4 — all of convolutive type — pave the way for the rigorousFast Fourier Transform and the rigorousWavelet Transform of theStokes integral / theVening-Meinesz integral of type ”equidistant”, ”conformal” and ”equiareal”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Bellaire, R.G. (1971a): Stations of the geodetic uncertainties aloft, Eos. Trans. American Geophysical Union, Washington 1971

    Google Scholar 

  • Bellaire, R.G. (1971b): Correlation functions on the upper half space, The Analytic Scienes Corporation, Reading, Mass., Report 1971

    Google Scholar 

  • Bellaire, R.G. (1972): A discussion of flat earth statistical models for the gravity disturbances and their application, The Analytic Scienes Corporation, Reading, Mass., Report 1972

    Google Scholar 

  • Bursa, M. (1994): Testing geopotential models. Earth, Moon and Planets64 (1994) 293–299

    Google Scholar 

  • Forsberg, R. and M. G. Sideris (1993): Geoid computations by the multi-band spherical FFT approach, manuscripta geodaetica18 (1993) 82–90

    Google Scholar 

  • Geodetic Work in the Netherlands 1991–1994: Report prepared for the General Assembly of the International Association of Geodesy, Boulder 1995, Netherlands Geodetic Commission, Delft 1995

  • Grafarend, E. (1971a): Korrelationslängen von Schwereanomalien und Lotabweichungen, Z. Vermessungswesen96 (1971) 132–158

    Google Scholar 

  • Grafarend, E. (1971b): Statistische Modelle zur Prädiktion von Lotabweichungen, Vermessungstechnik19 (1971) 66–68

    Google Scholar 

  • Grafarend, E. (1971c): Isotropietests von Lotabweichungen Westdeutschlands, Z. Geophysik37 (1971) 719–733

    Google Scholar 

  • Grafarend, E. (1971d): Lotabweichungsverteilungen Westdeutschlands und ihre gruppentheoretische Struktur, Mitt. Institut für Theoretische Geodäsie Universität Bonn, Nr. 1, Bonn 1971

    Google Scholar 

  • Grafarend, E. (1972): Isotropietests von Lotabweichungsverteilungen in Westdeutschland II, Z. Geophysik38 (1972) 243–255

    Google Scholar 

  • Grafarend, E. (1975): Geodetic prediction concepts, Bd. 13, Geodetic stochastic processes, Bd. 14, Methoden und Verfahren der mathematischen Physik (eds. B. Brosowski and E. Martensen) Mathematical Geodesy, B. I. Wissenschaftsverlag, Mannheim 1975

    Google Scholar 

  • Grafarend, E. (1976): Geodetic applications of stochastic processes, Physics of the Earth and Planetary Interiors21 (1976) 151–179

    Google Scholar 

  • Grafarend, E. (1989): The geoid and the gravimetric boundary value problem, The Royal Institute of Technology Stockholm, Department of Geodesy, Report 18, Trita Geod 1018, Stockholm 1989

  • Grafarend, E., B. Heck, E.H. Knickmeyer (1985): The free versus fixed geodetic boundary value problem for different combinations of geodetic observables, Bulletin Gêodésique59 (1985) 11–32

    Google Scholar 

  • Grafarend, E. and W. Keller (1995): Setup of observational functionals in gravity space as well as in geometry space, manuscripta geodaetica20 (1995) 301–325

    Google Scholar 

  • Grafarend, E. und G. Offermanns (1975): Eine Lotabweichungskarte Westdeutschlands nach einem geodätisch konsistenten Kolmogorov-Wiener-Modell, Deutsche Geodätische Kommission, Report A 82, München 1975

  • Groten, E. (1965): An gravity prediction using mean anomalies, Dep. Geodetic Science, The Ohio State University, Report 47, Columbus 1965

    Google Scholar 

  • Groten, E. (1966a): Analytic continuation of gravity using orthogonal functions, Dep. Geodetic Science, The Ohio State University, Report 53, Columbus 1966

    Google Scholar 

  • Groten, E. (1966b): On the derivation of surface gravity anomalies from airborne measurements, Dep. Geodetic Science, The Ohio State University, Report 88, Columbus 1966

    Google Scholar 

  • Groten, E. (1979): Geodesy and the Earth's gravity field, vol. I, Dümmler's Verlag, Bonn 1979

    Google Scholar 

  • Groten, E. (1980): Geodesy and the Earth's gravity field, vol. II, Dümmler's Verlag, Bonn 1980

    Google Scholar 

  • Haagmans, R., E. de Min and M. van Gelderen (1993): Fast evaluation of convolution integrals on the sphere using 1D FFT, and a comparison with existing methods for Stokes' integral, manuscripta geodaetica18 (1993) 227–241

    Google Scholar 

  • Helmert, F.R. (1880/84): Die mathematischen und physikalischen Theorien der höheren Geodäsie, Teubner Verlag, Leipzig, I. Teil, Leipzig 1880, II. Teil, Leipzig 1884

  • Jordan, S.K. (1972a): Effects of geodetic uncertainties on a damped inertial navigation system, Report of the Analytic Sciences Corporation, Reading 1972

    Google Scholar 

  • Jordan, S.K. (1972b): Discussion of Paper by L. Shaw, I. Paul and P. Henrikson, ”Statistical models for the vertical deflection from gravity-anomaly models”, J. Geophys. Res.77 (1972) 971–973

    Google Scholar 

  • Jordan, S.K. (1972c): Self-consistent statistical models for the gravity anomaly, vertical deflections, and undulation of the geoid, J. Geophys. Res.77 (1972) 3660–3670

    Google Scholar 

  • Jordan, S.K. (1973): Stationary statistical models for mass anomalies and gravity disturbances, Report of The Analytic Sciences Corporation, Reading 1973

    Google Scholar 

  • Jordan, S.K. (1978): Statistical model for gravity, topography and density contrasts in the earth, J. Geophys. Res. ser. B83 (1978) 1816–1824

    Google Scholar 

  • Jordan, S.K., P.J. Moonan and J.D. Weiss (1981): Statespace models of gravity disturbance gradiens, IEEE Transactions on Aerospace and Electronic Systems17 (1981) 610–619

    Google Scholar 

  • Kasper, J.F. (1971): A second-order Markov gravity anomaly model, J. Geophys. Res.76 (1971) 7844–7849

    Google Scholar 

  • Kling, T., M. Becker, H.J. Euler and E. Groten (1987): Studien zur detaillierten Geoidberechnung, Deutsche Geodätische Kommission, Report B 285, München 1987

  • Li, J. (1993a): The spherical convolution form of Vening-Meinesz formula, Acta Geodaetica et Cartographica Sinica23 (1993) 161–166

    Google Scholar 

  • Li, J. (1993b): An effective method of eliminating the approximation error in Stokes integration convolution formula, J. Wuhan Technical University of Surveying and Mapping18 (1993) No.4

  • Ning, J.,D. Chao and J. Li (1994): The spherical convolution form of the Vening-Meinesz formula, Acta Geodaetica et Cartographica Sinica (1993) 11–16

  • Pick, M., J. Picha and V. Vyskocil (1973): Theory of the Earth's gravity field, Elsevier Scientific Publ., Amsterdam 1973

    Google Scholar 

  • Schwarz, K.P., M.G. Sideris and R. Forsberg (1990): The use of FFT techniques in physical geodesy, Geophysical Journal International100 (1990) 485–514

    Google Scholar 

  • Shaofeng, B. and D. Xurong (1991): On the singular integration in physical geodesy, manuscripta geodaetica16 (1991) 283–287

    Google Scholar 

  • Shaofeng, B. and K. Zhang (1993): The planar solution of geodetic boundary value problem, manuscripta geodaetica18 (1993) 290–294

    Google Scholar 

  • Shaw, L., I. Paul and P. Henrikson (1969): Statistical Models for the Vertical Deflection from Gravity-Anomaly Models, J. Geophys. Res.74 (1969) 4259–4265

    Google Scholar 

  • Snyder, J.P. (1982): Map projections used by the U.S. Geological Survey, Geological Survey Bulletin 1532, United States Government Printing Office, Washington 1982

    Google Scholar 

  • Stokes, G.G. (1849): On the variation of gravity on the surface of the earth, Trans. Cambridge Phil. Soc.8 (1849) 672–695

    Google Scholar 

  • Strang van Hees, G. (1990): Stokes formula using fast Fourier techniques, manuscripta geodaetica15 (1990) 235–239

    Google Scholar 

  • Vening-Meinesz, F.A. (1928): A formula expressing the deflection of the plumbline in the gravity anomalies and some formulae for the gravity field and the gravity potential outside the geoid, Proc. Sect. Sci. Kon. Akad. v. Wet. Amsterdam31 (1928) 315–331

    Google Scholar 

  • Zhang, K., B. Shaofeng and W. Shen (1995): The singular integration of physical geodesy in the frequency domain, manuscripta geodaetica20 (1995) 241–247

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafarend, E.W., Krumm, F. The Stokes and Vening-Meinesz functionals in a moving tangent space. Journal of Geodesy 70, 696–713 (1996). https://doi.org/10.1007/BF00867148

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00867148

Keywords

Navigation