Skip to main content
Log in

Determination of Amino Acid Sequences of Two Subunits in Sarcosine Oxidase from Corynebacterium sp. U-96

  • Published:
Journal of Protein Chemistry Aims and scope Submit manuscript

Abstract

The primary structures of the C and D subunits of sarcosine oxidase from Corynebacterium sp. U-96 were determined by sequencing the peptide fragments derived from their enzymatic digestions. The C and D subunits were shown to be composed of 199 and 92 residues, respectively. Each amino acid sequence showed a high homology with the sequence of the corresponding subunit from Corynebacterium sp. P-1. However, there were some differences between these two species, that is, four N-terminal residues were truncated in the C subunit, but six C-terminal residues were truncated in the D subunit. The D subunit contained three cysteine residues, but no disulfide bonds are in the subunit. Overall sequences of both subunit showed no homology with any other protein in the data base.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bairoch, A., and Apweiler, R. (1996) The SWISS-PROT protein sequence data bank and its new supplement TREMBL. Nucleic Acids Res. 24, 21–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chlumsky, L. J., Zhang, L., and Jorns, M. S. (1995) Sequence analysis of sarcosine oxidase and nearby genes reveals homologies with key enzymes of folate one-carbon metabolism. J. Biol. Chem. 270, 18252–18259.

    Article  CAS  PubMed  Google Scholar 

  • Chou, P. Y., and Fasman, G. D. (1978) Empirical predictions of protein conformation. Ann. Rev. Biochem. 47, 251–76.

    Article  CAS  PubMed  Google Scholar 

  • Crestrield, A. M., Moore, S., and Stein, W. H. (1963) The preparation and enzymatic hydrolysis of reduced and S-carboxymethylated proteins. J. Biol. Chem. 238, 622–627.

    Article  Google Scholar 

  • Edman, P., and Begg, G. (1967) A Protein Sequenator. Eur. J. Biochem. 1, 80–91.

    Article  CAS  PubMed  Google Scholar 

  • Hayashi, S., Nakamura, S., and Suzuki, M. (1980) Corynebacterium sarcosine oxidase: A unique enzyme having covalently-bound and noncovalently-bound flavins. Biochem. Biophys. Res. Commun. 96, 924–930.

    Article  CAS  PubMed  Google Scholar 

  • Hewick, R. M., Hunkapiller, M. W., Hood, L. E., and Dreyer, W. J. (1981) A Gas-Liquid Solid Phase Peptide and Protein Sequenator. J. Biol. Chem. 256, 7990–7997.

    Article  CAS  PubMed  Google Scholar 

  • Inouye, Y., Nishimura, M., Matsuda, Y., Hoshika, H., Iwasaki, H., Hujimura, K., Asano, K., and Nakamura, S. (1987) Purification and characterization of sarcosine oxidase of Streptomyces origin. Chem. Pharm. Bull. 35, 4194–4202.

    Article  CAS  Google Scholar 

  • Jorns, M. S. (1985) Properties and catalytic function of the two nonequivalent flavins in sarcosine oxidase. Biochemistry 24, 3189–3194.

    Article  CAS  PubMed  Google Scholar 

  • Kawamura-Konishi, Y., and Suzuki, H. (1987) Kinetic studies on the reaction mechanism of sarcosine oxidase. Biochem. Biophys. Acta 915, 346–356.

    CAS  PubMed  Google Scholar 

  • Kim, J. M., Shimizu, S., and Yamada, H. (1987) Crystallization and characterization of sarcosine oxidase from Alcaligenes denitrificans subsp. denitrificans. Agric. Biol. Chem. 51, 1167–1168.

    CAS  Google Scholar 

  • Koyama, Y., Yamamoto, Otake H., Suzuki, M., and Nakano, E. (1991) Cloning and expression of the sarcosine oxidase gene from Bacillus sp. NS-129 in Escherichia coli. Agric. Biol. Chem. 55, 1259–1263.

    CAS  PubMed  Google Scholar 

  • Matsuda, Y., Hoshika, H., Inouye, Y., Ikuta, S., Matsuura, K., and Nakamura, S. (1987) Purification and characterization of sarcosine oxidase of Bacillus origin. Chem. Pharm. Bull. (Tokyo) 35, 711–717.

    Article  CAS  PubMed  Google Scholar 

  • Matsudaira, P. (1987) Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262, 10035–10038.

    Article  CAS  PubMed  Google Scholar 

  • Mori, N., Sano, M., Tani, Y., and Yamada, H. (1980) Purification and properties of sarcosine oxidase from Cylindrocarpon didymum M-1. Agric. Biol. Chem. 44, 1391–1397.

    CAS  Google Scholar 

  • Ogushi, S., Nagao, K., Emi, S., Ando, M., and Tsuru, D. (1988) Sarcosine oxidase from Arthrobacter ureafaciens; Purification and some properties. Chem. Pharm. Bull. 36, 1445–1450.

    Article  CAS  Google Scholar 

  • Reuber, B. E., Karl, C., Reimann, S. A., Mihalik, S. J., and Dodt, G. (1997) Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase. J. Biol. Chem. 272, 6766–6776.

    Article  CAS  PubMed  Google Scholar 

  • Schägger, H., and von Jagow, G. (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379.

    Article  PubMed  Google Scholar 

  • Suzuki, H. (1994) Sarcosine oxidase: structure, function, and the application to creatinine determination. Amino Acids 7, 27–43.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, H., and Kawamura-Konishi, Y. (1988) Presence of AMP binding sequence in subunit B of Corynebacterium sarcosine oxidase. Biochem. Int. 17, 577–583.

    CAS  PubMed  Google Scholar 

  • Suzuki, H., and Kawamura-Konishi, Y. (1991) Cysteine residues in the active site of Corynebacterium sarcosine oxidase. J. Biochem. 109, 909–917.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, M. (1981) Purification and some properties of sarcosine oxidase from Corynebacterium sp. U-96. J. Biochem. 89, 599–607.

    Article  CAS  PubMed  Google Scholar 

  • Wagner, M. A., and Jorns, M. S. (1997) Folate Utilization by Monomeric versus Heterotetrameric Sarcosine Oxidases. Arch. Biochem. Biophys. 342, 176–181.

    Article  CAS  PubMed  Google Scholar 

  • Wierenga, R. K., Terpstra, P., and Hol, W. G. J. (1986) Prediction of the occurrence of the ADP-binding βαβ-fold in proteins, using an amino acid sequence fingerprint. J. Mol. Biol. 187, 101–107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etsuko B. Mukouyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukouyama, E.B., Tatemukai, S., Morioka, K. et al. Determination of Amino Acid Sequences of Two Subunits in Sarcosine Oxidase from Corynebacterium sp. U-96. J Protein Chem 18, 747–752 (1999). https://doi.org/10.1023/A:1020625400518

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020625400518

Navigation