Skip to main content

Advertisement

Log in

Shear strength, wear, thermal conductivity, and hydrophobicity behavior of fox millet husk biosilica and Amaranthus dubius stem fiber–reinforced epoxy composite: a concept of biomass conversion

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In this study, a lightweight hierarchical composite was used in various structural applications by combining fox millet husk ash biosilica particles and low-density Amaranthus dubius stem fiber–reinforced in epoxy matrix. Studying the shear strength, wear, and thermal conductivity along with hydrophobic behavior of these hierarchical composites is the primary objective of this work. The composites were fabricated using the hand lay-up method, with biosilica particle loading ranging from 0.5 to 2 vol.% and fiber volume of 30%. The results showed that composite containing 1 vol.% biosilica showed a better shear properties tested by different methods viz in-plane shear strength of 154 MPa, lap shear strength of 24.3 MPa, V-notch rail shear strength of 19.4 MPa, and interlaminar shear strength of 27.08 MPa. However, the composite with 2 vol.% of biosilica particles with 30 vol.% fiber loading had better wear properties with coefficient of friction (COF) of 0.26 and a sp. wear rate of 0.007 mm3/Nm. This composite also has lower thermal conductivity value with 0.182 W/mK and lowest contact angle of 84°. However, the composites are in hydrophobic range even after the addition of biosilica. The results obtained clearly demonstrated that these highly toughened and low weight composites could be utilized as a working material for a variety of applications, particularly in the production of automotive components and structural materials for home infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data in manuscript.

References

  1. Ferreira D et al (2018) Polymers (Basel) 10(1) 63

  2. Prakash SO et al (2022) Int J Polym Sci 1–15

  3. Ali A et al (2019) Period Eng Nat Sci 7(4):1698–1709

  4. Crosky A et al (2013) Thermoset matrix natural fibre-reinforced composites. Woodhead Publishing Limited

  5. Kumar MA, Reddy GR (2014) Int Lett Chem Phys Astron 19(2):191–197

  6. Chee SS et al (2019) Compos Part B Eng 163:165–174

    Article  Google Scholar 

  7. Sailesh A et al (2018) Mater Today Proc 5(2):7184–7190

    Article  Google Scholar 

  8. Singh H, Chatterjee A (2020) Cellulose 27(5):2555–2567

    Article  Google Scholar 

  9. Arun Prakash VR, Viswanthan R (2019) Compos Part A Appl Sci Manuf 118:317–326

    Article  Google Scholar 

  10. Sarker U, Oba S (2019) Sci Rep 9(1):1–10

  11. Ganie SA et al (2017) J Pharmacogn Phytochem 6(6):2096–2100

    Google Scholar 

  12. Rajadurai A (2016) Appl Surf Sci 384:99–106. https://doi.org/10.1016/j.apsusc.2016.04.185

    Article  Google Scholar 

  13. Mohammed M et al (2022) Polym Test 107707

  14. Mochane MJ et al (2019) Express Polymer Lett 13:2

    Article  Google Scholar 

  15. Arun Prakash VR, Jayaseelan V, Mothilal T, Manoj Kumar S, Depoures MV, Jayabalakrishnan D, Ramesh G (2020) Silicon 12:2533–2544. https://doi.org/10.1007/s12633-019-00347-7

    Article  Google Scholar 

  16. Jose AS et al (2021) Mater Today Proc 37(2):1757–1760

    Article  Google Scholar 

  17. Neopolean P, Karuppasamy K (2022) Silicon 0123456789

  18. Karthigairajan M et al (2021) Silicon 13(12):4421–4430

    Article  Google Scholar 

  19. Alshahrani H, Arun Prakash VR (2022) Prog Org Coatings 172107080

  20. Bourchak M et al (2023) J Vinyl Addit Technol 1:10

    Google Scholar 

  21. Usman MA et al (2021) Polym Renew Resour 12(3–4):77–91

    Google Scholar 

  22. Arun Prakash VR, Xavier JF, Ramesh G, Maridurai T, Kumar KS, Raj RBS (2022) Biomass Convers Biorefinery 12(12):5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  23. Hassan A, Arun Prakash VR (2022) Biomass Conv Bioref 1-9. https://doi.org/10.1007/s13399-022-02801-w

  24. Huang JK, Bin Young W (2019) Compos Part B Eng 166:272–283

    Article  Google Scholar 

  25. Alshahrani H et al (2022) J Ind Text 52:15280837221137382. https://doi.org/10.1177/15280837221137382

    Article  Google Scholar 

  26. Hassan A, Arun Prakash VR (2023) Ind Crops Prod 191:115967 https://doi.org/10.1016/j.indcrop.2022.115967

  27. Prakash VR et al (2023) Biomass Conv Bioref 1–12 https://doi.org/10.1007/s13399-023-04736-2

  28. Chatterjee A et al (2020) Compos Commun 22:100483

    Article  Google Scholar 

  29. Arun Prakash VR, Rajadurai A (2016) Appl Surf Sci 384:99–106

    Article  Google Scholar 

  30. Siqueira G et al (2013) Carbohydr Polym 91(2):711–717

    Article  MathSciNet  Google Scholar 

  31. Prabhu P et al (2022) Biomass Convers Biorefinery 0123456789

  32. Jayabalakrishnan D et al (2021) Silicon 13(8):2509–2517. https://doi.org/10.1007/s12633-020-00612-0

    Article  Google Scholar 

  33. Prakash VA, Jaisingh SJ (2018) Silicon 10:2279–2286. https://doi.org/10.1007/s12633-018-9762-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Anantha Raman Lakshmipathi and V. Mohanavel—research, writing and testing.

N Nagabhooshanam, D. Sendil Kumar, and P Satish Kumar—material arrangement and writing.

Pothamsetty Kasi V Rao, Antharaju K Chakravarthy, and Yanamadala Durga Prasad—testing support.

Corresponding author

Correspondence to N. Nagabhooshanam.

Ethics declarations

Ethical approval

NA

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmipathi, A.R., Satishkumar, P., Nagabhooshanam, N. et al. Shear strength, wear, thermal conductivity, and hydrophobicity behavior of fox millet husk biosilica and Amaranthus dubius stem fiber–reinforced epoxy composite: a concept of biomass conversion. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04854-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04854-x

Keywords

Navigation