DE GRUYTER Forum Math. 2023; 35(6): 1471-1483

Research Article

Julio Cesar Avila*, Martin Eduardo Frias-Armenta and Elifalet Lopez-Gonzalez

Generalized Cauchy-Riemann equations in
non-identity bases with application to the
algebrizability of vector fields

https://doi.org/10.1515/forum-2022-0292
Received October 5, 2022; revised January 27, 2023

Abstract: We complete the work done by James A. Ward in the mid-twentieth century on a system of partial
differential equations that defines an algebra A for which this system is the generalized Cauchy—Riemann equa-
tions for the derivative introduced by Sheffers at the end of the nineteenth century with respect to A, which
is also known as the Lorch derivative with respect to A, and recently simply called A-differentiability. We get
a characterization of finite-dimensional algebras, which are associative commutative with unity.
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Introduction

The theory of analytic functions in algebras was started by Sheffers [12] at the end of nineteenth century. Other
notable works are [3, 6, 8, 9, 11, 13]. The corresponding differentiability is known as Lorch differentiability which
is associated to algebras A (in all this work algebra will be an R-algebra associative commutative with unit), so
we call it A-differentiability, see Section 2.2. This is similar to how the complex derivative is associated with the
system of complex numbers. We denote by A an algebra that as a linear space LL is R", and by M an algebra
that as a linear space L is a subspace of matrices of dimension n into M,(RR).

In this work, n-dimensional vector field and function from R”" to IR", in both cases differentiable in the
usual sense, have the same meaning, except that we associate integral curves to vector fields. We suppose that
all vector fields are defined on open sets. Although the motivation for the study of algebras comes from the study
of differential equations, in this paper we do not study such differential equations. We will say that a vector field
F is algebrizable if there exists an algebra A such that F is A-differentiable. Next we give a description of part
of our motivation to study the algebrizability of vector fields:

(1) For a vector field and its corresponding system of autonomous ordinary differential equations (ODEs)

fl xlzfl(xl’---;xn),
S, : 0.1

F=1: :
fn Xn:fn(xl’--wxn),
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we can consider a A-differential equation of one A-variable (A-ODE)

dx
o= F(x), 0.2)

for which each solution x(7), which is an A-differentiable function whose A-derivative satisfies the differ-
ential equation (0.2), determines a solution £(t) = x(te) of the system (0.1). That is, one can use some of the
classical methods to solve ODEs in one variable, to solve equations in one variable over algebras like (0.2)
since one has A-calculus for A-differentiability (see [3]), and by evaluating these solutions in the direction
of the identity, te, we obtain solutions of the considered system of ODEs (0.1). Therefore, by solutions of
A-ODEs some systems of ODEs can be solved.

(2) For each A-algebraizable planar vector field F and each constant b € A, b + te, where e is the identity
of A, for all t € R, the vector field G = bF obtained by the product b times F with respect to A, is a non-
trivial infinitesimal symmetry G of F, so the determinant of the matrix with columns F and G is an inverse
integrating factor of F. See [5] for infinitesimal symmetries and integrating factors. Therefore, an integrating
factor can always be found for algebraizable planar vector fields.

(3) Every algebraizable vector field F is geodesible and the corresponding Riemannian metric tensor g can be
found explicitly. Also, if the vector field is of dimension n, for each regular point of F there exist n — 1 first
integrals whose level sets intersect transversally, whose intersection is a one-dimensional curve which can
be parameterized by arc length with respect to g. Thus the integral curves for these vector fields can be
found. Therefore, ODEs associated with algebraizable vector fields can be solved, see [2] and [4].

(4) For partial differential equations (PDEs) of mathematical physics, families of A-differentiable functions F
have been found for which there exist linear functions ¢ such that the families of functions F o ¢ define
complete solutions of the PDEs, as it is the case of the harmonic functions are related to the conjugate
functions of complex functions, see [7]. Other works related to solutions of PDEs can be seen in [6, 9, 10].
Therefore, A-differentiable functions give solutions for some PDEs.

(5) For algebrizable vector fields a visualization method for their phase portrait is developed in [1].

For each n-dimensional algebra A the A-differentiability is characterized by a system of n(n — 1) PDEs of first

order, similarly to the complex case, so these systems are called generalized Cauchy—Riemann equations asso-

ciated with A (or associated with the A-differentiability). In the literature on the subject these systems were
assumed to be linearly independent, but no justification for this statement was observed, a proof is given in

Section 5. In [13] an inverse problem arises; given the linearly independent system of PDEs

n n
{Zdeijﬁxj:0:1sksn(n—1)}, ©03)
j=11i=1
where dy;; represents real constants, f1, . . ., f, functions of the variables x1, ..., x,, and
ofi
ﬁXj - a_ij

the question is about the existence of an algebra A for which this set is a system of generalized Cauchy-Riemann
equations. In [13], Ward considers matrix algebras M that are images M = R(A) under the first fundamental
representation R of algebras A with unit e = e, in the canonical basis {ej, e;, ..., e;} of R", and solves the
inverse problem for sets (0.3) which are systems of PDEs for these algebras A. Thus, the general inverse problem
was partially solved. In this paper the work is completed; given a set of PDEs of the type (0.3) we give necessary
and sufficient conditions for the existence of an algebra A with unit e =}, ayep, where P ¢ {1,...,n} and
@p € R, such that the given set is a system of Cauchy-Riemann equations for A (Theorem 4).

For the proof of Theorem 4 it was necessary to prove a generalization of [13, Ward’s Theorem 1], which
gives sufficient conditions for a set of matrices in M,(R) to be the image of the canonical base of R" under
the first fundamental representation of an algebra A with unit e = e, in the canonical basis of R". In Section 1
we discuss a condition on how to solve the partial derivatives {fiy; : 1 < i,j < n} in terms of the partial deriva-
tives {fix, : 1 < i < n} with respect to a single variable x,. The generalization presented in this article, given
in Theorem 1, characterizes all the matrix algebras that are the image of the first fundamental representation
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of an algebra A, and hence their units are not necessarily canonical vectors e;. In this case the solving of the
partial derivatives {fiy, : 1 <i,j < n} of the components is achieved in terms of the partials derivatives of the
components {fiy, : 1 < i < n, p € P withrespect to the variables {x, : p € P} associated with the canonical basis
vectors {e, : p € P} that define the unit

e=Y apep

peP

of A. Therefore, this characterizes the whole family of algebras.

If all partial derivatives fjy, can be expressed in terms of the partial derivatives fi,, with respect to a single
variable x,, through elementary operations on the system of generalized Cauchy-Riemann equations associ-
ated with an algebra A, it is possible to arrive at simpler systems of generalized Cauchy—-Riemann equations
associated with an algebra A g, in such a way that the families of functions A -differentials and A s-differentials
match. In this way two families of 2D algebras A can be constructed. Ward’s work does not consider the set

{lez = 0)f2X1 = 0}: (04)

which is a system of generalized Cauchy-Riemann equations for the algebra A defined by R? endowed with
the product between the elements of the canonical basis: e1e; = e, e1e; =0, e;ep = €3; A has unit e = e; + 3.
All other cases of 2D algebras A which have unit e = a;e; + aze; are already considered in Ward’s work or the
corresponding Cauchy—Riemann equations are equivalent to a system already considered by Ward’s work, see
Section 6 and [4]. Example 4 illustrates this for the case of 3D algebras. If we add this algebra that is missing in
Ward’s work, we obtain three families of two-dimensional algebras such that each algebrizable vector field is
A-differentiable for an algebra A in some of these families. This has been useful in the following two contexts:
in the study of vector fields which are differentiable in the sense of Lorch, see [4], and in the construction of
complete solutions of families of PDEs of the type

d%u

AuX1X1 + Bu)(l)(z + CquXz = 0! uXiX]' = my
iXj

which generalizes the classical result showing that the components of complex analytic functions define a com-
plete solution of the 2D Laplace equation, see [7]. There are other papers that have worked on the solution of
PDEs of mathematical physics through algebras, see [9], [10], and references therein.

In Theorem 2 we present three equivalences of A-differentiability: item (2) is the generalization of classic
Cauchy-Riemann equations Fy = iFy, item (3) was presented by Sheffers in [12, Satz 3], in form of components,
item (4) is a generalization of [13, equation (18), p. 460]. For the algebras characterized in Theorem 1 the gener-
alized Cauchy-Riemann equations given in Theorem 2 give a characterization of the algebrizability of vector
fields. That is, a vector field F is algebrizable if and only if there exists an algebra A, which is given in Theorem 1,
whose associated Cauchy—Riemann equations, given in Theorem 2, are satisfied by F.

All the results obtained in this paper are made over the real field R, however they can be generalized to
any field F, as it is made in Ward’s paper [13].

1 Ward’s paper

Definition 1. We will say that system (0.3) satisfies the zero trace condition if Y ; dy; = 0.

In Ward’s work [13], systems of n(n — 1) first-order linear PDEs of the form (0.3) are considered. Ward’s approach
is about the existence of an algebra A such that the set of equations (0.3) is a system of generalized Cauchy-
Riemann equations for the A-derivative. One of the conditions required by Ward is the existence of a variable
Xp € {X1, X2, ..., Xp} such that all the partial derivatives fixj, for 1 < i,j < n, can be solved in terms of a linear
combination of partial derivatives of the set {fl-xp :1=1,2,...,n}.Fromsystem (0.3) for each x; there is a matrix
Mj € My(n-1),n(R) such that system (0.3) is written as

MiFy, + -+ MpFy, = 0. LD
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Ward’s condition above implies the existence of matrices A; € M,(R) such that

oo i
:flprl + "‘+fnprn- 1.2)
foo o S
Asecond condition is the commutativity of the set {A1, . .., A,}, and a third condition is that system (0.3) satisfies

the zero trace condition. Under these three conditions Ward [13] proved the existence of the algebra A with the
required conditions.

The solution condition of all the partial derivatives fiy; of the components f; in terms of the partial deriva-
tives fiy, of the components f; with respect to a single variable x,, reduces to verifying the invertibility of n
matrices of n(n — 1) x n(n — 1), as we see below.

Consider the matrix M € Mpn-1),,2(R) given by

M=(My My - My). (13)
Denote by 77; : Mp(n-1),n2(R) = Mpn-1),n(n-1)(IR) the projection which avoid the i-th sumbatrix M; from M
miM)=(Mi My - Mia Mua - My).
The following proposition gives conditions under which there exists p such that equality (1.2) is satisfied.

Proposition 1.1. Iffor some p the matrix 7, (M), where M is given in (1.3), is invertible, then all partial derivatives
in {fix; : 1 < i,j < n} can be written in terms of partial derivatives in {fi, : 1 < i < n}.

Proof. One can start from a system as (1.1) and if some matrix , (M) is invertible, then multiplying the system
by 7, (M)~ we get a new system. Thus, the partial derivatives can be written by

Fy, ;
. 1xi
r : fZXi
FXH = -1p(M)'MpF,, Fi= : : (14
Xp+1 f .
. n-1x;
: ani
Fy,
Thus, the proof is finished. O

2 Algebras and A -differentiability

2.1 Algebras and matrix algebras

Definition 2. We call an R-linear space IL an algebra if it is endowed with a bilinear product IL x I. — IL denoted
by (x, y) — xy, which is associative and commutative x(yz) = (xy)z and xy = yx forall x, y, z € L; furthermore,
there exists a unit e € I, which satisfies ex = x for all x € L.

An algebra IL will be denoted by A if I. = R" and by M if IL is an n-dimensional matrix algebra in the space of
matrices M(n, R), where the algebra product corresponds to the matrix product.

Definition 3. If A is an algebra, the A-product between the elements of the canonical basis {eq, €3, ..., ey} of
R" is given by

n

eiej = Y Cijke,
k=1

where cijx € Rfori,j, k € {1,2,...,n} are called structure constants of A. The first fundamental representation
of A is the injective linear homomorphism R : A — M(n, R) defined by R : e; — R;, where R; is the matrix with
[Riljk = Cixj, fori =1,2,...,n.
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2.2 A-differentiability and algebrizability of vector fields
The A-differentiability of vector fields is the same definition as the differentiability in the sense of Lorch with
respect to A, see [8].

Definition 4. Let A be an algebra, and F a vector field which is defined and differentiable in the usual sense on
an open set Q ¢ R". We say F is A-differentiable on Q if there exists a vector field F’ defined on Q such that

dFp(v) = F'(p) - v, Q1)
where F'(p) - v denotes the A-product of F'(p) and v for every vector vin R" and p € Q.

For the A-differentiability, most of the known results on calculus in R or C transfers to A-calculus, see [3], only
one must to be careful with singular elements, these are non-invertible elements with respect to the A-product.

Definition 5. We say two system of linear partial differential equation (PDEs) with constant coefficients are
equivalent if through elementary row operations carry one of them to the other.

The A-differentiability has associated sets of PDEs, see Theorem 2.

Definition 6. We call generalized Cauchy—Riemann equations associated to A to any system of PDEs equivalent
to equations obtained of e;F; = e;Fj, with i,j c {1,2,...,n}.

3 Characterization of algebras

The following theorem, proved in [13] for P with |P| =1 and a, = 1, characterizes the associative commuta-
tive algebras A with unit e, in the canonical basis {e1, €3, ..., e,} of R™. This completes the characterization
of associative commutative algebras M in M, (R) that are the image of a first fundamental representation of
n-dimensional algebras A. Since algebras are isomorphic to their first fundamental representations, this gives
a complete characterization of the algebras. Also this result is used to give conditions on PDEs systems so that
they are generalized Cauchy-Riemann equations.

Theorem 1. The spanned set by {A; :i=1,...,n} is the image of the first fundamental representation of an
algebra A, with R(e;) = A;, e = Zpep apep, where

n
AAj =Y ajAn, I=) apAp, 31
t=1 DEP
if and only if
(a) there exists a commutative set {A1, Ay, ..., An} ¢ My(R), where A; = (aisr), that is
AiAj = AjA;, i,j=1,...,n, (3.2)
(b) there exists an index set P C {1, ..., n} with {ay}pep such that
z aQpaipr = 8ir, LT =1,...,n. (3.3)
peP

Proof. The proof in the forward direction is known, see [6, p. 642, equation 4].
Conversely, let Bj; = A;A;j and let by, the element of the matrix B;; with row-index u and column-index p.

Then by (3.3)
z apbpu = Z ap z Aitudjpt = z Ajty z ApQjpt = Z aituajt = Qjju.
peP pepP t=1 t=1 peP t=1

Using that A;A; = AjA;, and doing the same calculations as above, for AjA; we have

ajy = ajiy, fori,ju=1,...,n. (3.4)
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Furthermore, another expression for the entries of A;A; = AjA; is
Z Aity Ajyt = Z Ajty Ayt - (3.5
t=1 t=1
Then we have (following Ward’s proof [13])
n n n n n n
(AiAj)rs = z AierAjst = Z AjerAist = z AjerAsic = Z Astrdjic = z AtsrAijt = Z QjjtAtsr
t=1 t=1 t=1 t=1 t=1 t=1

and then A;A; = Y1 aj¢A;. The first equality is obtained by matrix-product definition, the second and fourth
are by (3.5), the third and fifth by (3.4), and the sixth by commutativity of R. From (3.3), we see that the A; are
linearly independent with respect to R. Now we shall prove },,.p apAp = I. If

ap11 Qp21 -+ Qpml
ap12  QAp22 -+ QApn2

Ap = . . . . )
Apin  Ap2n -+ dpnn

then analyzing every element of the matrix },.p apA, (With row-index r and column-index s)

( Z apAp) = Z ApQpsr = Z apAspr = Ssr,
peP 'S pep peP
and then ), ., apAp = I, where we used (3.4) and (3.3). O

Next, an example outside the scope of Theorem 1 is given, i.e., the algebra is not image of a first fundamental
representation.

Example 1. Consider the matrices = {A1, A, As} given by

100 0 0 0 000
Ar=(0 3 0, 4=(0 -3 0|, A3=(0 0 0
0 0 % 0 0 -3 010

It can be verified that the matrices {41, A2, A3} are commutative, and their matrix products satisfy the following
relations:

| A Az A3
A1 lAl + lAz lAg lAg
2 ) 6 31 31 _ (3.6)
A 54 —34; —343
As 14 -14; 0
Then they define a 3D commutative matrix algebra IM, which in this case is given by
x 0 0
M= 0 y 0[:x,y,z€eR
0 z y

We take P = {1, 2}, a; = 2, and ay = -1, since 2a112 — a2 =2-0 — % = —%, the conditions of Theorem 1 are not
satisfied. Then it is not first fundamental representation.

We can find the first fundamental representation with respect to this basis, which would give a matrix
algebra Mg, which should not match M, but should be an algebra of simultaneously diagonalizable matrices
which is conjugate to M, i.e., M = BMpzB~1, where B is an invertible matrix.

Next, two examples are given where the algebra is the image of a first fundamental representation.

Example 2. The following matrices satisfy (3.2) and (3.3) of Theorem 1

oo 0 0 0 0 0 0

— 1 1 — 1 1
Ar=(1 1 o, A=(1 -1 o], 4=[0 0 0
0 0 1 0 0 -3 -1 0
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Actually, they have the same matrix products as (3.6). For condition (3.3) we take P = {1, 2}, with a; = 2 and
a; = —1. Then

2a111 - @121 2a11 - A1 2d311 — A321 100
2A1- Ay = 2a112 - a2 2az12 -Gz 2az;p-aszp |=|1 0 1 0
2a113 — G123 20213 — Az23 24313 — A323 0 0 1
Example 3. Consider the matrices f§ = {41, A2, A3} given by
1 0 0 0 0 O 0 0 O
A1={0 0 0], A,={0 1 0], A3=10 0 O
0 0 O 0 0 1 0 1 0

Wetake P = {1,2}, a; = 1, and az = 1. Then

ai11 + A121  Az11 + Az A311 + A321
Q112 + Q122 A212 + Az22  A312 + (322
113 + d123  A213 + A223  (A313 + (323

1]
o o =
o - o
-~ o o

Therefore, the conditions of Theorem 1 are satisfied.
It can be verified that the matrices {41, A2, A3} are commutative, I = A1 + A, with I the identity matrix, and
their matrix products satisfy the following relations:
| A1 Ay As
A1 A 0 0
Ay | 0 Ay A’
As | 0 As O

Thus, R(A;) = A;jfori=1,2,3.

4 Characterization of algebrizable vector fields

In the following lemma we think the elements of R" as columns.

Lemma4.1. Let A be an algebra and R : A — Mp(R) its first fundamental representation. Then R(a)b = ab,
where R(a)b denotes the product between the matrix R(a) and the vector b, and ab denotes the product in A.

Proof. Firstly, we see that R(e;)e; = e;e;:

Ciin Ciz1 -+ Cinl Cij1
Ciiz Cizz -+ Cin2 Cij2 1
R(ei)ej = . . ) e = ) = Z Cijkek-
: : . : : Pt
Citn Cian  **+ Cinn Cijn

Then

n n n n
R(e;)b = R(e;) z bjej = Z bjR(ey)ej = Z bjeiej = e; Z bjej = e;b.
- - = =t

Next, using the previous equality we obtain
n n n
R(a)b = R< Z aiei)b = Z a;R(ep)b = Z a;e;b = ab.
i=1 i=1 i=1
This prove the lemma. O

By using Lemma 4.1, the Cauchy—Riemann equations e;Fx = exF; can be written as

R(ei)Fk = R(ex)Fi, 1,1€{l,2,...,n}, i#].
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If the unit e of A is given by e = ¥, apey, then the partial derivatives fiy, of the components f; of algebraiz-
able vector fields F can be expressed as a linear combination of {fix, : p € P}, this is included in the fourth
characterization of A-differentiability given in the following theorem. Note that (3) is the same as [12, Satz 3].

Theorem 2. Let F = (f1, fo, ..., fn) be a differentiable field vector in the usual sense, A an algebra with first fun-
damental representation R given by R(e;) = R; and unity e = } ,.p apep, where P is an index set P c {1,...,n}.
Then the following items are equivalent:

(1) Fis A-differentiable.

(2) F satisfies ejFy, = eiFy, foralli,je{1,2,...,n}withrespect to A.

(3) The partial derivatives Fy, of F satisfy

Fy, =Ry ) apFy,. 4.1)
peP
(4) The Jacobian of F satisfies
JF =Y apfix,R1+ Y @pfox,Ra+--+ Y @pfux,Rn. 4.2
pepP pepP pepP

Proof. (1) = (2) Since F is A-differentiable, we have that there exists a vector field F’ such that dFy(v) = F'(x)v
for every vector v. This implies that

ejFy, = ejdF(e;) = ejF'ei = eiF'ej = e;dF(ej) = eiFy;,

which are the generalized Cauchy-Riemann equations associated to A.
2Q=0QIf
RiFy, = RxFx, fori,k=1,...,n,

then
apRpFy, = apRiFx, forp e P.

Thus, summing for p € P,

). WRpFx, = ) apRFx,,
peP peP

Fy, = Rk Z aprp:
peP
where },,.p apRp = I is the identity matrix because the expression of the identity e.
()= (4) Let U = },cp apFx, be. From (3) we have Fy, = Ry U. Thus, the Jacobian matrix JF of F is given in
component notation by

JF=(RiU | RU | ... | RaU)
i T2z -+ Timl uy 'ni1 Th21 - Thnl U
iz T122 - Tin2 Uz niz Tn22 - Tnn2 Uz
in T1i2n -+ Tinn Un 'min Thn2n *** Thnn Un
I i1 I'ni1
1 I'i2 1 I'2i2 1 I'ni2
= w| U Y ui
i=1 : i=1 i=1
I'tin I'2in I'nin
ripx Teit -+ Tnil rimm  Tiz1 -+ Tinl
1l iz T2 -+ Tni2 1l iz  Tiz2 -+ Tin2
11 IR ) ) :
i1 : : . : i=1
'tin T2in - Tnin Titn Tian -+ Tinn

where the last equality is obtained from commutativity of A.
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(4) = (1) Suppose that the Jacobian of F satisfies equality (4.2). So our candidate for A-derivative of F is

Z z apkap €k-

k=1peP
We have to prove the equality
n
dF(v) = ( Y. 2 Wpfieg, ek)(V), 43
k=1peP
where the product indicated on the right hand side represents the product of A. First, we have that the differ-
ential of F applied to v is the Jacobian matrix JF of F multiplied by v through the matrix product

dF(v) = ( Y (¥ apkap)Rk>(v). (44)

k=1 " peP

Next, by Lemma 4.1 we have
n

arwy =Y (¥ apkap>(ekv), 5)

k=1 " peP
where exv represent the product with respect to an A. Therefore equality (4.3) holds, because the right side
of (4.5) is equal to the right side of (4.3). This shows that F is A-differentiable and that the A-derivative of F is

n

F' = z ( z apkap)ek. O

k=1 " peP

Due to Theorem 2, in the next corollary we give the set of all solutions of system (0.3).

Corollary 4.1. Ifthere is an algebra A such that system (0.3) are the Cauchy-Riemann equations for A, then the
A-differentiable functions are all solutions of system (0.3).

The following example gives two algebras A; and A, for which the family of functions A -differentiable and
A,-differentiable are the same, since they have the same generalized Cauchy-Riemann equations.

Example 4. The linear space R® endowed with the product

e1 () €3

1 1 1 1
(4} 791+€ez 36‘2 36‘3
b

1 1
€ ) —3€2 —3€3

_ =

1
es3 36‘3 —56’3 0

define an algebra A with unit e = 2e; — e;. The Cauchy-Riemann equations for the A-derivative are given by

f1y=0, flx—fZX—f2y=0, f3x+f3y=0,
flzZO; fZZZO; flx‘fo‘szZO-
Thus,
fix fiy fiz 100 0 0 0 0 0 0
fox foy for |=Cfix—-fy)| & 3 0 |+Q@fx-f)[ 3 -3 0 |+Qfix-fa){0 0 0
fax fry fa 0 0 % 0 0 —% % —% 0
That is,

JF = (2f1x = fiy)R1 + (2fax = fay)R2 + (2f3x — f3y)R3,
where R; = R(e;), R : A — M,(R) of A.
On the other hand, for the same generalized Cauchy-Riemann equations, the partial derivatives fiy; can be
written in terms of a linear combination of fi, fax, f3x, from which we obtain

fox f2y for |=fix] 0 1 0 |+fox[ 1 -1 0 |+f5x[ 0 0 0
fax fgy f3z 0 0 1 0 0 -1 1 -1 0
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Since these matrices satisfy the Ward conditions, we have that F = (f1, f2, f3) is B-differentiable, where B is the
algebra defined by R® with respect to the product

€1 () es3
e1 | e () es3
ey | e —€y —e3 ’
e3 | e —é€3 0

The unit e of Bis e = ey.

5 Linear independence of Cauchy-Riemann equations

Theorem 3. A set of generalized Cauchy—Riemann equations associated with an algebra A contains n(n - 1)
linearly independent PDEs.

Proof. By Theorem 2, a set of generalized Cauchy-Riemann equations associated with an algebra A is equivalent
to equation (4.1). Then a set of Cauchy-Riemann equations for A-differentiability is given by

n

Fy =Ry Y apFp, k=1,2,...,n,
p=1
where R; are its first fundamental representation n x n matrices with
I: (11R1 +"‘+aan.

They can be rewritten as n equations as follows:

Fy = Ry(ayFy +--- + anFy),

Fn = Rp(ayFy + -+ + apFy),

as well as
((11R1 - I)Fl + a2R1F2 +oeeet aanPn = 0,

a1 Ry F1 + aaRpFy + -+ + (anRy, — I)Fp = 0.

In order to prove that the later equations are linearly independent, we are to consider the next n x n-matrix
(where each entry is another n x n-matrix)

a1R1 -1 asRq asRy --- anRq
ai1R, aRy -1 asRy --- anRy
ai1R, azR, asR, - apRp-1

and prove that this matrix has maximal range, namely n(n — 1). For this it is only necessary to prove that only
one of the columns is linearly dependent of the others. To achieve this, we will do operations between rows and
columns in order to preserve the same set of solutions, and one column will be only zeros.

For this, we take only the columns where @, + 0, because if a, = 0, then that column will have only zeros
except the p-th entry, as follows:
0
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Therefore, let us consider the non-zero ap, let us say ap for p = 1,2, ..., I. Then the n x -matrix with a, # 0 is
alRl -1 (12R1 a3R1 alRl
aiRy aRy -1 asRy, --- aiRy
a1R; arR; asR; -+ aqiR;-1
To the later matrix, it will be done the next row operation: fixing the first row, for each k-throw, k = 2,3,...,1,

k-th row is replaced by k-th row plus % times first row. Then one gets

aiRy -1 asRq asRq aiRq
@(@Ri+@Ry - @R+ @Ry ~1  Z(aiRi+aRy) -+ gH(aiRy + azRy)
@(@Ri+asR3 -1 F(aRi+asR3) aiRi+asR3~1 -+ Zl(aiRq + azRs)
a@Ri+aR -  F@Ri+aR) F@Ri+aR) - aRi+aR -1

Now, for the next column operation: fix the last column, for each s-th column, s = 1, 2, ..., [ - 1, the s-th column
is replaced by s-th column minus g—j times last column. Then one gets

-I 0 o - aiR,
—Z—;I -1 0 g—;(alRl + ang)
—g—;[ 0 -1 .- g—;(alRl + C(3R3)
0 %I Z—?I o R+ iR -1

This last matrix is almost an inferior triangular matrix, except for the last column. Now, we are going to fix
the first row, and for each k-th row, k = 2,3, ..., [, k-th row is replaced by k-th row minus % times first row.
Then one gets

-I 0 0 -  aRq
0 -I 0 - aRy
0 0 -I -+ aR3
%I Z—f[ g—j] e iR -1

Finally, we are going to do several row operations at once, we are going to sum a multiple constant of each row,
to the last row, i.e. the last row will be replaced by

[-th row + %(ﬁrst row) + %(second TOW) + - -+ + % [(I-1) - throw].
l 1 l

Then one gets

-I 0 0 - aR
0 -I 0 - aRy
0 0 -I -+ aR3
o 0 0 - 0

Where we use the expression I = a1R; + @Ry + -+ + qiR; in the (I, I)-entry. Therefore, the range of the last
matrixis (I — 1) and each entry is a n x n matrix. In addition, we have (n — [) independent columns because the
ap = 0. With this we have shown that the n(n — 1) Cauchy-Riemann equations are linearly independent. ~ [J

6 Ward completion

The next theorem is the main result in Ward’s paper [13].
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Theorem (Ward [13, Theorem 2]). Suppose the system of PDEs (0.3) has the property that for some fixed integer p,
it implies the set

JF :flprl +f2pr2 +e +fnprn-

Suppose further that the matrices A; = (a;sr), i = 1, ..., n, are commutative and satisfy the zero trace condition.
Then there is a uniquely determined algebra A for which (0.3) is a set of generalized Cauchy-Riemann differential
equations.

Now, we give a generalization of the algebrizability of vector fields, in the following theorem, which completes
the above theorem.

Theorem 4. There exists an algebra A for which the set (0.3) is the system of generalized Cauchy-Riemann equa-

tions if and only if the following three statements are satisfied:

(1) there exists a set of matrices {A; = (aisr) : 1 =1,2,...,n}in My(R) such that set (0.3) implies equality (4.2)
for Ri = (aisr),

(2) {A;:1=1,2,...,n}is commutative, that is, A;A; = AjA; for 1 <i,j < n, and

(3) set (0.3) satisfies the zero trace condition (Definition 1).

Proof. Suppose we take A such that the set of PDEs (0.3) is its system of generalized Cauchy-Riemann equations,
and A; = R(e;) fori=1,2...,n,where R is the first fundamental representation of A. Thus:
(1) is a direct consequence of Theorem 3,
(2) is satisfied because is A is an algebra,
(3) system (0.3) satisfies the zero trace condition because it is satisfied by the set of PDEs obtained by equality
(4.2) of Theorem 2 and this set is equivalent to system (0.3).
Now we have to show the converse.
Since each PDE of system (4.2) is a linear combination of the set of PDEs (0.3), it follows since PDEs (0.3) hold
the zero trace condition of PDEs (0.3), that is, Z?zl drii = 0 with k=1,2,...,n(n-1), thus Zpep ApQepr = Srt.
For example, (4.2) can be rewritten as

fir fiz ... fin aj;; A1 ... Qim
for fo oo fan a1z di22 ... Qin2
0=- . . . . + . . . . z apflp
: : " : : : " : peP

fat a2 oo fan aiin A12n ... Qipn
az11 A1 ... Qz2n1 ani1 Qp21 ... anm
Qz12 QA2 ... (Q2n2 Qniz  Qn22 ... Qnn2

+ . . . . zapf2p+"'+ . . . . Zapfnp-

. . K : peP : : E : peP

az1n Q22n ... QA2nn Anin  Ap2n ... Qnnn

Then, for k = 1 one has

0 = —fi1 + arna(aifin + - + anfp) + @@ fin + - + apfn) + - + apr(@ifin + - + anfn)

and the coefficients are di11 = -1 + a1 aq11, di22 = A2a211, - - ., Ainn = Anan11. Then from the zero trace condition
of PDEs (0.3),
n n n
Z diii = -1+ z aiajg = -1+ Z a;ayj; = 0. (6.1)
i=1 i=1 i=1

Similarly, for k = 2 one has

0 = —fi2 + appr(aifin + - + anfp) + Ao (@ fin + - + apfn) + - + apar(@ifin + -+ + anfn)

and the coefficients are dy11 = a1a121, dagz = A2a221, . . ., Aann = AnAnz1. Then from the zero trace condition of
PDEs (0.3),

n n n
Y dui =) @itz = Y @iz =0. (6.2)
i1 i1 i1
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Inboth cases (6.1)(6.2), we used commutativity and 3. p apaspr = 6r¢. Hence by Theorem 1the A;,i=1,2,..., n,
form a basis of an algebra M withidentity I = },.p apAp. Therefore, if A is the first fundamental representation
of M, the set of PDEs (0.3) is satisfied for the A-differentiable functions. O

The following corollary is given by Ward in [13].

Corollary 6.1. A necessary and sufficient condition that the linearly independent PDEs

2
Y diifiy =0, k=1,2, (6.3)
=1

determine an algebra A for which (6.3) is a set of generalized Cauchy—Riemann equations is that
diar + diz2 =0, k=1,2. (6.4)

A system of generalized Cauchy-Riemann equations for the algebra A with product given in the canonical basis
of R? given by e1eq = eq, eje5 = 0, egep = ey, is the set (0.4). The unit e of A is e = eq + e;. The A-differentiable
functions is the set of all the functions F = (fi, f2), where f1(x1, X2) = f(x1), fo(x1, X2) = g(x2), and f, g are differ-
entiable functions of one variable. Therefore, this is a case not covered by [13, Theorem 2]. However, this system
satisfies and is in harmony with Corollary 6.1.

References

[11 A. Alvarez-Parrilla, M. E. Frias-Armenta, E. Lopez-Gonzalez and C. Yee-Romero, On solving systems of autonomous ordinary
differential equations by reduction to a variable of an algebra, Int. /. Math. Math. Sci. 2012 (2012), Article ID 753916.

[2] J. C.Avila, M. E. Frias-Armenta and E. L6pez-Gonzalez, Geodesibility of algebrizable three-dimensional vector fields, in preparation.

[31 J. Cook, Introduction to A-calculus, preprint (2017), https://arxiv.org/abs/1708.04135.

[4] M.E. Frias-Armenta and E. Lopez-Gonzélez, On geodesibility of algebrizable planar vector fields, Bol. Soc. Mat. Mex. (3) 25 (2019),
no. 1,163-186.

[5] L A. Garciaand M. Grau, A survey on the inverse integrating factor, Qual. Theory Dyn. Syst. 9 (2010), no. 1-2, 115-166.

[6] P.W.Ketchum, Analytic functions of hypercomplex variables, Trans. Amer. Math. Soc. 30 (1928), no. 4, 641-667.

[7] E.Lépez-Gonzélez, On solutions of PDEs by using algebras, Math. Methods Appl. Sci. 45 (2022), no. 8, 4834-4852.

[8] E.R.Lorch, The theory of analytic functions in normed Abelian vector rings, Trans. Amer. Math. Soc. 54 (1943), 414-425.

[9]1 S.A.Plaksa, Monogenic functions in commutative algebras associated with classical equations of mathematical physics, Ukr. Mat.
Visn. 15 (2018), no. 4, 543-575.

[10] A.Pogorui, R. M. Rodriguez-Dagnino and M. Shapiro, Solutions for PDEs with constant coefficients and derivability of functions
ranged in commutative algebras, Math. Methods Appl. Sci. 37 (2014), no. 17, 2799-2810.

[11] S.V.Rogosin and A. A. Koroleva, Advances in Applied Analysis, Trends Math., Birkhduser/Springer, Basel, 2012.

[12] G. Scheffers, Verallgemeinerung der Grundlagen der gewdhnlich komplexen Funktionen I, Leipz. Ber. 45 (1893), 828-848.

[13] J. A. Ward, From generalized Cauchy-Riemann equations to linear algebras, Proc. Amer. Math. Soc. 4 (1953), 456-461.


https://arxiv.org/abs/1708.04135

	Generalized Cauchy–Riemann equations in non-identity bases with application to the algebrizability of vector fields
	1 Ward's paper
	2 Algebras and $\mathbb A$-differentiability
	2.1 Algebras and matrix algebras
	2.2 $\mathbb A$-differentiability and algebrizability of vector fields

	3 Characterization of algebras
	4 Characterization of algebrizable vector fields
	5 Linear independence of Cauchy–Riemann equations
	6 Ward completion


