Skip to main content
Log in

Synthesis and characterisation of copper(II) hydroxide gels

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The formation of copper(II) hydroxide gels from aqueous precursors requires very critical conditions. Gels have been obtained by adding ammonia to aqueous solutions of copper(II) acetate, in the presence of a small amount of sulphate ions. Other salts (chloride, nitrate, sulphate) or bases (NaOH, KOH) lead to precipitation rather than gelation. These gels are actually made of an intimate mixture of acetate-based organic/inorganic polymers and nanometric posjnakite crystals Cu4(OH)6(SO4) · H2O. Acetate ions and ammonia can be partially removed upon washing, which after drying leads to crystalline copper(II) hydroxide needles deposited on a strongly oriented layer of posjnakite crystals. A theoretical model based on the electronegativity equalisation principle is used to describe these experimental results. It provides a better understanding of the role of complexing anions during the formation of condensed phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, in Metal Alkoxides (Academic Press, London, New-York, San Francisco, 1978).

    Google Scholar 

  2. P. Barboux, J.M. Tarascon, L.H. Greene, G.W. Hull, and B.G. Bagley, J. Appl. Phys. 63, 2725 (1988).

    Google Scholar 

  3. P. Barboux, I. Valente, J.M. Tarascon, S. Khan, F. Shokoohi, M. Henry, R. Morineau, and B.G. Bagley, Mat. Res. Soc. Symp. Proc. 156, 189 (1989).

    Google Scholar 

  4. I. Valente, C. Sanchez, M. Henry, and J. Livage, L'industrie Céramique 836, 93 (1989).

    Google Scholar 

  5. T. Umeda, H. Kozuka, and S. Sakka. Advanced Ceram. Mater. 3, 520 (1988).

    Google Scholar 

  6. H. Kozuka, T. Umeda, J. Jin, F. Miyaji, and S. Sakka, J. Ceram. Soc. Japan 96, 355 (1988).

    Google Scholar 

  7. S. Sakka, H. Kozuka, and T. Umeda, J. Ceram. Soc. Japan 96, 468 (1988).

    Google Scholar 

  8. Foerster, Ber. Deut. Chem. Ges. 25, 3416 (1892).

    Google Scholar 

  9. L.S. Finch, J. Phys. Chem. 18, 26 (1914).

    Google Scholar 

  10. H.B. Weiser, J. Phys. Chem. 27, 685 (1923).

    Google Scholar 

  11. Y.M. Chiang et al., Physica C 152, 77 (1988).

    Google Scholar 

  12. S.L. Furcone and Y.M. Chiang, Appl. Phys. Lett. 52, 2180 (1980).

    Google Scholar 

  13. T. Itoh and H. Uchikawa, J. Crystal Growth 87, 157 (1988).

    Google Scholar 

  14. P. McFadyen and E. Matijevic, J. Colloid. Interface Sci. 44, 95 (1973).

    Google Scholar 

  15. P. McFadyen and E. Matijevic, J. Inorg. Nucl. Chem. 35, 1883 (1973).

    Google Scholar 

  16. J. Livage, M. Henry, and C. Sanchez, Prog. Solid State Chem. 18, 259 (1988).

    Google Scholar 

  17. M. Henry, J.P. Jolivet, and J. Livage, Structure and Bonding 77, 153 (1992).

    Google Scholar 

  18. A.C. Pierre, T. Nickerson, and W. Kresic, J. Non-Cryst. Solids, 121, 45 (1990).

    Google Scholar 

  19. J. Sekanina, Casopis Mineral. Geol. 20, 349 (1975).

    Google Scholar 

  20. E. Kaldis and H.J. Scheel, Crystal Growth and Materials 2, 418 (1976).

    Google Scholar 

  21. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds 2nd ed. (Wiley, New-York, 1970).

    Google Scholar 

  22. C. Cabannes-Ott, Annales de Chimie 905 (1960).

  23. N. W. Alcock, V.M. Tracy, and T.C. Waddington, J. Chem. Soc. Dalton Trans. 2243 (1976).

  24. T. Bates, in Modern Aspects of the Vitreous State edited by J.D. Mackenzie (Butterworths, London, 1962), Vol. 2, pp. 195–253.

    Google Scholar 

  25. P.W. Selwood, M. Ellis, C.F. Davis, Jr., J. Am. Chem. Soc. 72, 3549 (1950).

    Google Scholar 

  26. N. Gharbi, C. Sanchez, J. Livage, J. Lemerle, L. Nejem, and J. Lefebvre, Inorg. Chem. 21, 2758 (1982).

    Google Scholar 

  27. B.A. Goodman and J.B. Raynor, Adv. Inorg. Chem. Radiochem. 13, 327 (1970).

    Google Scholar 

  28. J. Kragten, in Atlas of Metal-Ligand Equilibria in Aqueous Solution (Ellis Horwood, New York, 1978), p. 225.

    Google Scholar 

  29. H. Jaggi and H.R. Oswald, Acta Cryst. 14, 1041 (1961).

    Google Scholar 

  30. J. Livage and M. Henry, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), p. 183.

    Google Scholar 

  31. M. Henry, J.P. Jolivet, and J. Livage, in 4th Int. Conf. Ultrastructure Processing of Ceramics, Glasses and Composites, Tucson, Arizona, 1989.

  32. J. Livage, M. Henry, J.P. Jolivet, and C. Sanchez, Mat. Res. Soc. Bull. 25, 18 (1989).

    Google Scholar 

  33. J.N.Van Nickerk and F.R.L. Schoening, Acta Cryst. 6, 227 (1953).

    Google Scholar 

  34. M. Gentsch and K. Weber, Acta Cryst. C40, 1309 (1984).

    Google Scholar 

  35. P.J. Dunn and R.C. Rouse, Miner. Mag. 40 1 (1975).

    Google Scholar 

  36. M. Mellini and S. Merlino, Z. Krist. 149, 249 (1979).

    Google Scholar 

  37. G. Cocco and F. Mazzi, Period. Miner. 28, 121 (1959).

    Google Scholar 

  38. L.D. Ickzakova, V.K. Trunov, T.M. Chegoleva, V.V. Belov, and A.A. Vedernikov, Kristallografiya 28, 651 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henry, M., Bonhomme, C. & Livage, J. Synthesis and characterisation of copper(II) hydroxide gels. J Sol-Gel Sci Technol 6, 155–167 (1996). https://doi.org/10.1007/BF00425973

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425973

Keywords

Navigation