Skip to main content
Log in

Turning residues of coconut flour in bioadditive: an alternative to accelerate PCL biodegradation

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The residue of coconut flour (RCF) was used as a bioadditive to evaluate its technological potential as an accelerator of polycaprolactone (PCL) biodegradation. PCL/RCF biocomposites (5-30% by weight) were processed using an internal mixer, and further on, specimens were molded by compression and injection. Experiments such as contact angle, torque rheometry, impact strength, tensile strength, Shore D hardness, thermogravimetry (TG), optical microscopy (OM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were applied to evaluate the biocomposites’ performance. Increasing RCF content into PCL reduced the contact angle, suggesting biocomposites with greater wettability. As a consequence, favoring microorganisms’ proliferation in the biocomposites, providing a higher biodegradation rate as observed by OM. Neat PCL showed weight loss of 8.1% after 60 days of biodegradation while adding 5% RCF increased this parameter to 13.2%. Severe biodegradation was verified in PCL/RCF (30%) since 41% of weight loss was verified. Torque rheometry indicated that up to 10% RCF in the PCL matrix did not compromise processability and maintained good mechanical properties. From OM and visual analysis, microorganisms’ proliferation on the specimens’ surfaces was observed, providing severe deterioration and erosion, corroborated by the high weight loss. FTIR spectra displayed reduced band intensity of ester and methylene groups of PCL and PCL/RCF, along with the biodegradation and appearance of hydroxyl bands. The crystallinity evaluated from XRD increased for a longer biodegradation time, suggesting consumption of the amorphous PCL. In general, coconut flour is a valuable raw material to accelerate PCL biodegradation, indicating potential as an ecological bioadditive and pro-degradant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Art SP, Art WP (2021) Eco-friendly bamboo fiber-reinforced poly(butylene succinate) biocomposites. Polym Compos 42(4):1752–1759

    Article  Google Scholar 

  2. Varshney S, Mishra N, Gupta MK (2021) Progress in nanocellulose and its polymer based composites: A review on processing, characterization, and applications. Polym Compos 42(8):3660–3686

    Article  CAS  Google Scholar 

  3. Filho EAS, Luna CBB, Ferriea ESB, Siqueira DD, Araújo EM (2023) Production of PLA/NR blends compatibilized with EE-g-GMA and POE-g-GMA: an investigation of mechanical, thermal, thermomechanical properties and morphology. J Polym Res 30(3):132

    Article  Google Scholar 

  4. Mahmud S, Hasan KMF, Jahid MA, Mohiuddin K, Zhang R, Zhu J (2021) Comprehensive review on plant fiber-reinforced polymeric biocomposites. J Mater Sci 56(1):7231–7264

    Article  CAS  Google Scholar 

  5. Ponce G, Liamazares SR, Rivera PC, Castano J, Velásquez GO, Sabando C, Ide W, Nesic A, Barjas GC (2022) Biocomoposites of polylactic acid/ poly(butylene adipate-co-terephthalate) blends loaded with quinoa husk agro-waste: thermal and mechanical properties. J Mater Sci 29:356

    CAS  Google Scholar 

  6. Siqueira DD, Luna CB, Araújo EM, Ferreira ES, Wellen RM (2019)Biocomposites based on PCL and macaiba fiber. Detailed characterization of main properties. Mater Res Express6(9):095335

  7. Rodrigues SCS, Mesquita FAS, Carvalho LH, Alves TS, Folkersma R, Araújo RSRM, Oliveira AD, Barbosa R (2021) Preparation and characterization of polymeric films based on PLA, PBAT and corn starch and babassu mesocarp starch by flat extrusion. Mater Res Express 8(3):035305

  8. Gonçalves FAC, Amaral ELS, Júnior LJL, Lopes BLS, Junior LSR, Brabo DR, Amarante CB (2018) Fibras Vegetais: Aspectos Gerais, Aproveitamento, Inovação Tecnológica e uso em Compósitos. ESPACIOS. 39(6):1–12

    Google Scholar 

  9. Luna CBB, Ferreira ESB, Nogueira JAS, Araújo EM, Nascimento EP, Melo JBCA (2021) Biopolyethylene/Morinda citrifolia cellulosic biocomposites: The impact of chemical crosslinking and PE-g-MA compatibilizer. Polym Compos 42(12):6551–6569

    Article  CAS  Google Scholar 

  10. Costa HM, Ramos VD, Cyrino JSAS (2021) Influência do óleo de semente de uva na degradação termo-oxidativa do polipropileno (PP) reciclado. Matéria (Rio J.) 26(01)

    Article  Google Scholar 

  11. Kotik HG (2019) Fibras naturais e compósitos reforçados com fibras naturais: a motivação para sua pesquisa e desenvolvimento. Matéria (Rio J.) 24(3):e-12477

  12. Campo ASMD, Ortíz JRR, Arellano M, Fonseca AAP (2022) Influence of agro-industrial wastes over the abiotic and composting degradation of polylactic acid biocomposites. J Compos Mater 56(1):43–56

    Article  Google Scholar 

  13. Samouh Z, Molnar K, Hajba S, Boussu F, Cherkaoui O, Moznine RE (2021) Elaboration and characterization of biocomposite based on polylactic acid and Moroccan sisal fiber as reinforcement. Polym Compos 42(8):3812–3826

    Article  CAS  Google Scholar 

  14. Siqueira DD, Luna CBB, Araújo EM, Costa THC, Wellen RMR (2022) Biodegradation and performance of poly(ɛ-caprolactone)/macaíba biocomposites. Polym Compos 43(2):998–1011

    Article  CAS  Google Scholar 

  15. Hou X, Lu X, He C (2022) Strong Interface via Weak Interactions: Ultratough and Malleable Polylactic acid/Polyhydroxybutyrate Biocomposites. Macromol Rapid Commun 43(2):2100619

    Article  CAS  Google Scholar 

  16. Manoel AF, Claro PI, Galvani F, Mattoso LH, Marconcini JM, Mantovani GL (2022) Poly(ε-caprolactone) blended with thermoplastic waxy starch matrix reinforced with cellulose nanocrystals from Macauba (Acrocomia spp.) Rachis. Ind Crops Prod 177(3):114446

  17. Jing HJ, Liu H, Huang B, Zhang C (2020) Study on properties of polylactic acid/lemongrass fiber biocomposites prepared by fused deposition modeling. Polym Compos 42(2):973–986

    Article  Google Scholar 

  18. He J, Yu T, Chen S, Li Y (2021) Soil degradation behavior of ramie/thermoset poly(lactic acid) composites. J Polym Res 28:379

    Article  CAS  Google Scholar 

  19. Luna CB, Silva AL, Ferreira ES, AraUjo EM, Costa AC (2022) Effect of kaolin waste annealing on the structural and thermal behavior of poly(ε−caprolactone). Momento 4:66–82

  20. Silva JM, Sousa FM, Almeida TG, Bardi MAG, Carvalho LH (2022) Rheological, thermal and mechanical characterization of PBAT/PCL/Stearates blends. Research, Society and Development 11(3)

    Article  Google Scholar 

  21. Reul LTA, Pereira CAB, Sousa FM, Santos RM, Carvalho LH, Canedo EL (2019) Polycaprolactone/babassu compounds: Rheological, thermal, and morphological characteristics. Polym Compos 40(1):540–549

    Google Scholar 

  22. Schafer H, Reul LTA, Sousa FM, Wellen RMR, Carvalho LH, Koschek K, Canedo EL (2021) Crystallization behavior of polycaprolactone/babassu compounds. J Therm Anal Calorim 143(3):2963–2972

    Article  Google Scholar 

  23. Cintra SC, Braga NF, Morgado GFM, Montanheiro TLA, Marini J, Passador FR, Montagna LS (2022) Development of new biodegradable composites materials from polycaprolactone and wood flour. Wood Mat Sci Eng. https://doi.org/10.1080/17480272.2021.1905712

    Article  Google Scholar 

  24. Bezerra EB, França DC, Morais DDS, Rosa MF, Morais JPS, Araújo EM, Wellen RMR (2017) Processing and Properties of PCL/Cotton Linter Compounds. Mater Res 20(2):317–325

    Article  CAS  Google Scholar 

  25. Luna CB, Siqueira DD, Ferreira ED, Araújo EM, Wellen RM (2019) Reactive compatilization of PCL/WP upon addition of PCL-MA. Smart option for recycling industry. Mater Res Express 6(12):125317

  26. Nevoralová M, Koutný M, Ujčić A, Starý Z, Šerá J, Vlková H, Šlouf M, Fortelný I, Kruliš Z (2020) Structure Characterization and Biodegradation Rate of Poly(ε-caprolactone)/Starch Blends. Front Mater 7:1–14

  27. Borghesi DC, Molina MF, Guerra MA, Campos MGN (2016) Biodegradation Study of a Novel Poly-Caprolactone-Coffee Husk Composite Film. Mater Res 19(4):752–758

    Article  CAS  Google Scholar 

  28. Filho EAS, Siqueira DD, Araújo EM, Luna CBB, Medeiros EP (2022) The Impact of the Macaíba Components Addition on the Biodegradation Acceleration of Poly (Ɛ-Caprolactone) (PCL). J Polym Environ 30:443–460

    Article  Google Scholar 

  29. Birania S, Kumar S, Kumar N, Attkan AK, Panghal A, Rohilla P, Kumar R (2022) Advances in development of biodegradable food packaging material from agricultural and agro-industry waste. J Food Process Eng 45(1)

    Article  CAS  Google Scholar 

  30. Wang Y, Jia X, Olasupo IO, Feng Q, Wang L, Lu L, Xu J, Sun M, Yu X, Han D, He C, Li Y, Yan Y (2022) Effects of biodegradable films on melon quality and substrate environment in solar greenhouse. Sci Total Environ 829(6)

    Article  CAS  PubMed  Google Scholar 

  31. Bertotto C, Bilck AP, Yamashita F, Anjos O, Siddique MAB, Harrison SM, Brunton NP, Carpes ST (2022) Development of a biodegradable plastic film extruded with the addition of a Brazilian propolis by-product. LWT 157(3)

    Article  CAS  Google Scholar 

  32. Siqueira DD, Luna CBB, Araújo EM, Barros ABS, Wellen RMR (2021) Approaches on PCL/macaíba biocomposites - mechanical, thermal, morphological properties and crystallization kinetics. Polym Adv Technol 32(9):3572–3587

    Article  CAS  Google Scholar 

  33. Cardoso MS, Gonçalez JC (2016) Aproveitamento da casca do coco-verde para produção de polpa celulósica. Ciência Florestal 26(1):321–330

    Article  Google Scholar 

  34. Florentino WM, Brandão A, Mileo PC, Goulart SAS, Mulinari DR (2011) Polyurethane reinforced with green coconut fiber biocomposites. Cadernos Unifoa 6(17):11–16

    Article  Google Scholar 

  35. Chandrasekar M, Ishak MR, Sapuan SM, Leman Z, Jawaid M (2017) A review on the characterisation of natural fibres and their composites after alkali treatment and water absorption. Plast, Rubber Compos 46(3):119–36

    Article  CAS  Google Scholar 

  36. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S (2021) Characterization of Alkali-Treated and Untreated Natural Fibers from the Stem of Parthenium Hysterophorus. J Nat Fibers 18(1):80–90

    Article  CAS  Google Scholar 

  37. Maache M, Bezazi A, Amroune S, Scarpa F, Dufresne A (2017) Characterization of a novel natural cellulosic fiber from Juncus effusus L. Carbohydr Polym 171(9):163–172

    Article  CAS  PubMed  Google Scholar 

  38. Johar N, Ahmad I, Dufresne A (2012) Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. Ind Crop Prod 37(1):93–99

    Article  CAS  Google Scholar 

  39. Liu D, Han G, Huang J, Zhang Y (2009) Composition and structure study of natural Nelumbo nucifera fiber. Carbohydr Polym 75(1):39–43

    Article  CAS  Google Scholar 

  40. Tserki V, Zafeiropoulos NE, Simon F, Panayiotou C (2005) A study of the effect of acetylation and propionylation surface treatments on natural fibres. Compos Part A: Appl Sci Manufac 36(8):1110–1118

    Article  Google Scholar 

  41. Maepa CE, Jayaramudu J, Okonkwo JO, Ray SS, Sadiku ER, Ramontja J (2015) Extraction and Characterization of Natural Cellulose Fibers from Maize Tassel. Int J Polym Anal Charact 20(2):99–109

    Article  CAS  Google Scholar 

  42. Alves JLF, Silva JCG, Mumbach GD, Sena RF, Machado RAF, Marangoni C (2022) Prospection of catole coconut (Syagrus cearensis) as a new bioenergy feedstock: Insights from physicochemical characterization, pyrolysis kinetics, and thermodynamics parameters. Renew Energy 181(1):207–218

    Article  CAS  Google Scholar 

  43. Du X, Bai X, Gao W, Jiang Z (2019) Properties of soluble dietary fibre from defatted coconut flour obtained through subcritical water extraction. Int J Food Sci Technol 54(4):1390–1404

    Article  CAS  Google Scholar 

  44. Du X, Wang L, Huang X, Jing H, Ye X, Gao W, Bai X, Wang H (2021) Effects of different extraction methods on structure and properties of soluble dietary fiber from defatted coconut flour. LWT Food Sci Technol 143(5)

    Article  CAS  Google Scholar 

  45. Vijay R, Singaravelu DL, Vinod A, Sanjay MR, Siengchin S, Jawaid M, Khan A, Parameswaranpillai J (2019) Characterization of raw and alkali treated new natural cellulosic fibers from Tridax procumbens. Int J Biol Macromol 125(3):99–108

    Article  CAS  PubMed  Google Scholar 

  46. Gomes JW, Godoi GS, Souza LGM, Souza LGVM (2017) Absorção de água e propriedades mecânicas de compósitos poliméricos utilizando resíduos de MDF. Polímeros 27(1):48–55

    Article  Google Scholar 

  47. Leite MCAM, Furtado CRG, Couto LO, Oliveira FLBO, Correia TR (2010) Avaliação da Biodegradação de Compósitos de Poli(ε-Caprolactona)/Fibra de Coco Verde. Polímeros 20(1):339–344

    Article  CAS  Google Scholar 

  48. Marinho VAD, Almeida TG, Carvalho LH, Canedo EL (2018) Aditivação e Biodegradação de Compósitos PHB/Babaçu. Revista Eletrônica de Materiais e Processos 13(1):37–41

    Google Scholar 

  49. Santos EB, Passador FR, Montagna LS (2020) Influência de fatores ambientais nas propriedades mecânicas de biocompósitos de pla reforçado com fibra de coco e borra de café. Tecno-Lógica 24(1):93–102

    Google Scholar 

  50. Abd Halip J, Hua LS, Ashaari Z, Tahir PM, Chen LW, Uyup MK (2019) Effect of treatment on water absorption behavior of natural fiber - reinforced polymer composites. Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publ Ser Compos Sci Eng 141–156

  51. Rosa DS, Pantano Filho R (2003) Biodegradação: um ensaio com polímeros. Editora Universitária São Francisco e editora Moara

  52. Feng C, Li Z, Wang Z, Wang B, Wang Z (2019) Optimizing torque rheometry parameters for assessing the rheological characteristics and extrusion processability of wood plastic composites. J Thermoplast Compos Mater 2(1):123–140

    Article  Google Scholar 

  53. Luna CBB, Filho EAS, Siqueira DD, Souza DD, Wellen RMR, Araújo EM (2022) Jatobá wood flour: An alternative for the production of ecological and sustainable PCL biocomposites. J Compos Mater 56(25):3835–3850

    Article  Google Scholar 

  54. Andrade DSC, Canedo EL, Carvalho LH, Barbosa R, Alves TS (2021) Characterization of Poly(Ethylene Terephthalate) by Torque Rheometry. Mater Res 24(2)

    Article  Google Scholar 

  55. Sivanesan D, Kim S, Jang TW, Kim HJ, Song J, Seo B, Lim CS, Kim HG (2023) Effects of flexible and rigid parts of ε-caprolactone and tricyclodecanediol derived polyurethane on the polymer properties of epoxy resin. Polymer 237(10):124374

  56. Ribeiro VF, Júnior NSD, Riegel IC (2012) Recovering Properties of Recycled HIPS Through Incorporation of SBS Triblock Copolymer. Polímeros 22(2):186–192

    Article  CAS  Google Scholar 

  57. Luna CBB, Araújo EM, Siqueira DD, Morais DDS, Filho EAS, Fook MVL (2020) Incorporation of a recycled rubber compound from the shoe industry in polystyrene: Effect of SBS compatibilizer content. J Elastomers Plast 52(1):3–28

    Article  CAS  Google Scholar 

  58. Dhakal HN, Ismail SO, Zhang Z, Barber A, Welsh E, Maigret JE, Beaugrand J (2018) Development of sustainable biodegradable lignocellulosic hemp fiber/polycaprolactone biocomposites for light weight applications. Compos Part A: Appl Sci Manufac 113:350–358

    Article  CAS  Google Scholar 

  59. Cintra SC, Braga NF, Morgado GFM, Montanheiro TLA, Marini J, Passador FR (2022) Development of new biodegradable composites materials from polycaprolactone and wood flour. Wood Mat Sci Eng 17(6):586–597

    Article  CAS  Google Scholar 

  60. Hejna A, Formela K, Saeb MR (2015) Processing, mechanical and thermal behavior assessments of polycaprolactone/agricultural wastes biocomposites. Ind Crop Prod 76:725–733

    Article  CAS  Google Scholar 

  61. Nunes MBS, Bardi MAG, Carvalho LH (2016) Biodegradação em solo simulado de blendas de PBAT/TPS e seus biocompósitos com mesocarpo de babaçu. REMAP 11(2):105–111

    Google Scholar 

  62. Franco CR, Cyras VP, Busalmen JP, Ruseckaite RA, Vázquez A (2004) Degradation of polycaprolactone/starch blends and composites with sisal fibre. Polym Degrad Stab 86(1):95–103

    Article  Google Scholar 

  63. Barbanti SH, Zavaglia CA, Duek EA (2006) Accelerated Degradation of Poly(ε-Caprolactone) and Poly(D,L-Lactic Acid-co-Glycolic Acid) Scaffolds in Alkaline Medium. Polímeros: Ciência e Tecnologia 16(2):141–148

  64. Chauhan OP, Archana BS, Singh A, Raju PS, Bawa AS (2013) Utilization of Tender Coconut Pulp for Jam Making and Its Quality Evaluation During Storage. Food Bioprocess Technol 6:1444–1449

    Article  Google Scholar 

  65. Nunes MABS, Aguirre EC, Auras RA, Bardi MAG, Carvalho LH (2019) Effect of Babassu Mesocarp Incorporation on the Biodegradation of a PBAT/TPS Blend. Macromol Symp 383(1):1800043

    Article  Google Scholar 

  66. Faria AU, Franchetti SMM (2010) Biodegradation of Polypropylene (PP), Poly(3-hydroxybutyrate) (PHB) Films and PP/PHB Blend by Microorganisms from Atibaia River. Polímeros 20(2):141–147

    Article  Google Scholar 

  67. Pellicano M, Pachekoski W, Agnelli JAM (2009) Influence of Cassava Starch Incorporation on the Biodegradability of the Polymeric Blend PHBV/Ecoflex®. Polímeros 19(3):212–217

    Article  CAS  Google Scholar 

  68. Siqueira DD, Luna CB, Morais DD, Araújo EM, França DC, Wellen RM (2018) Efeito das variáveis reacionais na síntese de um polímero biodegradável funcionalizado: PCL-g-MA. Matéria (Rio J.) 23(4):e-12252

  69. Elzein T, Eddine MN, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273(2):381–387

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira TA, Mota IO, Mousinho FEP, Barbosa R, Carvalho LH, Alves TS (2019) Biodegradation of mulch films from poly(butylene adipate co-terephthalate), carnauba wax, and sugarcane residue. J Appl Polym Sci 136(47):48240

    Article  Google Scholar 

  71. Augustine R, Malik HN, Singhal DK, Mukherjee A, Malahar D, Kalarikkal N, Thomas S (2014) Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21(2):1–17. https://doi.org/10.1007/s10965-013-0347-6

    Article  CAS  Google Scholar 

  72. Paula M, Diego I, Dionisio R, Vinhas G, Alves S (2019) Gamma irradiation effects on polycaprolactone/zinc oxide nanocomposite films. Polímeros 29(1):e2019014. https://doi.org/10.1590/0104-1428.04018

  73. Gonçalves SPC, Campos A, Franchetti SMM (2011) Influência da Geometria e Umidade de Colunas de Solo na Biodegradação de Filmes de PCL. Polímeros 21(2):107–110. https://doi.org/10.1590/S0104-14282011005000020

    Article  Google Scholar 

  74. Bezerra EB, França DC, Morais DDS, Siqueira DD, Araújo EM, Wellen RMR (2019) Toughening of bio-PE upon addition of PCL and PEgAA. REM - International Engineering Journal 72(3):469–478. https://doi.org/10.1590/0370-44672018720027

    Article  Google Scholar 

  75. Luna CB, Siqueira DD, Araújo EM, Wellen RM (2021) Efectividad de recocido en PLA. Información sobre las propiedades mecánicas, termomecánicas y de cristalinidad. Momento (62):1–17. https://doi.org/10.15446/mo.n62.89099

  76. Paula MV, Azevedo LA, Silva ID, Vinhas GM, Alves Junior S (2021) Effects of gamma radiation on nanocomposite films of polycaprolactone with modified MCM-48. Polímeros 31(3):e2021031. https://doi.org/10.1590/0104-1428.20210044

  77. Campos A, Marconato JC, Franchetti SMM (2010) Biodegradação de filmes de PP/PCL em solo e solo com chorume. Polímeros 20(4):295–300

    Article  Google Scholar 

Download references

Acknowledgment

The authors are grateful to CNPq (National Council for Scientific and Technological Development, Brasilia/DF, Brazil) (Process: 350025/2023-1). Prof Edcleide Araújo (Number: 312014/2020-1) and Prof Renate Wellen (Number: 303426/2021-7) are CNPq fellows. Authors are deeply grateful to UFCG for the infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bruno Barreto Luna.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Nogueira, J.A., Luna, C.B.B., da Silva, A.L. et al. Turning residues of coconut flour in bioadditive: an alternative to accelerate PCL biodegradation. J Polym Res 30, 334 (2023). https://doi.org/10.1007/s10965-023-03711-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-023-03711-9

Keywords

Navigation