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Abstract

Speech recognition is the task of automatically generating transcrip-
tions of given speech utterances. This research area is widely applied
in our daily lives such as helping foreign students in lectures or con-
trolling intelligent devices such as smart TVs or cars with speech
commands.

The 7000 languages being spoken in the world poses a challenge to
speech recognition system. Traditionally speech recognition methods
using Hidden Markov Model are not practically applicable for many
languages simultaneously due to the requirement of pronunciation dic-
tionaries together with a pipeline of separated components. The neural
end-to-end approach relaxed both of these requirements by using a
single neural network to learn a direct mapping from speech signal
inputs to word surface outputs, and all components in the network
are directly optimized for this learning objective. This nature enables
training one model to recognize many languages at the same time.

The desiderata of a multilingual recognition system includes the fol-
lowing factors:

• The training procedure with a combined dataset of multiple
languages should not be overly complicated than dealing with
one single language, and is much more industrially efficient
than constructing multiple monolingual recognition system.

• The recognition quality of the multilingual system should be
competitive or better than the monolingual individual systems.
Since many languages share similar acoustic features, the
architecture of the recognizers should reflect this nature, while
having room to model each language’s unique traits.
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• It is crucial for the system to be expandable, by being able to
continually learn new languages. The intervention of new
languages should not affect the performance for the previously
learned languages. Meanwhile, the quality of these new
languages must be competitive compared to the ideal scenario
of having all languages at once. This factor is important when
scaling recognition systems in a world-wide setting, in which
acquiring data for new languages is difficult and data storing is
not eternal due to storage requirement and privacy issues.

The goals of the thesis are designed to further develop speech recog-
nition towards such desiderata. The first objective was achieved by
constructing a neural end-to-end speech recognition model. The moti-
vation here was that, due to the high level of abstraction compared to
traditional methods, such as the removal of dictionaries and concrete
alignment learning, the performance of neural end-to-end models was
still inferior to traditional system. By using very deep Transformer
networks with stochastic layers and enhanced with relative position
self attention mechanism, it is possible to reach a competitive level
performance in standard benchmark of conversational English, which
was the state-of-the-art result achieved with end-to-end models.

Having achieved a strong neural end-to-end model, the next objec-
tive is to apply it for large scale multilingual recognition. Because
this approach is not limited by the language specific pronunciation
dictionaries, it is trivial to create a multilingual system of dozens of
languages, that satisfied the first desiderata objective. In order to have a
clear learning strategy that separates language dependent and indepen-
dent features, we proposed weight factorization as a technique that
factorizes each weight matrix in the network into language dependent
and independent factors. The language dependent weights are further
factorized to encourage the network to learn universal features. Fur-
thermore, this technique can be combined with transfer learning, as a
result reducing the word error rate for 32 languages by 33% compared
to a competitive Transformer baseline.

With weight factorization, continual learning new languages is now
enabled. The networks can allocate new weights for new languages
without interfering the logic of old languages, thus completely avoiding
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catastrophic forgetting, the major problem of losing knowledge of
previous languages when training on new ones. Weight factorization, a
form of progressive neural networks, can be also combined with Elastic
Weight Consolidation, a regularization method to prevent catastrophic
forgetting. This combination makes the whole network architecture
more flexible, by finding empty space in the network to learn new
knowledge. By doing so, it is possible to learn new languages with
the same quality of having all languages initially, without severely
compromising in terms of catastrophic forgetting.

The last contribution of the thesis is the application in direct speech
translation. For many languages, it is more convenient to collect the
translation instead of transcript for speech utterances. The same neural
architecture can be applied in this situation without any modification.
The contribution is hightlighted by showing that, a neural model is
now powerful enough to outperform cascaded approaches, in either
large scale speech translation or resource-limited multilingual speech
translation scenarios.
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Zusammenfassung

Spracherkennung ist die Aufgabe, automatisch Transkriptionen von
gegebenen Sprachäußerungen zu erstellen. Dieser Forschungsbereich
findet in unserem täglichen Leben breite Anwendung, z. B. bei der
Unterstützung ausländischer Studierenden in Vorlesungen oder bei
der Steuerung intelligenter Geräte wie Smart-TVs oder Autos durch
Sprachbefehle.

Die 7000 Sprachen, die auf der Welt gesprochen werden, stellen eine
Herausforderung für Spracherkennungssysteme dar. Herkömmliche
Spracherkennungsmethoden, die Hidden Markov-Modelle verwenden,
sind in der Praxis nicht für viele Sprachen gleichzeitig anwendbar, da
sie Aussprachewörterbücher und eine Pipeline von getrennten Kompo-
nenten erfordern. Der neuronale End-to-End-Ansatz entspannt diese
beiden Anforderungen, indem ein einziges neuronales Netzwerk ver-
wendet wird, um eine direkte Abbildung von Sprachsignaleingaben auf
Wortoberflächenausgaben zu erlernen, und alle Komponenten im Netz-
werk werden direkt für dieses Lernziel optimiert. Auf diese Weise kann
ein einziges Modell trainiert werden, um viele Sprachen gleichzeitig
zu erkennen.

Zu den Desideraten eines mehrsprachigen Erkennungssystems gehören
die folgenden Faktoren:

• Das Trainingsverfahren mit einem kombinierten Datensatz aus
mehreren Sprachen sollte nicht übermäßig kompliziert sein und
ist industriell viel effizienter als die Entwicklung mehrerer
einsprachiger Erkennungssysteme.

• Die Erkennungsqualität des mehrsprachigen Systems sollte
konkurrenzfähig oder besser sein als die der einsprachigen
Einzelsysteme. Da viele Sprachen ähnliche akustische
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Merkmale aufweisen, sollte die Architektur der
Erkennungssysteme dies widerspiegeln und gleichzeitig Raum
für die Modellierung der einzigartigen Merkmale der einzelnen
Sprachen lassen.

• Entscheidend ist, dass das System erweiterungsfähig ist, d. h.
dass es ständig neue Sprachen lernen kann. Die Einführung
neuer Sprachen sollte die Leistung der bereits erlernten
Sprachen nicht beeinträchtigen. Gleichzeitig muss die Qualität
dieser neuen Sprachen im Vergleich zum idealen Szenario, in
dem alle Sprachen auf einmal vorhanden sind, konkurrenzfähig
sein. Dieser Faktor ist wichtig für die Skalierung von
Erkennungssystemen in einem weltweiten Umfeld, in dem die
Beschaffung von Daten für neue Sprachen schwierig ist und
die Datenspeicherung aufgrund von Speicherbedarf und
Datenschutzproblemen nicht ewig möglich ist.

Die Ziele dieser Arbeit sind darauf ausgerichtet, die Spracherken-
nung in Richtung dieser Desiderate weiterzuentwickeln. Das erste
Ziel wurde durch die Konstruktion eines neuronalen End-to-End-
Spracherkennungsmodells erreicht. Die Motivation hierfür war, dass
aufgrund des hohen Abstraktionsniveaus im Vergleich zu traditionellen
Methoden, wie z.B. der Entfernung von Wörterbüchern und konkretem
Alignment-Lernen, die Leistung von neuronalen End-to-End-Modellen
immer noch schlechter war als bei traditionellen Systemen. Durch
die Verwendung von sehr tiefen Transformer-Netzen mit stochasti-
schen Schichten und einem Mechanismus für relative Positionsselbst-
aufmerksamkeit ist es möglich, eine konkurrenzfähige Leistung in
Standard-Benchmarks für Konversations-Englisch zu erreichen, was
das modernste Ergebnis war, das mit End-to-End-Modellen erzielt
wurde.

Nachdem ein starkes neuronales End-to-End-Modell erreicht wurde,
besteht das nächste Ziel darin, es für eine groß angelegte mehrspra-
chige Erkennung einzusetzen. Da dieser Ansatz nicht durch sprach-
spezifische Aussprachewörterbücher eingeschränkt ist, ist es trivial,
ein mehrsprachiges System mit Dutzenden von Sprachen zu erstellen,
das das erste Desiderat-Ziel erfüllt. Um eine klare Lernstrategie zu
haben, die sprachabhängige und unabhängige Merkmale trennt, haben
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wir die Gewichtsfaktorisierung als Technik vorgeschlagen, die jede
Gewichtsmatrix im Netzwerk in sprachabhängige und unabhängige
Faktoren zerlegt. Die sprachabhängigen Gewichte werden weiter fak-
torisiert, um das Netzwerk zu ermutigen, universelle Merkmale zu
lernen. Darüber hinaus kann diese Technik mit Transfer-Lernen kom-
biniert werden, wodurch die Wortfehlerrate für 32 Sprachen um 33%
im Vergleich zu einer konkurrierenden Transformer-Baseline reduziert
wird.

Mit der Gewichtungsfaktorisierung ist nun das kontinuierliche Ler-
nen neuer Sprachen möglich. Die Netze können neue Gewichte für
neue Sprachen zuweisen, ohne in die Logik der alten Sprachen ein-
zugreifen, wodurch ein katastrophales Vergessen, das Hauptproblem
des Verlusts von Wissen über frühere Sprachen beim Training neuer
Sprachen, vollständig vermieden wird. Die Gewichtsfaktorisierung,
eine Form der progressiven neuronalen Netze, kann auch mit der
elastischen Gewichtskonsolidierung kombiniert werden, einer Regu-
larisierungsmethode zur Vermeidung des katastrophalen Vergessens.
Diese Kombination macht die gesamte Netzarchitektur flexibler, da sie
Leerstellen im Netz findet, um neues Wissen zu lernen. Auf diese Wei-
se ist es möglich, neue Sprachen mit der gleichen Qualität zu erlernen,
wie wenn man alle Sprachen von Anfang an beherrschen würde, ohne
dass es zu ernsthaften Kompromissen in Bezug auf das katastrophale
Vergessen kommt.

Der letzte Beitrag der Arbeit ist die Anwendung im Bereich der di-
rekten Sprachübersetzung. Für viele Sprachen ist es bequemer, die
Übersetzung anstelle des Transkripts von Sprachäußerungen zu sam-
meln. Die gleiche neuronale Architektur kann in dieser Situation ohne
jegliche Modifikation angewendet werden. Der Beitrag wird dadurch
hervorgehoben, dass gezeigt wird, dass ein neuronales Modell jetzt leis-
tungsfähig genug ist, um kaskadierte Ansätze zu übertreffen, entweder
in groß angelegten Sprachübersetzungen oder in ressourcenbeschränk-
ten mehrsprachigen Sprachübersetzungsszenarien.
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1 Introduction

1.1 Context and motivation

In 2019, humanity witnessed a global pandemic happening once every
century, with the last known pandemic happened before the first World
War. Due to this catastrophic event, the human society has to witness
a rearrangement with measures to counteract the transmitting viruses.
Social distancing, home office and various measures were put into prac-
tice, and the main strategy is to reduce close communication replaced
by telecommunication technologies. Despite of the crisis entailing the
pandemic, there are actual research and engineering areas that bloom
from the new world in which telecommunication became more impor-
tantly dominant. The increasing amount of indirect communication via
the Internet has made way for new applications to thrive, with speech
recognition and translation at the core. Such applications are being
used ubiquitously in video conferencing, home office or online lec-
tures. This new order raises new demand in recording and transcribing
speech automatically.

At the time of this manuscript, automatic speech recognition (ASR)
has witnessed more than half a century of development. This research
area has been considered as an interdisciplinary research sub-field of
computer science and computational linguistics with the purpose of
generating the transcription of the spoken utterance. For a long time,
the dominant solution in speech recognition has been following the
statistical approach, with a Hidden Markov Model (HMM) at the core
and using statistical models to estimate the likelihood of generating the
observation (the acoustic signals) from a latent sequence (often using
acoustic units). Such approach can be characterized by a pipeline of
distinct models, as illustrated in Figure 1.1. In this pipeline, many
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component designs are based on handcrafted features including feature
representation based on Mel Frequency Cepstral or the latent represen-
tation being acoustic units such as phoneme states. Even though the
major components are machine learning based and can benefit from
state-of-the-art machine learning methods such as deep neural net-
works (DNN), they are optimised towards different learning objectives.
The presence of many separated components requires a complicated
search process at the end of the pipeline to find an optimized solution
by balancing the outputs of each probabilistic component. Under this
approach, speech recognition systems have gradually been improved
to reach acceptable performance for applications and there even are
claims about reaching human parity [273] in English conversational
speech.

English, however, is one of about 7100 languages being spoken within
human societies. In the bigger picture of speech recognition appli-
cations, it is beneficial to handle multiple languages with one single
system. On the industrial side, building on system on the combination
of datasets for multiple languages reduces the effort significantly com-
pared to the efforts of constructing separated systems. The cost in time
and energy in building one system is not necessarily smaller than the
multilingual one [3, 9]. On the other hand, it is even possible to im-
prove the performance of languages individually in a multilingual sys-
tem thanks to many assumptions transferable between languages [230].
Apart from the cost of learning language simultaneously, in practice
it is necessary to consider the situations in which new languages are
added to the collection after training, and the system has to handle
without retraining the whole system, a costly option.

Expanding Hidden Markov Model based models into other languages’
territory has always been challenging and ineffective. On the one hand,
the involvement of a pronunciation dictionary limits the applicability
to other languages because of the linguistic effort in constructing one
for each new language. On the other hand, there are certain modeling
assumptions that can be transferred between languages, for example
sharing components between them [88], that cannot be easily mani-
fested in the classical approach. The pipeline nature of the classical
approach was simply not appropriate for this task.
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1.1 Context and motivation

The deep learning approach, with neural networks at the core, changes
the modeling nature. From a very early time, neural networks were
shown to be able to learn powerful features and capable of recognizing
speech, despite the small scale [259, 262] at the time due to the lim-
itation in data and computation. After the winter of neural networks
at the end of the 20th century, neural networks have reappeared in
speech recognition by replacing the neural components in the statisti-
cal pipeline. Deep multi-layer perceptrons were shown to be possibly
trained for acoustic emission probabilities in HMMs [97] to replace
the Gaussian Mixture Models while the latter could also be vastly
improved by the neural bottleneck features, obtained by training deep
networks with one small hidden layer [77, 69]. Meanwhile, contin-
uous space language models [23, 145, 166] using neural networks
dominated the 𝑛-gram based language models. Connectionist Tempo-
ral Classification [75] (CTC) is a specific algorithm allow for neural
networks to even generating output symbols (such as characters or
phonemes), despite the assumption that the outputs are independently
generated. It is observable that neural networks were playing an in-
creasingly important role in the speech processing picture. So what
characteristics do these machine learning models have create such a
revolution?

Novel neural architectures such as Encoder-Decoder neural networks [247,
255, 15] were capable of transforming one sequence to another even
when those two belong to two different modalities. From a hierarchical
standpoint, the encoder and decoder can be considered as acoustic
modeling and language modeling components in the stochastic ap-
proach, with all of the intermediate layers being abstracted in hidden
representations, while the output of the model’s search space is word
sequences directly. Training this model successfully can be viewed as
jointly training different speech recognition components towards the
same objective, known as end-to-end training.

Aforementioned, multilingual speech recognition development was
still infant before the time of this thesis. With the end-to-end neural
network approach, the thesis address the following research questions
to push multilingual speech recognition into new boundaries:
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Figure 1.1: An overview of the statistical approach in ASR.

• Can the end-to-end models approach the performance of the
statistical HMM-based systems in English recognition? It is
notable that the latter one has had decades of development, in
which many tricks were used to improve the performance, and
also neural networks were used to replace acoustic and
language components. It is the best of both world if one can
prove the end-to-end approach is superior in both conventional
benchmarks as well as being expandable to a multilingual
scenario.

• How can we design a model architecture that can handle many
languages with the highest efficiency? The literature showed us
that multilingual learning in neural networks often employs a
semi-shared strategy, in which some components are designed
to be language specific, while most of the network components
are shared. However, they are often very specific and cannot be
applied to state-of-the-art architectures. The desiderata is to be
able to multilingual-ize any neural architecture with ease and
the highest efficiency.
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• When dealing with new languages, neural networks are often
suffering from catastrophic forgetting, a phenomenon
happening when networks fine-tuned on new languages are
deteriorated on previously learned languages. How can we
design a continual learning strategy to combat this problem
when learning new languages?

1.2 Contribution

With those targets in mind, the contribution of the thesis is as fol-
lows:

First, we developed a attention-based Encoder-Decoder neural network
being able to overcome competitive HMM-based systems in conversa-
tional speech recognition. Previously, Encoder-Decoder models were
applied to speech recognition [40, 16] but struggled to overcome pre-
vious approaches such as HMM or even CTC. By proposing a deep
Transformer [255] based network that uses self-attention as the main
network component in both encoders and decoders, it is possible to
outperform other approaches. The key idea is to construct very deep
encoder due to the complexity of the acoustic modality, yet at the same
time keeping the network regularised and computationally feasible.
This is realised by the residual connections in Transformers [90] al-
lowed for layers to be randomly dropped during training, known as
Stochastic layers. Furthermore, the relative positions in Transformers
are important to deal with high variability in the acoustic inputs.

Second, the success of end-to-end training a neural based speech rec-
ognizer is expanded to other languages, enabling multilingual speech
recognition. The main concern here is how to fully utilise the mul-
tilingual data, with the assumption that most languages can share
certain acoustic features but also have distinct qualities [194]. In
contrast with the previously proposed model-specific integration of
language-specific features, our approach starts from the core of neural
networks: feature projection (or also known as matrix multiplica-
tion). Each weight matrix in the network can be factorized into shared
and language-specific parts, in which the latter can be compactly
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represented as low-rank matrices. Not only does this method high
generalizes other neural modification for multilingual purposes but
it also remains network agnostic. The factorized network can enjoy
a combination with unsupervised learning in which the shared body
of the network is pretrained with unlabeled data, while the language
specific parts are adapted during multilingual fine-tuning. Such combi-
nation managed to significantly outperform a competitive Transformer
baseline.

Third, the language specific weights also enable continual learning for
multilingual speech recognition. Being exposed to new languages, a
typical model often has two choices: fine-tuning for the new languages
but suffer from catastrophic forgetting - losing the knowledge of the
old ones, or retraining with all of the available data. To avoid the costly
second option and the catastrophic first option, the factorized weights
are potentially useful because they maintain the knowledge about the
previously learned languages and are not changed in the subsequent
multilingual fine-tuning process. By exploring this direction, we also
investigated elastic weight consolidation, a regularization technique
aiming at reducing the changes in the weights to avoid forgetting. Our
experiments indicated that catastrophic forgetting can be mitigated
with a minor cost to performance compared to fine-tuning. This is the
first work in continual learning for multilingual speech recognition, to
the best of our knowledge.

Finally, the neural paradigm shift from statistical approach to end-to-
end neural approach is successfully applied on direct speech trans-
lation. The main difference between speech translation and speech
recognition lies in the originality of the target sequences, that come
from another language in speech translation, resulting in difficulty
in alignment between source and target sentences. This difference
makes direct speech translation a difficult mapping to learn by the
neural networks, and is the reason why a cascaded approach breaking
down into recognition and translation is preferred when the data is
limited. In this thesis, using a single neural network to overcome
cascaded became possible thanks for better modeling and better data
utilization. This achievement is two fold: first a Transformer based
model is able to outperform a competitive cascaded baseline with the
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key improvements being pseudo data generation, transfer learning
and data-driven segmentation. Second, the same result is also ob-
served in low-resourced multilingual translation in which pseudo-data
generation is the highlight.

One of the important concepts of deep learning is replacing hand-
crafted features or manual processes with neural components learning
high level representation. These components are connected together
and trained with gradient-based optimization via back-propagation [220].
This thesis relied on this principle to revolutionise speech recognition
followed by speech translation. Originated from the earlier works
of neural speech recognisers [262] and multilingual speech recogni-
tion [265] as well as neural factorization [88], this thesis emphasized
on the practicality of the neural approach, by empirically proving its
superiority and expandability. The works in the thesis are published in
conferences [199, 197, 193, 190, 196, 192, 194].

1.3 Thesis Organization

The second chapter in the thesis is dedicated to describe the background
related to the main contribution of the thesis. Firstly, a brief description
of the statistical speech recognition approach is provided in order to
clarify the necessity of a trainable end-to-end approach. The chapter
also concerns with several important neural architectures that play
important roles in the development of speech recognition system.

The third chapter goes into the details of the first contribution in the the-
sis, which is speech recognition with very deep Transformer networks,
that managed to stay competitive compared to the most prominent Hy-
brid systems in the literature. Afterwards, the fourth chapter describes
the expansion of the network in multilingual speech recognition. The
highlight in this chapter includes a factorization method to allocate
weights for each language, together with the combination with unsu-
pervised pre-training in order to improve the quality of low-resourced
languages. The next chapter contains the details of using weight factor-
ization in combination with elastic weight consolidation for learning
new languages for a pre-trained system.
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The penultimate chapter modifies the application of the same archi-
tecture for speech translation, describing the process of making this
end-to-end approach favourable for this problem. Lastly, the thesis is
ended with the conclusion and future works that remain problematic
in the field of speech recognition, as well as learning representations
for speech.
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From the introduction in the previous section, the main storyline of this
Thesis revolves around evolving the Speech Recognition approach to
overcome the weaknessses in the previous counterparts. As such, this
literature review section would start from covering the Hidden Markov
Model-based approach for ASR, and continue with the Connectionist
Temporal Classification approach and finally coming to the end-to-end
approach with Neural Networks.

2.1 Overview about Automatic Speech
Recognition

The goal of a speech recognition system is to recognize the sequence
of written symbols being the origin of the utterance spoken. Typically
microphones are used to measure variations in air pressures, record
the data and then digitalized into computer-understandable signals
(sequences of floating points or integers, with 16000 - 256000 samples
taken per second). Until very recently when neural networks are shown
to be capable of processing these raw waveforms directly, such raw
signals need to be processed into Mel-frequency cepstral coefficients
(MFCCs) or perceptual linear predictive coefficients (PLPs). These
formats are often shorter and more condensed than raw waveforms to
facilitate recognition.

In general, the system receives and views the audio signal as a sequence
of feature vectors 𝑋 = 𝑋1, 𝑋2, . . . , 𝑋𝑁 . The task is now to find the word
sequence𝑊 =𝑊1,𝑊2, . . . ,𝑊𝑀 from which the utterance is generated.
Or, from a statistical point of view,𝑊 is the most probable sequence
𝑊 among all sequences, that generates the utterance.
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𝑊̂ = arg max
𝑊

𝑃 (𝑊 |𝑋 ) (2.1)

This is originated from the “Noisy Channel” framework considering
the observed sequence (the audio) is an unobserved noisy version of
the original input sequence. While the intuition here is straightforward
when both sequences are discrete and share the same set of symbols,
where one symbol in the output sequence is a corrupted counterpart
of one or several tokens in the input sequence,] it can also be applied
for continuous speech sequences. This equation suggests that it is
necessary to establish a search space consists of all possible hypotheses
and assign a score for each hypothesis to find the optimal solution.
This very idea lies at the core of speech recognition over four decades,
and different approaches also aim at approximating the probability
distribution and searching for optimal outputs differently.

Early approaches had already been using Neural Networks [260, 261,
262, 259] to learn representation features for phoneme based speech
recognition. This approach remains limited and cannot be applied
for word-based speech recognition or continous and large vocabulary
speech recognition due to lacking a mechanism to find an alignment -
which is the task of finding the speech segment corresponding to each
phonetic unit (either word, phoneme or sub-word).

During the 1990s, the statistical approach (or the stochastic approach,
which is to be explained later) was the dominant approach in ASR.
The core component of this approach is the Hidden Markov Models
(HMM). Being a generative model, the HMM models the joint distri-
bution of the observation sequence (which is the acoustic signals) and
a sequence of hidden states being the phonetic tokens𝑊 . The joint
distribution is maximised after trransforming Equation 2.1 with the
Bayes Theorem:

𝑊̂ = arg max
𝑊

𝑃 (𝑋 |𝑊 )𝑃 (𝑊 )
𝑃 (𝑋 )

(2.2)

Since we are considering the space of possible symbols𝑊 , the prior
probability 𝑃 (𝑋 ) is a constant with given observed speech utterance.
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As a result, the problem resorts to finding the optimal words 𝑊 to
maximize only the nominator part by looking for the sequences that
achieve the maximum of 𝑃 (𝑋 |𝑊 )𝑃 (𝑊 ).

Two main components are then considered based on this equation 2.2.
The acoustic model estimates the probability distribution 𝑃 (𝑋 |𝑊 ): how
likely the feature vectors are generated by a word sequence𝑊 . The
language model estimates probability for each possible text sequence
𝑊 . In this statistical approach, these two models are handled sepa-
rately with their different sets of free (or learnable parameters). As a
result, when the system has to find the optimal sequence 𝑊̂ given an
acoustic observation, there is a search procedure involved to satisfy
the equation 2.2.

2.1.1 Evaluation in speech recognition

In order to evaluate speech recognition systems, it is required to com-
pare the hypothesis (which is the output of the ASR system given an
audio utterance) and a ground truth, oftentimes the transcript as human
reference. In the literature, the most commonly used metric is the word
error rate (WER).

Word error rate The WER is computed by looking for the number
of insertions, deletions and substitutions that are required to change
the hypothesis into the ground truth. The equation is then equivalent
to calculating the Levenshtein distance between two sequences:

𝑊𝐸𝑅 =
del + ins + sub

total
∗ 100 (2.3)

The word accuracy is then 100 −𝑊𝐸𝑅 (in percentage).

Certain languages do not have a clear word boundary, therefore charac-
ter error rates (CER) or sometimes phone error rates (PER) is evaluated
instead, with the same application of Equation 2.3.
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Other measurement The error rates can be used as the most
important metric for an ASR system, however they are not the direct
training objective of neural models, especially end-to-end models. Due
to the fact that most models are probabilistic and aim at maximizing
the log-likelihood of the data, we often rely on perplexity during
training.

Let us assume that we have a trained statistical model 𝑀 and a corpus
𝐷 containing 𝐿 words, which the (conditional) language model has
not observed during the training process. The quality of model 𝑀 is
evaluated by using it to predict the distribution of the corpus 𝐷. The
resulted perplexity (PPL) is then obtained by estimating the probability
of all words given their context in the corpus D, we use 𝑃𝑀 to denote
the probability distribution produced by model 𝑀 .

𝑃𝑃𝐿(𝐷) = exp(
∑𝐿
𝑙=1 − ln 𝑃𝑀 (𝑤𝑖 |𝐻𝑖 )

𝐿
) (2.4)

The perplexity showed how close the model prediction can be in
reading mode, i.e. when the model only evaluates the likelihood of
given input/output pairs. However, in generation mode, perplexity
might not be a good indicator and does not align with the generation
quality. In practice, unigram accuracy can be a reliable choice for
model selection.

On the other hand, word error rate is only applied for speech recog-
nition. Other speech-to-text applications such as speech translation
would have to be evaluated differently. For speech translation, the
BLEU score [181] is often used by computing the 𝑛-gram precisions,
up to 4-grams to measure the closeness between the hypothesis and
the reference.

Hidden Markov Model A Hidden Markov Model is a system
modeling a Markov process of a sequence of visible observations
𝑜0, 𝑜1, . . . , 𝑜𝑇 being generated from an internally “hidden” sequence of
states 𝑠0, 𝑠1, . . . , 𝑠𝑇 . These states belong to a predefined set of states
𝑆 . While the observations can be either continuous or discrete, the
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states are strictly discrete (so as to the model advances across discrete
time-steps) with a vocabulary of possible states 𝑠1, . . . 𝑠𝑁 .

In a particular time step 𝑡 , the model staying in state 𝑠𝑖𝑡 would transit
into state 𝑠 𝑗

𝑡+1 and emits an observation 𝑜𝑡+1. With a vocabulary of 𝑁
possible states, there are 𝑁 2 possible transition paths, modeled by a set
of transitional probabilities matrix 𝐴 with each element 𝑎𝑖 𝑗 denoting
the probability of transiting from 𝑠𝑖 to 𝑠 𝑗 (identical at any time step
𝑡). Intuitively, if each hidden state corresponds to a word, then the
transition set allows the model to know if the model is still “hearing”
the same word 𝑠𝑖 or is transiting to the next word 𝑠 𝑗 .

In a similar manner, the observations are also generated from a set of
probabilities 𝑏 𝑗 (𝑜𝑡 ) denoting the probability of emitting the discrete
observation 𝑜𝑡 from state 𝑗 , which is also identical at any time step 𝑡 .
When the observation 𝑜 is continuous, then we have to use probability
density functions 𝑝(𝑜 |𝑠) to model the emission probabilities. The
popular choice was to use Gaussian Mixture Models that use linear
combination of Multivariate Gaussians to acquire the statistics of
all feature vectors in the training data that is generated from a state
(word/phoneme).

There are two main variants of HMM/GMM models: semi-continuous
and fully-continuous models. The former employs a global pool (code-
books) of 𝑀 𝑛−dimensionsal Gaussians N1,N2, . . . ,N𝑀 and these
Gaussians are shared between all models. Each state’s emission proba-
bility is estimated as a weighted-sum over all Gaussians:

𝑝(𝑜 |𝑠𝑖 ) =
𝑀∑︁
𝑗=1

𝛼𝑖 𝑗N𝑗 (𝑥𝑖 , 𝜇 𝑗 , Σ𝑗 ) (2.5)

In contrast, the continuous HMM/GMM acoustic models have a sepa-
rate set of Gaussians for each state.

𝑝(𝑜 |𝑠𝑖 ) =
𝑀∑︁
𝑗=1

𝛼𝑖 𝑗N𝑖 𝑗 (𝑥𝑖 , 𝜇𝑖 𝑗, Σ𝑖 𝑗 ) (2.6)
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Figure 2.1: A 3-state topology in HMM for ASR.

It is also possible to combine these approaches by having codebooks
that are by certain states only (local codebooks instead of a global
pool), for example all variants of a phone state in a context-dependent
acoustic model.

One certain problem of the Gaussian Mixture models is that the dimen-
sion of the feature vector can be very large, as a result of aggregrating
the features in multiple frames (a window of feature vectors) leading
to large dimensional Gaussians. Dimensionality reduction techniques
become necessary to avoid inflating the number of parameters of Gaus-
sians (the same problem in Neural Networks known as the curse of
dimensionality, but the Neural models can have finer control over the
number of parameters). For example, principal component analysis
(PCA) is one of the dimensionality reduction techniques that can be
used to reduce the feature size. While PCA can be used without labels,
linear discriminant analysis (LDA) requires to be trained with labels
and optimized for class separability [64]. When neural networks re-
gained its popularity at the beginning of the 2010s, auto-encoder using
multi-layer perceptron is also an option [78].

Training a Hidden Markov Model A HMM is represented by a
set of states 𝑠𝑖 , 𝑠 𝑗 . . . 𝑠𝑁 , the transitional probabilities 𝐴 and the emis-
sion probability density functions 𝑝(𝑥 |𝑠). The states are designed in a
topology, often the words to be recognized need to be broken down
into phonemes, and each phoneme is represented by three states 𝑏,𝑚
and 𝑒 denoting the beginning, middle and end states of each phoneme.
The topology is then designed so that the beginning states can only
transit to the middle states of the same phone or themselves, while the
middle states are limited to either themselves or the end states, and
the end states are the only states that can go to the beginning states of
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other phones, leading to a sparse transition matrix. This is illustrated
in figure 2.1.

The structure of the HMMs suggest that, given one sequence of obser-
vation, there are many (𝑁𝑇 ) possible state sequences that can generate
the observation. Each state sequence is referred to as an alignment
in which each state is matched with one time-step in the observation
sequence. The Markov property indicates that the emission of this
state depends only on this state and nothing else, such as the states
before or after, or other observations.

Training the HMMs, or optimizing the parameters (in this case, they
are the Gaussian parameters of the GMMs for the emission densities)
to maximize the likelihood of the observation is basically solving the
following dilemma:

• If we know the correct alignment of the observation and the
states, we can find the feature vectors corresponding to each
state, and then update the Mean 𝜇 (by taking the average of the
features) and the Covariance Matrices Σ (which are the
deviations of the feature vectors with the Mean).

• However we do not know the alignment and the model requires
to have good parameters to find the optimal alignment.

In practice, training the HMMs is possible using the Baum-Welch
algorithm (or also the EM algorithm), by iteratively update the models
and the alignments:

• The current optimal alignment can be found with the current
parameters using the Viterbi Algorithm

• Using the current alignment, we can update the emission
probabilities

• With the new parameters, better alignment can be found to
repetitively iteratively update the model parameters

This training regime is often called Viterbi training, because the Viterbi
algorithm [258] is used to find the optimal states given the current
model parameters. Note that, training the HMMs is formally done
by the forward-backward algorithm that considers all paths in the
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state space, which is much more complicated than using a single
path that has the highest probability to update the model parameters.
An additional note is that, training with Gaussian Mixture Models is
further complicated due to the fact that the mixtures themselves are a
hidden variable (because we do not know which mixture generates the
data points). As a result, a combinatory EM algorithm can be used to
train the HMM with GMM emission densities.

Context-dependent Acoustic Models The GMM-HMM mod-
els, despite the complexity, are not effective in modeling speech signals
due to the high variety of speech, especially given the fact that the
articulation of each phoneme would differ based on the context - the
surrounding phonemes. The limitations of the Markov assumption
that allows HMMs to be tractable, unfortunately do not allow longer
context to be incorporated.

One of the possible trick to improve contextual learning is to use
context-dependent phoneme sets. The set of states is expanded by
having one state for each contextual configuration. For example, in a
triphone setup, each phone has a unique variation for its left and right
context, ending up in a 𝑁 3 number of possible states. Afterwards, each
state is modeled with a separated Gaussian Mixture Model, allowing
the model to learn to discriminate phonemes within context.

Naturally, this scheme leads to several drawbacks. Firstly, data scarcity
disallows the model to have sufficient statistics for every phoneme
configuration. Secondly, the number of parameters quickly explodes,
ending up in an overfitted model using too many parameters to model
various configurations that have the same origin (the root phoneme).
Consequently, context-dependent training is only viable with several
additions:

• Smoothing strategy: the rare triphones’ statistic estimation can
be done using the less-specific models (such as using the
statistics from the biphones or monophones). In addition to this
Back-off strategy, it is also possible to interpolate different
levels of modeling, such as using the linear combination of
triphones, biphones and monophones).
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• Parameter sharing: the triphones that have similar structures
can be joint as a single states, or parts of the Gaussian Mixture
Models can be shared for more efficient modeling. This is
often implemented via linguistically based clustering tree, by
asking questions about the phonetic properties of the left and
right phones. The triphones at the leaf nodes of such trees
would be tied as a single state, ending up with a smaller state
space and reduced amount of parameters.

Language Model Given a word sequence𝑊 with 𝑁 words, the
language model estimates the likelihood of𝑊 , i.e how likely𝑊 can
be observed in the context of all possible sequences (most of the time,
limited by the data that covers the sequences). Over the decades, the
exponentially increasing amount of data together with effective statis-
tical modeling and machine learning methods have made deterministic
grammar-based approaches obsolete. While these methods concern-
ing with formal and explicit models of syntax and semantic can only
handle a limited amount of data due to the cost of expert labeling.
Statistical language modeling, therefore, were the dominated method
until the appearance of neural network language models offering a
better estimation approach.

In order to factorize the complicated 𝑃 (𝑊 ) Language models have
always implied an auto-regressive process assuming that the sequence
𝑊 = 𝑊1𝑊2𝑊3 . . .𝑊𝑁 (assuming the sequence has 𝑁 words) is gen-
erated from “left to right” sequentially from the first position until
the last. Therefore, the likelihood of each word 𝑊𝑗 only depends
on the words precedently generated. Such assumption allows for a
factorization:

𝑃 (𝑊 ) =
𝑁∏
𝑖=0

𝑃 (𝑊𝑖 |𝑊𝑖−1,𝑊𝑖−2, . . . ,𝑊𝑁 ) (2.7)

This equation used to be estimated by 𝑁−gram models, in which the
condition is limited to only a limited value of 𝑛, for example unigram
(𝑛 = 1), bi-grams (𝑛 = 2), tri-gram (𝑛 = 3), 4-grams (𝑛 = 4) and so
on. These probabilities can be estimated from counting the number
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of appearances of these 𝑛-grams in the training data. This statistical
approach is heavily criticized due to the fact that, most 𝑛-grams in the
possible combinations do not exist even in very large training data,
resulting in zero probabilities for the whole chain. Smoothing tech-
niques [172] can be applied to assign some probabilities to the unseen
events, however with very limited success because the model does not
have the knowledge regarding the relationship between words.

For this reason, continuous space language models [23, 231, 145]
use neural networks to jointly learn word embeddings [165] with a
conditional probabilities of 𝑃 (𝑊𝑖 |𝑊𝑖−1,𝑊𝑖−2, . . . ,𝑊𝑁 ). The words in
the context are presented with continuous vectors [100], and then feed-
forward neural networks learn to map the input to the probabilities
of all words in the vocabulary. This approach is much more effective
than counting-based 𝑛-gram estimation, and resulted in improvement
in rescoring the outputs in speech recognition [145].

While feed-forward networks are still limited by the Markov assump-
tion, and the number of words in the context are fixed, recurrent neural
networks is the effective replacement. Using the recurrent structure,
the network can input each word one-by-one and output the probability
for the next word, thus allows for a more flexible structure with virtu-
ally any context size [166]. Naturally, training this network is difficult
due to the gradient vanishing problem when the recurrent structure
cannot maintain the information flow. Long Short-Term memory net-
works [102] and other variants such as Gated-Recurrent Units [36] or
Highway networks [292] can effectively alleviate this problem and
further improve speech recognition [151]. This recurrent structure
also played an important role in establishing the sequence-to-sequence
model, which extended neural language model into a conditional neural
language model being used in end-to-end speech recognition later.

The invention of Transformers and self-attention enabled neural lan-
guage models to exploit longer context. The temporal fully-connected
nature of self-attention is effective in long-range dependency, and can
be applied in language models for even longer contexts [46, 113]. This
network architecture remains to be the state-of-the-art in language
models [28].
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The weaknesses of the HMM based models Hidden Markov
Models provide a tractable approach to model a sequence of hidden
states that generate the observations, and therefore became the back-
bone of the ASR models for decades. Due the Markov assumptions
limiting the transitional and emission probabilities of the model to
depend on a very limited context, using HMMs for practical speech
applications is a great challenge. Evidently, when searching for the
optimal state sequence (triphones or quinphones, for example) for a
sentence based application, it is required to incorporate the language
models into searching, making the Viterbi algorithm more complicated,
as the language model provides a word-based context which is much
more helpful than the very local phone-based context in the HMMs.

It is important to note that, the HMM-based models were greatly
improved with the presence of Neural Networks. First of all, the
emission densities with Gaussian Mixture Models can be replaced
with a Deep Neural Network [97]. Instead of using Gaussian Mixture
Models, using a multi-layer Neural Network to learn to predict the
states from the acoustic features ended up in a much better estimation
of the emission. Due to the EM training regime, however, it was still
required to use the GMMs to bootstrap the model to have reasonable
Viterbi training in the first place. Neural Networks were also use to
obtain better features for the GMMs using Bottleneck features acquired
from a middle layer of the predictive network mentioned above [69].
And finally, Neural Networks replaced the statistical N-gram models
in Language modeling [24, 145, 166] allowing for a stronger modeling
with the Fundamental Equation 2.2.

Later models gradually explore Neural-only architecture without the
presence of Hidden Markov Models anymore. First we have the Con-
nectionist Temporal Classification models that resemble the hidden
states of the HMMs in learning, but rely on Recurrent Neural Net-
works (RNNs) to model long-range dependencies within the input
states. Afterwards, the Encoder-Decoder models gradually became
the dominant approach, since they can combine acoustic modeling -
language modeling and alignment models in a single Neural model.
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2.2 Neural Networks

Given the introductory section of the HMM based models, the next
sections will cover the impact of the Neural Networks in changing the
Speech Recognition approaches. Therefore, this section is dedicated
to introduce the fundamentals of Neural Networks to prepare for the
upcoming sections.

Neural networks, or sometimes referred to as Artificial Neural Net-
works, are a class of machine learning models that approximate func-
tions (despite the possible belief that they “learn"" by simulating the
human mind). Neural networks receive tensory inputs with float values
(occasionally complex values are also possible [101]) and they are or-
ganized into layers that sequentially transform the values to eventually
predict the final output in the final layer.

Early neural networks often consist of only a single layer and the trans-
formation is a linear function firstly proposed in the Perceptron [215]
model. Later model stacks multiple linear layers on top of each other,
with non-linear activation functions in between, in order to approx-
imate complicated functions. The so called Multilayer Perceptron
(MLP) has since then become the backbone of many important modern
neural networks. In this section, we focus on explaining the descrip-
tions of MLPs as well as the important neural variations that evolved
from MLPs: Recurrent Neural Networks and Transformers.

Feed-Forward Neural Network While Perceptrons are capable
of learning to linearly classify, most of the data distributions are not
linearly separable, thus making Perceptron inappropriate for compli-
cated tasks as well as learning meaningful representations. Multi-layer
Perceptrons (MLP) or Feed-Forward networks combine different lay-
ers of Perceptrons with non-linear activation functions to allow for
more complicated representation learning.

Here we would use the neural language model from [24] to illustrate
the operation as well as the back-propagation process in a typical
neural network, as illustrated in Figure 2.2 The model takes the input
features 𝑖 as inputs and outputs the conditional probability distribution
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Index wt-n+1 Index wt-n+2 Index wt-n+3
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…

i-th index = P(wt = i | context )

Activation

Softmax

Concatenation

Linear +

Figure 2.2: Feed-forward neural network for Language Modeling.

over all all possible classes which expresses 𝑃 (𝑐 𝑗 |𝐼 ). A simple three-
layer MLP has the following configuration: an input layer, one or
many hidden layers and an output layer. In a standard feed-forward
neural network, each layer is a real-valued vector, while the (learnable)
weights (or parameters) are real-valued tensors connecting the layers
together. The following description considers a network with a single
hidden layer for the sake of explanation. Practical uses often involves
having many layers leading to better performance [147, 97].

Input layer The input layer is basically the initial feature represen-
tation of the inputs. This representation varies based on the modality
of the input (such as text, speech or image). For language models
(textual input), this layer is often a concatenation of the vectorized
representations of each word (word embeddings). While the input
layer of speech models is often the concatenation of the frame-level
features. These details will be covered in the next section related to
Automatic Speech Recognition (ASR).
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Hidden layer In the hidden layer, the input 𝑖 is transformed nonlin-
early, where each layer activation values are defined by

ℎ = 𝑓 (𝑊 ℎ𝑖 + 𝑏ℎ)
(2.8)

In equation 2.16, the hidden layer ℎ has the corresponding weights𝑊 ℎ

and 𝑏ℎ . The input of the hidden layer is the context vector produced
from the input (projection) layer. The size of the hidden layers are
tunable hyper parameters. 𝑓 denotes a nonlinear activation function.
Popular choices for the activation function are Tangent Hyperbolic,
Sigmoid or ReLU, expressed in equation 2.9. While ReLU is com-
monly used thanks to the low computation cost, as well as the ability
to reduce gradient vanishing (happening when the other two func-
tions are saturated), recent activation functions such as SiLU [58, 212]
or GeLU [93] can improve over ReLU with a heftier computational
cost [237].

𝑓 (𝑥 ) =



exp(𝑥 )−exp(−𝑥 )
exp(𝑥 )+exp(−𝑥 ) if 𝑓 = Tanh

1
1+exp(−𝑥 ) if 𝑓 = Sigmoid

max(0, 𝑥) if 𝑓 = ReLU
𝑥 ∗ 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥 ) if 𝑓 = SiLU
𝑥 ∗ Φ(𝑥 )1 if 𝑓 = GeLU

(2.9)

Output layer The final layer of the network produces the probability
distribution for all words in the vocabulary, thus having totally V nodes.
Each neuron in the layer is associated to the probability of one word,
as shown in Figure 2.2. Firsft, a linear transformation is used to obtain
the unnormalised distribution:

𝑜 =𝑊 𝑜ℎ + 𝑏𝑜 (2.10)

Each element in 𝑜 corresponds to the similarity score of the hidden
state compared with one class representation (vector) in the weight
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matrix𝑊 𝑜 . Subsequently, the true probability distribution is estimated
thanks to the softmax function:

𝑝(𝑐𝑖 |ℎ) =
exp(𝑜𝑖 )∑
𝑗 exp(𝑜 𝑗 )

(2.11)

In equation 2.11, the probability of each class 𝑐𝑖 given the encoded
context ℎ is estimated by normalizing all values in 𝑜. The number of
trainable parameters (tuned during the training process) depends on
the number of classes.

Training the network At first, the model is initialized with random
parameters and the training process aims at obtaining parameters that
allow the models to effectively recognize the classes. This is achieved
by using stochastic gradient descent: adjusting the parameters in the
opposite direction of the gradients of the objective function (how close
the network output compared to the labels). For classification problems,
the objective functions often the log-likelihood of the outputs given
the inputs and the parameters, computed for every training sample.
SGD and variants such as Adadelta [282] or RMSProp [251] require
the computation of the first order derivatives of the loss function with
respected to the parameters, which can be performed efficiently with
the back-propagation algorithm [220, 219].

The backpropagation process In this section, we describe the
back-propagation flow in the standard feed forward model - the core
of the optimisation process. Back-propagation [219] involves using a
dynamic programming strategy to compute the derivatives of the loss
function with respect to the parameters layer by layer, based on the
chain rules. In the standard network, the error derivatives are back-
propagated from the output layer to the input (projection) layer.

Objective Function The smoothing function that we approximate
with the neural network has parameters that can be iteratively tuned in
order to maximise the log-likelihood of the training data [24]. The
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objective function is therefore chosen as the Negative Log-Likelihood
function, since SGD requires the training objective to be minimised.
We can compute the loss function over the training data as follows:

L = −
𝑁∑︁
𝑖

log 𝑃 (𝑐𝑖 |𝑖𝑛𝑝𝑢𝑡 ) (2.12)

The loss function is also in line with the Perplexity later used in
neural language models and their conditional variants. For ease of
understanding, we denote the derivative of the loss function L at each
sample or mini-batch of samples with respect to a variable 𝑥 ∈ Θ by
𝑑𝑥 .

For each sample 𝑐𝑖 and its input 𝑖𝑛𝑝𝑢𝑡𝑖 , we have:

− log 𝑃 (𝑐𝑖 |𝑖𝑛𝑝𝑢𝑡𝑖 )

= −𝑙𝑜𝑔(
exp(𝑜𝑐 )∑
𝑗 𝑒𝑥𝑝(𝑜 𝑗 )

)

= 𝑙𝑜𝑔(
∑︁
𝑗

exp(𝑜 𝑗 )) − 𝑜𝑤

(2.13)

Subsequently, we compute the error derivatives 𝑑𝑥 given the parame-
ters in each layer using back-propagation:

Output layer The derivatives at the output layer are computed as
follows:

𝑑𝑜𝑖 =

{
1 − 𝑝𝑖 if 𝑖 == 𝑤
−𝑝𝑖 otherwise

(2.14)

Here 𝑜𝑖 denotes the 𝑖𝑡ℎ element of the vector 𝑜, which is the unnor-
malised conditional distribution of the classes given the encoded repre-
sentation of the input, in the hidden layer ℎ.
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Hidden layers As a result, we can compute the derivatives with
respect to the parameters and the previous hidden layer ℎ, based on the
original inference from Equation 2.10.

𝑑𝑊 𝑜 = 𝑑𝑜ℎ𝑇

𝑑𝑏𝑜 = 𝑑𝑜

𝑑ℎ =𝑊 𝑜𝑇𝑑𝑜

(2.15)

Input Layer The inference equation for the hidden layer from the
input layer:

ℎ = 𝑓 (𝑊 ℎ𝑖 + 𝑏ℎ)
(2.16)

which implies that:

𝑑[𝑊 ℎ𝑖 + 𝑏ℎ] = 𝑓 ′(ℎ) ∗ 𝑑ℎ
𝑑𝑏ℎ = 𝑑[𝑊 ℎ𝑖 + 𝑏ℎ]

𝑑𝑊 ℎ = 𝑑[𝑊 ℎ𝑖 + 𝑏ℎ]𝑖𝑇

𝑑𝑖 =𝑊 ℎ𝑇𝑑[𝑊 ℎ𝑖 + 𝑏ℎ]

(2.17)

In order to have the derivatives for the activation function 𝑓 , we have:

𝑓 ′(𝑥 ) =


1 − Tanh(𝑥 )2 if 𝑓 = Tanh
Sigmoid(𝑥 ) − Sigmoid(𝑥 )2 if 𝑓 = Sigmoid
1 when 𝑥 > 0 and 0 otherwise if 𝑓 = ReLU

(2.18)
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Parameter Update After obtaining the derivatives of the loss func-
tion with respect to all parameters in the network, we can update the
parameters according to Stochastic Gradient Descent. The method
is based on the phenomenon that the gradient of a function always
points towards the direction of maximal increase at any point. The
update rule is as follows with the learning rate parameter 𝛼 > 0 and an
arbitrary parameter 𝑥 :

𝑥 = 𝑥 − 𝛼𝑑𝑥 (2.19)

The learning rate is also considered as a function of the number of
samples trained in the data. From experiments, the learning rate
is updated after the model observes a number of training examples
with two typical ways. The first way is to exponentially decrease the
learning rate after some training samples with a learning rate decay,
normally an epoch (training all samples in the training data). The
second way is to reduce the learning rate based on a validation data.
After each epoch, if the perplexity on the validation data is decreased,
the learning rate is kept the same, otherwise it is multiplied by the
learning rate decay.

Recurrent Neural Networks RNN [59] are a class of neural
networks that can efficiently model sequences by using a dynamic
memory structure. While the feed-forward network can only receive
one input and compute the corresponding output without any relation
with other inputs, the recurrent counterpart takes the input as a series
of time step 𝑥1, 𝑥2, . . . , 𝑥𝑛 and processes them one by one, taking into
account the information stored in the previous steps. Concretely, for
each input 𝑥𝑖 , the network updates the hidden memory ℎ𝑖 based on the
previous one ℎ𝑖−1.

The first recurrent language model (RNNLM) [166] employed the
“Vanilla” model of Elman et al [59] as can be seen in Figure 2.3, in
which the hidden steps are updated as follows:
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h1 h2 h3 h4 h5

x1 x2 x3 x4 x5

p1 p2 p3 p4 p5

The cat is eating fish

cat is eating fish bone

Figure 2.3: A simple RNNLM [166] predicting the sequence “The cat is eating fish
bone”.

ℎ𝑡 = 𝑓 (𝑊 𝑖𝑖𝑡 +𝑊 ℎℎ𝑡−1 + 𝑏ℎ) (2.20)

The activation function 𝑓 can be either Tangent Hyperbolic, Sigmoid
or ReLU as mentioned before. The starting state ℎ0 is set to 0 to
denote the initial state of the memory. In each time step, the RNNLM
can optionally produces the probability distribution for a predicted
word, given the sequence that network has scanned previously. The
probability distribution over the vocabulary is derived similarly to the
feed-forward networks:

𝑜𝑡 =𝑊 𝑜ℎ𝑡 + 𝑏𝑜

𝑝𝑡 = softmax(𝑜𝑡 )
(2.21)
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with the Softmax function explained in Equation 2.11. To be clear, 𝑜𝑡

and 𝑝𝑡 denote the unnormalised and normalised distribution generated
at time step 𝑡 . For the language modeling scenario, the input and
output samples of the network in each training iteration are two se-
quences 𝑖 and 𝑦 in which the output sequence is the shift-by-1 version
of the input sequence. The parameter set of the network including
𝑊 𝑖 ,𝑊 ℎ, 𝑏ℎ,𝑊 𝑜 and 𝑏𝑜 are shared across time steps.

Training RNNs Similarly to the feed-forward models, The recur-
rent models can be efficiently trained with stochastic gradient descent
(SGD). However, since the networks contain shared parameters at
arbitrary numbers of time steps, the gradients are computed differently
using back-propagation through time (BPTT). It can be observed that,
a change in the parameters in an arbitrary time step 𝑡 can lead to the
change of the objective function in all subsequent steps.

The main idea of back-propagation through time is to unfold the net-
work to achieve a MLP-like form, in which back-proagation can be
done normally. Due to the parameter sharing over time property, back-
propagation through time accumulates the gradients over time into the
network weights.

This accumulation process involves a long chain of matrix multiplica-
tion, that leads to gradient exploding when the values of the gradients
become too large, or gradient vanishing when the values of the gra-
dients are not sufficiently large to make updates. This phenomenon
happens when dependency between two elements across time cannot
be learned, potentially due to the long distance. The Long Short-Term
Memory (LSTM) structure is often used as a remedy.

LSTM Structure The intuition of an LSTM starts from the integra-
tion of a linear memory unit, so that the gradient can flow smoothly
during the back-propagation through time steps using a memory cell
𝑐𝑡 .

𝑐𝑡 = 𝑐𝑡−1 + 𝑓 (𝑊𝑥𝑖 +𝑈ℎ𝑖−1 + 𝑏)ℎ𝑡 = 𝑐𝑡 (2.22)
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This approach is referred as “Leaky integration units” [22]. In the
BPTT process, the gradient can flow over exactly one path through the
memory units 𝑐𝑖 , and since 𝑑𝑐𝑖 = 𝑑𝑐𝑖−1, the gradients are guaranteed to
not vanish. The recurrent architecture should also be able to be ade-
quately robust to train long sequences, where there are certain inputs
which are irrelevant to the modeling task. Sometimes, the memory of
the network should be refreshed, for example at the beginning of a new
utterance in Speech Recognition [73] or a new sentence in Machine
Translation [247]. hochreiter1997long enhanced the architecture by
adding flexible and trainable gates that allows the RNN to reset the
memory, control the amount of input and output respectively. The
adaptive gates are built from the current input 𝑥𝑡 and the previous
hidden memory ℎ𝑡 .

The gates of the network include: the forget gate 𝑓𝑡 is used to directly
control the memory flow 𝑐𝑡 to cut the connection with the previous
steps, the input gate 𝑖𝑡 decides the amount of input to be incorporated,
the output gate 𝑜𝑡 controls the amount of memory flow to be produced
for the task and finally the candidate memory unit𝐶 that contributes to
the current memory flow. All gates are defined similarly, with the first
three gates use the Sigmoid activation to force the values to be in {0,
1}, while the candidate memory uses the Tanh activation function.

𝑓𝑡 = Sigmoid(𝑊𝑓 𝑥𝑡 +𝑈𝑓 ℎ𝑡 + 𝑏 𝑓 )
𝑖𝑡 = Sigmoid(𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡 + 𝑏𝑖 )
𝑜𝑡 = Sigmoid(𝑊𝑜𝑥𝑡 +𝑈𝑜ℎ𝑡 + 𝑏𝑜 )

𝐶𝑡 = Sigmoid(𝑊𝑐𝑥𝑡 +𝑈𝑐ℎ𝑡 + 𝑏𝑐 )

(2.23)

In the next step, we decide the new information to be stored in the
new memory cell. The cell is updated by combine the input gate and
the candidate memory unit. Also, the forget gate is employed to drop
certain information from the previous memory cell. Consequently, we
come up with a new memory cell as follows:

𝐶𝑡 = 𝑓𝑡 ∗𝐶𝑡−1 + 𝑖𝑡 ∗𝐶𝑡 (2.24)

29



2 Backgrounds

Finally, we update the hidden state with the new cell state and the
output gate:

ℎ𝑡 = 𝑜𝑡 ∗ Tanh(𝐶𝑡 ) (2.25)

The implementation of LSTM can be efficient by computing all gates
in one single matrix multiplication, then applying the activation func-
tions on different parts of the output. In practice, one can experience
different implementation variations of LSTMs and RNNs in terms of
initialisation, bias usage or different gate implementations such as the
Gated Recurrent Unit [35]. The empirical research of [281] shows that
there is not any substantial difference in terms of performance between
different LSTM variations.

Backpropagation with LSTM is more complicated than a simple re-
current neural network. The key idea in LSTM backprop is that the
gradient propagation through the cell states 𝑐𝑡 is robust, with only
one decay factor which is the forget gate. This specific property al-
lows LSTM to avoid gradient vanishing more effectively than simple
recurrent neural networks.

2.3 Neural Networks in statistical ASR

Given the details of several neural network architectures, we come
back to how they were used in Hidden Markov Model-based ASR.
Gaussian Mixture Models, for a long time, were the preferred method
in estimating the emission probabilities of the phonetic states (how
likely each state can emit observable acoustic features). Despite ar-
duous effort to improve, especially using discriminative training [17,
206, 266] - focus on the wrong decisions of the models - the neural
networks were found to be a better regularizer without the overfitting
problems of Gaussian Mixture Models. In the literature, using deep
neural networks to learn acoustic emission is referred as a Hybrid
HMM-DNN system.
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In this approach, the input of the neural network is often the Log-Mel
frequency features or the Mel Frequency Cepstral Coefficients features
with other optional features such as minimum variance distortionless
response [272] (MVDR). The networks were traditionally multilayer
perceptrons [99] and later replaced with LSTMs.

Initially, a deep configuration multilayer perceptrons containing upto
4 or 5 hidden layers was difficult to train [144] due to the difficulty
in backpropagating the gradient signals from the output layer to the
lower levels. Such difficulty was overcome using a combination of
techniques, ranging from a careful initialization [71], ReLU activa-
tion function [45] and more importantly deep belief networks using
Boltzmann Machines to pre-train the values of each hidden layer in
the neural networks [98].

When the multilayer perceptron models were able to converged in
training acoustic models, where they are trained to classify contextual
phonemes from a window of features, a large improvement in recogni-
tion was observed compared to Gaussian Mixture Models [240].

Acoustic models with neural networks The acoustic models
can be materialized with feed-forward neural networks. The input
of such networks is the concatenation of the acoustic features in a
window of frames. After multiple hidden layers, the network produces
the probabilities which correspond to the states in the HMM. The
softmax activation function lets the feed-forward network generate the
probability 𝑃 (𝑠𝑖 |𝑥𝑖 ) for each state:

𝑃 (𝑠𝑖 |𝑥𝑖 ) =
𝑃 (𝑥𝑖 |𝑠𝑖 )𝑃 (𝑠𝑖 )

𝑃 (𝑥𝑖
(2.26)

The prior probabilities 𝑃 (𝑥𝑖 ) of the feature vectors are generally set to a
constant value such as 1 [214]. The emission probability of the HMM,
can then be approximated using the output of the neural networks and
the prior probabilities of the states:

𝑃 (𝑥𝑖 |𝑠𝑖 ) ≈
𝑃 (𝑠𝑖 |𝑥𝑖 )
𝑃 (𝑠𝑖 )

(2.27)
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The deep neural networks effectively improved speech recognition
systems thanks to the acoustic models [97]. In order to enable effect
training with multiple layers, it was necessary to use layer-wise pre-
training as a deep belief network to initialize the parameters of the
acoustic models.

Despite the improvement, it is notable that the deep neural acoustic
models only operate on a local level, in which only a few number
of frames are concatenated in order to make a local prediction. In
contrary, the subsequent end-to-end approach uses neural network on a
global utterance level, so that the prediction takes into account a larger
amount of context.

2.3.1 The end-to-end approach with neural
networks

Time-delay neural networks Time-delay neural networks were
designed roughly in the late 1980s and were one of the first attempt to
use a single neural networks for speech recognition. Despite limited in
single unit such as phoneme/word recognition, this network architec-
ture presents a number of properties and shortcomings that are later
improved by the recent architectures.

What were the motivations behind the construction of time-delay neural
networks? From an early time, feed-forward neural networks had
been discovered to be powerful to learn complex non-linear decision
surfaces [153, 60]. Such networks are often designed to satisfy a
number of requirements.

• First, the network should have multiple layers, each of which is
defined by a linear projection coupled with an activation
function. The units between each layer must be fully
connected.

• Second, the network must have the ability to represent temporal
dependencies of the features. Assuming that the features are
organized and input into the networks based on a chronological
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order, the network architecture should be constructed based on
this property, this is also known as the inductive bias.

• The hidden representation learned by the networks should be
invariant under translation in time. This property is required
especially in speech recognition, when the input can be
exposed in high variation, for example with recording noise,
affecting the lengths of the utterance.

• The learning procedure should not require any precise temporal
alignment between of the labels. This include phoneme level
alignment - the starting and ending marks for each phonetic
unit or word level alignment. This process can give extra
information easing the learning process yet the network should
be able to learn it based on the multi-layer representation.

• The networks should not be over-parameterized, so that the
neurons actually encapsulate the regularities in the training
data instead of memorization.

These properties laid out by [259] stay true even decades later, when
modern networks are widely applied in the time of the thesis, and
in the next sections we can observe that the subsequent approaches
improve upon these prerequisites using modern techniques.

TDNN network layer Compared to a standard multi-layer percep-
tron, a TDNN layer receives input as a vector of vectors rather than
a vector of neurons, with the size of 𝑇𝑖𝑛 × 𝐷𝑖𝑛 in which 𝑇𝑜𝑢𝑡 is the
length of the input and 𝐷𝑖𝑛 is the size of each feature vector. This input
is obtained by taking melscale spectral coeffcients from the speech
signal. At the time of TDNN publication, 𝐷 is a small number 16
while nowadays the values of 𝐷 can range from 40 to 80 and it can
even be tripled using the first and second derivatives from the melscale
coefficients [264].

The output of each TDNN layer is also a vector of vector (2D Tensor)
with the size 𝑇𝑜𝑢𝑡 × 𝐷𝑜𝑢𝑡 . The hidden state in each time step 𝑡 is fully
connected with the input states in time steps 𝑡, 𝑡 + 1, . . . , 𝑡 + (𝑤 − 1), a
window of time step.
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𝑂𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 (𝐼𝑡 , 𝐼𝑡+1, 𝐼𝑡+2, . . . , 𝐼𝑡+𝑤−1) + 𝑏) (2.28)

The weights in the MLP (𝑊 and 𝑏) are fully shared between the time
steps for the network. The window 𝑤 suggests that the output is
delayed compared to the input by a𝑤 − 1 amount. The whole network
consists of multiple layers being stacked, leading to the final output
size being significantly shorter than the input.

The shared weights allow for feature detection being time-transition
invariant. Data patterns can be discovered regardless of their positions
in the data. Feed-forward neural networks are often overparameterized
due to lacking this property [166].

TDNN can be learned efficiently using backpropagation not unlike
normal MLP models. For speech recognition specifically, it has been
shown empirically that it is possible to outperform Hidden Markov
Model based systems in phoneme recognition [259]. Despite the
simplicity of the architecture, TDNN has proven that weight sharing
over time is one of the important properties of neural networks to
effectively model time-series properties.

It is also worth noting that Recurrent Neural Networks [59] (RNN) and
especially its Long Short-Term Memory variation also carry the weight-
sharing paradigm. TDNNs and RNNs are often used interchangeably
for sequence modeling for this reason [188, 67, 68], with each network
having a different strength and weaknesses. For example RNNs have a
longer temporal connection that TDNNs that are limited by the window
size. TDNNs on the other is computationally faster and can benefit
from a deeper architecture [68, 238].

Connectionist temporal Classification Neural Networks were
shown to be capable of recognizing digits [260] and then replacing
the Gaussian Mixture Models in the HMM framework to improve
the acoustic models, the HMM themselves remain as the base struc-
ture. The difficulty of employing a full neural network lies in the
asynchronous nature of the input and output signals, having different
lengths.
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Hidden Markov Models rely on using a low-order Markov Chain
to model the alignment between the speech and text signals. The
acoustic model has a set of emission probabilities, depicting how each
observation is generated in every timestep 𝑡 , while assuming that this
generative problem corresponds to a hidden state (in most systems, its
the beginning/end/middle states of phonemes).

Connectionist Temporal Classication, or CTC, has a similar function
by employing a single neural network to learn feature represenation,
output representation and alignment at the same time. Given an input
𝑋 with length𝑇𝑖𝑛 and output 𝑌 with length𝑇𝑜𝑢𝑡 with the condition that
𝑇𝑜𝑢𝑡 ≤ 𝑇𝑖𝑛, CTC is capable of learning an alignment between 𝑋 and
𝑌 :

• Assigns one output token in the output vocabulary to each
input step and collapse repeats. For example if “g g g e e t” is
the prediction for an input with length 7, then the final output is
“get”.

• Introduces an extra blank token 𝜖 in the set of the possible
outputs, this token allows the model to either output silence, or
produce outputs with multiple tokens in a row, such as “hello”.

Intuitively, the CTC model learns to “pad” the output tokens with
possible repeats and the blank token to have the same length with
the input tokens, so that a monotonic alignment can be established.
Obviously, given an output sequence, there are many possible ways to
insert repeats or blank tokens to achieve the input length, each of which
is considered a path 𝐴. Learning a CTC model is then equivalent with
computing the probabilities of all possible paths 𝐴𝑛 , the sum of which
is the conditional probability 𝑃 (𝑌 |𝑋 ).

𝑃 (𝑌 |𝑋 ) =
∑︁

𝐴∈A(𝑋,𝑌

𝑁∏
𝑛=1

𝑝𝑛(𝑎𝑛 |𝑋 ) (2.29)

While we can use standard networks such as RNN or CNNs to learn the
mapping between input features and output tokens for each timestep,
it is possibly expensive to compute the CTC loss function due to the
large amount of possible paths. Thankfully, dynamic programming
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is the solution to quickly estimate 𝑃 (𝑌 |𝑋 ) by merging the alignments
having reached the same output at the same step.

Since 𝑃 (𝑌 |𝑋 ) is the sum of the products of probabilities, it is differen-
tiable and therefore allows backpropagation to estimate the gradients
of the weights in the neural networks connected to the output layer2.

In inference, we need to find the most probable sequence 𝑌 given an
input sequence 𝑋 . A simple heuristic here is to choose the most likely
output at each time-step, so as to obtain the alignment with the highest
probability.

𝐴 = arg max
𝐴

𝑇∏
𝑡=1

𝑝𝑡 (𝑎𝑡 |𝑋 ) (2.30)

This approach is prone to missing the outputs with much higher prob-
abilities due to the fact that, one output sequence (after merging and
removing blanks) can have multiple alignments with the input. There-
fore, the most likely alignment does not necessarily correspond to the
most likely output sequence. Beam search is often employed to find
multiple sequence.

• Beam search operates by computing a new set of hypotheses at
each input step. The new set is an extension of the previous set,
by extending each hypothesis in the previous set with all
possible tokens in the vocabulary, and then keeping the 𝐾 most
likely candidates.

• With CTC outputs, hypotheses can be collapsed into the same
output sequence, therefore we need keep track of the prefixes
being generated, and sum up the probabilities of the hypotheses
having the same output.

CTC has become an important milestone of training ASR models with
single neural networks, since this output function allows for learning
an alignment between speech inputs and textual labels. Typically,

2 CTC is also considered as an output layer or loss function in Deep Learning frame-
works.
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the application of CTC only requires a hidden representation of the
input with length 𝐷𝑖𝑛 ≤ 𝐷𝑜𝑢𝑡 , so the networks that generate such
representation can be freely chosen, from TDNN [288] to LSTM [239]
or Transformers recently [14]. Notably, due to this simplicity, the CTC
loss function is the obvious choice when coupled with unsupervised
pretraining for speech modality [14].

The weakness of CTC lies in the assumption that output tokens are
generated independently. In theory, this property can make the model
struggle against words that sound similarly but have different writings.
Later CTC models would end up require language models to obtain
competitive performance compared to statistical systems [103]. In
some cases, the role of language models can be considered to be
dominant, when the result can be improved dramatically. Notably, the
combination of a CTC and a language model would require a more
complicated beam-search to guide two models in looking for the best
candidate. Besides, such combination would also nullify the ‘end-to-
end’ approach because the CTC model apparently plays the role of the
acoustic model without the need of a pronunciation dictionary.

Attention-based models The CTC models are appealing for a
number of reasons. First, they can enable one single neural network
to learn latent alignment and perform speech recognition without
relying on Hidden Markov Models, therefore being unchained from the
Markov Assumption that each state only depends on the previous one.
Second, CTC does not require a lexicon or pronunciation dictionary.
This advantage helps CTC to be adopted in speech recognition systems
for other languages in which a lexicon is difficult to obtain.

For such reasons, we can consider the neural net based CTC models
to be a step up compared to the hybrid HMM approach, even though
performance wise the latter still has the advantage. When the language
model is factored in the CTC model, the performance gap becomes
closer but one can argue that the role of the CTC becomes the same
with the acoustic model in the hybrid.

On the other hand, neural network language models [23] have bloomed
and completely overthrown statistical language models performance
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wise [145] and opened up a new world of possibilities with condi-
tional language models (CLM). A typical neural language model
uses a sequential structure such as recurrent neural network [166]
or TDNN [188] to model long range dependency between words in
the sequence, often starting from a special “begin of sentence” or
“<bos>” word. A conditional language model would connect such
sequential language model with another network learning a different
representation. Such idea was manifested first in sequence-to-sequence
learning [247] with the goal of learning to translate between sentences
of different languages and later in image captioning [121]. The latter
employs one convolutional based model to learn image representation
and another recurrent model to generate sentence-based captions for
the image.

When we have two different neural networks, how can we possibly
connect the hidden representations in a meaningful way. For example
such connecting network needs to be capable of learning alignment
between sentences, or alignment between words and images, or in our
application, words and speech frames.

The most important neural advance that enables such applications
is Encoder-Decoder with attention, in which Encoder-Decoder is a
design scheme, while attention is a neural network architecture. In the
literature, such development has two phases: first an Encoder-Decoder
model with LSTM, which is later completed by the attention network
connecting the encoder and the decoder.

Encoder-Decoder Model In this section, we describe the Encoder-
Decoder model with attention which is the network design approach
for the main speech recognition works in this thesis.

As mentioned in the description of the language models using Long-
Short Term memory, sequential representation can be learnt effectively
with such neural networks with weight-sharing and time-controlling
properties, so that the time dimension is not necessary a fixed number
but can vary between samples/applications.

In sequential transformation problem, it is desirable to map such
sequence of acoustic signals into a sequence of words representing the
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transcription (or later, we can directly map it to even the translation)
of the original acoustics. A neural network that can map sequences to
sequences while being domain independent would be useful for this
task.

The main idea is to use a sequential network (TDNN, LSTM or at the
moment the state-of-the-art architecture is Transformers) to read the
input sequence, one timestep at a time and encapsulate the information
of the sentence into one fixed-dimensional vector representation. The
second network, presumably an LSTM, can be employed to “uncom-
press’ information from such representation. This is possible thanks to
the specific structure of the LSTM having the cell states as the memory
of the previous state. Such cell states can be initilized using the final
cell states of the LSTM that reads the input sentence, or an hierarchical
convolutional architecture [125].

This specific architecture was used solely in Machine Translation due
to an architectural flaw in the design which hinders backpropagation
to suit long sequences. The performance for this task, therefore, still
could not match the statistical approach [56] with the neural counter-
part, until the contribution of attention.

Attention model In the neural-decoder design, the Encoder needs
to be able to contain the information of the sequence in one single
state. This common design has been manifested by either using pool-
ing with convolution [124] or using the memory state of a recurrent
neural network [247]. Intuitively the network should be dynamically
allocated for this task [43] and more importantly, long sequences pre-
vent the back-propagation algorithm due to problems such as gradient
vanishing or gradient explosion [128] happening during the backward
pass in recurrent networks. Finally, the network does not expose any
mechanism to learn alignment between input and output sequences.

Attention formulation With the purpose of avoiding the represen-
tation bottleneck between the encoder RNN and the decoder RNN,
attention tries to establish the connections from all decoder RNN states
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𝐻𝐷𝑖 to all encoder RNN states 𝐻𝐸𝑗 . As a result, we should have an at-
tention matrix 𝐴, in which 𝐴𝑖 𝑗 connects decoder state 𝐻𝐷𝑖 and encoder
state 𝐻𝐸𝑗 .

The value of 𝐴𝑖 𝑗 decides the importance of 𝐻𝐷𝑖 versus 𝐻𝐸𝑗 . Intuitively,
if 𝐴𝑖 𝑗 ≈ 1 it can be interpreted as 𝐻𝐷𝑖 is aligned with 𝐻𝐸𝑗 , and more
generally the token at position 𝑖 in the target sequence is aligned with
the token at position 𝑗 in the source sequence. But how does attention
generate 𝐴𝑖 𝑗? The answer is a neural network with a single unit at the
output layer.

𝐻 = 𝑡𝑎𝑛ℎ(𝑊𝑎𝑡𝑡𝑛1[𝐻𝐷𝑖 , 𝐻
𝐸
𝑗 ] + 𝑏𝑎𝑡𝑡𝑛1) (2.31)

𝑒𝑖 𝑗 = (𝑊𝑎𝑡𝑡𝑛2𝑡𝑎𝑛ℎ(𝐻 ) + 𝑏𝑎𝑡𝑡𝑛2) (2.32)

𝐴𝑖 𝑗 =
𝑒𝑥𝑝(𝑒𝑖 𝑗 )∑
𝑛 𝑒𝑥𝑝(𝑒𝑖𝑛)

(2.33)

Here [𝐻𝐷𝑖 , 𝐻
𝐸
𝑗 ] is the concatenation of two hidden states in encoder

and decoder. 𝑒𝑖 𝑗 is often called the energy function between the two
states, and A_ij is obtained from the softmax function over all encoder
states.

After obtaining 𝐴𝑖 𝑗 , we can decide the total information of the encoder
state involved in decoding time step 𝑗 as the weighted sum over all
encoder states.

𝐶 𝑗 =
∑︁

𝐴𝑖 𝑗𝐻
𝐸
𝑖 (2.34)

The parameters𝑊𝑎𝑡𝑡𝑛1,𝑊𝑎𝑡𝑡𝑛2, 𝑏𝑎𝑡𝑡𝑛1, 𝑏𝑎𝑡𝑡𝑛2 are shared between com-
putation of encoder and decoder states, and they can be trained using
gradient descents, after receiving gradients from the loss function via
back-propagation.

𝐶 𝐽 is often called Context vector denoting the contextual information
from the encoder. Afterwards, the hidden layer at timestep 𝑗 before
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the hidden layer is decided by another neural layer combining 𝐻𝐷𝑖 and
𝐶 𝑗 .

Attention advantage From the description above, the amount of
information from the encoder changes over time during the genera-
tion process of the decoder. These equations allow the decoder to
dynamically estimate the relevance of information in the encoder.

The abundance of connections between the encoder and decoder re-
moves the gradient bottleneck previously endured in the Encoder-
Decoder model. The gradient can flow from the decoder to the furthest
encoder states via the attention connections, and gradient vanish is no
longer a concern. This is evidently showed by the fact that models
with attention are more comfortable translating long sentences than
the counterparts [160, 15].

Attention application The Encoder-Decoder with attention model
has virtually improved all of the problems presented in the non-attentional
model and achieved success in various domains including machine
translation [160, 118], image captioning [274] and eventually speech
recognition. However, it is also noteworthy that such improvement
comes with a price which is the increased space complexity. The atten-
tion network connecting encoder and decoder has the space complexity
𝑂(𝑚𝑛) in which𝑚 and 𝑛 are the respectively lengths of the input and
output sequences.

As a result, the application in speech recognition was unlike other
sequence-to-sequence problem, due to the excessive lengths of the
speech signals often found in acoustic data. An acoustic signal sampled
at 16000 Khz sample rate for one second can yield approximately 2000
timesteps, making the memory cost for attention considerable.

Various works were proposed to deal with this particular problem.
The earliest application of the attentional model to speech recognition
quickly realized this problem in which long utterances not only make
training slower and more expensive, but also reduced the overall per-
formance for shorter ones, indicating that attention was unable to learn
alignment [40]. In this very particular work, it was necessary to use
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the location of focus (the attention matrix) in the previous decoding
step in computing the current attention matrix [74] by using trainable
convolutional filters. This very first work was modestly halted at only
phoneme recognition due to the modeling power limit.

Further improvement were made to enable large vocabulary continuous
speech recognition with this approach [16]. Here, attention is modified
so that the process of learning to focus does not involve the whole
sequence but instead only specific parts [274], for the sake of efficiency.
This is implemented as windowing in the speech input. Furthermore,
the recurrent neural network can also reduce the length of the repre-
sentation to be shorter than the initial sequence by pooling frames
neighboring in time, an idea introduced in Clockwork RNN [140].

One more problem of this approach is also realized here. The language
model is now internally fused into the main model, as the decoder is
fundamentally a conditional language model. However, compared to
a normal language model, this concept bears a disadvantage which
is the amount of data to be trained is much more limited. The con-
ditional language model requires parallel data containing speech and
text formats. In this case, it is able to fuse a language model inside
the hidden states of the decoder [81], by using a weighted sum of the
hidden states or softmax outputs between the language model and the
decoder, given that they have the same nature.

It is also possible to reduce the overall memory usage with LSTMs, by
using a specific pyramidal bidirectional LSTM approach [31], dubbed
as pBLSTM.

In a normal LSTM layer, the output at the i-th time step, from the j-th
layer is computed as:

ℎ
𝑗

𝑖
= 𝐵𝐿𝑆𝑇𝑀(ℎ 𝑗

𝑖−1, ℎ
𝑗−1
𝑖

) (2.35)

In this specific bBLSTM layer, each cell computation also takes into
account the outputs at the consecutive time-steps in the below layers:

ℎ
𝑗

𝑖
= 𝑝𝐵𝐿𝑆𝑇𝑀(ℎ 𝑗

𝑖−1, [ℎ
𝑗−1
2𝑖 , ℎ

𝑗−1
2𝑖+1]) (2.36)
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The very bottom layer connecting with the input features remain as a
normal bidirectional LSTM. With three more pyramidal LSTM layers
stacking on top, the number of time steps at the top layer is reduced by
23 = 8 times, allowing the decoder network with attention to extract
the relevant information from the encoded representation more easily.
This architecture does not necessarily result in information loss due to
the fact that the order of features is still preserved in concatenation.

There are many lessons to be learned from this attempt of adapting
an attention-based architecture for speech recognition. Compared to
the first attempts [40], it overcame many difficulties in training not
only by using an architecture with pooling capability, but also heavy
hyper-parameter selection supported by a high amount of computation.
Another highlight is to overcome overfitting and training/testing mis-
match by using the network’s output as input instead of gold labels [21].
This is implemented by randomly sampling from the softmax output
distribution at the decoder time step 𝑡 and feeding it as the input for
the next time step 𝑡 + 1.

The authors applied the the “Listen, Attend and Spell” model in a large
scale Google voice search with 2000 hours of data and the result can
be evaluated from multiple perspectives. On the one hand, there is a
clear difference between the HMM baseline (8% WER) and the end-to-
end counterpart (14.1% WER). A language model is still necessary to
reduce the difference, as can be seen from the previous works [16]. An
important discovery here is that, using phonemes as an intermediate
representation learning process does not improve the model. This
side-experiment indicates a direct mapping function from audio to text
does not necessarily require additional phonetic information.
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In the previous chapter, the role of neural networks in speech recog-
nition literature was studied. Initially they were used as stand-alone
models mapping directly from speech features to acoustic units in
time-delay neural networks, the same purpose as they are used for the
acoustic models in the HMM-based systems. Either they can be used
in a Tandem approach, in which neural features are used to enhance
GMMs, or Hybrid approach that completely uses deep neural networks
for estimation.

Aside from the popularity of neural networks in acoustic models,
the connectionist models also gradually dominated language models.
Similar to the changes in acoustic models, the neural language models
fundamentally changed the idea of estimating the probabilities of word
sequences, by using learnable parameters for each word [100] and
using neural architectures to connect the neurons in the word vectors
and learn to output the likelihood of each word in the vocabulary given
a context. The main difference comes from two abilities: first, word
vectors are a continuous representation and are alleviated from the
curse of dimensionality affecting large vocabularies. Second, powerful
neural networks such as recurrent neural networks [166] can effectively
model the temporal dependencies between words in a sequence.

Due to the high computational cost [145], neural language models
were initially employed to solely rescore the outputs of a traditional
speech recognition system [145, 167]. Later development showed that
neural language models are also practically generative [128] and can
be conditioned on a pre-defined representation during generation [124,
37].
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The development of both main components in a traditional system
suggested that HMMs are not the absolute necessity in modeling the
temporal structure, as well as the ability to abstract the intermediate
phonetic representation that the HMM models relied on. As research
moved on, training the neural networks has become more and more
feasible thanks to the discovery (or rediscovery) of many different
techniques addressing the weaknesses in the architectures. In the
big picture, a single neural architecture can promisingly replace the
pipeline in the HMM based architecture, by learning a direct mapping
function from acoustic signals to the word surface without an indirect
discrete representation.

Why is an end-to-end model attractive? As declared in the
Introduction chapter of the thesis, the development of the end-to-
end model is crucial for the further multilingual advancement. This,
however, is far from the only benefit of pursuing this approach:

• The end-to-end offers an easier training process for speech
recognition systems. The previous approach includes many
models in the pipeline such as an acoustic model, a language
model, typically also a tree-based model clustering phonemes
into cluster to reduce the dimensions of the output features.
Each of these models would require a different training
procedure and data organization, such as audio features with
phoneme labels for acoustic models, monolingual text data for
language models. In contrast, if a single neural architecture is
capable of reaching competitive results using only parallel data,
the training process would be considerably simplified.
Industrial applications of speech recognition would be possible
to reduce effort and cost.

• The success of training such an end-to-end would make other
speech-to-text applications possible with a similar approach.
The specific HMM framework was designed for ASR and
might be limited to this application, being difficult to extend to
other applications, such as direct translation to other languages’
text when transcription is not possible, or directly transforming
into the acoustic signals of other languages. The theoretical
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advantage of an end-to-end neural network is to avoid decision
bottlenecks in discrete/cascaded systems in which consecutive
models receive the outputs from the previous counterparts. In
the pen-ultimate chapter of this thesis, the model being
proposed for ASR is also applied for speech translation
achieving competitive result.

• As mentioned before, multilinguality would become a
remarkable advantage of the end-to-end approach because of
the abstraction of the phonetic information required in the
HMM approach. The next chapter would be dedicated to
further describe this advantage and how neural networks could
be designed to benefit from a multilingual setting.

Modeling Barriers In the literature review, we have describe two
attempts to create end-to-end speech recognition models using solely
neural networks predating the architectures proposed in the thesis,
namely the Connectionist Temporal Classification [75] (CTC) and the
Sequence-to-sequence with recurrent neural networks [16, 40] and
attention [15].

From the theoretical point of view, the end-to-end model has two ad-
vantages compared to the HMM system. First, the neural architecture
is not limited by Markov assumption such that the emission of each
state depends on only the local previous and next states. For example,
a recurrent neural network can deliver information from the beginning
of the sequence to the current assessing point (when a certain feature
vector is input to the network) via the recurrent connections (and the
gating mechanism in Long Short-Term memory neural networks). Sec-
ond, the output decision is based on a joint network modeling acoustic
and language model features. Traditional speech recognition relies
on a first realization to the phoneme level, and then the final output
sequence is done based on the language model scores combined with
the pronunciation dictionary. These systems had to divide representa-
tion into different levels in the acoustic model, in particular separating
global features (such as channel and speaker characteristics), local
features on phoneme level. The language model and acoustic model
is then combined at decoding while they are trained with different
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loss functions. Meanwhile, the end-to-end approach has the ability
to jointly train all components towards a common goal. This ability
inherently reduces system complexity, i.e how many components are
involved in building a system and have to be trained separately. But
more importantly, such an approach can theoretically benefit the most
from the powerful neural networks without error propagation existing
in the decoding process of the traditional systems.

Despite these two advantages, the performance of the end-to-end model
still falls behind either the hybrid models or the CTC-based mod-
els [279, 270] and more importantly, many of them rely on external
language models to reach a competitive level of performance which
defeats the initial benefit of simplying the training/decoding procedure
from the end-to-end setup. From the analysis in the literature above,
there was a conundrum about the position of the attention based model
replacing the whole multi-model pipeline in statistical approach. On
the one hand, the HMM-based models have been industrially enhanced
for decades and over the years better and better configurations have
been found, from using neural acoustic model to using neural networks
to learn features with auto-encoders [97, 207, 69]. More importantly,
all of such improvements are from the involvement of neural networks
in acoustic and language models, and suggest a futuristic fusion of the
whole pipeline into one single neural network.

• Speech signals can vary in volume, noise level, recording
qualities, and speaker differences. These variations end up
creating unlimited versions of the same utterance that can be
mapped to the same transcript. This is a challenge for the
neural models having to map directly to word levels without
guidance at alignment or phoneme level.

• The data usable to train language models can be more abundant
than the parallel speech-text data that the end-to-end models
require. As a result, the conditional language models can be
more limited compared to unconditional ones. The resulting
model often overfits on the limited monolingual data provided
from the parallel corpus.
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3.1 The Speech Transformer model

From the observation above, it is imperative to enhance the neural
sequence-to-sequence models to combat those problems. Starting from
the root of sequence-to-sequence models which were designed for text-
based translation, the encoder and decoders are required to model two
different modalities: the neural encoder reads the audio features into
high level representations, which are then fed into an auto-regressive
decoder which attentively generates the output sequences [15, 16],
while both components are jointly trained towards maximizing the
likelihood of the generated output sequence. Unlike text translation,
however, the difference in modalities leads the the necessary difference
in modeling choice between encoder and decoder, as can be seen from
neural image captioning [274, 121]. Due to the high complexity of
audio features, the encoder is required to be much deeper, at least more
than the standard level of the decoder.

In the neural network literature, training deep neural networks was
difficult [144] due to the difficulty in back-propagating the signals
from the output layer to the shallower layers. Careful initialization [71]
and unsupervised pre-training the values of layers with deep belief
networks [98]. Residual connections was probably the most important
discovery allowing for deeper networks to be trained.

𝐻𝑡 = 𝐹 (𝐻𝑡−1) + 𝐻𝑡−1 (3.1)

The hidden layer 𝐻𝑡 is obtained by taking the sum of the previous
layer 𝐻𝑡−1 and output of the function 𝐹 (𝐻𝑡−1). The gradient in the
previous layer 𝛿𝐿

𝛿𝐻𝑡
can propagate through the additive connection if the

function 𝐹 is complicated. This connection enables even thousands of
convolutional layers to train effectively [91]. LSTM employs a similar
strategy for temporal connections to ensure that the gradient does not
vanish after a long time of propagation.

In the mean time, an important invention of modern deep learning is
self-attention being able to efficiently represent different structures
including text [15] or graph [257] and even acoustic signals [243] with
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impressive results. Self-attention refers to the application of attention
in one sequence of neural states in contrast with the Encoder-Decoder
attention networks that operate on decoder and encoder neural states.
For self-attention, the similarities between states are used to establish
direct connections between all states in the sequence.

Transformers is a neural design that combines self-attention and resid-
ual connection in one package [255]. This encoder-decoder variation
divides the network structure into blocks of transformation, each of
which contains self-attention and feed-forward neural networks. The
purpose of the former is to connect features in different positions
in the sequence, while the later adds nonlinearity into the transfor-
mation. Combined with residual connection, the Transformers are
very powerful in sequence-to-sequence modeling and can deliver state-
of-the-art performance in many tasks, especially in natural language
processing [50].

From the analysis in the literature, the main contribution of the Thesis
is to adopt the Transformer for speech recognition, with two key
changes. First, very deep self-attention layers are used for the encoder
to handle the high complexity of speech features. Naturally, increasing
the number of layers is challenging because of the resulting increase
in computational cost and memory cost, due to the fact that back-
propagation requires storing the result of each intermediate layer for the
backward pass. Not only is computational cost a problem, the network
can also overfit on training data due the being overparameterized. In
order to facilitate training deep networks by reducing the computational
cost and allow the model to generalize better during training, we
make the network layers stochastic, by allowing layers to be randomly
dropped during training. This stochastic layer played an important
role in enabling the deeper configuration to scale up to 60 layers in
contrast to a typical 6 layer configuration employed in other tasks, as
can be empirically demonstrated, by reducing the computational cost
and allow the networks to generalize better especially on noisy testing
conditions.

Self-Attention As mentioned in the previous chapter, the architec-
tural key to enable end-to-end speech recognition (and other sequence
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to sequence problems) is attention. Attention is the mechanism con-
necting the encoder and decoder representations, and helps the decoder
to know which information is locally important. The main quality of
attention is the ability to fully connect all states of the first sequence
with all states of the second sequence, and each connection is dynami-
cally weighted based on the content of the source/target states at the
time.

The formulation of attention can be seen from the context-based infor-
mation retrieval approaches [74]. The necessary inputs of attention is a
query vector𝑄 ∈ 𝑅𝐷×𝑇𝑄 , a pool of memory containing keys𝐾 ∈ 𝑅𝐷×𝑇𝐾

and values 𝑉 ∈ 𝑅𝐷×𝑇𝐾 . The similarity between the query 𝑄 and each
key 𝐾𝑡 is measured to weight the importance 𝛼𝑡 for the value 𝑉𝑡 . In
the attention network between encoder and decoder, each hidden state
at time 𝑖 in the recurrent is a query 𝑄𝑖 , while the hidden states in the
encoder are the keys and values.

When operating on a sequence, attention can be used to connect the
information in different time steps together, replacing recurrent or
convolution nets, by treating each hidden state 𝐻𝑖 as 𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 for
attention. In the literature review, we presented attention step-by-step,
by computing the relationship between query 𝑄𝑖 and 𝐾𝑖 as energy
function, presented by a neural network.

𝑒𝑖 𝑗 = 𝐹𝑎𝑡𝑡𝑛(𝑄𝑖 , 𝐾𝑖 )

𝑎𝑖 𝑗 =
exp𝑒𝑖 𝑗∑
𝑘 exp𝑒𝑘 𝑗

𝑂 = 𝐴𝑉

In Transformer, the computation of the energy function can be accel-
erated by using a simple dot-product operation instead of a neural
network (𝐹𝑎𝑡𝑡𝑛) between the query vector 𝑄 ∈ 𝑅𝑇𝑞 𝑡𝑖𝑚𝑒𝑠𝐷 and key
vector 𝐾 ∈ 𝑅𝑇𝑘×𝐷 . This is known as dot-product attention, and all
equations can be manifested as the matrix multiplication between Q,
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K, V with the softmax function applied on the energy 𝑄𝐾𝑇 , which is
the collection of dot-product between vectors 𝑄 and 𝐾 .

𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 )
𝑂 = 𝐴𝑉

Deep network for Speech Recognition In this section, we
provide a detailed description of our deep Transformer model which is
inspired by the translation model “Transformer” proposed as in [255].
In general, this model belongs to the class of sequence-to-sequence
model with neural networks [247], which takes a source sequence
𝑋 = {𝑥1, 𝑥2, . . . , 𝑥𝑚} and transforms into hidden representation𝐻 using
an encoder network. Another decoder network would consume 𝐻 and
subsequently generate an output sequence 𝑌 = {𝑦1, 𝑦2, . . . , 𝑦𝑛}.

The main components of the model include an encoder, which con-
sumes the source sequence and then generates a high level represen-
tation, and a decoder generating the target sequence. The decoder
models the data as a conditional language model - the probability of
the sequence of discrete tokens is decomposed into an ordered product
of distributions conditioning on both the previously generated tokens
and the encoder representation.

Both encoder and decoders are neural networks and require neural
components that are able to learn the relationship between the time
steps in input and output sequence. The decoder also requires a mech-
anism to analyze the encoder representation. For the Transformer,
attention or its common variation Multi-head attention is the core of
the model.

The overall architecture is demonstrated in figure 4.2. Here we tailored
the Transformer model [255] without changing the main motivation of
using self-attention for sequence learning.
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The encoder and decoder of the Transformers are constructed by layers,
each of which contains self-attentional sub-layers coupled with feed-
forward neural networks.

Adapting the Transformer models for speech recognition
To adapt the encoder to long speech utterances, we follow the re-
shaping practice from [243] by grouping consecutive frames into one
step. Subsequently we combine the input features with Sinusoidal
positional encoding [255]. While adding directly acoustic features to
the encoding is harmful which potentially leads to divergence during
training [243], we resolved that problem by simply projecting the con-
catenated features to a higher dimension (512 as other hidden layers
in the model) before adding. In the case of speech recognition, the
positional encoding offers a clear advantage compared to learnable po-
sitional embeddings [68] because the speech signals can be arbitrarily
long with a higher variance compared to text sequences.

The Transformer encoder passes the input features to a self-attention
layer followed by a feed-forward neural network with 1 hidden layer
with the ReLU activation function. Before these sub-modules, we
follow the original work to include residual connections which estab-
lishes short-cuts between the lower-level representation and the higher
layers. The presence of the residual layer massively increases the
magnitude of the neuron values which is then alleviated by the layer-
normalization [12] layers placed after each residual connection.

The decoder is the standard Transformer decoder in the recent transla-
tion systems [255]. The notable difference between the decoder and the
encoder is that, the self-attention layer of the decoder has to be masked
so that each state has only access to the past states, to maintain the
auto-regressive nature of the model. Moreover, an additional attention
layer using the target hidden layer layers as queries, and the encoder
outputs as keys and values is placed between the self-attention and
the feed-forward layers. Residual and layer-normalization are setup
identically compared to the encoder.

This particular design of the Transformer has various advantages com-
pared to previously proposed RNNs and CNNs networks. First, com-
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putation of each layer and sub-module can be efficiently parallelized
over both mini-batch and time dimensions of the input. Second, the
combination of residual and layer normalization is the key to enable
deep configurations to be trainable, which is the main reason for the
performance breakthrough in recent works in both MT and natural
language processing [50, 189].

Stochastic layers While deep transformer layers are powerful
models for S2S task, the number of parameters dramatically increases
over the model depth, leading to over-fitting and expensiveness in
terms of time and space during training. In order to attack both prob-
lems at once, we use the stochastic network method which was applied
to convolutional ResNet [107]. Specifically, the observation of the
residual connections [90] is that the network during training consists
of multiple sub-networks taking different paths through the shortcut
connections [256]. The deep transformer is established by a set of
residual blocks, most of which consist of attention or feed-forward
networks. These submodules, as a result of residual connections, are
connected no matter how deep the network becomes. Motivated by
dropout [244] dropping connections between neurons and the stochas-
tic ResNet [107], we propose to apply the stochastic property on top
of the residual connections.

The original residual connection of an input 𝑥 and its corresponding
neural layer 𝐹 has the following form:

𝑅(𝑥 ) = LayerNorm(𝐹 (𝑥 ) + 𝑥 ) (3.2)

In equation 3.3, the inner function 𝐹 is either self-attention, feed-
forward layers or even attention from the decoder to the encoder.
The Layer Norm as in [12] keeps the magnitude of the hidden layers
from growing large,. Stochastic residual connection is fundamentally
applying a mask 𝑀 on the addition of the input, as follows:

𝑅(𝑥 ) = LayerNorm(𝑀 ∗ 𝐹 (𝑥 ) + 𝑥 ) (3.3)

Mask 𝑀 only takes 0 or 1 as values, generated from a Bernoulli dis-
tribution similar to Dropout [244]. When 𝑀 = 1, the inner function
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𝐹 is activated while it is skipped when 𝑀 = 0. This stochastic con-
nection enables more sub-network configurations to be established
during training, and during inference the full network is presented,
causing the effect of ensembling different sub-networks, as analyzed
in [256]. Computationally, we only generate one mask per minibatch
using a hyper-parameter 𝑝 for each residual connection, thus the layer
is skipped for the whole minibatch depending on the mask value. The
computation cost is then decreased because the expectation of the
network length is shorter than the typical Transformer. More important
is how the the layer-wise dropping parameter 𝑝 is chosen, since the
amount of residual connections for the Transformer is not insignifi-
cant. As suggested by [107], the lower layers of the networks handle
raw-level acoustic features on the encoder side, and the character em-
beddings on the decoder side. Our early experiment with a constant 𝑝
for all connections found out that, lower level representations turn out
to be less tolerable than the higher ones in terms of dropping effect. In
other words, the lower the layer is, the lower its probability is required
to be set. As a result, 𝑝 values are set with the following policy:

• Sub-Layers inside a Transformer layers (Encoder or Decoder)
share the same 𝑝 value and are dropped or kept at the same
time. In other words, we assign values for each Transformer
layer, not each sub-layer inside.

• Lower layers are dropped more seldomly. This is achieved by
using the Linear strategy suggested in [107]. One hyper
parameter 𝑝 is set before training, which equals the dropping
probability of the top most layer. The lower layers have lower
probability linearly scaled by its depth. The intuition here is
that the lower levels are more important due to being close to
the initial feature layers, the top layers should be able to be
more optional, since the high level representations are more
organized.

Lastly, since the layers participate with probability 1−𝑝 during training
and are always presented during inference, we scale the layers’ output
by 1

1−𝑝 whenever they are not skipped. Therefore, each stochastic
residual connection has the training form (the scaler is removed during
testing):
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𝑅(𝑥 ) = LayerNorm(𝑀 ∗ 𝐹 (𝑥 ) ∗ 1
1 − 𝑝 + 𝑥 ) (3.4)

Figure 3.1: The downsampling process before inputting the features into the Trans-
formers.

Figure 3.2: A diagram of transformation from acoustic features to character-level
transcriptions. The red connections represent the residual connections, which are
rescaled according to Equation 3.4 for stochastic transformers.
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3.2 Stochastic Transformer experiments

3.2 Stochastic Transformer
experiments

Data Our experiments were conducted on the Switchboard-1 Re-
lease 2 (LDC97S62) training corpus which contains over 300 hours
of speech. The Hub5’00 evaluation data (LDC2002S09) was used as
test set. All the models were trained on 40 log mel filter-bank features
which are extracted and normalized per conversation. We also adopted
a simple down-sampling method in which we stacked 4 consecutive
features vectors to reduce the length of input sequences by a factor
of 4. Beside the filter-bank features, we did not employ any auxil-
iary features. We followed the approach [137] to generate a speech
perturbation training set. Extra experiments are also conducted on
TED-LIUM 3 [94] dataset which is more challenging due to longer
sequences.

Implementation details Our hyper-parameter search revolves
around the Base configuration of the machine translation model in [255].
For all of our experiments in this work, the embedding dimension 𝑑 is
set to 512 and the size of the hidden state in the feed-forward sub-layer
is 1024 1. The mini-batch size is set so that we can fit our model in
the GPU, but we accumulate the gradients and update every 25000
characters. Adam [133] with adaptive learning rate over the training
progress:

𝑙𝑟 = 𝑖𝑛𝑖𝑡_𝑙𝑟 ∗ 𝑑−0.5 ∗𝑚𝑖𝑛(𝑠𝑡𝑒𝑝−0.5, 𝑠𝑡𝑒𝑝 ∗𝑤𝑎𝑟𝑚𝑢𝑝−1.5) (3.5)

in which the init_lr is set to 2, and we warm up the learning rate
for 8000 steps. After reaching the peak, the learning rate linearly
decreases over time to avoid overfitting, with the intuition that the
learning process should be slow at first when the gradient is unstable.
Dropout [244] (applied before residual connection and on the attention
weights) is set at 0.2. We also apply character dropout [65] with 𝑝 = 0.1
which randomly replaces character embeddings with a zero vector and
label smoothing [248] with 𝜖 = 0.1.

1 Because of GPU memory consumption reduction.
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Table 3.1: The performance of deep self-attention networks with and without stochastic
layers on Hub5’00 test set with 300h SWB training set.

Layers #Param SWB CH

04Enc-04Dec 21M 20.8 33.2
08Enc-08Dec 42M 14.8 25.5
12Enc-12Dec 63M 13.0 23.9

+Stochastic Layers 13.1 23.6
24Enc-24Dec 126M 12.1 23.0

+Stochastic Layers 11.7 21.5
+Speed Perturbation 10.6 20.4

48Enc-48Dec 252M - -
+Stochastic Layers 11.6 20.9

48Enc-48Dec(half-size) 63M - -
+Stochastic Layers 12.5 22.9

08Enc-08Dec(big) 168M 13.8 25.1

24Enc-12Dec 113M 13.3 23.7
+Stochastic Layers 11.9 21.6

36Enc-8Dec 113M 12.4 22.6
+Stochastic Layers 11.5 20.6

36Enc-12Dec 113M 12.4 22.6
+Speed Perturbation 11.2 20.6

+Stochastic Layers 11.3 20.7
+Speed Perturbation 10.4 18.6

40Enc-8Dec 109M - -
+Stochastic Layers 11.9 21.4

Results We conducted the first experiments on the standard Switch-
Board (SWB) dataset containing approximately 300 hours of audio,
as illustrated in table 3.1. A shallow configuration (i.e 4 layers) is not
sufficient for the task, and the WER reduces from 20.8% to 12.1% on
the SWB test when we increase the depth from 4 to 24. However, in-
creasing the depth of the models to 12 However increasing the number
of layers to 12 and 24 reduces only 5% relative WER, which seems to
be a symptom of overfitting.
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Table 3.2: Comparing our best model to other hybrid and end-to-end systems reporting
on Hub5’00 test set with 300h SWB training set.

Hybrid/End-to-End Models Unit SWB CH

TDNN +LFMMI [207] Phone 10.0 20.1
BLSTM +LFMMI [207] Phone 9.6 19.3

CTC+CharLM Char 21.4 40.2
LSTM w/ attention [15] Char 15.8 36.0
Iterated-CTC +LSTM-LM [293] Char 14.0 25.3
Seq2Seq +LSTM-LM [285] BPE 11.8 25.7
Seq2Seq +Speed Perturbation [270] Char 12.2 23.3
CTC-A2W +Speed Perturbation [279] Word 11.4 20.8

36Enc-12Dec (ours) (3) Char 10.4 18.6
48Enc-12Dec (ours) (4) Char 10.7 19.4
60Enc-12Dec (ours) (5) Char 10.6 19.0
Ensemble 9.9 17.7

Our suspicion for this problem is confirmed by the stochastic networks.
At 12 layers, the stochastic connections only improve the CH perfor-
mance by a small margin, however the improvement was significantly
better on the 24 layer setting. Following the trend, the stochastic 48-
layer model keeps improving on the CH test set, showing the model’s
ability to generalize better. Our best result is obtained at 11.6% on
SWB, and 20.9% on CH.

Arguably, the advantage of deeper models is to offer more parameters,
as can be seen from the second column. We performed a contrastive
experiment using a shallow model of 8 layers, but the model size
is doubled so that its parameter count is comparable with the deep
24-layer model. By showing that the performance of this model is
significantly worse than the 24 layer one, we showed that a deeper
network with smaller size is more beneficial than simply increasing
the network size.
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Our second discovery is that the encoder requires deeper networks.
As analyzed above, the encoder has to undertake learning the rep-
resentations starting from audio features, while the decoder handles
generating the character sequence conditionally based on the encoder
representation. The difference in modality in turn suggests us to setup
the configuration accordingly. By holding the total number of layers as
48, we add more biases to the encoder layers. The result shows us that,
a much shallower decoder with only 8 layers but with 40 encoder layers
is as good as the 24-layer configuration. More stunningly, we were
able to obtain the best result with 20.7% WER which is competitive
with the best previous work using data augmentation.

Finally, it was revealed that the combination of our regularization
techniques (dropout, label-smoothing and stochastic networks) com-
pensate with data augmentation, which furthermore improved our
result to 18.1% with the 36-12 setup. This model, as far as we know,
establishes the state-of-the-art result for the SwitchBoard benchmark
among end-to-end speech recognition models, as shown in table 3.5.
Comparing to the best hybrid models with similar data constraint, our
models out-performed on the CH test set while remaining competitive
on the SWB testset without any additional training data for the lan-
guage models. This result suggests the strong ability to generalize of
the Stochastic Transformer for the speech modality.

However, we would like to emphasize that our model is significantly
deeper than the previous works. The experiments with similar depth
suggests that self-attention performs competitively compared to LSTM [102]
or TDNN [259]. However, the former benefits strongly from building
a deep residual network, in which our main finding shows that depth is
crucial for a uing self-attention for speech recognition.

On TED-LIUM dataset Table 3.3 shows our result on TED-LIUM
(version 3) dataset. With a similar configuration to the Switchboard
models, we managed to outperform a strong baseline which uses both
an external language model trained on larger data than the available
transcription and speed perturbation with the model with 36 encoder
layers and 12 decoder layers. We also show the trend that the models
are benefit from a deeper encoder, and together with the stochastic
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Table 3.3: The Transformer results on the TED-LIUM test set using TED-LIUM 3
training set.

Models test WER
CTC [94] 17.4
CTC/LM + speed perturbation [94] 13.7

12Enc-12Dec (ours) 14.2
Stc. 12Enc-12Dec (ours) 12.4
Stc. 24Enc-24Dec (ours) 11.3
Stc. 36Enc-12Dec (ours) 11.1

residual connections we managed to improve WER by 21.8% relatively,
from 14.2 to 11.1%. Given the potential of the models, it is strongly
suggested that better result can be obtained by further hyper-parameter
optimization.

3.3 Relative Positional Encodings

From the previous work, it is now evident that neural sequence-to-
sequence models [247] are capable of directly transcribing or translate
speech in an end-to-end approach. A single neural model which di-
rectly maps speech inputs to text outputs advantageously eliminates
the individual components in non end-to-end or cascaded approaches,
while yielding competitive performance [242, 175]. The hybrid ap-
proach for speech recognition and the cascaded approach for speech
translation may still give the best accuracy in many conditions, but as
neural architectures continue to develop, the gap is closing [179].

The Transformer [255] is a popular architecture choice which has
achieved state-of-the-art performance for many sequence learning
tasks, particularly machine translation [173]. When applied to speech
recognition and direct speech translation, this architecture also stands
out as the highest performing option for several datasets [243, 199,
52].
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The disadvantage of the Transformer is that, its core function – self-
attention – does not have an inherent mechanism to model sequential
positions. The original work [255] added position information to the
word embeddings via a trigonometric position encoding. Specifically,
each element in the sequence is assigned an absolute position with a
corresponding encoding (a vector similar to embeddings of the discrete
variables, but not updated during training). Recent adaptation to speech
recognition [199]2 showed that the base model, extended in depth,
is already sufficient for competitive performance compared to other
architecture approaches.

However, this absolute position scheme is far from ideal for acoustic
modeling. First, text sequences may have a stricter correlation with
position; for example, in English the “Five Ws” words often appear
at the beginning of the sentences, while there is possibly a larger
variation in the absolute position of phones in speech signals and
utterances. Second, speech sequences are often 10 − 60 times longer
than their transcript character sequence, which can be exacerbated
by surrounding noises or silences. For example, if the speech is
surrounded by applauses, the positions can change but should not
affect the resulting transcript. Ideally, we want to keep positional
information time-shift invariant.

Recently, relative positional encoding has become popularized as a
consistent reinforcement for the self-attention. Originally proposed
by [235] to replace absolute positions by taking into account the rela-
tive positions between the states in self-attention, this method has also
been formalized to adapt into language modeling [46], which allows
the models to capture very long dependency between paragraphs.

The next achivement of the Thesis is to bring the advantages of relative
position encoding to the Deep Transformer [199] for speech-to-text
architectures that can be used in both transcription and translation. The
resulting novel model maintains the trigonometric position encodings
to better scale with longer speech sequences, and is able to model
bidirectional positions as well. On speech recognition, we show that

2 This is the closest speech adaptation that does not change or introduce additional
layers (e.g. LSTM [102] or TDNN [259]).
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this model consistently improves the Transformer on the standard
English Switchboard and Fisher benchmarks (on both 300h and 2000h
conditions), and, to the best of our knowledge, is the best published
end-to-end model without augmentation on these datasets.

Factorizing attention A speech-to-text model for either automatic
speech recognition or direct translation transforms a source speech
input with 𝑁 frames 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑁 into a target text sequence
with 𝑀 tokens 𝑌 = 𝑦1, 𝑦2, . . . , 𝑦𝑀 . The encoder transforms the speech
inputs into hidden representations ℎ𝑋1...𝑁 . The decoder firsts generates
a language model style hidden representation ℎ𝑌𝑖 given the previous
inputs, then uses the attention mechanism [15] to generate the relevant
context 𝑐𝑖 from the encoder states, which is then combined and generate
the output distribution 𝑜𝑖 .

ℎ𝑋1...𝑁 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝑥1 . . . 𝑥𝑁 ) (3.6)

ℎ𝑌𝑖 = 𝐷𝐸𝐶𝑂𝐷𝐸𝑅(𝑦𝑖 , 𝑦1...𝑖−1) (3.7)

𝑐𝑖 = ATTENTION(ℎ𝑌𝑖 , ℎ1...𝑁 ) (3.8)

𝑜𝑖 = SOFTMAX(𝑐𝑖 + ℎ𝑌𝑖 ) (3.9)
𝑦𝑖+1 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑜𝑖 ) (3.10)

The Transformer [255] uses attention as the main network compo-
nent to learn encoder and decoder hidden representations. Given
three sequences of vectorized states consisting of queries 𝑄 ∈ 𝑅 |𝑄 |×𝐷 ,
𝐾,𝑉 ∈ 𝑅 |𝐾 |×𝐷 , attention computes an energy function 𝑒𝑖 𝑗 between
each query 𝑄𝑖 and each key 𝐾 𝑗 . These energy terms are then nor-
malized with a softmax function, and then used to take the weighted
average of the values 𝑉 . The energy function can be modeled with
neural networks [160] or as simple as projected (with thre additional
weight matrices) dot-product between two vectors 𝑒𝑖 𝑗 = 𝑄𝑖𝐾

𝑇
𝑗 or as

parallelized matrix-multiplication in Equation 3.11.

𝑄̂ = 𝑄𝑊𝑄 ; 𝐾̂ = 𝐾𝑊𝐾 ;𝑉 = 𝑉𝑊𝑉

Attention(𝑄,𝐾,𝑉 ) = softmax(𝑄̂𝐾̂𝑇 )𝑉
(3.11)
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[255] also improved the attention above through the concept of multi-
head attention (MAH), which splits the transformed term 𝑄̂, 𝐾̂,𝑉 to
𝐻 different heads. The same dot-product operation is applied on each
of the 𝐻 query, key and values heads, and finally the result is the
concatenation of the 𝐻 outcomes.

The Transformer encoder and decoder are constructed based through
stacked layers that have identical components. Each encoder layer has
one self-attention (MAH) sub-layer, which is followed by a position-
wise feed-forward neural network with ReLU activation function.3

Each decoder layer is quite similar to the encoder counterpart, with
the self-attention sub-layer to connect the decoder states, and the feed-
forward network. There is an additional Encoder-Eecoder attention
layer in between to extract the context vectors from the top encoder
states. Furthermore, the Transformer uses residual connections boost
information from bottom layers (e.g. the input embeddings) to the
top layers. Layer normalization [12] plays a supportive role, keeping
the norms of the outputs in check, when used after each residual
connection.

Relative Position Encoding in Transformer Equation 3.11
suggests that attention is position-invariant, i.e if the key and value
states change their order, the output remains the same. In order to
alleviate this problem for this content-based model, positional informa-
tion within the input sequence is represented in a similar manner with
the word embeddings. The positions are treated as discrete variables
and then transformed to embeddings either using a look-up table with
learnable parameters [246] or with fixed encodings in a trigonometric
form:

𝑃𝑖, 2𝑘 = 𝑠𝑖𝑛(
𝑖

100002𝑘/𝐷 )

𝑃𝑖, 2𝑘 + 1 = 𝑐𝑜𝑠(
𝑖

100002𝑘/𝐷 )
(3.12)

3 It is a sub-layer from the top-down perspective, analyzing the network, but as a neural
network itself, it has two hidden layers of its own
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When applied to speech input, this encoding is then added to speech
input features [199]. The periodic property of the encodings allow the
model to generalize to unseen input length. Following the factorization
in [46], we consider the cosine similarity between queries and keys as
“Energy”, we can rewrite the energy function in Equation 3.11 for self-
attention between two encoder hidden states 𝐻𝑖 and 𝐻 𝑗 that represent
the states at timesteps 𝑖 and 𝑗 to decompose into 4 different terms:

Energy𝑖 𝑗 = 𝐸𝑛𝑒𝑟𝑔𝑦(𝐻𝑖 + 𝑃𝑖 , 𝐻 𝑗 + 𝑃 𝑗 )

= 𝐻𝑖𝑊𝑄𝑊
𝑇
𝐾 𝐻

𝑇
𝑗 + 𝐻𝑖𝑊𝑄𝑊

𝑇
𝐾 𝑃

𝑇
𝑗

+ 𝑃𝑖𝑊𝑄𝑊
𝑇
𝐾 𝐻

𝑇
𝑗 + 𝑃𝑖𝑊𝑄𝑊

𝑇
𝐾 𝑃

𝑇
𝑗

= 𝐴 + 𝐵 +𝐶 + 𝐷

(3.13)

Equation 4.21 gives us an interpretation of the function: in which term
A is purely content-based comparison between two hidden states (i.e
speech feature comparison), term D gives a bias between two absolute
positions. The other terms represent the specific content and position
addressing.

The extension proposed by previously [235] and later [46] changed
the terms B, C, D so that only the relative positions are taken into
account:

Energy𝑖 𝑗 = 𝐸𝑛𝑒𝑟𝑔𝑦(𝐻𝑖 , 𝐻 𝑗 + 𝑃𝑖−𝑗 )

= 𝐻𝑖𝑊𝑄𝑊
𝑇
𝐾 𝐻

𝑇
𝑗 + 𝐻𝑖𝑊𝑄𝑊

𝑇
𝑅 𝑃

𝑇
𝑖−𝑗

+ 𝑢𝑊𝑇
𝐾 𝐻

𝑇
𝑗 + 𝑣𝑊𝑇

𝑅 𝑃
𝑇
𝑖−𝑗

= 𝐴 + 𝐵̃ +𝐶 + 𝐷̃

(3.14)

The new term 𝐵̃ computes the relevance between the input query
and the relative distance between 𝑄 and 𝐾 . Term 𝐶 introduces an
additional bias 𝑣 to the content of the key state 𝐻 𝑗 , while term 𝐷̃

represents the bias to the global distance. Terms 𝐵̃ and 𝐷̃ also have an
additional linear projection𝑊𝑅 so that the positions and embeddings
have different projections.
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With this relative position scheme, when the two inputs 𝐻𝑖 and 𝐻 𝑗
are shifted (for example, having extra noise or silent in the utterance),
the energy function stays the same (for the first layer of the network).
Moreover, it can also establish certain inductive bias in the data; for
example, the average length of silence or applauses, given the global
and local bias terms.

Adaptation to speech inputs For relative position encodings
with speech inputs, should we use learnable embeddings or fixed en-
codings to represent the distance 𝑃𝑖? The latter has the clear advantage
that it already has the periodic property, and given that speech input
can be as long as thousands of frames, the former approach would
require a necessary cut-off [235] to adapt to longer input sequences.
These reasons make sinusoidal encodings a logical choice. Importantly,
the relative position scheme above was proposed for autoregressive
language models, in which the attention has only one direction. For
speech encoders, each state can attend to both left and right directions,
thus we propose to use positive distance when the keys are to the left
( 𝑗 < 𝑖) and negative distance otherwise. As a result, the encodings for
𝑃𝑘 and 𝑃−𝑘 will have the same 𝑠𝑖𝑛 terms while the 𝑐𝑜𝑠 terms will have
opposite signs, which gives the model a hint to assign different biases
to different directions. Implementation wise, it is able to efficiently
compute terms 𝐵̃ and 𝐷̃ with the minimal amount of matrix operations.
It is necessary to compute 2𝐾 −1 terms 𝐻𝑖𝑊𝑄𝑊

𝑇
𝑅
𝑃𝑇
𝑘

with −𝐾 < 𝑘 < 𝐾

for each query 𝐻𝑖 (For a sequence with 𝐾 states, the distance between
one state to another 𝑘 is always in that range).4 This is followed by the
shifting trick [46] to achieve the required energy terms.

4 [46] only needs to compute 𝐾 terms as it has only one direction
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3.4 Experiments with Relative Position
Encodings

Our baselines for all experiments use the Deep Stochastic Trans-
former [199]. We use the relative encoding scheme above for both
encoder and decoder to yield relative Transformers.

For ASR, both our baseline Transformer and relative Transformer
have 36 encoder and 12 decoder layers with the model size 𝐷 = 512
and the feed-forward networks have the hidden layer size of 2048.
Dropout is applied with the same mask across time steps [65] with
𝑃𝑑𝑟𝑜𝑝 = 0.35 and also directly at the discrete decoder inputs with
𝑃𝑑𝑟𝑜𝑝 = 0.1. All models are trained for at most 120000 steps and the
reported model parameters are the average of the 10 checkpoints with
lowest perplexities on the cross-validation data.

For all models, the batch size is set to fit the models to a single GPU 5

and accumulate gradients to update every 12000 target tokens. We
used the same learning rate schedule as the Transformer translation
model [255] with 4096 warmup steps for the Adam [133] optimizer.

We present ASR results on the Switchboard-300 benchmark in Ta-
ble 3.4. It is important to clarify that spectral augmentation (dubbed
as SpecAugment) is a recently proposed augmentation method that
tremendously improved the regularization ability of seq2seq models
for speech recognition [183]. In better demonstrate the effect of relative
attention, we conduct experiments with and without augmentation.

Compared to the Deep Stochastic model [199], using relative attention
is able to reduce our WER from 10.9 to 10.2 and 19.9 to 19.1 on SWB
and CH, without any augmentation. Compared to other works under
this condition, our results are second to none among the published
end2end models, and can rival the LFMMI hybrid model [207] that
has an external language model utilizing extra monolingual data.

5 Titan V and Titan RTX with 12 and 24 GB respectively
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Table 3.4: ASR: Comparing our best models to other hybrid and end-to-end systems
on the 300h SWB training set and Hub5’00 test sets. Absolute best is bolded, our best is
italicized. WER↓ .

Models SWB w/ SA CH w/ SA

H
yb

. [207] BLSTM+LFMMI 9.6 – 19.3 –
[285] Hybrid+LSTMLM 8.3 – 17.3 –

E
nd

-t
o-

E
nd

[183] LAS (LSTM-based) 11.2 7.3 21.6 14.4
[284] Shallow Transformer 16.0 11.2 30.5 22.7
[284] LSTM-based 11.9 9.9 23.7 21.5
[175] LSTM-based 12.1 9.5 22.7 18.6

+SpecAugment +Stretching – 8.8 – 17.2

O
ur

s

Deep Transformer (Ours) 10.9 9.4 19.9 18.0
+SpeedPerturb – 9.1 – 17.1

Deep Relative Transformer (Ours) 10.2 8.9 19.1 17.3
+SpeedPerturb – 8.8 – 16.4

With spectral augmentation, the improvement from relative attention
is still noticeable, further reducing WER from 9.4 to 8.9, and 18.0 to
17.3 from the baseline (the relative gain on CallHome is kept at 4%).
This is second only to [183], the state-of-the-art on this benchmark
at 7.3 and 14.4; however their models use an aggressively regularized
training regime on multiple TPUs for 20 days. Other end-to-end
models [284, 175] using single GPUs showed similar behavior to
ours with SpecAugment. Finally, with additional speed augmentation,
relative attention is still additive, with further gains of 0.3 and 0.7
compared to our strong baseline.

The experiments on the larger dataset with 2000h follow the above re-
sults for 300h, continuing to show positive effects from that relative po-
sition encodings. The error rates on those SWB and CH decrease from
6.5 and 11.9 to 6.2 and 11.4 (Table 3.5). Our best model is significantly
better than previously published CTC [11] and LSTM-based [175]
models, and approaches the heavily tuned hybrid system [89] with
dense TDNN-LSTM. It is likely possible to reach better error rates,
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Table 3.5: ASR: Comparison on 2000h SWB+Fisher training set and Hub5’00 test sets.
Absolute best is bolded, our best is italicized. WER↓ .

Models SWB CH
H

yb
ri

d [207] Hybrid 8.5 15.3
[225] Hybrid w/ BiLSTM 7.7 13.9
[89] Dense TDNN-LSTM 6.1 11.0

E
nd

-t
o-

E
nd [11] CTC 8.8 13.9

[175] LSTM-based 7.2 13.9

Deep Transformer (Ours) 6.5 11.9
Deep Relative Transformer (Ours) 6.2 11.4

with the help of ensemble models, further data augmentation, and
language models. Our experiments here, however, show that the novel
relative model is consistently better than the baseline, regardless of the
data size and augmentation conditions.

3.5 Conclusion

In this chapter, we described the deep stochastic Transformer models
applied for large vocabulary speech recognition. The core structure
contains self-attention based neural networks stacked for many layers
to enhance the representation power. In order to facilitate training
these deep networks up to even 60 layers, it is crucial to use stochastic
layers by allowing layers to randomly involve in the network during
training, but all layers are presented during evaluation, and allowed us
to tame the deep Transformer networks which are slow and difficult to
train [189]. Using this approach, we were able to compete with previ-
ous works using CTC-based and hybrid HMM models. In the noisy
CallHome testset, our models are able to improve over a competitive
baseline with LSTM-based hybrid models.
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3 Deep Transformers for ASR

Noticing the design of Transformer is not ideal for speech processing
due to using absolute position encodings, while we should take into
account the relative distance between speech features, we proposed
to use Relative Positional Encodings for each attention layer to better
measure the similarity between states in the self-attention mechanism.
Using this modeling scheme together with a high amount of data from
Fisher helped improve the performance on the conversational bench-
mark even further. Later, we can show the impact of this modeling
choice in speech translation, in which alignment quality can badly
affect performance.

Followed impacts Following our works, Transformers have be-
come the standard architecture for end-to-end speech recognition,
beside another popular choice of TDNN-LSTM-based architecture in
which the encoder is a mixture of TDNN (for downsampling the speech
signals) and multi layers of LSTM for representation learning [183,
114] and the two models can trade blow in experiments [175]. The
combination of the two models can reach a super human performance
in speech recognition under a low-latency constraint [174]. Other
works also improve upon the Transformers with other architectural
enhancement. Conformers [80] include an additional point-wise con-
volution between the self-attention layers and the feed-forward neural
networks layers, or Branchformers [186] that design branches of convo-
lution and self-attention in the networks. Training an end-to-end model
can also be combined with CTC by using both of the loss functions,
the CTC loss function at the end of the encoder representations and
the cross-entropy loss per timestep for the decoder component [130,
275].

On the other hand, Transformers have become the core of speech
representation models for many tasks, especially with unsupervised
learning and self-supervised learning. Models such as wav2vec [14]
or HuBERT [106] use Transformer as the backbone architecture com-
bined with contrastive learning, so that the Transformer output rep-
resentations can be clustered into meaningful clusters (such as with
codebooks) and downstream speech processing tasks can benefit from
initializing the parameters after the self-supervised learning process.
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3.5 Conclusion

In the next chapter, the self-supervised learning models are one of the
ingredients helping us in advancing multilingual speech recognition.
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4 Multilingual ASR with
Weight Factorization

After the previous chapter, we have shown that end-to-end speech
recognition is possible with a powerful neural sequence-to-sequence
model such as a deep Transformer network, with the performance being
competitive with the previous approaches. An important outcome from
this line of research is the elimination of the mandatory lexicon in the
statistical pipeline. Because of how difficult such resource can be
gathered in other languages, especially for many languages that are
morphologically rich such as Finnish and German compared to the
ubiquitous English. Without a lexicon, the workflow of constructing a
speech recognition model for different languages would become more
language independent.

In the past, adapting a speech recognition recipe [208] to languages
different than English was challenging. Not only are pronunciation
dictionaries required, but the raining process also relies on certain
language specific configuration imbued in context-dependent phoneme
clustering in building HMMs. The end-to-end approach merely re-
quires an acoustic input and and a flexible character level or byte-pair
encoding of the text [234] to quickly bootstrap a system.

As there are many languages being spoken in the world, there are
two main benefits of constructing a speech recognizer that can recog-
nize multiple languages at the same time (multilingual system). First,
building monolingual systems requires a lot of effort and it is more
industrially efficient to use one single pipeline on a dataset contain-
ing different languages. The multilingual pipeline, at best, can be
indifferent than training a system for one single language and will
result in economical benefits. Second, different languages may sound
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total differently, yet still share acoustic features. For example people
who speak Spanish or Portuguese can find Italian familiar in terms
of pronunciation. Such similarity can be learnt from the data using
representation learning algorithms such as deep neural networks and
can theoretically benefit low-resourced languages.

On this front, the thesis has two main contributions to multilingual
speech recognition. First, the novel weight factorization method is
proposed to adapt neural architectures in multilingual settings. This
method is devised based on the pure observation of the main com-
ponent of neural networks which is feature projection in the form of
matrix multiplication. Instead of using customized neural components
as language specific modules as often implemented in the literature,
this method can be the unified approach to factorize a network into
shared weights and language specific weights. In terms of methodol-
ogy, the method can be the superset of other language specific module
approaches in the literature, and it is also proved to improve the perfor-
mance in large scale multilingual experiments.

While weight factorization helps the model have a better weight dis-
tribution for each language to more efficiently use the resources and
avoid the unbalancing problem when the the distribution of languages
is not uniform, it is still undesirable that all of the weights are trained
from scratch. This brings two disadvantages: there is no clear instruc-
tion for the model to focus the information on the shared components
in the factorization, and it is generally difficult to optimize a large
and complex network. The second contribution in turn is to apply
transfer learning to alleviate these weaknesses. Transfer learning is the
practice of using weights for another network with the same or similar
architecture that has experienced unsupervised pre-training, a train-
ing method applicable when there is an abundant source of unlabeled
data. This method has been widely applied in computer vision [139],
language models [50, 49, 28] and recently audio data [14, 226] under
the form of learning to reconstruct or structured prediction. Thanks
to the advantage of weight factorization being architecture agnostic, it
is trivial to initialize a network with pre-trained components and then
add factorized language-specific components. In this work, due to the
nature of sequence-to-sequence learning being a conditional language
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model, it is possible to combine two different pre-training architectures
for the input modality (audio) and output modality (text). In such case,
the factorized weights would act as a adaptor to guide the model in
each respective language.

Respectively, we investigated the effectiveness of using two pretrained
models for these two modalities: wav2vec 2.0 for audio and MBART50
for text, together with the adaptive weight techniques to massively
improve the recognition quality on the public datasets containing Com-
monVoice and Europarl. Overall, we noticed an 44% improvement
over purely supervised learning, and more importantly, each technique
provides a different reinforcement in different languages. We also ex-
plore other possibilities to potentially obtain the best model by slightly
adding either depth or relative attention to the architecture.

But before going into the details, the next section is dedicated for
the literature. Before the rise of the end-to-end neural models, there
were various attempts of combining different corpora to train one
multilingual model, but most of them are limited by either methodology
- the statistical approach being not friendly for multilingual setups -
or insufficient data. But the previous works always left us important
suggestions to design newer systems.

4.1 Multilingual ASR literature

Multilingual speech recognition indicates the construction of one single
speech recognition system that is capable of generating transcriptions
for many languages. It is notable that, the statistical approach would
require at least two models (acoustic and language models) so the
definition also includes the use of single acoustic and language models
in the system. The overall concept of multilingual ASR is to enable
the system to receive multilingual inputs, and give the transcript output
in the corresponding language.
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Figure 4.1: Multilingual ASR concept. On the left hand side, the previous approach
requires many intermediate components to be multilingual, such as the pronunciation
dictionary, a multilingual acoustic model towards the common phoneme set, and a
multilingual language model. On the right hand side, the end-to-end approach only
requires a shared vocabulary between the languages, while it is capable of mapping the
acoustic input directly to the textual output.

4.1.1 Multilingual ASR with the statistical
approach

Due to the availability of data, statistical speech recognition was mainly
developed for English. When the method was also sufficiently devel-
oped for other languages, such as systems developed by IBM [41],
Dragon [20], BBN [25], Cambridge [278], Phillips [54], MIT [70]
and LIMSI [143], it was observed that the knowledge from an English
system can be transferred to diverse languages like German, Japanese,
French and Mandarin Chinese. Such observation illustrated that the
method can generalize across languages and different languages can
hold similar modeling assumptions. This observation later on, is es-
pecially applicable for the neural end-to-end approach thanks to the
high level representations replacing discrete pipelines in the statistical
approach. In contrary, the statistical approach heavily relied on the
pronunciation dictionary which is an indispensable knowledge in the
modeling process. Multilingual systems, therefore, require a Global
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phone system using an unified phone system [227]. The reason here
is that the acoustic model has to learn the likelihood of generating
observation from phone states (in GMM-based acoustic models) or
generating phone states from observation (with neural acoustic mod-
els). In a multilingual system, it is only meaningful to have a shared
component implying in that the same modeling component is exposed
to learn from different languages, otherwise the system is simply com-
posed by a set of separated models assigned for each language.

Despite the advantage that the global phone system can be used to adapt
for an unseen language with an existing pronunciation dictionary [229],
it is obvious that the application for this system is heavily limited. Not
only is it difficult to obtain a lexicon for a variety of languages, it is
also challenging to have a widely-coveraged lexicon for languages
that are morphologically rich such as German, Finnish, Czech. The
global phone system also requires further efforts for languages that
have a different acoustic systems than English/Romance family such
as Asian languages. Different resources also have different alphabets
such as WorldBet [95] or International Phonetic Alphabet (IPA) [142]
and require further efforts to convert between symbols.

After the concern about the global phone system, the separation of
acoustic/language models is also a problem when constructing mul-
tilingual speech systems. Early works often focused on one aspect
of acoustic modeling while assuming that language models are given
for the involved languages [228]. As a results, the earlier multilingual
attempts often involved bootstrapping new systems using the parame-
ters of a system from another language [265] resulting in a reduction
of training time [245]. Specifically, the parameters of the Gaussian
Mixture Models or the Neural Networks that estimate the emission
probabilities can be borrowed to the next language as the starting point,
if the languages share the same phone set.

The statistical approach also exhibits a high difficulty in multilingual
modeling. Early works suggest that decoupling the models into lan-
guage independent and dependent components [230]. However. due to
the inflexiblity of the Gaussian Mixture Models and the dependence on
a global phone system, this concept was difficult to execute and benefit.
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For example, it was implemented in Subspace Gaussian Mixture Mod-
els [205] due to the property of this model as reducing the complexity
of Gaussian Mixtures. Instead of typical GMMs that represent HMM
states with a large number of parameters, the Subspace GMMs con-
strain the parameters to live in a relatively low dimension sub-space
which is common to all the states. Using an observation that the variety
of distributions corresponding to the voice of human articulatory tract
is quite limited, SGMMs can use a compact representation to avoid
overfitting that often happens with GMMs. When applied in a multilin-
gual scenario, the shared parameters in the SGMMs can be trained on
the multilingual data to benefit languages with limited resource [250,
29, 152]. However, the practical benefit of a multilingual setup is
very limited in terms of reducing word error rate, when the relative
improvement was often less than 5%.

Deep neural networks gradually replaced GMMs in the acoustic mod-
els. Sharing the neural parameters between languages proved to be
b eneficial in the large scale multilingual experiment with 11 lan-
guages [92] when Catalan could benefit up to 10% using a multilingual
acoustic model. However, since the language model remained mono-
lingual, it was arguable that the language model is the performance
bottleneck in the whole system and needs the same treatment with the
acoustic model, as can be seen from the improvement of using a recur-
rent neural network language model instead of statistical ngrams [164].
In a similar manner sharing the bottleneck features [78] - a technique
that learns high level representation as input features for GMMs -
also yields little benefit in a multilingual setting. The experiences
of the multilingual attempts with the statistical approach indicated
that multilingual speech recognition would benefit the most in the
end-to-end models when the restriction of global phone systems and
language/acoustic model separation is removed.

4.1.2 Multilingual ASR with the end-to-end
approach

The main difference between the two approaches is described in fig-
ure 4.1. The separated nature of the previous approach is not multi-
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lingual friendly, especially on the multilingual phoneme representa-
tion. Due to the difficulty of obtaining a widely covered pronuncia-
tion dictionary for many languages, exotic methods such as multilin-
gual grapheme-to-phoneme models [280, 217] being able to generate
phonemes for arbitrary words are considered, however unfruitful with
the risk of error. Subsequentially, the availability of end-to-end mod-
els made way for various research works about multilingual speech
recognition. Early works attempted to apply CTC models and quickly
realized two observations [171]:

• unlike the previous reports in GMM-HMM/hybrid systems, the
performance of a single model is not necessarily better than
monolingual systems. The gap is especially observable for the
high-resource languages in the mixed dataset.

• the gap between multilingual models and monolingual
counterparts is quickly shortened by increasing the model size
of the multilingual models. This observation goes in line with
previous multilingual research using deep neural networks for
hybrid-HMM systems.

The second observation indicates that the models are under-parameterized
or inefficiently constructed in contrast to the GMMs that are often over-
parameterized. In fact, the size of the GMMs are often restricted by
either feature reduction or subspace GMMs [205, 29]. Later on, this
problem has been investigated further by scaling the experiments in
terms of model sizes and data size. At the point of having 16, 000 hours
of data coupled with models of billions of parameters, the multilingual
models can even exceed the performance of the monolingual systems,
especially in the low-resourced languages [209]. It is notable that the
“billion parameter” is a relative estimation, while a neural network
capacity is more accurately described with the number of layers and
the number of hidden neurons per layer.
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4.2 Weight factorization for multilingual
neural networks

It is noticeable that the recent multilingual neural models are based
on a semi-shared mechanism in which the largest body of the network
architecture is exposed to all languages, while a smaller weight subset
provides a language specific bias. This was shown to be more effective
in a multilingual scenario than fully sharing the whole network[85,
123] since each language has certain unique features, and the single
architecture often struggles to handle a variety of languages [201].

There are two main drawbacks that are typically presented in the exist-
ing implementations of the semi-shared mechanism. On the one hand,
the implementations often depends heavily on a certain architecture
being popular at the time, and the given improvement is going to be
diminished when a new architecture evolves and the proposed archi-
tectural adaptation cannot be implemented on the new architecture.
For example, the language-specifically biased attention [291] modified
the self-attention architecture [255] specifically based on the assump-
tion that each language can benefit from a bias added to the attention
scores. They cannot be applied for models that abstract the attention
scores by bypassing the expensive computation of these terms, such
as FAVOR+ [38] or linear attention [129] whose purpose is to reduce
computational cost for expensive Transformers. On the other hand, the
language-dependent components might require a considerable amount
of parameters and struggles to scale to the number of languages. For
example, the language adapters added to the Transformer layers [19]
are essentially feed-forward neural network layers being similar to the
counterpart already in the shared Transformer body. A scenario with 20
languages consequently generates hundreds of these layers accounting
for a large amount of parameters to be optimized. Adapters, however,
remain to be one of the favourite methods in using specific models to
control the desire language or task [105] in language processing.

In turn, the contribution of thesis is to address these two problems by
proposing a multilingual architecture using a factorization scheme that
is both effective and highly scalable with the number of languages
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involved. Moreover, this scheme is applicable to any neural architec-
tures as long as matrix-vector multiplication is the dominant operation.
The key idea of our work is that each weight matrix in the shared
architecture can be factorized into a shared component and multiple
additive and multiplicative language dependent components. While
each language is assigned with extra weights to learn distinctive fea-
tures, simplicity and scalability are achieved by further representing
those weights into as a rank-1 matrix, thus can be factored into two
vectors. This method is demonstrated to be computational friendly
with a minimal overhead and can be applied to a arbitrary neural
architecture.

Model description A neural speech-to-text model transforms a
source speech input with 𝑁 frames 𝑋 = 𝑥1, 𝑥2, . . . , 𝑥𝑁 into a target text
sequence with 𝑀 tokens 𝑌 = 𝑦1, 𝑦2, . . . , 𝑦𝑀 . The encoder transforms
the speech input into higher level feature vectors ℎ𝑋1...𝑁 . The decoder
jointly learns to generate the output distribution 𝑜𝑖 based on the previ-
ous target tokens 𝑦1, 𝑦2, . . . , 𝑦𝑀−1 while looking for the relevant inputs
from the input via the attention mechanism [15, 255].

ℎ𝑋1...𝑁 = 𝐸𝑁𝐶𝑂𝐷𝐸𝑅(𝑥1 . . . 𝑥𝑁 ) (4.1)

ℎ𝑌𝑖 = 𝐷𝐸𝐶𝑂𝐷𝐸𝑅(𝑦𝑖 , 𝑦1...𝑀−1) (4.2)

𝑐𝑖 = ATTENTION(ℎ𝑌𝑖 , ℎ1...𝑁 ) (4.3)

𝑜𝑖 = SOFTMAX(𝑐𝑖 ∗ ℎ𝑌𝑖 ) (4.4)
𝑦𝑖+1 = 𝑠𝑎𝑚𝑝𝑙𝑒(𝑜𝑖 ) (4.5)

Notably, there is a large variety of model architectures that implement
this Encoder-Decoder design. The core networks in the encoder and
decoder range from LSTM [16], convolution/TDNN [68, 289] to self-
attention [199] or even a mix of the above [80]

The universal multilingual framework [85, 123] employs a single
model to learn on a joint training dataset containing multiple languages,
which is different than the predating multi-way Encoder-Decoder ap-
proach [61].
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Multilingual weight composition It can be seen that, the com-
mon ground of the aforementioned architectures is the usage of linear
combinations of lower level features 𝑋 ∈ 𝑅𝐷 which can be expressed
as the matrix multiplication between input 𝑋 and a weight matrix𝑊 .
For example, the LSTM contains four different projections for its for-
get, input, output gates and candidate content [102], as can be seen in
Equation 4.6.

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 ⊤
𝑓 𝑥
𝑋𝑡 +𝑊 ⊤

𝑓 ℎ
𝐻𝑡−1 + 𝑏 𝑓 ) (4.6)

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 ⊤
𝑖𝑥𝑋𝑡 +𝑊 ⊤

𝑖ℎ
𝐻𝑡−1 + 𝑏𝑖 ) (4.7)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊 ⊤
𝑐𝑥𝑋𝑡 +𝑊 ⊤

𝑐ℎ
𝐻𝑡−1 + 𝑏𝑐 ) (4.8)

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊 ⊤
𝑜𝑥𝑋𝑡 +𝑊 ⊤

𝑜ℎ
𝐻𝑡−1 + 𝑏𝑜 ) (4.9)

Similarly, the main components of the Transformer layers are self-
attention layers and feed-forward layers. While the latter are funda-
mentally two layers of linear projections, the former is also comprised
of linear projections that generate queries𝑄 , keys 𝐾 and values𝑉 from
the input 𝑋 :

𝑄 =𝑊 ⊤
𝑄 𝑋 (4.10)

𝐾 =𝑊 ⊤
𝐾 𝑋 (4.11)

𝑉 =𝑊 ⊤
𝑉 𝑋 (4.12)

𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡 (𝑋 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾⊤)𝑉 (4.13)

The main idea here is that each matrix multiplication 𝑌 = 𝑊𝑇𝑋 in
the multilingual model can be decomposed into a function of shared
weights 𝑊𝑆 and additional language dependent weights 𝑊𝑀𝐿 and
𝑊𝐵𝐿

𝑌 = (𝑊𝑆 ·𝑊𝑀𝐿 +𝑊𝐵𝐿)⊤𝑋 (4.14)
= (𝑊𝑆 ·𝑊𝑀𝐿)⊤𝑋 +𝑊 ⊤

𝐵𝐿𝑋 (4.15)
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Here the added weights include the first multiplicative term𝑊𝑀𝐿 that
directly change the magnitude and direction of the shared weights𝑊𝑆

and the biased term𝑊𝐵𝐿 provides the network with a content-based
bias depending on the input features 𝑋 . Each language maintains
a distinctive set of 𝑊𝑀𝐿 and 𝑊𝐵𝐿 so that the whole architecture is
semi-shared.

Figure 4.2: Weight factorization diagram. The per-language black and white parame-
ters combine with the shared weight matrix to generate the specialized weight matrix𝑊
to transform input 𝐼 .

Factorization for language-specific weights There is, how-
ever, an obstacle that both𝑊𝑀𝐿 and𝑊𝐵𝐿 require to be the same size
with𝑊𝑆 , which makes the language dependent weights dominate the
shared weights, while the intuition is the opposite. Fortunately, it is
possible to use rank-1 matrices 𝑊̄ ∈ 𝑅𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 that can be factorized
into vectors [269, 277], for example with two vectors 𝑟 ∈ 𝑅𝐷𝑖𝑛 and
𝑠 ∈ 𝑅𝐷𝑜𝑢𝑡 such that 𝑊̄ = 𝑟𝑠⊤ which reduces the number of parameters
from 𝐷𝑖𝑛 × 𝐷𝑜𝑢𝑡 to 𝐷𝑖𝑛 + 𝐷𝑜𝑢𝑡 .

One drawback in this method is the lacking representational power of
Rank-1 matrices. One solution is to modify the factorization into using
𝑘 vectors per language so that there are 𝑘 independent weight factors
followed by a summation, which increases the rank of the additional
weight matrices.

𝑊̄ =
𝑘∑︁
𝑖

𝑟𝑖𝑠
⊤
𝑖 (4.16)
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Computational cost The factorization above is applied to both
𝑊𝑀𝐿 and 𝑊𝐵𝐿 to ensure that the dominated force is still the shared
weights, while each language at 𝑘 = 1 is characterized by an additional
𝐷𝑖𝑛+𝐷𝑜𝑢𝑡
𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 amount of weights. In a typical network architecture with
𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 being typically 512 − 2048, this amounts for 0.1 − 0.3
percents of the total network’s weights per language, therefore scalable
to hundreds of languages while maintaining a reasonable cost1.

About the time complexity, the amount of extra computation comes
from generating the combinatory weight𝑊 from𝑊𝑆 and the multi-
plicative/bias terms𝑊𝑀𝐿 and𝑊𝐵𝐿 . Fortunately, this overhead coming
from element-wise multiplication and addition is rather small com-
pared to the matrix multiplication. More importantly, it is possible to
utilize the optimized implementation of the original network2 which
minimizes the computational requirements of our approach.

Using a similar approach for Bayesian modeling, [269] proved that
𝑊 does not have to be explicitly computed by multiplying 𝑟 and 𝑠
vectors to the input and output of the linear layer respectively, but their
approach required to rewrite the graph operation for the core networks
in popular deep learning frameworks.

4.2.1 In comparison to Related Works

In the world of speech recognition, training a single recognizer for mul-
tiple languages is not a thematic stranger [265] from Hidden Markov
Model (HMM) based models [29, 152], hybrid models [92] to end-to-
end neural based models with CTC [170, 131] or sequence-to-sequence
models [252, 291, 290, 2, 126, 149], with the last approach being in-
spired by the success of multilingual machine translation [85, 123].
The literature especially mentions the merits of disclosing the lan-
guage identity (when the utterance is supposed to belong to a single

1 In practice this amount is even lower due to the weights in other parts of the network
being not factorizable, such as the word embedding layers that account for a large
portion of the network

2 such as the CUDA implementations of LSTM and Self-Attention
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language) to the model, whose architecture is designed to incorporate
the language information.

One of the manifestations is language gating from either language
embeddings [131] or language codes [170, 169] that aim at selecting
a subset of the neurons in the network hidden layer. In our current
approach, this effect can be achieved by factorizing further Equa-
tion 4.15 [269]:

𝑌 = (𝑊𝑆 ·𝑊𝑀𝐿)⊤𝑋 +𝑊 ⊤
𝐵𝐿𝑋 (4.17)

= (𝑊𝑆 · (𝑟𝑚𝑠⊤𝑚)⊤𝑋 + (𝑟𝑎𝑠⊤𝑎 )⊤𝑋 (4.18)
= (𝑊 ⊤

𝑆 (𝑋 · 𝑠𝑚) · 𝑟𝑚) + (𝑟𝑎𝑠⊤𝑎 )⊤𝑋 (4.19)

In Equation 4.17, the multiplicative matrix𝑊𝑀𝐿 is factorized by two
vectors 𝑟𝑚 and 𝑠𝑚 . The left hand size of Equation 4.19 shows us that the
those vectors can be learned to gate the input vector 𝑋 and the output
of the linear projection (𝑊 ⊤

𝑆
(𝑋 · 𝑠𝑚). This intuition also suggested

us to initialize 𝑟𝑚 and 𝑠𝑚 to one-vectors similarly to normalization
techniques [111, 12]. Since layer normalization often comes before
the linear projection layers in Transformers, this scheme also helps
our model to generalize to assigning to each language a different
normalization scale and variance [287].

On the other hand, the right hand side of Equation 4.19 gives us the
bias to the linear projection which has been used in either language
embeddings [209] and customized attention layers with language bi-
ases [291].

A different line of research involves using language code [170] to
differentiate language coming from a separate classifier. The language
code is often trained separately and then mixed into the ASR archi-
tecture later [169] giving the lingual bias. Our method can provide
a similar effect with end-to-end training and without architectural
modification. The advantage of this method is to exploit unlabeled
(transcript-wise) data to gather language-specific information.

Architecture wise, [19] makes the network language aware using
language-dependently adaptive feed-forward layers at the end of each
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Transformer block. While this method is able to be effective in transla-
tion [200] and speech recognition scenarios [291], it requires a con-
siderable amount of parameters per language3 and probably becomes
incompatible with future architectures because it is specifically de-
signed for Transformers.

The closest to our work is the parameter generator [201] that com-
poses a weight matrix 𝑊 ∈ 𝑅𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 using a shared tensor 𝑊𝑆 ∈
𝑅𝐷𝑖𝑛×𝐷𝑜𝑢𝑡×𝐷𝐿 and a language embedding vector 𝐿 ∈ 𝑅𝐷𝐿 . The main
disadvantage with that approach is that the amount of parameters lin-
early scales in the size of the language embedding 𝐷𝐿 , and the whole
body of parameters participates in every language. Our initial exper-
iments cannot produce a reasonable result for a straight comparison,
partly because the memory is quickly overwhelmed by the number of
parameters.

For a larger context, weight factorization has been investigated to gen-
erate distinguishable yet cheaper copies of an existing network to allow
for economical ensembles [269], Bayesian networks [57] or continual
learning without catastrophe forgetting [277]. Similar ideas to use
different weights for different languages have been investigated early
on by [88, 261, 87] to rapidly adapt the system for different acoustic
units, in which the idea of using frozen representation and adding new
freely connected neurons (connectionist glue) [86]. Networks can also
be expanded in a hierarchical way using mixture of experts [63], in
an attempt to improve the HMM-based models that require tree-based
models to cluster phonemes.

Application of factorization for neural ASR models Weight
factorization can be effortlessly applied in both of the popular archi-
tectures for end-to-end ASR: the Long Short-Term Memories and the
Transformer models.

The main structure of LSTMs is constructed based on four “gates” that
control the information flow between the current inputs and the past

3 Each feed-forward component accounts for around 25% the amount of parameters of
each encoder block.
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memory states. Each gate consists of two linear projection matrices
mapping the inputs and the previous short term hidden states, and
these projection matrices can be factorized. Bi-directional LSTMs
employ two recurrent cells that run in two directions, so the number of
parameters doubles compared to an unidirectional LSTM. In that case,
there are 8 projection layers to factorize for multilingual learning.

On the other hand, Transformers have blocks of transformation layers
with the main components being self-attention layers, cross-attention
layers between decoder and encoder layers, and feed-forward neu-
ral networks. Each of these layers can be effortlessly factorized as
follows:

The self-attention layer is characterized by a number of different linear
projection, given an input 𝐼 ∈ 𝑅𝑇×𝐷 with length 𝑇 and number of
features 𝐷 .

• 𝑄 =𝑊𝑄 𝐼 + 𝑏𝑄

• 𝐾 =𝑊𝐾 𝐼 + 𝑏𝐾

• 𝑉 =𝑊𝑉 𝐼 + 𝑏𝑉

• 𝐴 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 )

• 𝐶 = 𝐴𝑉

• 𝑂 =𝑊𝑂𝐶 + 𝑏𝑂

The first three matrix multiplications creates queries, keys, values for
the attention formulation by 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(𝑄𝐾𝑇 ) and the context vector𝐶 =
𝐴𝑉 . The output is the linear projection of𝐶. The matrix multiplications
with parameters 𝑊𝑄 , 𝑏𝑄 and 𝑊𝐾 , 𝑏𝐾 and 𝑊𝑉 , 𝑏𝑉 and 𝑊𝑂 , 𝑏𝑂 can be
factorized. The cross-attention layers have the only difference in
which the inputs of 𝐾 and 𝑉 are replaced by the encoder outputs.

The feed-forward neural networks are fundamentally two linear pro-
jections with an activation function upon an input 𝑋 ∈ 𝑅𝑇×𝐷 :

• 𝐻1 = 𝑅𝑒𝐿𝑈 (𝑊1𝑋 + 𝑏1)

• 𝐻2 =𝑊2 + 𝑏2
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In the situation 𝑋 is batched, then the batch dimension and time di-
mension is group together as a single dimension for the matrix multi-
plication. The parameters𝑊1 and𝑊2 are factorized. With a common
setting that quadruple the feature size of 𝐻1 compared to 𝑋 , a Trans-
former encoder layer has similar number of parameters compared to
an unidirectional LSTM layer with the same input size.

4.3 Experiments

Datasets The effects of the weight factorization methods are mea-
sured on datasets publicly available including Mozilla Common Voice [8]
containing up to 27 languages, Euronews [76] and Europarl-ST [112]
having 4 and 9 languages respectively. The preprocessing steps include
converting audio into 40-dimensional feature frames, and generating
BPE for each language with 256 codes each. Only Japanese and Chi-
nese are handled at character level4. All of the three mentioned datasets
come with the predefined validation and test partition, which are used
in our experiments.

Two experimental scenarios are investigated in our work: initially
we work on a set of 7 European languages: German (de), Italian (it),
Spanish (es), Dutch (nl), French (fr), Polish (pl) and Portuguese (pt)
each of which contain at least 60 hours of training data. The second
scenario later expands to a total of 27 languages of more origin and
diversity.

Model and Training description The experiments are conducted
with two model architectures, two of which are commonly used in end-
to-end speech recognition [284]: a) LSTM-based Encoder-Decoder
networks [183] in which the LSTMs have 1024 hidden units and the
encoder is downsampled using two 3 × 3-filter convolutional layers,
and b) Transformer networks [255] with relative attention [197] with

4 Our initial experiments with joined BPE gave worse results for the 27-language
dataset
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weight factorization for this multilingual setup. For the Transformer,
we use the Transformer-Big configurations in [255] with model size
1024 but with 16 encoder layers with stochastic layer dropout with the
same setting as in [199]. We found that using 𝑘 = 4 for the additive
biases and 𝑘 = 15 for them multilingual biases is sufficient.

All models are trained on single GPU by grouping a maximum 45, 000
frames per mini-batch6, and the gradients are updated every 16 mini-
batches with adaptive scheduling in [255] using the base learning rate
1.57 and 4, 096 warm-up steps. The inputs are masked with SpecAug-
mentation [183]. Given the large configuration, we train all models
up to 150, 000 updates or up to 2 weeks. It is notable that the fac-
torized versions have minimal overhead which results in a 10 − 15%
training speed reduction, while the adapter method requires at least
33% more.

Baseline models The comparison in the upcoming result section
involves two previous works that were re-implemented. First, the
language embedding was concatenated to the speech features and word
embeddings at the encoder and decoder respectively which was used
in [209]. Second, the language dependent adapters [19] were used. In
this case, we use adapters in the form of feed-forward networks with
1, 024 neurons in the hidden layer. While theoretically the language
embedding is a subset of our factorized network because the former
is essentially a small set of weights dedicated for each language, the
adapter network is fundamentally different because it requires extra
layers, adding depths and nonlinearity levels to the overall architecture,
while our factorization scheme keeps the interaction between inputs
and weights unchanged.

5 Partly because the initialization is desired to be 1.0
6 speech inputs are often longer than their transcriptions, so grouping mini-batches by

frames is more efficient
7 The actual learning rate maximizes at around 0.001 and gradually decreases over the

course of training
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4.3.0.1 Experiments with 7 languages

The word error rates for each language using two baseline models (with
Transformer (TF) and LSTM), their factorized versions and the TF with
adapter [19] are shown in Table 4.1. Averaged over the 7 languages,
the error rate is reduced by 15.5% and 7.2% rel. for the Transformer
and LSTM respectively, and the improvement is significant across
languages, unlike the Adapter technique which manages to reduce the
error rate for 4 languages but is not better for the other languages.

Regarding the number of parameters, the Transformer and its factorized
variation has twice as many parameters as the LSTMs, thus possibly
explaining the improvement regarding performance. While this seems
to contradicts the large number of parameters for the ADT model
that needs 42% more space than the factorized TF, the ADT actually
adds more depth (2 per TF block). This is a significant change to the
architecture because with layer normalization, all languages share the
same layer mean and variance at each level, while this is not changed
with the adapter.

Experiments with 27 languages Under this condition, the fac-
torization method maintains the improvement across all languages,
with overall 26% rel. WER reduction in average for Transformer and
27.2% rel. for LSTM, as summarized in Table 4.2. Importantly, the
factorized models are effective while using only 15% more parame-
ters, while the ADT Transformer needs almost 1 billion parameters to
achieve a 21.2% rel. improvement, due to each language requiring 2
more layers per block.

While the most resourceful languages such as German, Italian, Span-
ish and French observe the similar improvement compared to the
7-language experiment, the lower resource counterparts are often im-
proved significantly compared to the baseline, regardless of the model
architecture. The error rates on Japanese and Latvian testsets were
decreased by 48% rel. compared to the base Transformer, and multi-
ple languages were improved by 30% rel. including Arabic, Br, Cnh,
Cv and Ta. The only language that remains a relative high error rate
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is Dhivehi, in this case staying over 60% regardless of the architec-
ture. One explanation for the large improvements regarding lower
resource languages is that, the language weights are only learned to
optimize for those particular languages, while the shared weights are
frequently changed attempting to optimize all different language/task
losses. This problem is often alleviated using learnable and weighted
sampling [267] to help the gradients remain stable for the less fre-
quently visited languages.

A direct comparison between two Transformer variations shows that
the factorization is consistently better in 21 languages and the adapters
yielded better results in 6, given the same time and computational
constraints. While it is also possible for the adapters to obtain better
performances by longer training, the presented results provide evi-
dences that our proposed factorization scheme is able to outperform
both the baseline and the deeper language adapter network without
extensive tuning and with reasonable resources.

Table 4.1: Comparison on the 7-language dataset (WER↓). Our baseline models
include the Transformers (TF), LSTM and their factorized (FTR) variations respectively.
The last column is the Transformer with Adapter (ADT) [19].

Language TF +FTR LSTM +FTR ADT

# Params 335M 350M 167M 172M 497M

de 15.78 14.62 15.75 15.53 14.71
es 16.06 13.47 14.66 14.09 14.81
fr 17.34 16.26 17.35 16.44 16.76
it 18.62 15.82 16.65 15.63 17.58
nl 26.61 22.33 24.18 22.57 31.84
pl 20.4 15.7 16.39 15.28 20.65
pt 25.8 19.3 23.21 19.49 25.19

Mean 20.08 16.97 18.31 17.00 20.2
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Table 4.2: Comparison on the 27-language dataset. The models being shown include
Transformers (TF), LSTM (TF) and their factorized versions (FTR). WER↓ .

Language Hours TF +FTR LSTM +FTR ADT

# Params 355M 416M 177M 194M 980M

(ar) 49 26.2 17.81 28.73 20.02 16.56
(br) 7 51.85 34.69 71.53 40.49 40.21
(cnh) 2 52 38.33 62.19 36.59 55.18
(cv) 4 53.88 33.11 61.61 39.6 38.40
(de) 850 16.89 15.62 19.89 16.59 16.35
(dv) 18 71.63 63.72 80.18 64.82 65.23
(es) 400 16.05 14.53 18.41 14.82 15.27
(et) 19 33.95 30.43 39.63 34.26 28.12
(fr) 700 18.61 17.24 20.86 17.43 17.87
(ia) 6 49.86 33.24 48.39 31.96 42.40
(id) 9 28.78 17.28 32.9 20.22 22.79
(it) 250 20.76 18 21.99 18.07 19.60
(ja) 3 39.17 20.44 38.92 23.79 27.55
(lv) 6 66.17 34.3 66.66 37.93 43.57
(ky) 11 22.08 17.17 18.68 21.46 12.86
(mn) 11 42.03 35.03 46.42 38.5 34.12
(nl) 90 27.54 23.75 29.44 23.93 28.30
(pl) 120 21.81 17.8 19.92 17.19 18.75
(pt) 80 25.16 21.38 27.13 21.37 22.82
(ro) 30 39.39 32.15 34.7 26.73 41.71
(sah) 4 57.47 50.47 69.04 49.2 55.27
(sl) 5 49.73 22.01 48.92 29.66 20.77
(ta) 14 33.1 22.34 18.87 28 16.36
(tr) 20 6.04 5.16 4.99 8.29 2.40
(tt) 26 24.96 22.12 38.03 24.07 21.83
(zh) 56 24.05 22.53 33.01 23.54 25.99

Mean 35.4 26.2 38.5 28.0 27.78

92



4.4 Combination of factorization and unsupervised learning

4.4 Combination of factorization and
unsupervised learning

Unsupervised learning in speech modality In the previous
section, the multilingual architecture based on weight factorization [193]
was proposed to more efficiently model the similarity as well as differ-
ence existing in a multilingual dataset.

However, the drawback of supervised learning is clearly seen in mul-
tilingual settings, as many languages are only poorly available. As a
result, despite such promising potential, end-to-end multilingual mod-
els inevitably requires abundant training data because this approach
combines acoustic models, language models and alignment into the
same model [16, 31]. In fact, the labeled data necessary for the task
is limited, and even more limited outside of English and other main-
stream languages, making building a reliable speech recognizer for
many languages even more challenging. One can even question if
sequence-to-sequence is a sustainable approach without fully utilizing
data as well as the hybrid systems.

On the other hand, the availability of unlabeled data is virtually unlim-
ited, and more importantly they can also be available under the form
of pretrained models. Since the release of Bidirectional Transformers
or BERT [50] with masked language model pretraining and its success
in applying for natural language processing, many Transformers [255]
based architectures have been the silver bullet to tackle low-resource
problems. Recently, in the speech domain, Transformers are also well
adopted in supervised learning [199, 197] and unsupervised pretraining
with contrastive predicting methods [226, 14]. Most importantly, these
models can be effortlessly trained on a multilingual dataset and acquire
the acoustic or syntactic information of many languages. Replacing
the components in an e2e model with the pretrained ones is trivial and
can potentially gain largely for multilingual recognition.

With the pretrained models available in our arsenal, this thesis set
out to explore the possibilities of combining them for multilingual
ASR. While the application wav2vec 2.0 and MBART50 individually
is ubiquitous and the combination of them has been observed in speech
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translation [150], to the best of our knowledge this is the first attempt
in multilingual ASR, especially in a large scale with many languages
with different data size.

More importantly, there are many improvements for the Transformers
over the years that improve either modeling long range dependencies
in self-attention [46, 197] or adaptive components for multilingual
models [19, 193]. It is promising to also combine these techniques
with the pretrained models for the best results.

With such motivation, we carried out experiments with 32 languages
ranging from high to very low resource and explore the possibilities of
using pretrained models. Our contribution is as follows:

• First, using multilingual pretrained acoustic and language
models for the encoder and decoder respective brings a large
improvement as a whole. However each pretrained module has
a different influence on different languages, namely encoder
pretraining is more impactful for languages with higher
resources while the decoder counterpart is more effective for
languages with medium-low resources. Surprisingly, many
languages with extremely low resource (less than 5 hours) do
not benefit much from this combination.

• Second, the language specific modulation techniques such as
language adapters [19] and factorized adaptive weights [193]
complement the two pretrained modules very well and have a
strong impact on especially the low-resource languages
mentioned above.

Moreover, there are different possibilities to integrate knowledge from
pretrained models, and it is not necessary by simply replacing com-
ponents. We also provided further analysis to the architecture, by
showing that there are benefits to either improving the self-attention
mechanism by adding relative positions during fine-tuning, or stacking
the MBART encoders to the wav2vec counterpart.

This is the continuation of the line of work building multilingual ASR
systems based on sequence-to-sequence neural networks [126, 209,
193]. The implementation is available for public at https://github.com/quanpn90/NMTGMinor
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providing a highly CUDA-optimized implementation for both wav2vec
and MBART which is potentially useful for the community.

Combination of weight factorization and transfer learning
Transformer encoders can be used to learn useful representation from
input masking and construction which is demonstrated in masked lan-
guage model [50]. Following this trend, they are inevitably applied
for audio signals, starting from learning to reconstruct the log-mel
frequency features [120] to using quantization to learn latent vari-
ables [226].

In our work, the wav2vec 2.0 model [14] is selected to replace the
typically randomly initialized encoder. It consists of three main compo-
nents: a convolutional feature extractor that convolves and downsam-
ples the raw audio input, a deep Transformer encoder that learn high
level representation from the downsample sequence, and a quantization
module to generate latent variables. During pre-training, the network
optimizes for a contrastive loss function while masking the speech in-
put. wav2vec 2.0 showed that it can outperform other semi-supervised
learning approaches using finetuning with a CTC model.

Language Adaptive Components The development of mul-
tilingual models for either machine translation, speech translation
or speech recognition often concern between versatility versus spe-
cialization [146]. The motivation comes from the assumption that
there are features being shared between languages and at the same
time each language requires to selectively represented, and networks
are encouraged to change "modes" depending on the language being
processed [88]. Since then, multingual model designers opt to use spe-
cific network components being presented for each language, ranging
from weight generator [201] to adapters [19, 146] or recently adaptive
weights adding scales and biases to each weight matrix in the whole
architecture [193]. In this paper, the last two options are selected for
investigation thanks to being computationally manageable.

On the one hand, Adapters plugged into pretrained models were in-
troduced in computer vision [213] and later natural language process-
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ing [105] and recently in Transformers for text/speech translation [19,
146]. They are materialized with a small multilayer perceptrons (MLP)
with one hidden layer that acts as a downsampler (for parameter ef-
ficiency). This MLP is serialized at the end of each layer in the
Transformer to help the network changes the feature distribution based
on languages.

On the other hand, adaptive weights [193] was proposed based on the
observation that neural networks evolve rapidly yet the core remains
to be matrix multiplication. Therefore, it is possible to separate the
weight matrix into a shared component𝑊𝑆 and language dependent
adaptive scale𝑊𝑀𝐿 and bias𝑊𝐵𝐿. The simple matrix multiplication
𝑌 =𝑊𝑋 becomes:

𝑌 = (𝑊𝑆 ·𝑊𝑀𝐿 +𝑊𝐵𝐿)⊤𝑋 (4.20)

In order to encourage the model to share parameters as well as keeping
the parameters efficient, the adaptive weights are factorized by using
the form of 1-rank matrices [269] which can be compactly represented
as a dot-product between two vectors. This factorization can be es-
tablished with 𝑘 vectors per language so that there are 𝑘 independent
weight factors followed by a summation, which increases the rank of
the additional weight matrices.

𝑊̄ =
𝑘∑︁
𝑖

𝑟𝑖𝑠
⊤
𝑖 (4.21)

Equation 4.21 applies for all scale and bias matrices in the network.

Comparing two approaches, the advantage of the adapters is that they
can increase the depth of representation in the network thanks for
having an activation function in the downsampled layer. In contrast,
the adaptive weights have the advantage to directly affect each layer
function, such as the QKV-projection layer in self-attention, instead of
applying a new function on the output of the layer. In the Transformers
specifically this particular combination between a pretrained encoder
and a decoder, the cross-attention layers in the decoder are left with
weights untrained to connect two modalities audio and text. By being
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able to directly alter this function, the advantage of the adaptive weights
are even more considerable.

4.5 Experiments

There are 32 languages We report the error rates on the test sets of
CommonVoice and Europarl. It is notable that both of the pretrained
model (wav2vec) and the available supervised training data are mostly
read speech, leading to the curiosity about the performance on a more
spontaneous setting.

Our speech recognition experiments are conducted using the public
dataset including CommonVoice [8] and Europarl [112] as training
data.

For the progressive comparison, we trained a competitive supervised
model using the Transformer large configuration [255] with 24 encoder
layers, 8 decoder layers and relative attention [197]. For transfer learn-
ing, we used the wav2vec 2.0 model pretrained with 53 languages [13]
with the large configuration that has the same hidden size with our
initial model. It is notable that the data used in pretraining is heavily
biased to read speech including CommonVoice and Multilingual Lib-
rispeech [210]. For pretrained language models, MBART50 [249] with
the same hidden size is used. For language specific modules, we use
adapters with hidden layer size 512 and adaptive weights with 𝑘 = 8 for
bias and 𝑘 = 1 for scale matrices, so that they have the same number of
additional parameters per language. For training, we used an effective
batch size of around 2.84 hours of data per update, together with a
linear decay learning rate that peaks at 0.0018. The supervised model
takes 150𝐾 updates to converge, while the model with transfer learning
takes 50𝐾 updates.9

The performance impact of the pretrained modules are fully presented
in Table 4.3. The test data here is the combination of CommonVoice

8 The decaying equation follows the same in Attention is all you need [255]
9 Training was possible using 4 NVIDIA A100 GPUs.
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and Europarl wherein the latter is available. Since the languages widely
vary in terms of data size, we divide them into three groups that have
less than 10 hours (very low), between 10-100 hours (low) and more
than 100 hours (medium-large) of training data. Notably, our super-
vised model outperformed the previously reported error rates [193,
104].

Impact of acoustic pretraining Compared to the Transformer
model without any pretraining (TF), having the encoder pretrained
with XLS-R (W) brings a substantial improvement to the average error
rates by 18%, and this enables many languages to reach 10% errors or
lower. Across the three groups however, there is a clear difference in
impact. While the high-medium group enjoys a 20% decrease in error
rate, this figure drops to 16% in the first group, and the third group is
only improved by 4%.
While this is rather surprising, compared to the previously reported of
wav2vec 2.0 pretrained models on very low resource settings [14], it is
explainable by the difference of the approaches used in their and our
works. The pretrained acoustic model has often been used directly with
the CTC loss function to generate characters which heavily requires
an external language model. In our setting, we are limited in both
acoustic and text resources for the languages in the third group, and
data scarcity makes learning to align from attention [31] even harder.

Effects from pretrained language model With that observa-
tion, initializing the decoder with the MBART pretrained model is
expected to alleviate the data scarcity problem. In fact, comparing
the model with two pretrained modules (WM) with the previous one
showed a benefit of 15% error reduction for the former.

Some languages have worse performance with the MBART decoder,
such as Arabic, Turkish or Thai. This can be explained as a negative
effect of the large byte-pair encoding [234] model shared between
many languages originally used with MBART training. A large vo-
cabulary size of 250𝐾 allow for large granularity which is far from
characters or phonemes, the units that speech recognition models are
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often trained upon. Nevertheless, this is apparently not a problem for
most languages.

Analyzing the individual performance of each group, the medium-large
group is not impressively improved with just a 5% reduction. This result
shows that having an additional six layers of decoders and even with
pretrained weights only has a minimal effect on the result and network
depth has a clearer impact on the source side than the target side in end-
to-end speech recognition [199]. Probably the model does not struggle
with the test data in terms of syntax, despite the fact that the text data
here is not comparable to typical language models. Nevertheless, the
second group receives a clearer merit from the pretrained language
model, by a 27% improvement, and totally 39% improvement compared
to the original multilingual Transformer. Even with a mismatched
pretrained weights for the cross-attention module, it is still a noticeable
improvement coming from the pretrained self-attention, feed-forward
and layer normalization weights. The languages benefiting the most
are Romanian, Estonian, Czech, Turkish, Indonesian, Swedish and
Ukrainian.

The effect on the third group is modest at 11% reduction and the er-
ror rates remain very high for Urdu (ur), Kazakh (kk), Finnish (fi),
Latvian (lv) or Vietnamese (vi). Many of the languages are also syntac-
tically with many morphological word forms, such as Finnish, making
recognition even more challenging. The most surprising improvement,
however, comes from Slovenian that massively reduces from 26% to
14.6%. The overall struggling mainly comes from data scarcity which
is not adequate for the decoder cross-attention layers.

Effect of the language-specific modules As can be seen from
Table 4.3, both techniques are able to help the model generalize bet-
ter in all language groups. Most importantly, the very low resource
group witnesses 27% and 26% improvement using adaptive weights
and adapters respectively, compared to the baseline model with two
pretrained modules.

In order to quantify their impact, we proceeded to freeze all of the
pretrained parameters and only fine-tuned the language-specific pa-
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rameters. There is a difference in how each technique handles this
situation. With the presence of only adapters, the errors in all lan-
guages deteriorate rapidly in all language groups. Many languages in
the low-group experience very bad results including Romanian, Arabic,
Chinese, Lithuanian and especially many members within the very-low
group exceed 90% error rates. While this is unexpected, we can see that
the main problem here is the cross-attention layer which is not familiar
with the inputs coming from two modalities. The adapters are not able
to drive the bad context vectors (weighted-sum of the encoder inputs)
into meaningful representation in the low resource condition.

The adaptive factorized weights do not have this problem because they
directly alter cross-attention. As a result, the performance is much
better than the adapters even though they still fall behind the baseline
without language-specific modules.

Further analysis In the previous sections, we presented the most
important enhancement for our multilingual setup coming from the pre-
trained modules and the language adaptive components. The success
of using the language adaptive components in various places, either
breaking the layer dynamics with adapters or the function dynamics
with the adaptive weights suggests that further improvement can be
found by adding more information to the system instead of treating the
pretrained model as an immovable black box.

Here we follow the implementation in [197] to add relative positions
into the wav2vec model, by adding the content-position interaction
together with the content bias and position bias to self-attention to
all self-attention layers of wav2vec with factorized weights. The
additive information allowed for the reduction of the average error
rate to 16.04% (3% improvement) and especially an 12.7% on the large-
medium group. This evidently helps the model learns better with
adequate data.

Surprisingly, an alternative attempt to enhance the encoder simply
by stacking the MBART50 encoder on top of the wav2vec encoder
(without any length conversion) yields similar results, compared to the
baseline WM, it improves the large-medium group by an impressive
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18.3%, yet only 3.2% overall. Not only does stacking the encoder
increase the encoder depth, it also helps the cross-attention layers
because they are familiar with the output of the text encoder during
training. Training a stacked model with the adaptive techniques would
probably result in the best model in our experiments, however it was
unfortunately beyond our computational tolerance.

Figure 4.3: Summary of the results averaged on 32 languages.

4.6 Conclusion

In this chapter, we introduce an architectural approach to improve
the performance of a single end-to-end model in multilingual speech
recognition. The final result can be seen in Figure ??, in which the
combination of weight factorization and unsupervised pretraining for
two modalities is able to reduce the error rate by 33% relatively com-
pared to a powerful Transformer baseline. The main reason for this
improvement comes from the network being well initialized using
the pre-trained weights from unsupervised pre-training techniques,
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wav2vec 2.0 and MBART50 respectively. Moreover, weight factoriza-
tion helps the network balance the gradient of each language during
training, that especially helps the low-resource languages in the mix
because their gradients are dominated by other languages during the
training process.

Weight factorization is a reasonably efficient and scalable method (to
the number of languages) to generate a sub-network per language.
Compared to the more expensive adapter approach, weight factoriza-
tion showed that it can be applied for any network and still provide
a better performance, which is shown when we only train the per-
language parameters.

The weakness of weight factorization lies in the fact that a certain
language identification is required, in order to direct the network to
the language weights. There are situations in which the language is
not given, and even code-switching is used. It is still possible to use
weight factorization is such cases, especially with a language predictor.
The main challenge in this the code-switching situation is that the
language can change within one utterance, and the network would
have to process each frame differently based on the predicted language.
In theory, this is no different than handling the whole utterance with
one language, however it is computationally unfriendly in most modern
Deep Learning frameworks such as PyTorch [185].
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Table 4.3: Performance(WER↓) on the CommonVoice-Europarl dataset. Models in-
clude Transformers (TF), with wav2vec pre-training (W), with wav2vec and MBART50
(WM), with adapters (WMA) and factorized weights (WMF) and the version w/ frozen
pt. weights.

Language Hours TF W WM WMA WMF FWMA FWMF

(de) 1050 10.4 8.1 7.8 7.7 7.2 11.8 10.0
(nl) 150 13.2 8.4 7.7 7.4 6.8 10.2 9.0
(fr) 800 15.2 12.7 12.12 11.62 11.2 16.7 15.1
(it) 325 11.5 8.7 8 7.8 6.5 12.8 10.5
(fa) 293 5.5 4.8 3.9 4.2 4.0 6.4 7.2
(pl) 145 11.5 10.5 9.2 9.1 7.6 14.8 12.2
(pt) 120 14.0 10.9 10.0 9.5 6.0 18.5 12.8
(es) 400 10.9 8.0 7.6 7.4 6.2 11.2 9.8
(ru) 148 10.0 8.7 5.5 5.7 5.4 20.1 10.1
(ta) 198 28.6 24 20.2 20.7 21.0 31.4 31.5
(th) 133 2.8 2.6 3.3 3.4 3.2 5.1 4.5

Average 12.1 10.3 9.5 9.3 8.6 15.8 13

(ro) 45 18.1 21.2 15.8 13.7 10.12 42.0 15.7
(ar) 85 21.1 15.8 18.7 17.6 18.2 31.2 23.2
(et) 32 30.4 22.1 14.8 15.1 13.2 32.5 21.5
(ja) 26 13.0 10.3 8.3 7.91 7.9 21.8 11.5
(zh) 63 25.9 16.7 15.2 14.6 14.7 37.6 18.2
(cs) 49 19.8 15.8 10.0 9.2 8.4 16.4 12.7
(lt) 16 43.3 37.9 31.9 26.7 25.5 71.3 30.0
(tr) 30 10.4 13.6 7.5 8.4 7.5 9.8 10.1
(id) 23 14.0 13.6 7.5 7.5 6.6 9 8.7
(mn) 12 49.8 35.1 26.2 26.0 24.3 90.4 32.0
(sv) 35 24.7 20.6 14.3 13.0 12.3 17.5 16.3
(uk) 56 14 13.4 7.6 8.3 7.4 11.4 14.8

Average 23.7 20 14.5 13.7 12.5 32.7 17.4

(lv) 6 41.9 57.0 41.01 22.3 22.3 79.1 25.0
(vi) 3 49.5 53.5 46.1 35.6 34.0 104.1 38.3
(ka) 6 58.6 48.0 48.3 33.0 32.09 130.3 39.0
(sl) 9 20.5 26.5 14.6 10.4 9.1 10.5 12.8
(fi) 6 54.2 48.5 41.0 31.4 30.0 109.2 35.2
(hi) 8 46.1 46.4 36.4 28.6 27.6 99.5 31.1
(gl) 7 26.5 15.3 15.3 11.2 9.8 48.8 16.0
(ur) 0.6 78.0 68.2 62.3 56.6 57.0 104.1 70.0
(kk) 0.73 86.5 76.8 86.4 60.6 61.0 104.3 70.03

Average 51.3 48.9 43.5 32.2 31.4 87.8 37.5

Overall 30 24.8 20.9 17.4 16.6 41.6 21.6
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5 Continual Learning in
Multilingual ASR

5.1 Catastrophic forgetting in learning
new languages

With the conclusion of chapters 4 and 5, we have come to the Neural
sequence-to-sequence models are applied to automatic speech recog-
nition with a great success [31, 199, 183, 174] and this model can
be easily extended for the multilingual scenario in which the training
data consists of multiple languages [291, 209, 193]. These models are
able to improve quality especially for the lower-resource languages
since the acoustic representation can benefit from sharing with other
languages.

Despite the success, most multilingual research works are limited to
an assumption that all of the languages are available at once. This
approach implies that having new languages to the system requires
adding the new training data and retraining the model with the new
data combination. Neural network systems can lose information about
the previous datasets when being trained or fine-tuned on a new dataset.
The weights in the networks are shifted towards minimizing the loss
for the new dataset and are no longer in the region of having good
performance for the older ones. This has been known as catastrophic
forgetting [62] when the old information is abruptly lost when the
model parameters are changed during the new training process. In
multilingual speech recognition, fine-tuning a pretrained system on
a new language can quickly deteriorate the performance of the old
languages over the number of updating steps. The deterioration speed
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depends on the amount of weights being changed in the process, a full
update can quickly destroy the performance (by having error rates over
100%).

In practice, giving a multilingual system an ability to continually
adding new languages into the capacity without performance loss in
the old languages is very beneficial. For instance, it is not necessary to
retrain the system with the whole amount of data including both old
and new languages, saving time and effort. The demand is especially
important when the training data cannot be stored after training, due to
privacy reasons or simply to clear the storage for new data.

Catastrophic forgetting has often been countered by a number of ap-
proaches. Prominently progressive neural networks [221] were specifi-
cally designed for this purpose by allocating new network parameters
when new tasks are introduced. By fulfilling the condition that the new
weights do not interfere the topology for the older tasks, catastrophic
forgetting would not happen. In opposite to progressive networks
that linearly expand in space with respect to the number of tasks,
regularization-based approaches look for ‘empty space’ in models
that are often overparamaterized with redundant weights [232]. Most
prominent among this approach are elastic weight consolidation [135]
or synapse learning [283] looking for redundant weights based on
importance metrics such as input/output magnitudes or variances of
derivatives [184]. Recently, distillation based methods are widely
applied when the model is also trained with the output from the coun-
terpart from the previous approach.

Weight factorization as mentioned in the previous chapter, can be con-
sidered as a variation of progressive neural networks, in the sense that
transcribing each language is a separated task for the model. Each
language is provided with a set of weights for each matrix multiplica-
tion of the network, so the knowledge of each language is stored in
two sections: the majority in the shared body of the network, and also
in the factorized specific weights with much lower capacity than the
shared weights. With that observation, when the network is exposed
to a new language, it is possible allocate new factorized weights for
this language. This idea, in the past, was materialized in controlling
the learning capacity of different phoneme types [263, 260]. If the
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shared body of the network contains language independent feature
detectors, fine-tuning the new factorized weights is promising as a
good start to learn new languages without catastrophic forgetting, be-
cause the weights participating in recognizing the old languages are
untouched.

In continual learning for multilingual speech recognition, the desider-
ata is not limited in just catastrophic forgetting, however, but also other
factors:

• Forward transfer: adding new languages to the current
multilingual model can ideally obtain the performance similar
to when having them in the initial training.

• Backward transfer: catastrophic forgetting is avoided for the
previously learned languages, ideally adding the new languages
should not affect the performance for the previously learned
ones.

• Optimal training cost: the process of learning new languages
should be economically better than re-training all languages
from the beginning, in terms of training speed and storage.

In a continual learning scenario for multilingual speech recognition, the
main challenge is how to use the new data of the new languages with-
out affecting the representation of the previously learned languages.
If we fine-tune the model on these data (by using gradient descent
based on the loss function and updating the parameters like training
a normal model), then the parameters will be shifted away from the
original position which is the optimal point for the previously learned
languages, as illustrated in Figure 5.1. Consequently, the model would
achieve very bad performance on the previously learned languages.

When we factor in the specific Encoder-Decoder architecture for end-
to-end speech recognition, certain problems arise when the models are
required to learn new languages. The first problem lies at the output
layer, which produces the likelihood of each token in the vocabulary
per timestep during generation given an acoustic input. When being
exposed to new languages, new words in the new languages can be
added to the vocabulary, leading to the change of the weight matrix in
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Figure 5.1: Illustration for the cause of catastrophic forgetting when the optimal
parameters for the first language 𝜃1 are shifted towards the optimal parameters 𝜃2 for
new languages, which unfortunately are far away from the original positions.

this layer consisting of parameters being untrained compared to the
tokens in the previous languages. The second problem is a genuine
architecture without any language aware mechanism (such as weight
factorization) does not have any language separation mechanism in
the architecture, updating the parameters for new languages would fall
into the illustration as in Figure 5.1.

In order to realize the desiderata, the strategy is to combine three dif-
ferent techniques: transfer learning, weight factorization and elastic
weight consolidation, by the following reasons. On the one hand,
neural sequence-to-sequence models rely on a fixed vocabulary output,
which is likely to be changed when the models are exposed with new
languages. Multilingual pretrained language models [157] can relax
this problem, by providing the syntax knowledge of the new languages,
so that the output layer can be easily applied for new languages. On the
other hand, Weight factorization [193] facilitates multilingual models
by decomposing each matrix in the neural network into a shared com-
ponent and per-language additive and multiplicative factors. Motivated
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by progressive neural networks [221], this modeling scheme can pre-
vent catastrophic forgetting by offloading information in the language
specific weights. Meanwhile, elastic weight consolidation [135] can
be used to find the “empty space” in the shared components of the
networks to accommodate new languages.

The combination of all three techniques is applied in our experiments
with 27 languages involved with the Transformer based model [199,
255]. In the process of learning these languages in different itera-
tions, we were able to minimize the effect of catastrophic forgetting
for previously learned languages, while the performance of the new
languages are still comparable or potentially competitive with training
all languages from scratch. Our contribution in continual learning, to
the best of our knowledge, the first application in learning to transcribe
languages.

5.2 Elastic Weight Consolidation

When a model with its parameters 𝜃 is trained sequentially with one
task after another, 𝑇1,𝑇2,𝑇3, . . . ,𝑇𝑁 , a single estimate of 𝜃 via gradient
descent on the current task would lead to catastrophic forgetting. EWC
reformulates the problem in a Bayesian fashion, in which the Bayesian
posterior distribution 𝑝(𝜃 |𝑇1,𝑇2,𝑇3, . . . ,𝑇𝑁 ) over possible values is con-
sidered.

For the latest task 𝑇𝑁 that the model learns, we use Bayes’s rule to
condition on the new training data of this task:

(5.1)𝑝(𝜃 | 𝑇𝑁 ,𝑇𝑁−1,𝑇𝑁−2, . . . ,𝑇3,𝑇2,𝑇1)

This full posterior is intractable since the denominator is rather un-
known. However, the conditional distribution can be ignored when
we optimize the weights 𝜃 to maximize the posterior because it is a
constant with respect to 𝜃 . In the case of two tasks, the log posterior
takes the form:
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(5.2)log𝑝(𝜃 | 𝑇2,𝑇1) = log𝑝(𝑇2 |𝜃 ) + log(𝜃 |𝑇1) − log(𝑇2 |𝑇1)

Equation 5.2 shows that in order to maximize the log posterior, we can
omit the log(𝑇2 |𝑇1) term. On the other hand, the first term log𝑝(𝑇2 |𝜃 )
is also the log likelihood of the data for the second task, and is often
represented using a neural network with parameters 𝜃 . For example,
in speech recognition we model the conditional probabilities of the
output sequence given the speech signal.

The main focus of EWC lies in approximating the second term practi-
cally. Even though the posterior of 𝜃 given the first task𝑇1 is intractable,
during the training session on 𝑇1 we obtained the optimized weights
that maximize the log likelihood of 𝑇1:

(5.3)𝜃 ∗𝑇1
= 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 − log𝑝(𝜃 |𝑇1)

Following the Laplace’s method of approximating a log posterior with
a second order Taylor approximation around the maximum [161, 163],
equation 5.3 can be rewritten as:

(5.4)− log𝑝(𝜃 |𝑇1) ≈ 1
2

(𝜃 − 𝜃 ∗𝑇1
)⊺𝐻 (𝜃 ∗𝑇1

)(𝜃 − 𝜃 ∗𝑇1
)

In which𝐻 (𝜃 ∗
𝑇1

) is the Hessian of the − log𝑝(𝜃 |𝑇1) with respect to 𝜃 and
evaluated at 𝜃 ∗

𝑇1
. EWC makes a further assumption by approximating

the posterior as a Gaussian distribution with mean given by 𝜃 ∗
𝑇1

and
a diagonal precision given by the diagonal of the Fisher Information
matrix 𝐹 (𝜃 ∗

𝑇1
). Unlike Hessian, 𝐹 (𝜃 ∗

𝑇1
) can be efficiently computed using

the first-order derivatives which can be obtained with back-propagation.
More importantly, at the local minimum, 𝐹 (𝜃 ∗

𝑇1
) is equivalent to the

second derivatives (the Hessian).

The loss function for EWC is then formulated as follows, based on the
aforementioned approximations.

(5.5)log𝑝(𝜃 |𝑇1,𝑇2) ≈ log𝑝(𝑇2 |𝜃 ) − 1
2
∑︁
𝑖

𝜆𝐹 (𝜃 ∗𝑇1
)𝑖 (𝜃𝑖 − (𝜃 ∗𝑇1

))2
𝑖
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Intuitively, the second loss term regularizes the weights 𝜃 to stay
close to the optimal weights in the previous task, but each weight is
weighted by an importance denoted by the diagonal Fisher. 𝜆 is a
hyper parameter weighting the involvement of the regularization term
in gradient descent optimization.

Further explanation from [109] also suggests that the term 𝐹 (𝜃 ∗
𝑇1

)𝑖
should be weighted by the number of samples n 𝑇1.

EWC computational cost Using EWC allows for removing the
previously used dataset 𝑇1 and EWC retains the knowledge in 𝑇1 via
the diagonal Fisher 𝐹 (𝜃 ∗

𝑇1
)𝑖 , representing the importance of each weight

in the model when learning on this dataset. Since each parameter 𝜃𝑖
requires 1 scalar in the Fisher and 1 scalar for (𝜃 ∗

𝑇1
)𝑖 , the maintenance

cost for EWC is 2× the number of model parameters.

Extension for more than two tasks When it comes to applying EWC
for more than two tasks, it is controversial in terms of formulating the
loss function. In the original work [135], it was suggested to use mul-
tiple penalties centering around subsequent approximated posteriors
𝐹 (𝜃 ∗

𝑇1
), 𝐹 (𝜃 ∗

𝑇2
)

However, this approach implies the requirement to store additional
diagonal Fishers for each experienced dataset. Since these tensors
are required to be simultaneously present in the computing device’s
memory for the loss function, this requirement quickly becomes a
burden when the model experiences new languages.

The other approach [109] argues that simply accumulating the Fisher
over time is adequate to build the loss function based on the weight
obtained on the latest dataset.

(5.6)log𝑝(𝜃 |𝑇1,𝑇2, . . . ,𝑇𝑁 ) ≈ log𝑝(𝑇𝑁 |𝜃 )

− 1
2
𝜆
∑︁
𝑖

(𝐹 (𝜃 ∗1 )𝑖 + 𝐹 (𝜃 ∗2 )𝑖 + · · · + 𝐹 (𝜃 ∗𝑇𝑁−1
)𝑖 )(𝜃𝑖 − 𝜃 ∗𝑇𝑁−1

)𝑖 )2

The accumulation of the Fisher information implies that the informa-
tion of each parameter with respect to all datasets is the sum of the
Fisher diagonal for that parameter. The algorithm can now be applied
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recursively for many tasks with a constant cost of memory (because
we can also discard the previous Fishers and trained weights).

Variants In practice, EWC is often considered as a regularization based
continual learning approach [182], which can be intuitively interpreted
from the loss function making the parameters important with the old
tasks to have less discrepancy with the old parameters. The importance
factor, however, can be manifested differently. For example, Synaptic
Intelligence [283] computes the change in loss over an entire trajectory
through parameter space by summing over all infinitesimal changes.
The importance for each weight is the contribution to changes in
total loss, and can be estimated online as the running sum of the
product of the gradient with the parameter update. The Memory Aware
Synapses [4] use the model output instead of the data to compute the
gradients for importance, thus being able to apply for unsupervised
learning.

It is also worth mentioning that, the regularization term in EWC can
also cause learning difficulties when parameters change too slowly. In
order to combat this, either an additional renormalization step [141]
or Huber regularization [156] is applied to prevent the regularization
term to be far larger than the main learning objective.

5.3 Combination of Weight
Factorization and EWC

While EWC represents a continual learning approach relying on regu-
larization, it is also possible to avoid catastrophic forgetting by allo-
cating new weights when the model is exposed to a new task. There
are many methods that are designed for task-based and class-based
incremental learning such as Progressive Neural Networks [221]. The
main criticism of such network design is the linear cost in terms of
number of parameters per task. The same criticism can be also applied
for the adapter based networks [19] which controls the output of the
network based on blocks of feed-forward neural networks assigned for
the task specifically.
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In the context of multilingual speech recognition, it is possible to
grow the network in an agnostic manner with respect to the network
architecture and more importantly, with a sub-linear cost using weight
factorization [193].

Main Idea Neural networks are composed by layers containing matri-
ces of weights being multiplied with input vectors/matrices to generate
output features for the next layers. Therefore, weight allocation per
task can be manifested at this fundamental level, by factorizing a basic
𝑌 =𝑊𝑋 equation into:

(5.7)𝑌 = (𝑊𝑆 ·𝑊𝑀 +𝑊𝐵)𝑋

where𝑊𝑆 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 is the normal projection weight shared for all
languages.𝑊𝑀 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 and𝑊𝐵 ∈ R𝐷𝑖𝑛×𝐷𝑜𝑢𝑡 are the multiplicative
and bias terms that are language exclusive.

In order to keep the number of parameters in check as well as encourag-
ing the model to share more information between languages instead of
partitioning into the exclusive terms, each language-dependent matrix
𝑊𝑀 or𝑊𝐵 is further factorized into dot-products of vectors 𝑟 ∈ R𝐷𝑖𝑛
and 𝑣 ∈ R𝐷𝑜𝑢𝑡 .

𝑊𝑀 = 𝑟𝑚 · 𝑣𝑚 (5.8)
𝑊𝐵 = 𝑟𝑏 · 𝑣𝑏 (5.9)

The capacity of each factor is controlled via an additional hyperpa-
rameter 𝑘 that increases the rank of𝑊𝑀 and𝑊𝑀 via adding multiple
1-rank matrices:

𝑊 =
𝑘∑︁
𝑖

𝑟𝑖 · 𝑣𝑖 (5.10)
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With the value of 𝑘 << 𝐷𝑖𝑛 or 𝐷𝑜𝑢𝑡 , the cost of adding each language
is 2𝑘

𝐷𝑜𝑢𝑡
number of parameters, assuming 𝐷𝑖𝑛 = 𝐷𝑜𝑢𝑡 1.

Weight factorization for incremental learning This method can be
applied for incremental learning by freezing the shared weights after
the initial learning session [269]. When a new language is exposed,
the system allocates new weights for this language specifically without
tampering the weights of other languages. Using this approach, the
network is ensured to keep the previous knowledge untouched while
still having a multilingual body structure for the new language (other-
wise the new weights would be insufficient), as depicted in Figure 5.2.
However, it is important to note that the quality of learning greatly
depends on the first learning session, when the shared weights need to
capture as much global information as possible. Unlike progressive
neural nets, the weights allocated to each tasks are decoupled and the
ability to forward transfer is limited.

Combination with Elastic Weight Consolidation As analyzed above
EWC and Weight factorization are both applicable for incremental
learning, but with different approaches entailing different strengths
and weaknesses. Thanks to having different natures, the methods can
compensate for each other.

• During learning language 𝐿, the network is allocated with
weights𝑊𝐿 consisting of the adding and multiplicative terms in
weight factorization.

• After learning each language or a set of languages, Fisher
Information diagonals for the main weight matrices in weight
factorization, as well as other shared weights in the network,
are computed.

• When learning new languages, we apply EWC for the main
weights. The other factorized weights are naturally updated for
their corresponding languages, and frozen for the previously
learned counterparts.

1 Its actually much lower than that, because the network may contain layers that do not
need to be factorized, such as the output layer, or layer normalization
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5.3 Combination of Weight Factorization and EWC

Figure 5.2: Illustration of Weight factorization for continual learning. The orange
box indicates the new portion of weights being added for the new language, while the
previously learned languages are kept intact.

On the one hand, the main problem of EWC is that looking for available
space in the network can be challenging, allocating new weights for
new tasks can alleviate this problem. On the other hand, EWC can help
weight factorization in terms of transferring the knowledge between
tasks.

The illustration is shown in Figure 5.3. EWC tries to find a compro-
mised state for the weights to not stay out of the good regions, but
it is also likely that it will end up having bad performance for both
languages. With the intervention of per-language weights, it is possible
to bias the weights back to the optimized states. While this strategy
involves a cost for each new language, it is possible to rely on efficient
methods such as Weight Factorization.
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Figure 5.3: Illustration of the combination between EWC and Weight Factorization.

5.4 Continual learning experiments

Dataset Available multilingual datasets provided an ideal experimental
ground for life-long learning new languages. We use 27 languages
from Mozilla Commonvoice [8] and Europarl [112] for our language
pools as shown in Table 4.2.
ASR Model We used the Transformer model as the base network for
speech recognition. The architecture configuration is based on the
wav2vec 2.0 model for encoder transfer learning [14] and MBART50
for decoder initialization [157, 249]. As mentioned before, one of
the main reasons to use transfer learning, apart from achieving bet-
ter performance than random initialization [190, 150], is to ensure
that the output layer can contain the languages to be added without
additional word embeddings. Despite the experiments being limited
with the languages covered by the pretrained language models, it still
remains practical thanks to the current coverage reaching nearly 200
languages [44].

There are two scenarios being considered in our experiments. In the
first scenario, all of the languages in the second group are included in
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the incremental learning session, while in the second one we further
divided the languages into four different groups entailing four different
sessions. In both scenarios, we measure the performance of the newly
added languages as well as how much performance retained in the
previously learned languages.

Implementation Our models are implemented in PyTorch [185].
The encoder is built upon the multilingual wav2vec 2.0 pretrained
model [14, 42] and the decoder is essentially the MBART50 [157].
Such combination has been proven to be extremely effective in speech-
to-text tasks [150, 190]. For the weight factorized model, the main
weights are initialized with the unsupervised pretrained model, while
the fast weights (multiplicative and additive terms) are randomly ini-
tialized.

For training, the minibatches are built by grouping utterances with
similar length for efficiency. The model is updated every 8.2𝑀 speech
frames with Adam algorithm [133] with weight decay 0.001. In or-
der to speed up training, our implementation utilized Flash Atten-
tion [47] to accelerate training, together with CUDA-level optimized
modules [162].

EWC control It is also important to discuss about the hyper parameter
𝜆 in EWC. This parameter has been proven to be important since a
high value restricts the model to learn from a new dataset, while a
small value prevents the model from retaining the previously learned
knowledge [141] and several methods have been proposed to relax this
rigidity [156], however to a minimal effect. In our work, we found
that a value ranging from 0.001 to 0.004 is stable for the first session,
however subsequent sessions requires values of a magnitude higher,
from 0.01 to 0.05 to prevent catastrophic forgetting, possibly due to
the difference between languages. In order to stablize training, this
coefficient is gradually decreased during training, first the model is
forced to learn with very rigid weights (with high coefficient) which
are loosened over time by decreasing the coefficient. The initial co-
efficient is often 0.001 while the final coefficient is 0.1× the initial.
Averaging checkpoints [255, 189] between the best 5 checkpoints be-
fore decaying the coefficient and the best 5 checkpoints at the end of
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Figure 5.4: Three different scenarios for the main weights in the ASR model in
continual learning.

training is found to obtain the best performance for the old and new
languages.

Baselines To the best of our knowledge, this is the first attempt at
learning languages incrementally. The main objective of our study
is to propose a method that prevents catastrophic forgetting without
a compromise on the ability to learn new languages. As such, we
measure how much the model can memorize the previously learned
languages after learning new ones, can compare the WER with the
previous session. For the new languages, we setup three baselines:

• EWC: the model learns incrementally based on EWC.

• Weight factorization: the model carries on the weights to the
next session, in which the main weights are frozen and only
newly added weights are learned. These models can be
considered to be the EWC with 𝜆 = ∞

• The scenario in which all weights are fine-tuned is expected to
lead to catastrophic forgetting is also considered, because the
performance of the new languages is expected to be the ceiling
for continually learned models with regularization.

These scenarios are depicted in Figure 5.4 with three different out-
comes.
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Learning without ‘catastrophic’ forgetting The experiments
show different pictures from EWC and Factorization as illustrated in
Table 5.1. The main purpose of this table is to measure the short term
impact of the methods, including the Factorized Weights, EWC and
when all languages are present at once. As expected, the model with
factorization and frozen body weights (FFr) can keep the performance
of the original languages intact. However the EWC model performed
extremely poor. Many languages exhibited fully catastrophic forget-
ting, such as (ta) or (th) when their error rates nearly reach 100%2.

Without any regularization or weight factorization, the models trained
on new languages quickly overfit to the new ones while reaching more
than 100% WER for the prior languages. Having EWC can only slow
down the catastrophic forgetting process and made the prior error
rates 6.5 times faster, while also make learning new languages worse.
Meanwhile, weight factorization with frozen shared weights, by nature,
totally prevents catastrophic forgetting, so the prior error is almost the
same with having all languages (the last column).

The most flexible combination between EWC and Weight Factorization
shows the most interesting result. It provided a similar performance
for new languages compared to fine-tuning the whole model (13.6%
compared to 13.8%) and is the closest configuration compared to the
Oracle setting with all languages in presence (13.1%). The performance
loss in the previously learned languages is worse than fine-tuning the
whole model (7.7%), however it is far away from catastrophic forgetting
and stay at a reasonable level (7.8%). It can be seen that, EWC is
important by regularizing the gradients for the important weights
(that are measured by the variance of gradients). The regularization,
however, is still too weak to prevent catastrophic forgetting. This could
be explained by the residual structure in the Transformer, in which
a small disturbance in the network can cause a large change in the
output [155].

2 This is also what happened with a normal model with finetuning without either EWC
or weight factorization.
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When using weight factorization, the stability of each network branch
(whose weights are the linear combination of the shared weights and
the factorized weights) is improved, as shown in the effect of EWC.

Continually learning in Multiple iterations Given the results
in 1-iteration learning that demonstrated that it is possible to keep a
competitive performance for the previously learned languages while
effectively learn the new languages, we proceeded to extend the exper-
iments to multiple iterations. Our observation was that forgetting still
happens, despite not severely. As a result, it is possible that the degree
of forgetting is higher with more iterations, also this is theoretically
motivated which will be explained in the next section.

As can be seen in Table 5.2, the performance for the first set (10 lan-
guages) increases over time for the EWCF model and after 3 iterations,
it is 52.5% higher than the original one, as kept by the Frozen (FFr)
model, a significant amount but partly because the original error rate
is quite low.

For the second set (nl, ar, zh, uk, cs) the error rate of the EWCF model
is still lower than the FFr after one lifelong learning iteration (from Iter
1 to Iter 2). Two iterations is required for the Frozen model to surpass
this, naturally because one model is inevitably getting worse after each
iteration, while the other does not forget despite a worse starting point.
This story is repeated in the other two sets of languages.

5.5 Analysis

Why does EWC lose effect over time? The experiments showed
that a combination of external weights per language and EWC for the
shared weights is effective in the first two iterations, when the perfor-
mance can strike the best spot for the compromise between forgetting
and learning. Yet we can observe two problems: Forgetting is in-
creased over time, and the role of weight factorization is much more
important than EWC, which is not effective by itself.
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Table 5.1: Performance(WER↓) on the CommonVoice-Europarl testsets. The models
included are EWC (E), EWC combined with Factorization (E+F), Factorized with main
weights frozen (FFr) and Factorized with all weights finetuned (FFt). Models are first
trained on 10 languages (top) and then learned on 17 languages (bottom).

Lg Hrs E E+F F FFt All

(de) 1050 53.3 7.5 7.2 39.3 7.2
(fr) 800 19.7 11.6 11.4 37.4 11.2
(es) 400 14.6 7.1 6.8 19.9 6.2
(it) 325 26 7.3 6.8 24 6.5
(fa) 293 80 4.1 3.7 36.2 4
(ta) 198 91.4 20.5 18.2 44.9 21
(pt) 120 37 7.6 7 23.1 6
(ru) 148 40.5 6.4 5.3 26.7 5.4
(pl) 145 40.8 8.4 7.7 30.9 7.6
(th) 133 94.4 3.5 3.2 15.5 3.2

Avg 49.8 8.4 7.7 29.8 7.8

(nl) 150 10.6 7.3 7.6 7.3 6.8
(ar) 85 24.8 19 17.7 17.3 18.2
(zh) 63 23.6 14.7 15.8 14.7 14.7
(uk) 56 21.7 8.1 8.7 7.8 7.4
(cs) 49 19.8 9.2 9.6 9.4 8.4
(ro) 45 28 11.2 11.7 11.4 10.1
(sv) 35 28.3 12.4 13.2 12.5 12.3
(et) 32 31.5 13 14.3 13.6 13.2
(tr) 30 19.6 7.8 8.3 7.4 8.4
(ja) 26 20.5 7.5 8.5 7.4 7.9
(id) 23 17.6 6.8 6.9 6.7 6.7
(lt) 16 56.1 26.9 27.7 27.4 25.5
(mn) 12 51.2 24.5 25.7 25.1 24.3
(sl) 9 41.3 10.1 10.2 10.5 9.1
(hi) 8 70.5 27.9 28.9 28.5 27.6
(gl) 7 16.7 11.7 10.7 14.5 9.8

Avg 30.1 13.6 15 13.8 13.1
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From the theoretical analysis [109], EWC originates from replacing
the log posterior log𝑝(𝜃 |𝑇1) in Equation 5.3 with its Taylor expan-
sion form. The requirement for this expansion is that we need to
find the optimal value 𝜃 ∗ during optimizing the model for the data 𝑇1,
such that log𝑝(𝜃 |𝑇1) is 0 at 𝜃 ∗. Factually, 𝜃 ∗ is found using stochastic
gradient descent which does not guarantee this property and this prob-
lem is exacerbated by regularization methods such as Dropout [244]
encouraging the model to not fit the data perfectly for the sake of
generalisation.

The approximation is further "approximated" by the fact that the Hes-
sian in Equation 5.2 is approximated by the diagonal of the Fisher
Information matrix. Furthermore, the prior is also assumed to be a
zero-mean isometric Gaussian [109] which is rather a simple assump-
tion [134]. From such approximation, it is understandable that EWC
might be effective when the new task/data is somewhat close to the
original task which is unlikely in language learning.

Finally, the missing ingredient of EWC is that the model and its param-
eters 𝜃 is treated as a black-box. The choice of the model architecture
can have an effect with EWC. Transformers and their residual con-
nection are known to have representations strictly centering the word-
embeddings [155], which can make the model difficult when adapting
to a new language without changing too much weight values.

Empty space in Model We extracted the Fisher information after
the initial training stage, and other two iterations in the second set of
experiments. For each Fisher diagonal matrix, the number of weights
with high Fisher value (with a threshold of 0.5) is counted. For all
layers in the network, the number of important parameters is increased
over the iterations.

To illustrate this, we counted the number of parameters with their im-
portance greater than the threshold within all shared model parameters
in the self-attention and feed-forward neural network blocks in the
Transformer, for both the encoder and decoder. In Figure 5.5 showing
the percentage of the important weights over approximately 380𝑀
weights, the model could allocate approximately 15% of the weight
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Figure 5.5: The percentage of important weights in the model over the course of
learning.

space to learn from the first to the second stage. However since the
second stage model is almost full, it can explain the undesirable per-
formance in the third stage. So the question here is that: how can we
allocate more weights for long term learning? Maybe it is possible
to increase the size of the language dependent weights, so that the
importance in the main weights are reduced. However it comes with a
storage cost per language added in the system.

Related works Learning tasks consecutively without catastrophic for-
getting and using the knowledge of previous tasks to facilitate learning
new task is an important topic in machine learning that has been inves-
tigated in computer vision or reinforcement learning. There are three
common approaches in continual learning: regularization, progressive
architecture and replaying from memory. The regularization approach
is model agnostic and focuses on designing objective functions that
punish weights that tend to be shifted too far from the original po-
sitions, where the optimal state with respect to the previous tasks is
achieved. The important weights can be identified by importance [135]
or memory synapses [4]. Besides, the network can also be designed to
to isolate the weights and module of each task, while allocating new
weights for new tasks [221, 82]. It is also possible to store examples of
previous tasks as memory replaying [158] to ensure that the gradient
updates in the new tasks do not have negative effect over the previous
datasets.
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In Automatic Speech Recognition, continual learning or incremental
learning has been explored in a number of monolingual scenarios. The
hybrid HMM models were explored in continual learning by learning
different datasets such as World Street Journal, Reverb, Librispeech
and Chime4 consecutively [222]. In a similar manner, the sequence-to-
sequence model can also be trained on different English datasets with
the goal of evaluating the performance in each domain after training on
another [32]. Recently, the replaying from memory approach has been
applied to online continual learning [276] without a clear boundary
within task.

Compared to the related works, continual learning new languages in
multilingual ASR has a clear task separation due to the difference
between languages, compared to monolingual setups. The weight
factorization method can be classified into the architectural approach,
by assigning new network parameter for new 5 languages. In our work,
we combine both architectural and regularization approaches to cover
forward and backward transfers in the desiderata.

The closest work related to learning new languages so far is to apply
gradient episodic memory [158] in online continual learning [276].
Even though learning on new data of the same language is different
than learning new languages, however the method can be conceptually
applied for the latter. In our experiments, however, compared to our
approach, gradient episodic memory is less memory and computational
friendly when applied for the new languages. We provide an analysis,
as this method can be applied in future works.

Gradient Episodic Memory As we mentioned before, the gradi-
ents obtained while learning on new tasks/languages drive the model
parameters far away from the optimal states in the original states. In
order to alleviate this problem, Gradient Episodic Memory (GEM)
- a replay-based continual learning method aims at minimizing the
distance between the gradients of the parameters in the new data and
the old data.
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min
𝜔

1
2
| |𝜔 − g| |22

s.t. ⟨𝜔, g̃𝑖⟩ ≤ 0,∀𝑖 ∈ (0, 1, . . . , 𝑛 − 1).
(5.11)

In Equation 5.11, g, g𝑖 ∈ R |Θ | with |Θ| being the number of (trainable)
parameters in the model. 𝑛 is the number of previous tasks. g is the
gradient of the parameters obtained from the new data (current task)
and g̃𝑖 is the gradient for the data from the ith task in the memory.

Solving Equation 5.11 - a quadratic programming problem - then is
changed into solving its dual form:

min
𝜐

1
2
𝜐⊤GG⊤𝜐 + g⊤G⊤𝜐

s.t. 𝜐 ≤ 0.
(5.12)

where G = (g̃1, g̃2, . . . , ˜g𝑛−1) and 𝜐 ∈ R𝑛−1. The solution of the primal
form is recovered as 𝜔 = G⊤𝜐 + g. In other words, the gradients
required to update the model with stochastic gradient descent are a
linear combination between the gradients in the previous tasks and the
current gradients. The former is obtained my maintaining a subset of
the previous data used as memory.

In our experiments, this approach is computational unfriendly for the
following reasons:

• First, it is required to store a part of the training data in
previously trained languages. The amount of data required to
store subjects to the significance of the past gradients G. Since
this is the approximation of the data distribution of the previous
languages, the optimal solution would be storing the whole
previous training data and sampling mini-batches per
forward-backward passes in the current training.

• Therefore, each training cycle in the current task/language
would require a new estimation of G due to the fact that model
has been changed previously. Previous works in GEM did not
mention about a cheap estimation such as using only the initial
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model, and the assumption that GEM can bring positive
backward transfer assumes that G is re-estimated for every
update. The computational requirement would increase linearly
with the number of tasks.

• Even when the dual quadratic programming problem manages
to change the QP on |Θ| variables into 𝑛 − 1 variables,
computing the term GG⊤ is expensive since G can have
billions of parameters, such as our models having half billion
parameters.

Nevertheless, it is worth making a theoretical connection between
these methods, and GEM can be feasible when computation becomes
more excessive. In our experiments, EWC and factorization runs about
20 times faster than GEM on the same model. The latter is slow partly
due to the memory constraint in computing GG⊤ and required to use
CPUs instead of accelerated GPUs, therefore a qualitative comparison
is not available in the Thesis, pending for the future works.

5.6 Conclusion

Learning new languages without forgetting falls into the intersection
between automatic speech recognition and continual learning/incremental
learning areas. In this thesis, we presented a model for this specific task
with the combination of Elastic Weight Consolidation and Weight fac-
torization. This model exhibits an interesting property when learning
languages sequentially, that it can learn the new languages very effec-
tively compared to other regularized baselines, while maintaining the
performance for the previously learned languages to an acceptable ex-
tent. We provided an analysis to empirically explain the effectiveness
(and ineffectiveness) of EWC and aim at improving the weaknesses of
the model to improve further on this task. One of the missing ingredi-
ents is to use distillation from the previous models as a compression
of the data that is promising, which is shown in many concurrent work
in image generation [79].
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Table 5.2: Continual learning with EWC and Factorization (EWCF) or Frozen Factor-
ized (FFr) for three iterations (the first session is with the top 10 languages and the next
sessions are separated by middle rules.

Lg E+F F E+F F E+F F
Iter 1 Iter 2 Iter 3

(de) 7.4 7.23 8.7 7.23 10.5 7.23
(fr) 11.5 11.4 13.1 11.4 15 11.4
(es) 6.74 6.74 8.4 6.7 9.8 6.74
(it) 7.1 6.8 9.1 6.8 11.1 6.8
(fa) 4.1 3.7 4.9 3.7 6.5 3.7
(ta) 19.7 18.2 23.3 18.2 28.5 18.2
(pt) 7.3 7 9.2 7 11 7
(ru) 6 5.3 7.4 5.3 9.6 5.3
(pl) 8.1 7.72 9.4 7.72 11.3 7.72
(th) 3.4 3.2 4 3.2 4.6 3.2

Avg 8.1 7.7 9.8 7.7 11.7 7.7

(nl) 7.19 8 7.7 8 9 8
(ar) 15.9 19.4 16 19.4 17.4 19.4
(zh) 14.8 17.7 15.7 17.7 16.9 17.7
(uk) 7.9 10.4 9.1 10.4 12.6 10.4
(cs) 9.3 10.6 10.3 10.6 13.9 10.6

Avg 11 13.2 11.8 13.2 14 13.2

(ro) - - 11.6 12 12.8 12
(sv) - - 12.1 14.8 14.7 14.8
(et) - - 12.1 16.8 14.7 16.8
(tr) - - 7.5 9.4 9.5 9.4
(ja) - - 7.5 9.5 8.3 9.5

Avg - - 10.2 12.5 12 12.5

(id) - - - - 7.9 8
(lt) - - - - 28.5 29.3
(mn) - - - - 27.7 28
(sl) - - - - 11 12.3
(hi) - - - - 29.7 30.8
(gl) - - - - 12.3 10.9

Avg - - - - 19.5 19.9
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6 End-to-end Speech
Translation

In the previous three chapters, the Thesis explored an end-to-end
architecture for speech recognition which is applied in three different
scenarios:

• Monolingual speech recognition with the goal of achieving
competitive results

• Multilingual speech recognition being wide applied for
multiple languages with a strategic architecture to benefit the
most from the multilingual datasets

• A flexible system towards continually learning new languages
without catastrophic forgetting.

The potentials of sequence-to-sequence models can be expanded be-
yond speech recognition - the output is the transcription of the acoustic
input. When the end-to-end approach became staple in speech recogni-
tion, the research scene has raised the question if the same approach can
be used for direct speech translation, in which the output of the model
is the translation in another language, especially after the success in
machine translation [247, 255, 157]. Typically, speech translation is
handled by a cascaded system consisting of a speech recognition model
and a machine translation model. In such pipeline, the acoustic input
is first transcribed into the text format which is then translated. More
often than not, the transcription requires another layer of processing
for punctuation insertion and realignment [33, 37]. Now the objective
of a sequence-to-sequence model is to learn such a direct mapping and
replace the whole pipeline.
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6.1 Motivation of E2E Speech
Translation

There are a number of reasons explaining the interest invested in direct
speech translation, using machine learning methods to learn a direct
mapping between the speech signals and the translation in another
language.

• From an application perspective, the low-resource languages
account for the majority of the languages in the world. These
languages are more likely to come with translations than
transcription, since most of the world’s languages exist solely
in spoken form without any orthography for transcription.
Phonetic transcription is an alternative option but also an
expensive one. Speech translation can be especially useful in
documentation of endangered languages, because most
speakers are bilingual in another common language and can
provide translations for the recordings in the original
languages [1, 26, 27].

• When using a cascaded system to address speech translation, it
is required to build a pipeline of components. The required
components are speech recognition, machine translation and
often a punctuation or text normalizer [34] to add punctuation
to the output of speech recognition which by nature does not
handle punctuation in the transcript. When passing
inputs-outputs through the pipeline, the system is exposed to an
inherent effect: error propagation. Each involved component is
likely to be error-prone and the errors are propagated through
the cascade components leading to compounding follow-up
errors. In statistical modeling, an crucial principal is to delay
hard decisions as long as possible [108, 168].

• Building an end-to-end model is the best way to utilize the
power of the neural networks. These machine learning models
can learn representations from low level features such as audio
waveforms (or the shallow features such as MFCC). Learning
“end-to-end” models allows the networks to optimize all their
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components jointly for one single loss function. As such, a
subtle change in the input might be perceived in a smooth way
by the model and does not lead to a large error in the output.

Compared to the “sisters” tasks, speech translation turned out to be
more challenging especially for the end-to-end approach, due to a
number of reasons. In comparison to machine translation that handles
transformation between two discrete sequences, the acoustic input
is continuous in nature with a high amount of variability. Different
factors such as speaker characteristics, channel properties, dialects or
background noise feature a challenge that does not exist in text transla-
tion. While speech recognition systems have proved to overcome this
challenge, they are not required to deal with the translation specific
problem: the non-monotonic alignment between source and target
sequences, happening when words and phrases are re-ordered as the
difference in the grammars. Additional linguistic problems such as
word sense disambiguation, anaphora resolution also contributed to
the translation difficulties. The combinatory difficulties make speech
translation a challenging task.

Lastly, a neural network would require parallel data to train a sequence
transformation model like Transformers, yet the parallel data required
to train speech translation is not as abundant as text-based transla-
tion data. Naturally, in order to obtain this kind of parallel data, the
data collectors have to start from transcription with the translation
process follows suit. While text data can be harvested in many sources
such as multilingual documents, speech data is much harder to find.
Lacking data for supervision is one of the difficulties in this speech
translation approach. On the other hand, the cascaded approach often
has the upper hand when the ASR and MT models have more data
and modeling capacities to optimize. As a result, even with the “er-
ror propagation” problem, the cascaded system would result in better
translation accuracy than using one single end-to-end model.

Contribution The main contribution of the thesis is to show that
our solution in end-to-end speech recognition can also be effective in
speech translation. We proposed two strategies that directly address the
two problems mentioned above. First, in terms of modeling choice, the
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Deep Transformer model can effectively represent the acoustic features
as well as the complex alignment and mapping between the acoustic
input and the translation. Second, when it comes to the problem of
data sparsity, the speech translation model can “borrow” data from
machine translation using knowledge distillation [96, 132, 110]. By
translating the transcription of the speech data into the target language,
we can obtain the desired parallel data required for training the speech
translation model, whose quality would depend on the quality of the
machine translation model.

With the cascaded system as the target in mind, our aim is to integrate
these two ideas in order to enable end-to-end speech translation to
overcome the cascaded systems. This very goal is demonstrated in the
following experimental scenarios:

• First, we showed that an end-to-end speech translation can be
trained with a deep Transformer network. As such, this model
was able to outperform other neural architectures specifically
designed for speech translation such as LSTMs or shallower
Transformers [52] while still having a distance compared to a
powerful cascaded system [198]. In this stage, we observed the
segmentation error existing in the training data, and relied on
Relative Position Encodings to make the models more resilient.

• In order to further verify this observation, we conducted further
experiments in speech translation scenarios in which
segmentation is given so that we can rule out this problem. In
this condition, the end-to-end Transformer is able to overcome
the cascade, however with the large contribution from the
pseudo-labels from machine translation.

• With that observation, we came back to the large scale scenario
with mandatory segmentation and largely improved the
end-to-end model using data augmentation, transfer learning
and neural-based segmentation. This integration allowed the
end-to-end model to even overcome the powerful system also
receiving the same treatment (i.e transfer learning applied to
speech recognition and machine translation).
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6.2 Prior works

Speech is foundational to human communication and it is the main
communication channel in many situations without any intervention
in the written level. Normal dialogs or lectures are examples of such
situation in which the access to information is done only via the speech
channel without any textual presence. With the high potentials for ap-
plication, speech translation receives a considerable amount of research
interest in the recent years.

The neural sequence-to-sequence models [124, 247, 15] were quickly
adapted in machine translation [160, 118, 119] and speech recogni-
tion [40, 16] showing the great potential to completely dominate the
previous approach. Meanwhile, the speech translation applications
still prefer the cascaded approach due to not only the fundamental
reasons mentioned above, but also because the speech recognition and
text translation components in the cascade are reliably constructed and
transparent, i.e it is also possible to observe the transcription output
which can be post-editted to correct the translation output.

Applying the sequence-to-sequence model with the LSTMs as the
core units for direct speech translation quickly showed that this is an
arduous task. Using a relatively simple dataset of trivial conversa-
tions in English and Spanish, the LSTM-based model cannot operate
on word level and can only yield meaningful alignment between the
acoustic input and the phoneme-level units [55]. An attempt to use
the same structure yet to overcome the learning difficulty included the
transcription in the architecture, leading to a two stage model [127,
254] that performs inference in two steps: first transcribing into the
original language and then translating into the target language and
thus mimicking a cascaded system in one neural network and eventu-
ally re-introducing the error propagation problem. By continuously
connecting the hidden states of the transcript representation and the
translation representation via an attention-passing mechanism [242],
the resulting model not only obtained higher translation quality but is
also more data efficient than the cascade.

Transformers materialize the sequence-to-sequence concept using at-
tention as the main neural connectors in the network. Such a model
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has less inductive bias and is more suitable than LSTMs to learn
complicated mapping functions given enough training data [115].
Adapting the Transformer for direct speech translation for lecture-style
talks [216] has shown an initial potential, by greatly outperforming the
LSTMs [52].

In the prior works, it is notable that the successfully trained models
would require assistance from the transcription via an ASR task. As
such, the model is designed to be multi-tasked, with two output layers
to learn to transcribe and translate at the same time. In some situations,
an additional text encoder can be included for the machine translation
sub-task. In contrary, the next sections would demonstrate that it
is possible to keep the original sequence-to-sequence model with a
single stage instead of a complicated two-staged hierarchy. In turn, the
training process is also simplified without multi-tasking. Simplification
is advantageous because the training process can be applied for new
models and it is often industrially faster and more efficient. Through
out the chain of experiments in the next three sections, our models are
incrementally improved but do not deviate from this objective.

6.3 Transformers for E2E Speech
Translation

With the goal of using a single-stage model (directly transforming
the acoustic input to the translation), we applied the deep stochastic
Transformer architecture introduced in Chapter 4 which has been
shown to be capable of learning the complex mapping between acoustic
inputs and textual output together with the alignment between the
sequences via attention [31].

Training Approach One of the main problems with speech trans-
lation is the learning difficulty, which has been treated by using the
transcription and guide the acoustic encoder of the model via learn-
ing to transcribe. Multi-task learning, however, introduces different
problems in practice. The encoder would receive gradients from two
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loss functions: one for ASR optimization and one for ST optimization.
Despite the fact that the ASR gradient can be useful for ST learning,
they are still fundamentally different (possibly the ST model requires
more information in the encoder than the ASR model), so it is still
necessary to carefully control the gradient flow during the learning
process. Moreover, since most implementations use two decoders for
ASR and ST respectively [127, 243] training such a model can be prac-
tically slow because the model has to perceive each task differently.
This is ironic because end-to-end speech translation initially started
from using the same model with speech recognition, which is what we
are doing in this Thesis.

In order to make the training process simple, the model is first trained
with the ASR task using the same process as in Chapter 3. After
convergence, the decoder is discarded and then the encoder parameters
are used to initialize the counterpart in the next training phase with
the speech translation data. At first sight, this approach might be
the same with multi-task training due to the fact that there are two
decoders involved with the transcription in the model. In practice,
this is much easier to implement because it is not necessary to change
the model architecture as well as the training procedure for multi-task
training. Moreover, since the objective of the whole training process is
translation, the quality of the by-product ASR is not important.

Relative Attention Here, we would like to mention that one of
the crucial components in the network is the absolute positional en-
coding that assigns a fixed vector for each position in the sequence.
The intention of this positional encoding is to allow the self-attention
mechanism to differentiate between positions, since content-based in-
formation retrieval [74] - fundamentally attention, is position agnostic.
The presence of the relative position encoding scheme as described in
Chapter 3.3 would help the model to have the advantages of relative
position encoding applied for the Deep Transformer [199], especially
on the encoder side. The resulting novel model maintains the trigono-
metric position encodings to better scale with longer speech sequences,
and is able to model bidirectional positions as well.
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Experimental Setup The speech translation task is divided into
two different subtasks. Many SLT datasets require an auto-segmentation
component to splits the audio into sentence-like segments.1 Even
though end-to-end models are not theoretically limited in generating
beyond sentences, longer sequences would pose more troubles in terms
of memory complexity and training time. Due to the fact that attention
requires to store an attention matrix 𝐴 containing the scoring values of
each pair of positions, the space complexity is 𝑂(𝑛2) with respect to
sequence length [136] and would require exotic strategies to approx-
imate the values in 𝐴 such as sparsity [286] or Orthogonal Random
features [39]. Moreover, learning to align in long sequences is more
difficult than in shorter sequences.

Therefore, for end-to-end models, the quality of this segmentation pro-
cess is crucially important due to the lack of incremental decoding and
higher GPU memory requirements. This problem leads to a mismatch
during training and evaluation. During training. speech translation
corpora such as MuST-C [53] contain segmentations for both the train-
ing and test sets, requiring no extra segmentation component, and
so we use its English-German pair serves as our first experimental
benchmark. We further carry out experiments on the IWSLT 2019
evaluation campaign data, a superset of MuST-C, where segmentation
is not given; here we can compare the effects of variable-quality seg-
mentation on different end2end models, and also compare models to
highly competitive tuned cascades. We use the MuST-C validation data
for both tasks since it is necessary to use a segmented test set instead of
a long talk for validation. The preprocessing step is simple, in which
the target sentences are tokenized using the Moses tokenizers [138].
In order to handle out of vocabulary words, byte-pair encodings [234]
with 40000 units is used to split the words. For this reason, the vocab-
ulary size of the model is roughly 40000. Unlike speech recognition,
in translation we also need to keep the punctuations in the sentences.
Since punctuation might not be aligned with any audio input (possibly
silence, but not necessary), it is a challenge for the decoder to learn
the syntax patterns in the data.

1 This is commonly seen in IWSLT evaluation campaigns [179].
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The main characters in all experiments are the Deep Stochastic Trans-
former [199] and the relative version using this encoding scheme for
both encoder and decoder to enhance the representation of these two
components. For SLT, the models and the training process are identi-
cal to ASR, with the exception that we use 32 encoder layers and 12
decoder layers. The SLT data sequences are longer and thus need more
memory. Following the curriculum learning intuition that SLT models
benefit from pre-training the speech encoder with ASR [18], we first
pre-trained the model for ASR with the parallel English transcripts
from MuST-C, and then fine-tune the encoder weights and re-initialize
the decoder for SLT. This approach enabled us to consistently train our
SLT models without divergence (which may happen when the learning
rate is too aggressive or the half-precision GPU mode is used).

For all models, the batch size is set to fit the models to a single GPU 2

and accumulate gradients to update every 12000 target tokens. We
used the same learning rate schedule as the Transformer translation
model [255] with 4096 warmup steps for the Adam [133] optimizer.

Speech Translation Results Our first SLT models were trained
only on the MuST-C training data and the results are reported on
the COMMON testset3, using the provided with the segmentation
of each utterance which has a corresponding translation. For each
utterance, we can directly translate with the end2end model, and the
final score can be obtained using standard BLEU scorers such as
SacreBLEU [203] because the output and the reference are already
sentence-aligned in a standardized way.

As shown in Table 6.1, our Deep Transformer baseline achieves an
impressive 24.2 BLEU score compared to the ST-Transformer [52],
which is a Transformer model specifically adapted for speech transla-
tion. There are two reasons for this large gap in performance. Training
the Transformers on speech translation was unstable unless the encoder
was pre-trained with the recognition task and the stability is even worse

2 Titan V and Titan RTX with 12 and 24 GB respectively
3 MuST-C is a multilingual dataset and this testset is the commonly shared utterances

between the languages.
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with a deep encoder, leading to a bad result reported by [52]. Our
results also confirmed the discovery in the subsequent publication [18].
Moreover, speech datasets are often much smaller compared to text
datasets in terms of number of words. For this reason, a strong regular-
ization is required to obtain a good result. The stochastic mechanism
in the Deep Transformer allowed a large model with 32 layers to get a
strong performance.

Here, using relative position information makes self-attention more
robust and effective still, as our BLEU score increases to 25.2 with a 1
BLEU point improvement coming from improving the attention mecha-
nism. However it is notable that the test samples are pre-segmented and
the dataset creation process guarantees that each segment corresponds
to one grammatically reasonable sentence. For this reason,

For better performance, we also add the Speech-Translation TED cor-
pus 4 and follow the method from [52] to add synthetic data for speech
translation, where a cascaded system is used to generate translations
for the TEDLIUM-3 data [94]. Our cascade system is built based
on the procedure from the winning system in the 2019 IWSLT ST
evaluation campaign [198].

With these additional corpora, we observe a considerable boost in
translation performance (similarly observed in [52]). More importantly,
the relative model further enlarges the performance gap between two
models to now 1.4 BLEU points. We hypothesize that the model is
able to more effectively use the additional data, with data patterns
more easily captured when the model considers relative rather than
absolute distance between speech features. More concretely, each
training corpus has a different segmentation method, which leads to
large variation in spoken patterns, which is difficult to capture using
absolute position encodings.

To verify our hypothesis, we compare these two models and the cas-
caded system on the TEDTalk testsets without a provided segmentation.
These talks are available as long audio files and require an external

4 Available from the evaluation campaign at https://sites.google.com/view/iwslt-
evaluation-2019/speech-translation
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audio segmentation step to make translation feasible. It is important
to note that the cascaded model has a separate text re-segmentation
component [34] which takes ASR output and reorganizes it into logical
sentences, which is a considerable advantage compared to the end2end
models. We experimented with several audio segmentation methods
and see that the cascade is less affected by the segmentation quality
than the end-to-end models.

The results in Table 6.10 compare two different segmentation methods,
LIUM [218] and VAD [271], and four different testsets. The relative
Transformer unsurprisingly consistently outperforms the Transformer,
regardless of segmentation. Moreover, comparing between the seg-
menters, the relative model more effectively uses higher segmentation
quality, yielding a larger BLEU difference. While the base Trans-
former only increases up to 0.5 BLEU with better segmentation, this
figure becomes up to 2.4 BLEU points for the relative counterpart. In
the end, the cascade model still shows that heavily tuned separated
components, together with an explicit text segmentation module, is an
advantage over end-to-end models, but this gap is closing with more
efficient architectures.

Table 6.1: ST: Translation performance in BLEU↑ on the COMMON testset (no
segmentation required)

Models BLEU

LSTM [52] 12.9
ST-Transformer [52] 18.0

+SpecAugment 19.3
+Additional Data [51] 23.0

Deep Transformer (w/ SpecAugment) 24.2
+Additional Data 29.4

Deep Relative Transformer (w/ SpecAugment) 25.2
+Additional Data 30.6

Despite the large improvement that we obtained by using Transformers
and additional data, improving the translation performance by an
impressive 7.6 points compared to the previous works, there is still
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Table 6.2: ST: Translation performance in BLEU↑ on IWSLT testsets (re-segmentation
required)

Testset → Relative Cascade
Segmenter → LIUM VAD LIUM VAD LIUM VAD

tst2010 22.04 22.53 23.29 24.27 25.92 26.68
tst2013 25.74 26.00 27.33 28.13 27.67 28.60
tst2014 22.23 22.39 23.00 25.46 24.53 25.64
tst2015 20.20 20.77 21.00 21.82 23.55 24.95

a gap between this model and the cascaded system. Ironically, the
number of parameters of the ST model is only a half of the cascaded,
counting from the number of parameters of the speech recognizer and
translator but just increasing the number of parameters probably is not
the solution. Towards the end of the chapter, the end-to-end model
would gradually shorten the bridge between the two approaches by
targeting the weaknesses shown in this work.

6.4 Data augmentation for E2E Speech
Translation

In the previous section, the Transformer was described as an alternative
solution, in which the gap of performance between itself and the well-
established cascaded system has become shortened, compared to the
situation before our solution [241]. However, it is notable that direct
speech translation research and benchmarks have been conducted in
conditions such that there is sufficient training data for supervised
learning, for example the English→Spanish Fisher dataset [204] or the
English→German datasets having been built for many years [216, 53,
30]. For many language pairs, it is often difficult to gather data at a
similar level compared to these two datasets.

Multilingual translation has been considered as the solution for data
scarcity in machine translation [85, 123]. In this setting, the training
data consists of various datasets in different languages. Unlike speech
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recognition in which each individual data is monolingual and training
one single multilingual model might focus on the encoder side of the
Encoder-Decoder architecture by helping it learning better representa-
tion, as reflected in different works [193, 191, 42, 209]. In translation,
due to the presence of all languages in both sides of the architecture,
it is possible to establish a connection between two languages unseen
in the dataset. The so-called zero-shot translation ability is enabled
because the encoder representation between languages can bear certain
level of similarities, and especially they can be trained to minimize the
difference [194, 10].

Can the same method be applied for speech translation? In such
organization, the language organization graph stays the same with the
translation setting, only the modality of the source side is changed
to speech data. How does an end-to-end system perform compared
to a fully fledged cascaded trained on a multilingual setting (ASR +
MT) and especially on zero-shot translation? If the performance of the
end-to-end system is subpar, can we fill the gap in the dataset using
pseudo-labels? In order to answer those questions, we trained speech
translation systems using both approaches on the Multilingual TEDX
dataset [223].

As to provide the answers for such research questions, we discovered
that the quality of the end-to-end translation model depends heavily
on the sister tasks: ASR and MT. Specifically, the ASR model is
required to bootstrap the encoder of the end-to-end model, while the
MT model can be used to translate the transcripts of the speech data
into different languages to be used as pseudo-labels for the training
the end-to-end model. Contextually, various benchmarks have shown
a fierce competition between traditional cascade systems and end-
to-end counterparts [116, 117, 7]. The competition without a doubt
would continue in multilingual speech translation especially in a low-
resource condition. However, the competition between two modeling
schemes suggests that each of them possesses its own strengths and
advantages. Notably the cascade models can easily benefit from the
separated optimized architectures of each sub-task and enjoy the larger
available datasets, while the end-to-end models can theoretically avoid
error propagation. In this Thesis, we can also show that it is possible
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to combine via ensembling the outputs of end-to-end and cascaded
systems to maximally utilize the strengths of each approach. The work
has been conducted under the scope of the IWSLT2021 evaluation
campaign [5].

Dataset overview The Multilingual TEDx corpus [223] provided
us with the 5 languages Spanish (es), French (fr), Italian (it), Por-
tuguese (pt) and English (en). While speech audio is available for the
first 4 languages, text translation is available for all 20 language pairs,
and the speech translation parallel data is largely more scarce than the
other two. The data statistics is shown in Table 6.3 and 6.4.

Source → Target en es fr it pt

es 36K 102K 3.6K 5.6K 21K
fr 30K 20K 116K - -
it - - - 50K -
pt - 30K - - 90K

Table 6.3: Data statistics for speech recognition/translation in the number of utterances.

Source → Target en es fr it pt

en - 36.2K 30.5K - 30.8K
es 36.2K - 24.4K 5.6K 21.1K
fr 30.1K 24.4K - - 13.2K
it - 5.6K - - -
pt 30.8K 21.1K 13.2K -

Table 6.4: Data statistics for machine translation in the number of sentence pairs.

It is noticeable that the training data is severely lacking for speech
translation when the number of sentences is only a fraction of the ASR
or MT resources. As a result, our initial plan was to generate synthetic
translations from the available transcripts, that can effectively increase
the data size for training end-to-end SLT models.
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Enhancement for Transformers Due to the need of building all
three systems, the Transformers are going to be the protagonists in
all tasks: machine translation, speech recognition and speech trans-
lation. In this specific works, we experimented with several model
improvements for the Tranformers. As we know, they are constructed
with blocks of transformation functions including self-attention and
feed-forward neural networks.

Self-attention transforms a sequence of states using themselves as
queries, keys and values, building up hierarchical representational
powers since the output states are the weighted-sum of the input states
that can be flexibly learned during training. Relative attention [236]
further improves the interaction between states by assigning learnable
weights for each relative position. [197] incorporated this mechanism
into speech models by extending the partially learnable relative posi-
tions in [46] to attend to all positions in the sequence bidirectionally.

Furthermore, the Transformer models are strengthened by using dual
feed-forward (FFN) layers per block instead of one [159]. As such,
one feed-forward network block precedes the initial self-attention in
either encoder and decoder. The outputs of both FFN layers are scaled
by 0.5. Besides, it is possible to help training deep Transformer better
by using RELU-inspired activation functions that do not suffer from
dead neurons. GELU [93] and SiLU [58] are combined with gated
linear units [48], as used in our activation functions.

In most of our experiments and in the eventual submission, all of the
above enhancements were incorporated. Ablation studies are unfor-
tunately not fully possible because of the time constraint, but will be
provided to depict the improvement of each addition.

Speech Recognition Our speech recognition models are built
based on both the LSTM and the Speech Deep Transformer [198]
enhanced with bidirectional relative attention [197]. While LSTM
models have been intensively experimented for the best results [176,
183], Transformers have been recently adopted to this task with strong
results [198, 197].
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For the four languages in the Multilingual TEDx, we trained both
multilingual Transformers and LSTM models on the combination
of the datasets, using the factorization scheme. The LSTM has 6
encoder layers and 2 decoder layers with 1024 hidden units in each
layer. The sole attention layer between encoder and decoder is an
8-head dot-product attention. On the other hand, we experimented the
Transformers with the “Large” models having 16 encoder layers and 6
decoder layers with 1024 units in the hidden layers.

The models are trained with Adam and an inverse square-root learning
rate schedules with 4096 warm-up steps following the same setting
as [255] for up-to 120K steps or early-stopping on the development
set. In order to facilitate training, layers are randomly dropped with
the highest rate of 0.5 and linearly reducing from top to bottom [198].
Due to the relatively small size of the dataset, regularization is added
with dropout probability 0.35 in all layers, and spec augmentation with
dropped frequency range is 𝐹 = 16 and the maximum dropped time
𝑇 = 64 which is relatively aggressive.

Language LSTM bTF eTF Ensemble

es 16.9 16.4 15.25 14.37
fr 16.5 16.8 15.39 14.44
pt 18.3 19.5 17.1 16.79
it 19.5 16.4 17.24 15.47

Table 6.5: Comparison on Multilingual TEDx dataset (WER↓). Our baseline models
include the baseline (b) and enhanced (e) Transformers (TF) and the LSTM.

Table 6.5 shows the experimental result of speech recognition, in which
we can see that the Transformer with only Relative attention is as good
as the LSTM, while using all enhancements allowed us to improve the
result further. It is notable that those results are obtained using our own
word error rate measuring method that does not remove punctuations,
which are retained in ASR to be compatible with the subsequent MT
models.

Removing the punctuations and using the evaluation scripts in the
same repo with [223] gave us 11.0, 13.88, 13.38 and 14.14 error rates
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for Spanish, Italian, French and Portuguese respectively, which are
significantly lower than the Hybrid LF-MMI provided.

Machine Translation Our multilingual machine translation is built
based on the universal multilingual framework [84, 122, 194], in which
the vocabulary is shared between languages using a BPE size of 16000
merging units.

Thanks to the relatively small data size, the translation task was used
to measure the incremental improvement of various features, including
the relative attention and the Macaron feed-forward layers. Therefore,
experiments were carried out using the base-setting of Transformer
as the starting point. Dropout was increased to 0.35 together with
word dropout [66] at both encoder and decoder to help the models
counter overfitting. The output language is controlled by the language
embedding vectors added directly to the word embedding at every
timestep [83, 194]. The language pairs are randomly sampled based
on the training size of each pair (no temperature was used). Training
is done using the adaptive learning rate for Adam, with maximum
learning rate at 0.7 achieved after 4096 warming-up steps, and is often
early-stopped after 60000 training steps, each is approximately 48000
words.

Regularization is further improved via data diversification [177]. Car-
rying a similar idea of back-translation [233] that generates synthetic
labels for untranslated monolingual data, the main idea of data diver-
sification is to popularize the available training data with synthetic
translation of both source sentences and target sentences.

According to the algorithm presented in [177], the training process is
divided into rounds in which the training data is incrementally added
with synthetic data coming from the refining models themselves. Start-
ing from the original training data in round 0, we use the best settings
in round 𝑛 to translate the source and target sentences in the training
to the counterpart language and add the synthetic translation pairs to
the current training data, proceeding to round 𝑛 + 1. Each synthetic
pair consists of one original sentence and one synthetic sentence. The
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idea is the combination of backtranslation, model distillation [132]
and data augmentation [268] without any additional data.

Interestingly, thanks to the multilingual property, it is also possible to
translate one sentence to a range of languages after each round, leading
to different options and a massive amount of sentences to be added.
However, it was empirically found out that the method did not scale
after 1 round, and massively translating to all languages did not im-
prove the training data. Therefore, after round 0, the best configuration
which is an ensemble is used to generate synthetic parallel data for
round 1 by just translating each sentence to the same language in the
original dataset.

The translation result is seen in Table 6.6. We showed the progressive
results as a result of adding each empirical feature, and measured the
change in average over 14 language pairs. Even though the training
data also contains language pairs that are not included for the SLT task,
we found that adding those “reverse” language pairs is beneficial for
the others.

In terms of improvement, it can be seen that even though in this extreme
low-resource scenario, using more complicated architecture obtained
better translations. A combination of relative attention, macaron FFN
and 16 layers of depth allowed us to improve the baseline by 0.95
BLEU points, in which the relative attention seems to be the most
useful. Ensembling multiple models is, as expected but costly to
improve the results further.

Data diversification was very effective after the first round, by im-
proving the average score by nearly 1 BLEU point. Italian-related
language pairs enjoyed up to 2 BLEU points, due to the lowest amount
of original sentences. This result somewhat went against the initial
expectation, because by not changing the sampling method, the data
ratio for those languages was even lower than in round 0.

We obtained the best configuration for text translation with ensembles
on round 1. Proceeding to round 2 unfortunately did not produce any
further improvement, which might be reasoned by the dominance of
synthetic sentences in terms of quantity.
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Pair/Model TF +Rel +MCR +16L +ESB +DSF +ESB +DSF2

es-en 33.48 33.98 34.94 34.93 35.16 35.88 36.14 35.83
en-es 30.87 31.34 31.88 31.72 32.76 33.42 33.97 33.56
es-fr 40.65 41.40 41.19 41.26 42.06 42.87 43.57 43.12
fr-es 38.48 38.59 38.98 38.85 39.87 40.82 41.09 40.88
es-it 28.82 29.07 30.24 31.29 31.27 32.50 33.80 32.93
it-es 34.74 35.27 35.25 35.31 36.58 38.41 39.01 38.50
es-pt 43.04 43.40 43.65 43.53 44.30 44.96 45.40 45.03
pt-es 46.95 47.01 46.63 46.59 47.70 48.74 48.95 48.41
fr-en 38.29 38.62 39.64 39.53 40.32 41.09 41.65 40.93
en-fr 39.88 40.47 40.85 41.18 41.51 42.40 43.17 42.14
fr-pt 40.61 41.31 41.71 42.52 42.50 43.94 44.25 43.52
pt-fr 46.14 46.42 46.57 47.02 47.76 48.90 49.66 48.76
fr-pt 37.67 38.49 38.73 39.81 39.57 40.23 40.55 39.52
pt-fr 34.60 34.53 35.07 35.43 35.58 36.59 37.05 36.51
avg 38.16 38.56 38.95 39.21 39.78 40.76 41.3 40.68

+0.4 +0.29 +0.26 +0.57 +0.98 +0.54 -0.62

Table 6.6: IWSLT 2021 machine translation progressive results. The features including
Relative Attention (REL), Macaron FFN (MCR), 16 layer-deep (16L), ensembling
(ESB) and diversification (DSF) are additive from left to right, starting from the base
model. The last row shows the improvement compared to the previous increment.

End-to-end Speech Translation Naturally, end-to-end speech
translation is developed at the last stage to benefit from the previous
stages. The ASR models serve as providing the SLT with the pretrained
encoder, while we used the MT model to fill the gaps, i.e translate all
available ASR data. This allows us to increase the amount of training
data for SLT significantly, especially for languages such as Italian and
French.

Architecture wise, we only used Transformers for SLT, that followed
the same training procedure with ASR due to the fact that the encoders
are transferred from the Transformer ASR models.

The results are shown in Table 6.7. Unfortunately the results without
ASR pre-training are not available because training was unstable and
likely to diverge in such harsh data condition. It is not unexpected
that the end-to-end model (E2E) trained with only the initially limited
amount of data falls behind the performance of the cascade models.
With distillation from machine translation, the performance is largely
boosted to be on par with the cascade. The 0.2 differential in average
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mostly comes from Portuguese-Spanish, Italian-English and Italian-
Spanish.

Compared with pre-distillation, a lot of language-pairs enjoyed a sig-
nificant improvement of up to 26 BLEU points, such as the sample
Italian audio inputs, thanks to the distillation models changing zero-
shot to supervised settings. The supervised language pair that was
mostly improved is Spanish-French (12 BLEU points).

Finally, in this particular SLT setup, we found that it is useful to
ensemble cascade and SLT models in a multi-modal manner. In the
literature, it has been observed that each approach has its own strength.
While the components of the cascade can be easily tuned individually
because ASR and MT have lower mapping complexity than SLT, the
end-to-end models can avoid error-propagation that plagues cascade
systems. An ensemble suggests that we can combine the strengths of
two approach, yet only available in certain experimental settings that
leaves audio segmentation out of the scope. Here the ensemble is done
by simply using the same bpe vocabulary for the MT and SLT models,
and average the output probabilities of the MT and SLT models for
every timestep. The result showed that this intuition can help improve
the results further.

In the final results, we can see that the ensemble quality depends on
the ASR performance, which can be seen in test sets with Spanish
audio and French audio. At the relatively low error rate, combining
two approaches provides a significant boost to the translation quality.
However, for French samples the deterioration of the cascade makes the
combination worse than the sole end-to-end solution. This experiment
shows that error propagation is a serious problem and end-to-end SLT
systems can be more robust than cascades with sufficient data and
training efficiency improvement. The evaluation also suggests us to
investigate into zero-shot translation for multilingual SLT, which is
extremely difficult because of the modality difference between the
source and target sequences.

Eventually, our systems achieved the highest position in the evaluation
campaign [5].
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Model Cascade E2E +Syn +ESB
Pair

es-en 30.44 25.58 30.27 31.02
es-fr 31.64 18.81 31.32 32.25
es-it 26.07 22.94 26.22 26.21
es-pt 39.33 34.73 39.53 40.04
fr-en 35.41 29.73 35.19 36.06
fr-es 37.71 30.13 38.48 38.96
fr-pt 38.21 30.98 37.97 38.44
pt-en 33.63 28.16 33.25 34.15
pt-es 37.53 25.55 38.41 38.43
it-en 24.28 5.37 24.92 25.29
it-es 32.29 7.20 33.67 33.90
avg 33.32 23.56 33.56 34.06

Table 6.7: End-to-end speech translation results on progressive testsets.

6.5 State-of-the-art integration

The experiments in the previous section have shown that, under a
perfect condition in terms of segmentation, the end-to-end model can
outperform the cascade, despite the fact that it desperately needs the
distillation effect from the cascade model to reach the performance, es-
pecially in the zero-shot condition, as in the results in Italian→English
and Italian→Spanish when none of the pairs appear in the training
data. Coming back to the large condition, it has been seen that the
performance gap is caused by two factors: modeling capacity in the
end-to-end model and segmentation quality. The final contribution
in speech translation in this Thesis is to eventually close this gap be-
tween the two approaches. These final touches are achieved by using
two main factors: transfer learning and data-driven data segmen-
tor that can provide a better segmentation result than acoustic-based
segmentation tools.

To remind the difference between an end-to-end model and a cascaded
system, the latter is able to divide the complicated ST to smaller
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sub-problems: automatic recognition, (often) re-segmentation [34]
and machine translation and have the advantage of using more data
to separately optimize the components. The former, on the other
hand, relies on a single network architecture that requires an explicit
speech-translation dataset, potentially alleviating error propagation and
having a faster generation speed (due to the reduction in the number
of involved models).

Evaluation campaigns [179, 7, 5, 6] around the time of the thesis
showed that the performance gap between E2E and cascade is grad-
ually reduced, and there are three negative factors that outweigh the
advantages of having a single architecture without the problem of error
propagation [241].

• Data utilization: the end2end model can only be directly
trained on parallel speech translation data, which is often
lacking compared to speech-transcription or text translation
data. Previously the SLT models would require a necessary
pre-training step with ASR in order to have comparable results
with cascade [18, 195].

• Modeling capacity. The transition from shallow LSTM-based
models [242] to Transformer-based models [197] resulted in a
big leap in model capacity and showed the potential of the E2E
approach.

• Better audio segmentation. Decoding directly from long audio
files is infeasible due to the expensive memory requirement and
the presence of other distractions such as breaks, noise or
music. Applying either cascade or E2E models absolutely
requires an audio segmentation step performed by a voice
activity detection system. While the cascade systems can
handle imprecise cuts based on a re-segmentation process [34],
the E2E lacks this ability to recover from this training-testing
condition mismatch.

Here, the integrations in the thesis improved our end-to-end SLT sys-
tems for English→German with up to 6 BLEU points by directly
addressing the aforementioned weaknesses:
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• Pretrained acoustic [14] and language models [249] are
incorporated in modeling. This allowed for transferring the
knowledge during the pretraining processes which contain a
massive amount of data. This effect is further enhanced when
combined with the pseudo labels generated by machine
translation.

• By using the pretrained models, we fully utilized the large
architectures that improved the results further. More
importantly, the pretrained acoustic model directly extracts
features from audio waveforms which is potentially an
advantage compared to the manually extracted features in the
previous systems.

• The audio segmentation component is changed into a full
neural-based solution combined with pretraining [253]. The
new solution is not only more accurate, but also directly
optimized on TED Talks giving the translation model more
precise and complete segmentations compared to the generic
voice activity detectors.

In contrary to a cascaded system that benefit from those factors only
to a limited extent, the end-to-end speech translator received a massive
gain and is able to fairly overcome the performance of the cascade.

Speech Corpora. For training and evaluation of our ASR models,
we used Mozilla Common Voice v7.0 [8], Europarl [112], How2 [224],
Librispeech [180], MuST-C v1 [53], MuST-C v2 [30] and Tedlium v3
[94] dataset. The data split is presented in the following table 6.8.

Modeling In order to fully utilize the pretrained acoustic and lan-
guage models, the models are constructed with the encoder based on
the wav2vec 2.0 [14] and the decoder based on the autoregressive
language model pretrained with mBART50 [249]. The parameters are
initialized based on the pre-trained paramaters.
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Table 6.8: Summary of the English data-sets used for speech recognition
Corpus Utterances Speech data [h]

A: Training Data
Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
TEDLIUM 268k 482

B: Test Data
Tedlium 1155 2.6
Librispeech 2620 5.4

wav2vec 2.0 is a Transformer encoder model which receives raw
waveforms as input and generates high level representations. The ar-
chitecture consists of two main components: first a convolution-based
feature extractor downsamples long audio waveforms into features that
have similar lengths with spectrograms. After that, a deep Transformer
encoder uses self-attention and feed-forward neural network blocks to
transform the features without further downsampling. During the self-
supervised training process, the network is trained with a constrastive
learning strategy [14], in which the features (after being downsampled)
are randomly masked and the model learns to predict the quantized
latent representation of the masked time step as well as encouraging
the model to diversify the quantization codebooks by maximizing their
entropies.

During the supervised learning stage, the weights in the convolutional
based feature extracted can be frozen to save memory since the first
layers are among the largest ones and all of the weights in the Trans-
former encoders are fine-tuned for the task, either speech recognition
or translation. Moreover, in order to make the model more robust
against the fluctuation in absolute positions when it comes to audio
signals, as well as the training-testing mismatched condition happening
when we have to use a segmentation model to find audio segments
during testing, we added the relative position encodings [46, 197] to
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alleviate this problem. Similar to the relative wav2vec model in the
previous chapters, the parameters in the relative model contain the
original content based attention-based parameters plus the position
biases. As a result this model can be initialized with the parameters
from the original wav2vec model, while the position bias parame-
ters are randomly initialized and become data-specific. Here we used
the same pretrained model with the speech recognizer, with the large
architecture pretrained with 53𝑘 hours of unlabeled data.

mBART50 is an Encoder-Decoder Transformer-based language
model. During training, instead of the typical language modeling
setting of predicting the next word in the sequence, this model is
trained to reconstruct a sequence from its noisy version [148] and later
extended to a multilingual version [157, 249] in which the corpora
from multiple languages are combined during training. mBART50 is
the version that is pretrained on 50 languages.

Architecture wise, this model follows the Transformer encoder and
decoder [255]. During fine-tuning, we can combine the mBART50
decoder with encoder pretrained with the wav2vec 2.0 so that each com-
ponent contains the knowledge of one modality. The cross-attention
layers connecting the decoder with the encoder are the parts that re-
quire extensive fine-tuning in this case, due to the modality mismatch
between pretraining and finetuning.

Speech segmentation As pointed out in [253], the quality of
audio segmentation has a big impact on the performance of the speech
translation models, which are trained on utterances corresponding to
full sentences, often manually aligned, and this rarely happens with an
automatic segmentation system.

With the advantage of neural architectures and pretrained models, we
follow the SHAS method [253] to train a Transformer-based audio
segmentation model on the MuST-C v2 corpus. Based on the high-
level audio features generated by wav2vec 2.0, the model predicts the
probability of each frame belonging to an utterance or not with cross-
entropy. Afterwards, given the probabilities of the frames in an audio
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sequence (which are actually averaged over several rolls for more
consistent accuracy), a segmentation algorithm called probabilistic
DAC is used to aggressively cut the segments at the points with lowest
probabilities, and then trim the segments to get probabilities higher
than a set threshold.

We found this method to be much more effective than other voice
activity detectors such as WebRTCVAD [271]. In the next experimental
part, it will be shown that the audio segmentation quality is one of
the most important factors helping the E2E system. Here we closely
followed the original implementations and parameters to obtain the
neural segmenter.

End-to-end Offline Speech Translation Given two new factors
coming into play for the end-to-end models, namely pretrained models
and audio segmentation, the models are first tested on the static test
which is the tst-COMMON set from the MuST-C corpus [53] with
the pre-segmented utterances and labels. This testset is available
for all three languages. The whole system is tested on the IWSLT
testsets without utterance boundaries and labels are only provided in
paragraphs (each talk is contained in one paragraph). In this condition,
only English→German tests are available.

The results on this test for all three languages are presented in Table 6.9.
On English-German, overall we managed to improve the purely super-
vised model with Transformers [197] by 2.6 BLEU points. Using the
pretrained weights from wav2vec and mBART is very effective for an
additional 1.6 BLEU points, while we found that the relative attention
also contributed for a 0.7 BLEU points, and training the model in the
multilingual setting is also slightly better.

The final results on previous IWSLT testsets are presented in Table 6.10.
First of all, the new segmentation method SHAS managed to improve
the translation results of our previous year’s submission by up to 4.4
BLEU points (as can be see on tst2015 and tst2019). By using a
stronger model with wav2vec and mBART pretrained modules, the
results are vastly improved by 2.2 and 3.1 BLEU points on tst2019 and
tst2020. The performance is incrementally improved even further, by
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Table 6.9: BLEU scores on tst-COMMON from MuST-C

Model BLEU
English-German

E2E 2021 30.6
wav2vec + mBART 32.2
wav2vec + rel + mBART 32.9
wav2vec + rel + mBART + multi 33.2

Table 6.10: ST: Translation performance in BLEU↑ on IWSLT testsets (re-segmentation
required). Progressive results from previous evaluation campaignes with end-to-end
(E2E) and cascade (CD) are provided for comparison.

Testset → tst2015 tst2019 tst2020
E2E2021 22.13 20.43 23.20
CD2021 24.95 21.07 25.4
E2E2021 + SHAS 26.66 24.55 25.58
+W2V-MBART 26.64 26.31 28.66
+REL 27.27 26.58 29.11
+MULTI 27.65 26.84 29.2
+ENSEMBLE 27.87 27.61 30.05
CD2022 26.84 25.91 28.35

combining different techniques including relative attention, multilin-
gual training and ensemble. Eventually, we obtain a result which is 7.8
BLEU points better than the last year’s end-to-end submission.

The cascade system is also improved this year, by using the pretrained
ASR, MT and better segmentation. On tst2020, we managed to im-
prove the BLEU score by 3 points. However this enhancement pales
against the E2E, and this is our first participation in which the E2E
convincingly outperformed the Cascade system.
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6.6 Conclusion

The main purpose of this chapter is to present the application of the
deep Transformer networks in end-to-end speech translation. Modeling
enhancement, data augmentation, transfer learning and segmentation
were the main factors in improving the quality of the approach, from
being far behind from cascaded speech translation, to finally overcom-
ing it. It is notable, however, that despite the end result being a single
neural network that can competitively translate from speech, the effort
of training a cascaded model is inevitable, due to the requirement for
weight transfer (in the acoustic encoder) or data augmentation with
machine translation or even potentially with expensive audio synthesis
systems. This requirement means that there is much work to do in the
future to reduce the training cost for speech translation systems. More-
over, since the cascaded components (ASR and MT) can stand alone
in their own applications, it is more industrially efficient to construct a
multi-modal and multilingual speech translation system, in which the
system can simultaneously generate into different languages.

Besides, the focus of this work is on offline speech translation in which
the system is not time-limited in processing. In an online environment,
there are further modifications to be done, either as a post-processing
step [202, 178, 154] after the speech translation models are trained, or
a fundamental change to the training process. In such case, the large
model size of current systems remain to be a burden as well unless
compression techniques or distillation can help us maintain the same
performance with a smaller model.
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7 Conclusion and Future
Works

7.1 Achievement in the thesis

Having being developed for several decades, the statistical approach
using a Hidden Markov Model structure was considered a cornerstone
for speech recognition. This approach is still reliable nowadays for
constructing one recognition system for one certain language, and in
certain cases can still enjoy a higher performance than an end-to-end
system depending on the implementation [187]. In some cases, the
inductive bias that exists in the manually designed components of the
pipeline can be an advantage when setting up a new system. The de-
sign of such systems, however, suffers in the application towards other
languages in which linguistic resources are limited. Moreover, the
rigid structure can hardly benefit from learning shared and language
specific features from the languages. Developing a multilingual system
is important thanks to the performance factor as well as the economic
factor. There are assumptions that can be transferred between lan-
guages, and using acoustic features from high-resourced languages
and help the low-resourced languages [209].

With the goal of designing a flexible and extensible learning strategy for
multilingual speech recognition, the thesis explored and proposed three
main contributions. First, a deep architecture with stochastic Trans-
former layers was discovered to be able to achieve state-of-the-art level
recognition performance on conversational speech benchmarks [199].
This very architecture became the backbone of later important works
that further explored speech recognition [80, 186] and unsupervised
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feature learning [14] by scaling on large data and computation. No-
tably the architectural depth is one of the important improvements for
industrial solution, such as Whisper [211]. As an extension, the archi-
tecture is also empirically proven to be able to replace complicated
cascaded systems in multilingual speech translation [196, 192].

Second, a novel weight factorization strategy was devised for multilin-
gual learning in speech recognition [193]. This weight factorization
is two-staged: factorizing each weight matrix in the network into
shared and language specific factors, and then factorizing the language
specific factors into low-rank matrix forms. The latter is to ensure
that the capacity of the shared network is larger to prioritize sharing
features, while allocating language specific features to the factorized
components. This method was experimentally proven in both normal
supervised learning and combined with transfer learning [191]. One
notable advantage here is that the method is neural network driven but
not architecture dependent, since matrix multiplication is the basis of
neural feature learning.

Third, the current approach in supervised learning is limited in de-
signing a flexible language learning system. An intention to add new
languages to a trained multilingual system is limited in choices. Re-
training the whole network with all languages is a costly option, while
fine-tuning the network with new languages only suffers from catas-
trophic forgetting, a phenomenon happening when the weights in the
network are trained towards minimizing loss on a different data, and
deviated from the optimized states for the previous data. In the thesis,
weight factorization became the key to combat catastrophic forgetting
in language learning, due to the ability to maintain previous knowl-
edge in the separated network branch. This property allowed us to
add languages in an existed system in a more relaxing manner. On the
one hand, using weight factorization can totally prevent catastrophic
forgetting for all previous languages, while having a competitive per-
formance for the new languages. On the other hand, a flexible learning
algorithm such as Elastic Weight Consolidation [135] can be com-
bined with weight factorization to compromise the quality of the old
languages, but achieving almost the same effect as fine-tuning for the
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new ones. This achievement is the pioneer for continual learning for
multilingual speech recognition.

7.2 Future Work

Speech recognition has been developed to an extent that applications
for mainstream languages such as English/Chinese have been reliable.
The core of such applications is often a Transformer based models
trained with hundred of thousands of hours of audio data. The Fac-
torization technique not only allowed the models to scale better in
a multilingual environment, but also enabled continual learning by
adding new languages to a trained system to reduce cost and complex-
ity in training a full new system. From such contributions of this thesis,
new research directions can be further pursued.

First, the batch learning method widely applied in deep learning might
be too costly in practice, when new training data is available everyday
and new systems demand to have access to all data at once. Therefore,
lifelong learning strategies are important to help these systems incre-
mentally learn from new data while achieving the same effect of batch
learning.

Second, the continual learning research investigated in the thesis is
still in the early development stage, in which catastrophic forgetting
is the main concern while it is also necessary to design new learning
algorithms for backward transfer - learning new languages can also
potentially improve the previously learned ones.

Third, there is undiscovered information in the speech data from the
perspective a pure speech recognition system. When combined with
other applications such as translation, information such as gender or
emotion of the speaker based on fundamental frequencies is often lost
in the transcription while can potentially improve the accuracy in trans-
lation. Similarly, the information is also important for synthesizing
the speech in another language, preserving the original intention in the
original speech.
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Finally, neural networks are going beyond the typical linear transfor-
mation coupling with activation functions. New neural architectures
with different properties can potentially improve speech processing.
For example, linear state space models are constructed based on the
linear state equation in signal processing and can generate high quality
speech [72].
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