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Abstract: The development and testing of autonomous sys-

tems require sufficient meaningful data. However, generat-

ing suitable scenario data is a challenging task. In particular,

it raises the question of how to narrow down what kind

of data should be considered meaningful. Autonomous sys-

tems are characterized by their ability to cope with uncer-

tain situations, i.e. complex and unknown environmental

conditions. Due to this openness, the definition of training

and test scenarios cannot be easily specified. Not all relevant

influences can be sufficiently specified with requirements

in advance, especially for unknown scenarios and corner

cases, and therefore the “right” data, balancing quality and

efficiency, is hard to generate. This article discusses the

challenges of automated generation of 3D scenario data. We

present a training and testing loop that provides a way to

generate synthetic camera and Lidar data using 3D simu-

lated environments. Those can be automatically varied and
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modified to support a closed-loop system for deriving and

generating datasets that can be used for continuous devel-

opment and testing of autonomous systems.
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Zusammenfassung: Die Entwicklung und Erprobung von

autonomen Systemen erfordern ausreichend aussagekräf-

tigeDaten. DieGenerierung geeigneter SzenarienundDaten

ist jedoch eine anspruchsvolle Aufgabe. Insbesondere stellt

sich die Frage, wie man die Art der Daten eingrenzen kann,

diealsaussagekräftiggeltensollen.AutonomeSystemezeich-

nen sich dadurch aus, dass sie mit unsicheren Situatio-

nen, d.h. komplexen und unbekannten Umweltbedingun-

gen, umgehen können. Aufgrund dieser Offenheit ist die

Definition von Trainings- und Testszenarien nicht einfach

zu spezifizieren. Insbesondere für unbekannte Szenarien

und Corner-Cases können nicht alle relevanten Einflüsse im

VorausausreichendmitAnforderungen spezifiziertwerden,

so dass es schwierig ist, die “richtigen” Daten mit einem

ausgewogenenVerhältniszwischenQualitätundEffizienzzu

generieren. In diesem Artikel werden die Herausforderun-

gen der automatischen Generierung von 3D-Szenariodaten

diskutiert. Wir stellen eine Trainings- und Testschleife vor,

die es ermöglicht, synthetische Kamera- und Lidardaten

in simulierten 3D-Umgebungen zu erzeugen. Diese kön-

nen automatisch variiert und modifiziert werden, um ein

Closed-Loop-System für die Ableitung und Erzeugung von

Datensätzen zu unterstützen, die für die kontinuierliche

Entwicklung und das Testen von autonomen Systemen ver-

wendet werden können.

Schlagwörter: autonome Baumaschinen; maschinelles Ler-

nen; Requirements Engineering; Simulation; synthetische

Datengenerierung
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1 Introduction

When developing autonomous systems, not all system

requirements, such as unknown situations, corner cases,

and difficult conditions, can be identified in advance

due to the high complexity of the environment and the

autonomous system itself [1, 2]. This can result in unwanted

behaviors and critical defects, ranging from cybersecu-

rity vulnerabilities [3] to issues from incomplete or cor-

rupted perception [1]. In all cases, it is necessary to resolve

the faulty behavior as quickly as possible by continuously

improving the system. This requires rethinking traditional

product development cycles. Continuous development and

lifelong learning are required to guarantee adequate behav-

ior in previously unseen scenarios. Such continuous devel-

opment and testing, especially of complex autonomous sys-

tems with AI components, requires a lot of data for training

and testing. The datamust not only be available in sufficient

quantity but must also match the situations, where the sys-

tempreviously failed to operate. Ultimately, such data-based

automation solutions must be developed to prove the safe

operation of autonomous systems. One of the major chal-

lenges in this continuous development lifecycle is to provide

the “right” data for each system [4].

This work addresses how to efficiently and transpar-

ently generate test data and thus validate an automated

system and in parallel optimize its requirements. This data

generation pipeline is demonstrated using an autonomous

excavator as an exemplary robotic platform. The platform

and its sensor equipment are depicted in Figure 1. In this

work, we focus on the generation and usage of synthetic

camera and Lidar data, since our use cases focus on envi-

ronment perception and object detection. The operation

of autonomous construction machinery is not only highly

relevant in different domains but also provides an ideal

example for the identification of safety concerns due to

its harmful nature. Perceiving the environment is the first

essential step to enable such complex robotic systems to

sense, perceive, and act autonomouslywithin their intended

surroundings. This environment perception is exceptionally

hard for the typical operating environment of an excava-

tor: It is complex, unstructured, and continuously evolv-

ing. Unsafe situations cannot be collected or even predicted

beforehand [5].

This makes it hard to apply classical approaches of

collecting real-world data or testing in a real operational

environment. The use of Digital Twins for verification and

validation [6], in particular the simulation of an autonomy

stack in a realistically modeled operating environment, is

one way to tackle this problem. However, this involves an

additional development effort, which could be compensated

for in later phases by benefits such as accelerated future

development and the provision of error-free updates for

users. Further advantages of synthetic-data-based systems

arise with respect to data efficiency and data-driven identi-

fication of particularly hard-to-cover corner cases [7].

Figure 1: Overview on the sensors of the autonomous excavator used for experiments. On the left side, the real excavator is depicted with four Lidar

sensors and two cameras highlighted with red circles. The simulated excavator is shown on the right side of the image, again with the virtual sensors

highlighted in red. In addition, simulated points of the different Lidar sensors are shown in different colors to highlight the coverage of the

environment.
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Therefore, this work identifies the main challenges to

the continuous development process of autonomous sys-

tems and discusses the suitability of synthetic data gener-

ation within a closed feedback loop of training and testing.

The resulting main contributions are as follows:

– Introduction of a Training and Testing Loop scheme,

which allows for continuous test-driven development

of AI modules.

– Provision of a Synthetic Dataset in a rendered envi-

ronment which allows to train and test autonomous

capabilities of an excavator.

– Simulation and Bridging of the perception stack of

an excavator within an Unreal-based simulation envi-

ronment as well as an extensive evaluation of its

capabilities.

– Introduction of an Assistant System, which allows guid-

ing the user through the Training and Testing Loop.

The remainder of this paper is structured as fol-

lows: The following Section 2 presents current solution

approaches from the literature, Section 3 introduces and

analyzes an automated Training and Testing Loop that

is based on the automated generation of synthetic data.

Section 4 presents the concrete implementation of the pro-

posed architecture in a prototyped fashion. The suitability

of the generated synthetic data for improving the percep-

tion capabilities of an autonomous excavator is discussed.

Finally, Section 5 concludes the work and presents further

research directions.

2 Related work

An industrial autonomous system is defined in Ref. [8] as

follows:

An industrial autonomous system is a de-limited technical system,

which systematically andwithout external intervention, achieves

its set objectives despite uncertain environmental conditions.

Ref. [8, p. 5]. This applies in particular to autonomousmobile

robots in outdoor environments, where the system com-

plexity is exceptionally high. The main reason for this is

the uncertain, complex, and often unstructured operating

environment which necessitates the use of various sen-

sors. The Algorithm Toolbox developed by Fraunhofer IOSB

[9] serves as an autonomy provider for multiple complex

robotic systems. In this work, we are using an autonomous

excavator as a primary showcase. The excavator has been

equipped with certain capabilities to perform decontami-

nation tasks autonomously, as described in further detail in

Petereit et al. [10]. The following Section 2.1 will give some

context for safety considerations for such complex systems,

before existing approaches to overcome these issues are

presented.

2.1 Training and test of autonomous
systems

For the verification and validation of an autonomous sys-

tem, requirements and test cases must be specified. These

test cases are then executed and evaluated. Covering all the

requirements with at least one test case, for example during

the initial product release, is labor intensive. After changes

have been made to a system, regression testing is required

to ensure that overall system performance has been

improved.

In addition, an autonomous systemmust also be able to

deal with unknown situations that have not yet been speci-

fied in requirements. Therefore, it is not sufficient tomerely

cover all requirements. An autonomous system must also

react appropriately to unseen scenarios, with the system

taking sole responsibility like a human being. In practice,

this means that the development and testing of autonomous

systems is a complex process that must be reconciled with

a continuous improvement character. Development and test

processes, as well as the associated supporting technologies,

must therefore be scalable and repeatable during the life-

cycle. And since development is never complete, it cannot

be guaranteed that an autonomous system is able to suc-

cessfully handle all tasks in all environments. Therefore,

instead of exhaustively testing for correct behavior within a

predefined set of scenarios, the focus should be on automat-

ically identifying critical cases.

Those cases can be derived by evaluating requirements

systematically, also known as requirements-based testing

[11]. However, in many cases, not all requirements are

known beforehand. Therefore, requirements-based testing

is not adequate to identify all risks and test for all real-

world scenarios. This is why scenario-based testing is used

to test autonomous systems, such as autonomous vehi-

cles [2]. Scenario-based testing is a testing method that

extends requirements-based testing [12]. In this method-

ology, a scenario is a formal construct in a computer-

readable description format that maps potentially complex

and realistic work progress. The definition of a scenario

is extended into three layers: functional, logical, and con-

crete scenarios. A functional scenario is described using

natural language, which is formalized into a logical sce-

nario by adding relevant parameters along with their value

ranges and dependencies. Specific scenarios are derived

from logical scenarios by assigning single values to the

parameters.
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The development of autonomous mobile systems is

strongly driven by the automotive industry. Our method-

ology for testing autonomous systems is therefore based

on the PEGASUS methodology [13] used in the automo-

tive sector. The methodology shows how the structuring

and formalization of the problem area can be used to test

autonomous systems with a reasonable amount of effort.

Relevant scenarios are developed based on the actual use

of vehicles and the environment is formalized along differ-

ent dimensions such as lighting conditions, weather, traffic

situation, etc. The probability of occurrence of different

scenarios is derived fromempirical values. PEGASUS is used

because classic test drives are not suitable for generating

sufficient data for extremely rare and at the same time

extremely dangerous scenarios. In PEGASUS, the test data

can either be real recorded data that represent a specific

scenario, or it can be synthetically generated data. The

formalization makes it possible to use simulators in a tar-

geted manner, since all relevant scenario parameters are

described.

Similar challenges apply to autonomous construction

machinery. Here too, test drives in reality are very expen-

sive and only affordable late in the development process

with very mature prototypes. In contrast to the automo-

tive sector, off-road environments with few traffic rules

have to be covered in a structured and formalized way. In

addition, unlike cars, there is usually no meaningful data

for the development of machine-learning based software

available, as there are much less data sets in this area

available that can be used for development purposes.

Therefore, the scenario-based approach fulfills two tasks:

Enabling the structured, synthetic generation of data that

can be used for both development and testing.

2.2 Synthetic training data for the
development of autonomous systems

Obtaining training, testing, and validation data for

autonomous systems that operate in unstructured off-road

environments such as construction sites and landfills,

is still a challenging task. Therefore, datasets in these

environments are very rare. Currently, only the RELLIS-3D

[14] and the Semantic-USL [15] datasets record unstructured

environments with modern sensor hardware. Those

datasets cover both RGB-image data as well as Lidar data,

which are typical sensor modalities used for perception

in unstructured environments. However, there is an

increasing availability of datasets captured in structured

environments, such as the KITTI dataset [16]. For certain

perception methods, data from structured environments

can serve as a useful starting point. The same applies to

synthetic training and testing data: While urban simulation

environments have gained increasing popularity in recent

years, simulation environments and digital twins are very

rare for mobile robots in unstructured environments.

The main reasons for this are the increased complexity of

realistic assets as well as the smaller scope compared to the

large research field of autonomous driving in structured

environments.

The use of synthetically generated data helps to com-

pensate for the lack of real data [17]. For the generation of

synthetic data, the following techniques are distinguished:

Generic augmentation: Augmentation of small data sets

by applying simple data transformations, for example, rota-

tions of image data or random scaling of point cloud data

[18, 19].

Complex augmentation: Creation of new data by chang-

ing parameters of real data, for example using a generative-

adversarial network to create new image data that look

similar to other image data [20].

Background substitution: Creation of newdata by repre-

senting real target objects in front of different backgrounds.

For example, cutting out an object and placing it in front of a

bright, uniformbackground and amulticolored background

[21].

Rendered target: Represents an extension of back-

ground substitution, the backgrounds are still based on real

data, but the target object now exists as a virtual model

and is inserted as a rendered target object. For example,

the lighting of the target object can then be adjusted to the

backgrounds in order to obtain a realistic overall image

[22, 23]. Suchmodifications are also possible for point clouds

where new ground truth models can be included into exist-

ing scenes [19].

Fully simulated synthetic data: In this approach, both

the background and the target object exist as virtualmodels.

To generate synthetic data, the background and target object

are rendered together. For example, to generate photoreal-

istic image and accurate Lidar data, appropriate simulation

engines are used that simulate the entire environment. The

advantages of this approach are that no real data is needed

and data for unseen complicated or dangerous scenarios

can be generated [24, 25].

Given the available approaches for generating syn-

thetic data and the requirements for testing autonomous

systems, only fully simulated synthetic data can meet all

the challenges in terms of data availability. Particularly

advantageous for the use of scenario-based testing is

the possibility of generating data for previously unseen

scenarios.
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3 Improving the perception of

autonomous systems using

synthetic data

For the development and testing of autonomous systems

in unstructured environments, a scenario-based testing

method based on fully simulated synthetic data is proposed.

Our work is focused on construction machines, that move

autonomously, more specifically we use an autonomous

excavator as a case study. The use case is to train the percep-

tionmodule of the autonomous excavator shown in Figure 1

using synthetic data to operate safely within its environ-

ment. To do this, the perception module requires camera

and Lidar sensor data as inputs. The overall structure is

comparable to a Software-in-the-Loop (SIL) setup, the per-

ception module represents the device under test. However,

ourwork is not limited to excavators and can be transferred

to other machines that are to be operated autonomously

in unstructured environments such as construction sites or

landfills. For example, our work can also be applied to the

development and testing of autonomous dozers, dumpers,

tractors, or wheeled loaders.

The provision of synthetic data by means of simulation

requires the use of sensor simulation tools on the one hand.

On the other hand, it must be determined what exactly is

to be simulated. For this purpose, requirements must be

analyzed and the operational environment formally mod-

eled. Figure 2 shows the proposed architecture for focused

generation and utilization of synthetic data for the develop-

ment and testing of an autonomous excavator.

The proposed training and testing loop shown in

Figure 2 enables scenario-based testing for autonomous sys-

tems. As discussed, this requires a scalable and repeatable

development and testing process that minimizes manual

effort. The goal of our approach is to achieve the highest

possible level of automation with regard to system devel-

opment, i.e. the highest possible level of automation in the

processing of requirements and the generation and use of

synthetic data. To achieve this, it is necessary to automat-

ically infer scenarios from requirements, then derive test

cases from scenarios and generate synthetic data, and after

that use this data to develop and test the autonomy stack.

The test results in turn show the strengths and weaknesses.

We use the term closed loop as the analysis of the test results

then drives the next iteration cycle, i.e. the generation of

synthetic data focused on the actual weaknesses as well as

the optimization of requirements.

To avoid ambiguity, the terminologies and their rela-

tions used in the context of the proposed scenario-based

testing method are shown in Figure 3. Use cases provide a

high-level view of the system’s desired behavior. A scenario,

which is a specific instance of a use case, details a particular

set of events and conditions that occur in the system’s envi-

ronment. A test case is then defined as a concrete scenario. A

test case consists of a scene, measurable Key-Performance-

Indicator (KPI), and suitable pass/fail evaluation criteria. A

scene is a concrete description of what is to be simulated,

i.e. all scenario parameters are set to a fixed value and are

documented in the scene description. KPIs can bemeasured

in a scene, for instance, the Euclidean distance between

an autonomous system and obstacles. Pass/Fail criteria are

linked to requirements and they enable the identification

of problematic test cases based on the KPIs. A test case can

be executed directly as a simulation, whereas a scenario

comprises a set of test cases. Requirements state how the

autonomous system should behave and are validated by test

cases. Since test cases are derived from a scenario, require-

ments can also be linked to scenarios.

3.1 Case study barrel detection

Accurate perception of the environment is particularly dif-

ficult if not all types of appearing objects and situations are

known beforehand. As a case study, this paper considers the

operation of the autonomous excavator shown in Figure 1

Figure 2: Architecture for generation and utilization of synthetic data for the development and testing of an autonomous excavator.
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Figure 3: Overview of the terminology used in this work and their

connection.

at a landfill site. Here, the autonomous excavator must be

able to reliably detect barrels (see also Figure 8). Barrels

used for waste disposal may differ in size, shape, and color.

In addition, barrels are exposed to weathering in a landfill.

The landfill environment can be classified as a special off-

road environment, and weather effects in particular have

an impact on the reliable detection of barrels. We use the

example of “barrel detection” in the following sections to

derive requirements and explain how to programmatically

generate “missing” data.

3.2 Requirements engine and assistant
system – identifying requirements and
scenarios

Due to the lack of real data in the domain of autonomous sys-

tems in off-road environments, domain knowledge should

be first identified by experts. Through interviews with

domain experts, relevant situations and environmental

parameters and their properties are identified in the con-

text of offroad domain. This domain knowledge is then for-

malized as functional requirements to elicit the expected

behavior for the autonomous system and provide a basis

for scenario-based testing. Safety requirements for percep-

tion systems are also identified based on ISO 17757 (safety

standard for heavy machinery) and in compliance with

SOTIF methods to specify risks and hazards. Considering

our ongoing example, the availability of different types of

barrels and the typical handling of situations with bar-

rels involved would first be assessed by an expert. In the

architecture shown in Figure 2, these tasks are allocated to

the “Requirements Engine”.

Following on that, requirements are analyzed and clus-

tered to further derive base scenarios, create the parame-

ter space, and identify the evaluation criteria. This ensures

traceability and later validates that the requirements are

tested and fulfilled. The base scenarios also serve as a start-

ing point for identifying corner cases in later iterations.

During the later explained result analysis, identified critical

parameter combinations can be used to specifically address

corner cases. The base scenarios are then used to create

a database for the logical scenarios by adding the rele-

vant parameters and their possible values and correlations

between some of these ranges.

To generate the test cases, the concrete scenarios are

first generated by varying different combinations of the

parameters’ values. The combinations can be generated

manually or automatically using the equivalence partition-

ing technique. This approach reduces the number of test

cases by splitting the parameter space into equivalence

classes and then choosing a representative value for each

class. As there are currently no available standards to

describe scenarios in an offroad context, ISO 21448 was

used as a reference to create a description that fits the

testing methodology. Following this standard, the scenario

is detailed using sceneswhere each scene represents a snap-

shot of the environment consisting of the operation area

(e.g. slope, pit), environmental conditions, static elements,

and dynamic elements. A suitable evaluation metric is then

added to the scenarios to form the test cases descriptions.

The test cases are then converted into simulation-ready data

for synthetic data generation. In the architecture shown in

Figure 2, these tasks are allocated to the “Assistant System”.

3.3 Scenario engine and autonomy stack
– synthetic data generation for
perception systems

The “Scenario Engine” shown in Figure 2 is responsible

for the actual generation of synthetic data. For this pur-

pose, the test cases created in the Assistance System must

be simulated. To do this, the operational environment of

the autonomous excavator must be modeled accordingly

in a suitable sensor simulation tool that supports high

fidelity of the generated sensor data when compared with

the real sensor output. The test cases then must be exe-

cuted and the generated synthetic sensor data must be

extracted.

A detailed test case description serves as themain input

for the Scenario Engine. The Scenario Engine constructs all
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inputs required by the sensor and the environment sim-

ulation tool, such as a model of the environment and a

model of the simulated sensor. Usually, the same model of

the simulated sensor is used in all test cases since the sensor

is an integral part of the autonomous excavator. But the

model of the environment, such as the position of barrels,

the landscape, the weather conditions, etc. changes with

each test case. As the construction of all inputs required by

the sensor simulation tool as well as the simulation itself

comprises several steps, we refer to this process as the “Data

Generation Pipeline”.

When designing the Data Generation Pipeline, we focus

on the following challenges:

1. How to produce simulation environments with high

accuracy (e.g. realistic landfill environment)?

2. How to automate the process of data generation?

To achieve a minimal so-called “Reality-Gap” related

problems during the development of the autonomous exca-

vator, the simulated environments need to be as realistic as

possible [26]. Four main aspects influence the realism of the

data:

– Accurate sensor representations

– Detailed and high-resolution assets

– Photo-realistic rendering capabilities from a simulator

– Assessment of assets and environment models by

domain experts

Accurate sensor representations in a simulated system

are important to later allow for inference on the real system.

Especially deep learning models are sensitive to different

sensor placements or configurations. Even though there

exist approaches to adapt between these configurations,

it must be ensured that the actual configuration can be

used. Therefore we directly interface the simulator with the

autonomous system to ensure up-to-date placements and

calibration. This way, sensor properties may be modeled as

close to reality as possible. For perception, we mainly focus

on camera and Lidar sensors in this work. Accurate and

extrinsic calibration of the sensors is only one aspect. It is

also important to model the sensor functionality after their

real-world counterparts. For cameras, this is highly related

to the third aspect of photo-realistic rendering as the image

is directly read from the virtual view frustum. Considering

Lidar functionality, we use a raycasting-based scheme to

model the functionality similar to the one of a mechan-

ical sensor. Even though raycasting is typically slightly

more expensive than reading values from a depth buffer, it

allows to add noise to the sensor and makes it sensitive to

refractive indices of objects in the scene. Photo-realistic

rendering capabilities are mainly defined by the choice of

the simulation engine and will be discussed in Section 4. In

addition, the best models, equipment, and tools are useless

if the environment models are unrealistic. To counteract

this, the environment models and assets must therefore be

assessed by experts for their degree of realism, at least on

a sample basis. For assessment by experts, it is important

to note that the simulation does not provide a holistic rep-

resentation of the scene. Instead, the focus is on the fields

of view of the camera and Lidar sensors used. Therefore,

for example, a realistic representation of the landscape

located at a greater distance is not required and therefore

not simulated, as this is beyond the field of view of the

sensors.

To rapidly simulate newly defined test cases, the Data

Generation Pipeline must process as automated as possi-

ble. Therefore, it is necessary to decouple the instances

directly related to the device-under-test from the environ-

ment instances. In the case study, the sensors are strongly

related to the perceptionmodule of the autonomous excava-

tor and are decoupled from environmental aspects such as

for example vegetation or weather conditions. This allows

us to easily reuse models, e.g. for each test case, the same

sensor models are used. Adaptability is another feature

which is achieved using automation patterns. Already exist-

ing simulated and evaluated scenes should be adaptable

to reevaluate the same scene with certain modifications.

Considering the barrel example again, we want to be able

to only change the appearance of the barrel instance with-

out the need of recreating the whole scene with only a

small modification to the translation, rotation, or color. We

implement this by introducing special adaption points in our

formal scenario description. This is a requirement to allow

the Scenario Engine to iteratively change minor aspects of

a single scene and evaluate the difference. This reduces the

effort to generate customized scenes and also constitutes an

important step towards explainability.

3.4 Closing the loop – feedback loop for
continuous testing

To ensure continuous development, a feedback loop is nec-

essary to analyze the results from the training and testing

data and to identify the test cases that lead to unusual

or unexpected system behavior. Artificial intelligence algo-

rithms are used to accomplish this automatically. The first

step to achieving that is to identify pass/fail criteria for test

cases. These pass/fail criteria are based on Key Performance

Indicators (KPIs), which can be measured within a test case

or over several test cases. In the context of the perception
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module, various KPIs are used to analyze the system per-

formance such as accuracy, recall, precision, detection rate,

false negatives, and false positives. These KPIs are used

as guidance for tracking the source of the problem. For

example, if the false negatives rate is high, this can be an

indication of inadequate training or low visibility of the

object that can be caused by several factors (e.g. weather

obscurants, material deterioration, etc.). A high rate of false

positives can indicate anomalies in the real-world map that

are tricking the classifier.

Following on that, different approaches can be used

to identify certain test case conditions or a combination of

multiple conditions that lead the system to not or barely

meet the pass/fail criteria of a test case. In our defined

example of barrel identification, several scenario conditions

that influence the perception model performance can be

identified:

Barrel variants: As barrels come in different shapes, sizes,

colors, andmaterials, it can be hard to train for all com-

binations. Moreover, material rustiness and damages

(e.g. dents) in the barrel should be considered.

Barrel visibility:Due to the operating environment of exca-

vators, barrels can be partially hidden by being buried

in the ground or in a heap of earth or coveredwith sand

or mud.

Other obscurants: Multiple factors such as rain, fog, dust,

smoke, or poor lighting conditions can obscure the

barrels.

The correlation analysis between the influential factors

defined above and the KPI-based performance analysis of

the detection model can for instance be tackled using deci-

sion trees. However, this is not part of our pipeline yet but

should be considered for future work. To later allow this

kind of performance analysis, we need to map the varied

parameters of the concrete scenarios (input) to the results

from the KPIs (output), which eventually constitutes the

loop closure in Figure 2.

4 Realization and evaluation based

on an autonomous excavator

The architecture shown in Figure 2 is comprised of the

parts Requirements Engine, Assistant System, Scenario

Engine, and SIL/HIL evaluation with the system under test

(SUT). To evaluate the proposed approach for generating

and using synthetic data for the development and testing

of an autonomous excavator, the individual parts of the

architecture are realized. This section is dedicated to the dis-

cussion of the realization details. First, we give an overview

on the reference platform utilized for the implementation

and experiments.

4.1 Platform description: autonomous
excavator

The underlying case study for this publication is the

development and testing of the perception module of an

autonomous excavator. The autonomous excavator oper-

ates in a landfill environment and must be able to reliably

detect barrels. The excavator under consideration is a Lieb-

herr R924 24-ton excavator, which is modified with sensors

and a control system for autonomous operation. The control

system is based on the Robotic Operating System (ROS) [27].

Environment perception of the excavator is provided by a

total of four 3D Lidar sensors and a multispectral stereo

camera system. Figure 1 shows the real and the modeled

excavator with the sensor positions of laser scanners and

cameras highlighted. All sensors are calibrated in order to

produce amultimodal environment representation as input

for the autonomy functions. In this evaluation, we focus on

autonomy capabilities in the context of environment per-

ception. Ultimately, perception is the essential basic building

block formore advanced autonomy skills such as navigation

and task planning.

The excavator exists both in reality and as a virtual

model. For the evaluation of the presented approach for

generation and utilization of synthetic data, the control sys-

tem, more precisely its perception module, is trained and

tested using synthetic data.

4.2 Requirements engine and assistant
system

To manage requirements and generate test cases, a user

interface was created using Django and PostgreSQL. The

user interface is responsible for defining the require-

ments and functional scenarios and generating the test

cases. Multiple functional and safety requirements for

the autonomous excavator are identified and the sce-

nario parameters possible in the simulation framework

are derived. The parameters, their varying attributes, and

dependencies are then modeled in the database to form

a parameter space. To generate the test cases, a uniform

distribution is assumed for the varying attributes, and the

concrete values are then randomly generated for each test

case. The test cases are generated in JSON format and

then transferred to the Scenario Engine for simulation and
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synthetic data generation. The Assistant System is discussed

in more detail in our previous paper [28].

4.3 Scenario engine – realization of the data
generation pipeline and utilizing the
data in autonomy stack

Thedetailed informationflowof the implementedDataGen-

eration Pipeline is depicted in Figure 4. We first describe

the Scenario Engine with its data generation process as the

main building block in further detail, beforewe evaluate the

resulting data qualitatively and quantitatively.

4.3.1 Translate test cases to renderable simulations

The main task of the Scenario Engine is to convert the

passed test case descriptions of the “Assistant System” into

renderable scenes. Essentially, we parse a JSON file con-

taining the structured test case scene description and put

it into a format that can be interpreted by our environ-

ment simulation tool. For this format, we use the Univer-

sal Scene Description (USD), published by Pixar. USD is an

open-source format explicitly designed for the description

of three-dimensional assets environments. It was designed

to be an interchange format and is therefore supported by

a variety of simulation as well as design tools, which are

eligible for asset creation and simulation-based testing. This

procedure providesmajor advantages compared to creating

proprietary assets for a specific simulation tool. It allows

us to swap the simulation tool without losing compatibility

with the elaborately generated assets. In addition, it does not

require direct interaction with a simulation tool to adapt

a test case scene it can be done using USD as a proxy.

The conversion of a test case description into a simulator

readableUSD format is performed requires twopreparation

steps:

Preparation step 1 – Creation of 3D assets as “atomic”

components. First, all assets that will be used for scene gen-

eration must be created. In this work, all assets were either

created manually or bought from exchange platforms. As

USD is gaining more popularity, a future extension of the

current asset base using tools such as Autodesk Maya and

Blender is straightforward. To increase usability, we utilize

variant sets for similar assets which allow bundling multi-

ple possible appearances of an asset into a single instance.

That way, we are able to create different sets for color and

texture. The underlying USD implementation allows to fuse

these variant sets to obtain desired combinations. Figure 5

shows an example of such a variant set, where a single

barrel instance appears in different shapes and colors. Since

the 3D assets are self-contained and will only be referenced

Figure 4: Overview on the dataflow in the prototyped system. The Requirements Enginemaintains all user-defined requirements for a specific task and

platform. The Assistant System serves as user interface and allows to configure specific test scenarios. Once a scenario is created, the involved Testcases

are forwarded to the Scenario Engine which is the entrypoint for the simulation. The unreal based simulation is interlinked with the autonomy stack of

the excavator and thus provides the generated data for immediate evaluation.



962 — A. Schuster et al.: Synthetic data for safer autonomous excavators

Figure 5: Variant set of a USD barrel instance. Different appearances can be produced by simply adjusting different properties of the barrel.

and parameterized within the scene, this implements the

core aspect of reusability.

Preparation step 2 – Asset and Scene Management:

Assets aremaintained by using a dedicated filesystem struc-

ture. This allows us to easily maintain and update available

assets even without developer knowledge. In addition, val-

idation and adaption using inbuilt USD tools are enabled

by using a plain filesystem structure. A set of additional

tools provide additional database-like access mechanisms.

For instance, all currently available assets and their variant

sets can be requested via API call. Scenes combine multi-

ple assets and are likewise maintained as a single folder.

By using the API, relevant information about a scene (e.g.

number of assets, metadata) may be obtained.

The two preparatory steps only need to be performed if

new assets are to be included in the creation of renderable

scenes. With 3D assets available as atomic components and

well managed in a dedicated filesystem, renderable simula-

tions can be automatically derived from test case descrip-

tions. Therefore, assets and environment information are

combined to form a scene described in a USD file. We uti-

lize a Python-based implementation for the automatic cre-

ation of USD files. As discussed, the input is the JSON-based

abstract scene description of the Assistance System, and we

first extract this information andpropagate it into aUSDfile.

We can do this by referencing assets in our model database,

which fit the description. After the references are estab-

lished, assets can be transformed by applying the trans-

formations from the scene description to their reference-

container. By adapting the container of the selected asset,

existing scenesmaybe reused in future iterations. SinceUSD

supports the layering of opinions, these adjustments can

be performed non-destructively and with minimal memory

footprint.

4.3.2 Generating synthetic training data for perception

systems

As sensor and environment simulation tool, we utilize

Unreal Engine Version 4 (UE4) with integrated USD support.

This allows for a wide range of asset support on the one

side and gains photorealistic and highly efficient rendering

capabilities on the other side [29]. The main downside is the

interfacing of UE4 from outside the engine, which is why

we implemented our architecture based on containers with

headless rendering support for UE4. This allows us to run

the costly rendering as a separate component on dedicated

hardware without interfering with the user interface or

the SIL component of our ROS-based autonomy stack. The

simulation process itself requires loading USD scenes from

USD files before simulating them.

Step 1 – Loading of USD scenes: USD Scenes can be

loaded programmatically at runtime without the need for

rebuilding. That way, we can load new scenes by leveraging

a simple sequential job control. This may be extended to

parallel executions onmultiple simulation containers in the

future.We provide API interfaces to start, interrupt and stop

the simulation procedure. Figure 6 shows some example

scenes generated with the pipeline. All scenes have a typ-

ical landfill environment and contain barrels as the main

detection target. However, minor parameter changes led to

clearly visible effects in the adapted scenes Figure 6(b)–(d).

Figure 6: Different scenes in unreal simulation. All parameters such as textures, colors and modes of different assets can be modified using the USD

structure as single source of truth.
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Step 2 – Simulating a scene: As the scene descrip-

tion is self-containing, the autonomous excavator’s pose

and state are also defined within the description. However,

the functionality of the available sensors is not part of the

scene description. Therefore, after successfully loading a

scene, all sensors are placed and configured according to

the status defined in the scene description. They can be

easily attached to the respective joints within the USD asset.

For the autonomous excavator, the sensors are placed in

the same locations as mounted on the real excavator (see

highlighted sensor positions in Figure 1).Weuse two sensors

with ground truth generation support:

Camera: We use UE4’s SceneCapture2D component to

implement a stereo camera set. The camera wrapper

provide specific camera calibration. For each camera,

we add a separate ground truth camera, which uses a

different render pass, where vertex colors instead of

textures are captured. In a previous step, all assets in

the scene are colored using a uniquemapping, which is

global and therefore persistent in all scenes.

Lidar: We implement a raycasting Lidar using UE4’s

enhanced raytracing techniques. All of its parameters

such as horizontal and vertical angles, length, fre-

quency, noise, etc. are configurable. This allows to

model it as close to the real Lidar as possible. The target

object is determined by checking simplified hit boxes,

which correspond to USD assets in the scene.

Most perception systemswork either based on cameras

or based on Lidar or similar pointcloud-generating sensors.

As we primarily target the perception of unknown objects,

we focus on these two sensor types in this work.

4.3.3 Data extraction – utilizing the data in autonomy

stack

We directly interface the simulation with the Robot

Operating System (ROS) [27], which is based on a pub-

lisher/subscriber architecture. This allows utilization of

generated data immediately for training and testing pur-

poses. To accomplish this, we extend the ROSIntegration

plugin1 for UE4 to transfer all sensor and status informa-

tion. As the interface of ROSIntegration transfers the data

to a websocket-based ROS bridge, simulation, and auton-

omy stack of the excavator may reside on different hard-

ware platforms. While this allows to conveniently scale

the simulation, it comes with the downside of costly data

1 https://github.com/code-iai/ROSIntegrationVision.

Table 1: Framerate and throughput measurements for the proposed

simulation pipeline.

PCL segmented Images Images segmented

Unreal

Frames/s 7.86 20.0 20.0

ROS

Frames/s 7.86 4.94 4.76

Throughput/mb/s 2.74 7.42 2.87

transfer rates. However, we found the transfer rates to be

sufficient for experiments when using BSON serialization

format. The transfer rates of sensor data are shown in

Table 1.

We define one topic for each sensor modality and map

it to the respective topics of the ROS-based autonomy stack.

This way, we can use the synthetic data in the same way

as real sensors would provide data. Sensor outputs can be

visualized in real-time using common tools such as Rviz,

an example of the 3D view and some segmented barrels is

provided in Figure 7.

The extracted data is then used to train and test deep

learning models of the perception module. This module is

part of the Autonomy Stack of the excavator. The task inves-

tigated in this publication is the reliable detection of barrels

on the basis of camera and Lidar data. For this purpose, the

perception module must use a bounding box to mark the

barrels on the camera images and also use the Lidar data

to determine the relative position of the detected barrels.

Humans usually find it easy to recognize barrels, no matter

what color they are, how damaged they are, or whether

they are partially covered by soil or partially buried. With

the help of the synthetic data, the automated detection of

barrels is improved. The effort to create the synthetic data

with the help of the presented training and testing loop is

significantly lower than to create corresponding data sets

with real barrels in real operational environments in all

possible variations. For the evaluation of our approach, sce-

narios with different colored barrels were tested with the

real excavator, as shown in Figure 8.

The performance of synthetically trained deep learning

models on real images is often negatively impacted by the

reality gap. One possible way to cope with it is to continue

training with a small amount of real data. We qualitatively

evaluate the performance of an object detection model

trained on different combinations of real and synthetic data

and tested on different kinds of barrels in a real scenario. A

central component of the ROS-based detection node, we use

https://github.com/code-iai/ROSIntegrationVision
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Figure 7: The visualization shows the sensor perspective of the excavator

within the ROS-based autonomy stack. Sensor data coming from the

simulation can be inspected in real time. Figure (a) shows the fused point

cloud with the segmented barrels, while (b) and (c) show the RGB and

segmented camera views from the left camera of the stereo set.

a MaskRCNN [30] implementation with Resnet50 backbone.

We initialize the weights from the COCO dataset [31] and

continue to train the network on a set of real images of red

barrels. As we can observe from the qualitative evaluation

in Figure 8, the detection of barrels in another color is not

working robustly, as thenetworkdoes not generalizewell on

different kinds of the new class. However, when we extend

the train datawith a set of images explicitly generated by the

scenario engine, barrels of different shapes and colors can

be detected in a more robust way with improved prediction

scores.

4.4 Feedback loop – guided scene creation
and optimization of requirements

The results obtained on the basis of the synthetic data for

the detection of barrels show the strengths and weaknesses

of the perception module of the autonomy stack of the

excavator. To close the proposed training and testing loop,

the results of previous iterations of training and testing are

analyzed and used to plan the next iteration.

For this purpose, the KPIs achieved in the test cases are

fed back from the autonomy stack to the Assistance System.

There, values are then determined for the pass/fail criteria

of the test cases. Based on decision trees, the system then

searches for commonalities in failed test cases. If problem-

atic scene parameters can be identified, the next run of the

training and testing loop focuses on the problematic scene

parameters and examines them in greater detail. If prob-

lematic requirements are identified, they are highlighted in

the requirements engine and proposed for review. These

functionalities are currently undergoing evaluation and are

part of the Assistance System implemented using the Django

framework.

4.5 Evaluation

The evaluation of the presented approach is coupled with

the creation anduse of synthetic data based on the discussed

case study of the development and testing of the perception

module of an autonomous excavator with the task of barrel

detection.

For an efficient and transparent generation of test data,

requirements are needed to describe the problem. Deriv-

ing test cases from requirements is supported via auto-

matic identification of requirements, that are not covered

yet by a single test case as well as automated variation

of scene parameters. Finally, the test case description is

automatically exported as JSON file that serves as input to

the Data Generation Pipeline. Here, the scene descriptions

are transferred into simulatable scenes using Python and

USD. The USD files can then be simulated in the sensor

and environment simulator, in our case the Unreal Engine

4. Sensor data for training and testing of the perception

module is then extracted using a ROS-interface. Instead

of a real camera and Lidar data, the Autonomy Stack of

the excavator is stimulated with synthetic data of a simu-

lated camera and Lidar sensor that sense a fully simulated

environment.

For evaluation purposes, the barrel detection node

of the Autonomy Stack has been evaluated as shown

in Figure 8. Therefore, various test cases had been per-

formed at Fraunhofer IOSB at the competence center

ROBDEKON.

In terms of efficiency, the generation of synthetic data

is superior to the generation of real data, in case there is no

available database that can be used. This entire process of

the data generation pipeline takes less than a second on our

synthetic data generation platform (Ryzen 5800X processor,
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Figure 8: Evaluation of the barrel detection node before and after training with additional synthetic images of blue barrels. The average score on

successfully detected barrels improved from 0.81 on the barrel on the left side to an average score of 0.94 on the right test image.

Nvidia 3090 RTX graphics card, 64 GBRam). The preparation

of a new scene with the real excavator and real assets took

about 5–30 min. Excavators are already special construc-

tion vehicles and excavators equipped with cameras and

Lidar sensors are even more special. Thus it is not possible

to fall back on image data that has already been collected,

as there is simply no comparable data available.

In terms of barrel detection performance, the usage

of synthetic data increased performance for the test cases

performed with the real excavator of 13 percent averaged

on all performed test cases with the real excavator. For this

purpose, the test cases carried out with the real excavator

were each performed twice. First, the perception module of

the excavator had not received any training with synthetic

barrels and then showed a recognition probability in the

range of 80 percent. Training with 50 synthetically gener-

ated data sets increased this to a recognition probability of

up to 94 percent.

Overall, this demonstrated that synthetic data was suc-

cessfully used to improve an autonomous excavator. For this

purpose, an approach shown for continuous development,

the training and testing loop shown in Figure 4, was used.

This makes it possible to react quickly to new requirements

and scenarios. Scalability is ensured by an implementation

based on containers. Currently, the complete closing of the

loop is beingworked on, andKPIs are already being fed back

for analysis.

5 Conclusion and outlook

Generating and using synthetic data to develop and test an

autonomous excavator requires a systematic and sophis-

ticated methodology. As discussed in this publication, this

results in a high initial complexity when all components

have to be aligned with each other. In (lifecycle-long) use,

the following advantages arise:

– Data can be generated in a structured and transparent

manner.

– Any scenarios can be efficiently implemented for data

generation.

– All parameters are adjustable, thus critical scenarios

can be formed and tested in a prioritized manner.

– Direct evaluation capabilities using a ROS-based inter-

face to the autonomy stack of a real autonomous

system.

The proposed training and testing loop supports the

continuous development of the autonomous excavator

used in our experiments. With the emergence of com-

plex autonomous systems, such new development methods

become necessary. The use of synthetic data enables the

focused and traceable development of autonomous and self-

learning systems.

As shown in our experimental evaluation, synthetic

data can be successfully used to augment data sets, which

are lacking specific scenarios inside a use case. With the

proposed architecture, we are able to adjust specific param-

eters to provide the needed data to improve the datasets and

reduce gaps inside the datasets.

The next steps in the further development of the train-

ing and testing loop is the complete “loop-closure”. This

will enable automated refinement of the synthetic data gen-

eration with each run. Furthermore, we plan to use real

data as scenes for test cases to reduce the reality gap. In

future work, we also plan to investigate newmodels such as

pose detectors and pointcloud-based segmentation models

to further explore the capabilities of the data generator.
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