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Abstract. Solar photovoltaic power output is modulated by
atmospheric aerosols and clouds and thus contains valuable
information on the optical properties of the atmosphere. As
a ground-based data source with high spatiotemporal resolu-
tion it has great potential to complement other ground-based
solar irradiance measurements as well as those of weather
models and satellites, thus leading to an improved charac-
terisation of global horizontal irradiance. In this work sev-
eral algorithms are presented that can retrieve global tilted
and horizontal irradiance and atmospheric optical proper-
ties from solar photovoltaic data and/or pyranometer mea-
surements. The method is tested on data from two mea-
surement campaigns that took place in the Allgäu region
in Germany in autumn 2018 and summer 2019, and the re-
sults are compared with local pyranometer measurements as
well as satellite and weather model data. Using power data
measured at 1 Hz and averaged to 1 min resolution along
with a non-linear photovoltaic module temperature model,
global horizontal irradiance is extracted with a mean bias er-
ror compared to concurrent pyranometer measurements of
5.79 W m−2 (7.35 W m−2) under clear (cloudy) skies, aver-
aged over the two campaigns, whereas for the retrieval using
coarser 15 min power data with a linear temperature model

the mean bias error is 5.88 and 41.87 W m−2 under clear and
cloudy skies, respectively.

During completely overcast periods the cloud optical
depth is extracted from photovoltaic power using a lookup
table method based on a 1D radiative transfer simulation, and
the results are compared to both satellite retrievals and data
from the Consortium for Small-scale Modelling (COSMO)
weather model. Potential applications of this approach for
extracting cloud optical properties are discussed, as well as
certain limitations, such as the representation of 3D radiative
effects that occur under broken-cloud conditions. In princi-
ple this method could provide an unprecedented amount of
ground-based data on both irradiance and optical properties
of the atmosphere, as long as the required photovoltaic power
data are available and properly pre-screened to remove un-
wanted artefacts in the signal. Possible solutions to this prob-
lem are discussed in the context of future work.

1 Introduction

An accurate determination of incoming solar radiation at the
Earth’s surface is important not only for both climate and
weather research, but also for the stable operation of the

Published by Copernicus Publications on behalf of the European Geosciences Union.



4976 J. Barry et al.: Irradiance and atmospheric optical properties from PV power

electricity grid in the future. In Germany alone there are
2.6 million photovoltaic (PV) systems installed, with a nomi-
nal power of 71 GWp (Holm, 2023) so that accurate forecasts
of solar PV power generation are indeed becoming indis-
pensable for cost-effective grid operation. In this context the
proliferation of PV systems provides a unique opportunity to
characterise global irradiance with unprecedented spatiotem-
poral resolution, which would lead to improvements in both
weather and climate models. Solar panels can in this way be
seen as a dense network of sensors for atmospheric optical
properties. This new information could facilitate the devel-
opment of highly resolved PV power forecasts and can play
a role in improving climate models, in particular since the
highly variable nature of cloud cover as well as uncertainties
in cloud microphysics result in the greatest uncertainty in our
understanding of the radiative forcing of the climate.

It has been shown by several authors (see for instance Ur-
raca et al., 2018; Ohmura et al., 1998; Frank et al., 2018;
Zubler et al., 2011) that the estimates of global horizon-
tal irradiance (GHI) from both the global ECMWF (ERA5)
and the regional (COSMO-REA6) numerical weather pre-
diction (NWP) model reanalyses deviate from ground-based
measurements. In Urraca et al. (2018), comparisons are
made with pyranometer measurements from the Baseline
Surface Radiation Network (BSRN) (Ohmura et al., 1998)
and from a dense network of pyranometers operated by Eu-
ropean meteorological services. In general the model re-
analyses overestimate the irradiance under cloudy skies,
which is largely due to an underestimation of cloud opti-
cal depth (COD). The mean positive bias of ERA5 daily
mean irradiance is +4.05 W m−2 (3.47 %) over Europe and
+4.54 W m−2 (2.92 %) worldwide. On the other hand, the re-
gional COSMO-REA6 dataset underestimates GHI on clear-
sky days, with a mean bias of −5.29 W m−2 (−3.22 %),
which can be attributed to the use of an aerosol climatology
with a too large aerosol optical depth (AOD), as discussed
in Frank et al. (2018). Although the COSMO-D2 data use
a different aerosol scheme, these negative biases in the GHI
are still present, especially in summer (Zubler et al., 2011).
Satellite datasets perform a lot better, with data from the Sur-
face solAr RAdiation Heliosat (SARAH) showing a mean
bias of only +0.86 W m−2 in the daily mean GHI (compared
to +4.22 W m−2 from ERA5) over Europe (Urraca et al.,
2018). Interestingly SARAH overestimates in most cases,
with only some stations showing a negative bias related to
snow detection. Overall the satellite measurements display
a smaller absolute error than reanalysis products. The posi-
tive bias of the GHI from satellite retrievals is confirmed by
Yang and Bright (2020): their comprehensive global evalu-
ation of hourly satellite irradiance data reveals a mean bias
error1 of 4.67 W m−2 for hourly SARAH-2 irradiance com-
pared to the nine BSRN stations over Europe (excluding
the Austrian station Sonnblick at 3100 m altitude), compared

1Calculated using Table 3 in Yang and Bright (2020).

to 7.93 W m−2 for the Copernicus Atmospheric Monitoring
Service (CAMS) radiation data (see Sect. 3.3).

The idea of using PV systems as radiation sensors has been
explored by several authors. In Engerer and Mills (2014),
Killinger et al. (2016), and Marion and Smith (2017), meth-
ods are developed in order to use the output of one PV system
to predict that of another, which is in essence done by infer-
ring GHI from PV power measurements. In all three cases
empirical models for the decomposition of irradiance into di-
rect and diffuse components are used, and system parameters
such as orientation and PV module efficiency are required
inputs. Engerer and Mills (2014) achieve a mean bias error
of 1.09 % for the PV power output under clear-sky condi-
tions, but the accuracy diminishes for partly cloudy skies, as
expected; Killinger et al. (2016) achieve a mean bias error
between −3.9 % and −9.8 % for the GHI, depending on the
empirical model used for irradiance transposition, and Mar-
ion and Smith (2017) achieve a mean bias error for the GHI
of within ±1.5 % using south-facing PV modules at 10, 25,
and 40◦ tilt angles. A similar approach is taken in Elsinga et
al. (2017), in this case using a single-diode PV model and
a different decomposition model. In Halilovic et al. (2019)
the authors replaced the original iterative approach used in
Killinger et al. (2016) by an analytical method, to minimise
computational cost, and achieved a mean bias error of be-
tween 0.1 % and 2.1 % for the resulting GHI, using data from
silicon reference cell measurements at different tilt and az-
imuth angles.

In Nespoli and Medici (2017) a different method is intro-
duced, in this case without the need for system-specific in-
formation such as orientation or nominal power. A similar
approach is taken in Saint-Drenan (2015) and Saint-Drenan
et al. (2015), where system parameters are estimated by sta-
tistical methods. In addition, Scolari et al. (2018), Laudani
et al. (2016), Carrasco et al. (2014), and Abe et al. (2020)
have also described the inference of solar irradiance from PV
current and voltage measurements using an equivalent-circuit
model. In this case greater accuracy is achievable, provided
the module temperature is also measured.

This work builds upon the proof-of-concept study pre-
sented in Buchmann (2018) (for clear-sky days only); how-
ever it is unique in that empirical models for the separation of
radiation components are avoided – rather an explicit simu-
lation of the diffuse radiance distribution is performed using
libRadtran (Mayer and Kylling, 2005; Emde et al., 2016). Al-
though this is computationally more intensive, it has several
advantages over the usual approach (see for instance Perez et
al., 1992): by using a state-of-the-art radiative transfer code
one can more accurately model the clear-sky irradiance, es-
pecially for larger solar zenith angles, and one can explic-
itly take into account information on aerosol load or ground
albedo from freely available datasets. In addition it is pos-
sible to include information on the state of the atmosphere
from weather models, which is particularly relevant for in-
cluding the effects of precipitable water on incoming irradi-
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ance. The radiative transfer solvers DISORT (DIScrete Ordi-
nate Radiative Transfer) (Stamnes et al., 1988; Buras et al.,
2011) and MYSTIC (Monte Carlo code for the physically
correct tracing of photons in cloudy atmospheres) (Mayer,
2009) are used for forward model calibration as well as
for inferring atmospheric optical properties and GHI from
ground-based irradiance measurements and PV power data.

In order for a PV-based determination of solar irradiance
to viably complement the global coverage of state-of-the-
art satellite measurements, a mean bias error of the order of
5 W m−2 would be desirable (see the discussion on CAMS
and other satellite-based products above). This level of accu-
racy also corresponds to the target accuracy for global radia-
tion measurements from the BSRN (McArthur, 2005). How-
ever, even if this is not achieved, ground-based irradiance
measurements and retrievals can be seen as complementary
since they have the added advantage of superior spatiotem-
poral resolution. The first step to achieve this is to accurately
model the generated power as a function of system-specific
parameters, such as the array’s elevation and azimuth angle,
conversion efficiency, and temperature dependence, and then
extract those parameters from measured power data using a
fitting procedure. In order to remove any biases related to
atmospheric conditions, it makes sense to first calibrate the
systems under clear skies. Once this has been done to suffi-
cient accuracy one can use measured PV power to infer at-
mospheric optical parameters such as aerosol or cloud optical
depth under different sky conditions, enabling the inference
of GHI as well as in some cases of direct and diffuse irradi-
ance components.

The more parameters used to model the PV power, the
greater the uncertainty in the retrieved irradiance. For this
reason it is of course desirable to obtain as much a priori
metadata about the PV systems as possible, such as datasheet
parameters and array orientation. However, this information
is not always readily available, especially when considering
a large number of PV systems over a wide area. In that sense,
there will always be a trade-off between quantity and qual-
ity of the data, which then plays itself out in the accuracy
of the retrieved irradiance. The advantage of PV systems or
any ground-based devices is that one can achieve a much
higher spatiotemporal resolution compared to satellite data
or weather models, which thus allows one to study high-
frequency fluctuations in global irradiance.

In the European context, irradiance variability is domi-
nated by the optical properties of clouds and less by those
of aerosols. Ground-based COD retrievals using broadband
measurements from pyranometers have been carried out in
several studies (see for example Leontyeva and Stamnes,
1994; Boers, 1997; Boers et al., 1999; Deneke, 2002). In-
deed, the transmission of irradiance through a cloud is the
most sensitive to its optical depth and less sensitive to droplet
radius, single-scattering albedo, or asymmetry factor (Leon-
tyeva and Stamnes, 1994). In most previous studies the
clouds are assumed to be horizontally homogeneous in a

plane-parallel atmosphere with 1D radiative transfer, which
leads to a bias in the extraction of cloud optical properties, in
particular under broken-cloud conditions. By neglecting 3D
effects, the horizontal transport of photons is not considered,
which however plays an important role in real-life situations.
These 3D effects can for example lead to an enhancement of
solar irradiance (Schade et al., 2007) so that the GHI exceeds
the clear-sky irradiance due to reflected light from the edges
of clouds. The inherent 4D variability in clouds also compli-
cates the comparison of ground-based and satellite retrievals
of cloud properties, since one compares the time average of
a point measurement with a spatially averaged quantity.

The goal of this work is to demonstrate that PV systems
can indeed be used as ground-based sensors for GHI as well
as to infer the optical properties of the atmosphere, in partic-
ular the COD. The first results are presented from two mea-
surement campaigns carried out in autumn 2018 and sum-
mer 2019 in the Allgäu region in southern Germany, as part
of the research project entitled “Development of innovative
satellite-based methods for improved PV yield prediction on
different time scales for distribution grid level applications”
(MetPVNet) (Meilinger et al., 2021b, a). In Sect. 2 the for-
ward model and its calibration are discussed, and the inver-
sion methods are outlined in detail. Section 3 provides a de-
tailed description of the data from the measurement cam-
paigns. The results are presented in Sect. 4, with a focus on
both tilted and horizontal irradiance as well as cloud optical
depth under overcast skies, and a summary and conclusions
are given in Sect. 5. Further details of the PV modelling as-
pects and radiative transfer simulation can be found in Ap-
pendix A.

2 Photovoltaic power model: calibration and inversion

In order to infer local atmospheric optical properties from
measured PV data, accurate modelling of both atmospheric
radiative transfer and PV power generation is required. In
this section both the PV model and the libRadtran radiative
transfer model is described, along with the calibration and
inversion procedure.

2.1 Forward model: from atmospheric properties to
photovoltaic power

The power generated by a solar PV module depends primar-
ily on incoming short-wave solar irradiance and module tem-
perature, both of which depend on atmospheric conditions.
Once this dependence is properly described in a model, PV
power and/or current measurements can be used to infer the
irradiance in the plane of the array, taking into account the
geometry of the system, i.e. the elevation and azimuth angle
of the solar panels. After extracting this global tilted irradi-
ance (GTI) from PV data, one can go on to infer atmospheric
optical properties such as cloud optical depth and global hor-
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izontal irradiance by further inverting the radiative transfer
model.

The most physically correct method of modelling the
power output of a PV plant is with an equivalent-circuit
model that captures the properties of semiconductors, such
as the two-diode model (see for instance Mertens, 2014). In
this way the temperature dependence of the current and volt-
age is explicitly defined according to the Shockley equation
(Shockley, 1949). A drawback of such models is their com-
putational complexity and reliance on parameters found on
module datasheets, which are in the most general case not
always available. There are however several parameterised
models in the literature that attempt to reduce the power gen-
eration equation to a simple relation among incoming plane-
of-array irradiance, module area, and temperature-dependent
efficiency, with the latter described as a function of am-
bient conditions. Several such models exist (see Skoplaki
and Palyvos, 2009, for a review), with some of the most
popular being that of the PV Performance Modeling Col-
laborative (https://pvpmc.sandia.gov/, last access: 17 Octo-
ber 2023) from Sandia National Laboratories (King et al.,
2004, 2007) or the Huld model used in the online PVGIS tool
(Huld et al., 2011, https://re.jrc.ec.europa.eu/pvgis.html, last
access: 17 October 2023). Since the goal here is an inversion,
the choice of model depends on the availability of measured
data: in this work and in the context of the AC power data
from the MetPVNet campaign, a simplified parametric power
model is employed. The model is described here briefly, and
more details are given in Appendix A.

In order to correctly capture the effects of the variable so-
lar spectrum one also needs to take into account the spectral
response of the PV technology in question (Alonso-Abella et
al., 2014), which in the case of an equivalent-circuit model
can then be included in the calculation of the photocurrent
(see for instance the libRadtran-based spectral PV model
described in Herman-Czezuch et al., 2022). In the case of
parametrised PV power models, this so-called “spectral mis-
match”, i.e. the difference between the entire spectrum of
incoming radiation and the range utilised by a certain PV
module, is usually simply absorbed into the PV model pa-
rameters, leading to a site-specific bias that may not take into
account variations in the spectrum from local atmospheric
conditions. By using libRadtran for calibration and inversion
along with information on the state of the atmosphere from
weather models, one can take these variations into account in
the radiative transfer (RT) simulation and subsequent inver-
sion, as discussed in Sect. 2.2 below. In particular the water
vapour column and aerosol optical depth at each site need to
be taken into account (see Sect. A3 in Appendix A).

It can be shown using the diode model (see for instance
Sauer, 1994; Abe et al., 2020) that the maximum power point
(MPP) current generated by a PV module is linearly depen-
dent on the incident irradiance and only very weakly depen-
dent on temperature. However, the dependence of MPP volt-
age on temperature (which itself is a function of irradiance) is

an order of magnitude greater (roughly −0.4 % K−1) so that
this simple linear relationship breaks down when consider-
ing the PV power. In this work a parameterised power model
is used (see Buchmann, 2018; Skoplaki and Palyvos, 2009;
Dows and Gough, 1995), with AC PV power described as2

PAC,mod 'G
6

tot,PV,τ

(
b1+ b2G

6

tot,SW,τ

+ b3 T ambient+ b4 vwind+ b5 T sky

)
, (1)

in the case of the linear temperature model defined in
Eq. (A3) (TamizhMani et al., 2003) or as

PAC,mod 'G
6

tot,PV,τ

(
b′1+

G
6

tot,SW,τ

b′2+ b
′

4 vwind

+ b′3 T ambient+ b
′

5 T sky

)
, (2)

in the case of the non-linear temperature model defined in
Eq. (A4) (Faiman, 2008; Barry et al., 2020). This means that
the modelled AC power PAC,mod is a non-linear function of
plane-of-array irradiance G6tot,PV,τ , together with the effects
of ambient temperature T ambient, wind speed vwind , and sky
temperature T sky that influence module temperature and thus
efficiency. Note that the subscript PV for the tilted irradiance
G
6

tot,PV,τ refers to the fact that only the relevant wavelength
(in this case 300 to about 1200 nm for silicon PV modules)
is considered, and the subscript τ indicates that transmission
through the glass surface of the PV panels has been taken into
account with an optical model. Further details of the model
employed here are given in Sects. A1 and A2 in Appendix A,
and the refractive index n of the glass covering is one of the
parameters varied in the optimisation procedure. The sub-
script SW refers to all incoming short-wave photons – the
dependence of the spectral mismatch between the PV and
SW irradiance bands on atmospheric water vapour and other
factors is discussed in Sect. 2.3.

The parameters bi
(
b′i

)
and (i = 1. . .5) in Eqs. (1) and (2)

depend on nominal power, efficiency, the temperature coef-
ficient for power, and the temperature model parameters and
are discussed in more detail in Appendix A, which includes
a definition of all parameters listed in Table 2. In practice
the module temperature can be either measured or modelled,
depending on the availability of measurements and/or meteo-
rological data. Within the PV power models described above,
the PV module temperature is a static quantity; i.e. the heat
capacity (C) of the PV system is not taken into account.
However, when dealing with high-frequency measurements
of PV power, it is necessary to employ a dynamic tempera-
ture model, as discussed in Barry et al. (2020). The charac-
teristic time constant (= C/J , with J being the net thermal
energy flux of the PV modules) of typically 10 min means

2The inverter efficiency is included in the parameter s; see
Sect. A in Appendix A.
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that the large fluctuations in irradiance do not translate di-
rectly to module temperature variations; i.e. the temperature
response is smoothed out. For simplicity the dynamic tem-
perature model is not included in the present study, since
most of the systems had power data collected in 15 min res-
olution.

2.2 Model calibration under clear-sky conditions

In order to infer the irradiance in the plane of array (GTI)
from measured PV power or current, the PV model parame-
ters need to be determined, either from datasheets or with a
forward model calibration. This is accomplished using data
under clear-sky conditions, together with an accurate simu-
lation of the irradiance, followed by a multi-parameter opti-
misation to find the parameter values. This section describes
the technical details of the clear-sky simulation and the rel-
evant atmospheric input parameters used. Figure 1 displays
this procedure graphically, and further explanations are given
in the following sections.

2.2.1 Radiative transfer simulation with libRadtran

The clear-sky simulation of tilted irradiance G6tot,PV,τ is per-
formed with the freely available libRadtran software package
(Mayer and Kylling, 2005; Emde et al., 2016), with the input
parameters shown in Table 1 and the wavelength range from
300 to 1200 nm for silicon PV applications. The correspond-
ing broadband simulation (G 6tot,SW,τ ) is also performed, as
an input to the temperature model. Spectral integration is car-
ried out using the Kato parameterisation in order to simplify
the effects of water vapour absorption by using the so-called
correlated-k approximation (Kato et al., 1999). The DISORT
solver allows for an explicit calculation of the diffuse radi-
ance distribution on a predefined lattice of elevation and az-
imuth angles, and the pseudospherical approximation is em-
ployed so that only radiative transfer calculations at solar
zenith angles (SZAs) of up to 80◦ can be reliably performed.
The Python package PyEphem (Rhodes, 2022) is used to
accurately determine the sun position for the correspond-
ing latitude, longitude, and time coordinates. Consortium for
Small-scale Modelling (COSMO) model data (see Sect. 3.2)
are interpolated by the package cosmomystic (see Barry
et al., 2023a) in both time and space in order to create atmo-
sphere profile files suitable as input for libRadtran, in 15 min
resolution. In this way variations in water vapour and other
atmospheric trace gases are taken into account, and the atmo-
spheric layers are cut off at the appropriate altitude of each
site. Concurrent measurements by an AErosol RObotic NET-
work (AERONET) sun photometer (Holben et al., 1998) are
used to extract the Ångström exponent α and turbidity co-
efficient τ a,1 with the aeronetmystic (see software sup-
plement) software package. Other aerosol optical properties
such as the single-scattering albedo and asymmetry factor
are taken from the Optical Properties of Aerosols and Clouds

(OPAC) species library with the option “continental average”
(see Table 3 in Hess et al., 1998).

In order to speed up the simulation the code is parallelised
to run on multiple processors: the simulation times are di-
vided into batches, and libRadtran is then called multiple
times as a subprocess from Python. In this way the clear-sky
simulation takes approximately 1 s per time step (8 s on an 8-
core machine), using a diffuse radiance field of 5◦ resolution
in both elevation and azimuth angle, atmosphere files mod-
ified from COSMO data, and modified aerosol inputs from
AERONET and OPAC.

2.2.2 Non-linear optimisation for PV system
parameters

The simplified parametric model described above can be
written as

PAC,mod ≡ y = F(x,h) (3)

for the forward model F described by Eq. (A1) and state
space defined by (see Table 2)

x ≡ (θ,φ,n,s,ζ,ui) (4)

so that the calibration procedure is effectively a non-linear,
multi-parameter optimisation problem with eight (for the
non-linear temperature model)3 or nine (for the linear tem-
perature model) unknowns. As shown in Table 3, the param-
eter space h in Eq. (3) contains the irradiance proxy from the
libRadtran simulation as well as temperature and wind speed
data from either the COSMO model or the measurements,
which are interpolated to 15 min resolution. In addition the
measured sky temperature (see Sect. 3.1) is used. This in-
version problem can be solved with the methods detailed in
Rodgers (2000). In this case the Levenberg–Marquardt algo-
rithm is used, with the Jacobian matrix calculated explicitly
at each iteration.

If one varies all parameters in x it quickly becomes appar-
ent that there are not enough degrees of freedom in the sig-
nal to uniquely determine a solution with the Bayesian for-
malism, since several parameters are highly correlated with
each other, for instance the inclination angle θ with the scal-
ing factor s or the orientation angle φ with the tempera-
ture model parameters or the coefficient ζ (see the discus-
sion in Sect. 4.1). It is thus expedient to extract the tempera-
ture model parameters separately using the measured module
temperature for different PV system configurations (if avail-
able) and then fix those parameters in the optimisation proce-
dure. In Barry et al. (2020) a dynamic model was developed
by fitting the measured and modelled module temperatures
using three different PV systems with different mountings.

3In the non-linear Faiman model there are less temperature pa-
rameters as the ambient and sky temperatures are not independent,
as is the case in the linear model; cf. Eqs. (A3) and (A4).
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Figure 1. Schematic diagram showing the different steps of the calibration procedure, with input data sources in green, model steps and
algorithms in blue, simulated parameters in orange, and system parameters (see Table 2) in dark red. Note that in this case only clear-sky
days or time periods are considered.

Table 1. Model parameters for the libRadtran simulation of clear-sky days, including information on their source.

Parameter Symbol Source

Latitude, longitude, altitude, time ϕ, ϑ , z0, t Set by PV data
Solar zenith angle, solar azimuth angle θ0, φ0 Calculated with PyEphem(Rhodes, 2022)
Temperature profile T (z) COSMO (Baldauf et al., 2011)
Pressure profile p(z) COSMO
Water vapour [H 2O ](z) COSMO
Ozone [O3](z) US standard atmosphere
Albedo ρ Constant (0.2)
Ångström turbidity coefficient τ a,1 AERONET (Holben et al., 1998)
Ångström exponent α AERONET
Other aerosol optical properties – OPAC continental average (Hess et al., 1998)

These results (for the static model case) are used in the over-
all optimisation, where appropriate.

The calibration algorithm is designed to allow certain pa-
rameters to be fixed if they are known, whereas unknown pa-
rameters are varied with a given a priori error, which in turn
affects the parameter retrieval error and thus propagates into
the uncertainty in the inferred irradiance.

2.3 Model inversion under all sky conditions

The calibrated PV systems can now be used as sensors to
extract information about the state of the atmosphere. This
section describes the different methods used to infer both ir-
radiance and atmospheric optical properties from PV power
data, as summarised in the schematic diagram in Fig. 2. The

method employed depends on the prevailing weather condi-
tions, specifically on the amount (and type) of cloud cover.

In a nutshell, using a 1D DISORT-based method, one can
use GTI to extract AOD or COD during clear or completely
overcast periods, respectively, which thus allows the determi-
nation of the direct and diffuse irradiance components. Un-
der broken-cloud conditions, a 3D MYSTIC-based method
allows one to determine the GHI from GTI directly. The DIS-
ORT and MYSTIC lookup tables (LUTs) are provided in an
open data repository (Barry et al., 2023b).

2.3.1 Global tilted irradiance from PV model inversion

Once the PV system has been calibrated under clear-sky con-
ditions, the system parameters can be fixed, and the mea-
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Table 2. List of PV model parameters in x. In the calibration procedure, the parameters in x known to a certain degree (from datasheets or
other sources) of accuracy are fixed, whereas all others are varied.

Parameter (x) Symbol Source (if available)

Tilt angle θ laser scanning or theodolite
Azimuth angle φ laser scanning or theodolite
Glass refractive index n optimisation
Scaling factor s optimisation
Temperature coefficient ζ datasheet or optimisation
Temperature model parameters ui (i = 0,1,2,3) optimisation and/or model (Barry et al., 2020)

Table 3. List of additional inputs in h used for calibration on clear-sky days. The subscripts PV and SW refer to the different wavelength
bands used for integration; see the discussion in Sect. 2.2.1.

Parameter (h) Symbol Source

Direct tilted irradiance G
6

dir,PV(SW)
libRadtran simulation (see Table 1)

Diffuse tilted irradiance G
6

diff,PV(SW)
libRadtran simulation (see Table 1)

2 m ambient temperature T ambient COSMO or measured
Wind speed at 10 m vwind COSMO or measured
Long-wave downwelling irradiance G

↓

LW Measured

sured PV power can be used to infer the global tilted irra-
diance (GTI; also denoted as G6tot,SW) under all sky condi-
tions. The temperature model makes use of broadband irra-
diance (see Eqs. 1 and 2), whereas the PV power model uses
only the relevant spectral range of silicon PV modules (300–
1200 nm) so that the spectral mismatch between the light
converted to electricity (G6tot,PV,τ ) and the entire short-wave
spectrum needs to be taken into account when inverting the
model chain.

The ratio of PV-relevant (G6tot,PV) to broadband (G6tot,SW)
tilted irradiance is a function of the system geometry, time
of day, and local atmospheric conditions, with the largest
contributing factor being the precipitable water in the at-
mosphere. In order to take this into account, the libRadtran
clear-sky irradiance simulations (see Sect. 2.2.1) are used to
characterise the ratio

ξ spec,GTI ≡
G
6

tot,PV,τ

G
6

tot,SW,τ

= f (2, [H 2O] ,τ a) (5)

as a function of incident angle 2, precipitable water H 2O,
and aerosol optical depth τ a, for each station and measure-
ment campaign. In this way the available information on
the water vapour column and aerosol extinction from the
COSMO model and AERONET can be taken into account in
the PV model inversion. Details are given in Sect. A3 in Ap-
pendix A. The fitting function could in principle be extended
to include ozone column abundance, which is however not
included here, since this information is not available from
the COSMO model data. Note that although this method
does not take into account the effect of clouds on the spec-

tral mismatch, it is a good first approximation, which will
be improved upon in future work (see also Rivera Aguilar
and Reise, 2020, for an alternative method). In addition one
could modify this algorithm to include operational satellite
retrievals of atmospheric parameters such as ozone concen-
tration, if required.

Once the spectral mismatch factor ξ spec,GTI has been cal-
culated, the next step is to extract the plane-of-array irra-
diance from the PV power, which in the case of the mod-
els given in Eqs. (1) and (2) is simply the solution to the
quadratic equations in G6tot,SW,τ ; i.e.

ξ spec,GTI b2

(
G
6

tot,SW,τ

)2

+
(
b1+ b3 T ambient+ b4 vwind+ b5 T sky

)
ξ spec,GTIG

6

tot,SW,τ −PAC,meas = 0 (6)

for the linear temperature model, and

ξ spec,GTI

(b2+ b4 vwind)

(
G
6

tot,SW,τ

)2

+
(
b1+ b3 T ambient+ b5 T sky

)
ξ spec,GTIG

6

tot,SW,τ −PAC,meas = 0 (7)

for the non-linear temperature model. These equations can
be solved with the quadratic formula, using the calibrated pa-
rameters b1,2,3,4,5 (b′1,2,3,4,5) as defined in Eq. (A5) (Eq. A6)
for the linear (non-linear) temperature model; the available
data for T ambient, vwind, and T sky; and the spectral mismatch
factor for GTI defined in Eq. (5). Note that the inverted
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Figure 2. Schematic diagram showing the different steps of the inversion procedure, with input data sources in green, model steps and
algorithms in blue, simulated and retrieved parameters in orange, and system parameters in dark red. Note that in this case all atmospheric
conditions (all sky) are considered.

G
6

tot,SW,τ is the irradiance impinging upon the PV module
under the glass covering so that the optical model has not
been inverted yet. In order to compare this quantity with
pyranometers, the transmission of light through the glass
τPV,rel(2) (also known as the “incidence angle modifier”;
see Eq. A9) must be taken into account so that the final GTI
is given by (see also Eq. A14)

G
6

tot,SW =
G
6

tot,SW,τ

τPV,rel,eff
. (8)

For the direct extraction of GTI an empirical formulation is
used to find the effective incidence angle for the diffuse com-
ponent, whereas for the inversion onto optical properties the
refractive index is explicitly taken into account within the ra-
diative transfer simulation. More details are given in Sect. A2
in Appendix A.

2.3.2 Clearness index and irradiance variability
classification

Using the global tilted irradiance extracted from the mea-
sured PV power data, different methods are used in order to
extract atmospheric optical properties and global horizontal
irradiance, depending on the prevailing weather conditions.
By combining the inverted tilted irradiance with the corre-
sponding clear-sky curve one can calculate a clearness index

ki =
G
6

tot,SW,τ,inv

G
6

tot,SW,τ,clear

(9)

for each time step, allowing the data to be separated into
clear, overcast, and broken-cloud time periods. The clearness
index is then used to estimate the cloud fraction, which is dis-
cussed in more detail in Sect. 2.3.3.

On clear days (or during clear time periods) the aerosol
optical depth (AOD) can be inferred, whereas under cloudy
conditions the cloud optical depth (COD) can be found, de-
pending on the degree of cloud cover. In this work the extrac-
tion of COD using a DISORT-based LUT under completely
overcast skies is examined in more detail in Sect. 2.3.3.
An in-depth analysis of aerosol optical properties will be
carried out in future work. For broken-cloud conditions, a
MYSTIC-based LUT is used to infer the global horizontal
irradiance from tilted irradiance measurements, as discussed
in Sect. 2.3.5 (see Chap. 9 of Meilinger et al., 2021b).

2.3.3 Cloud optical depth with DISORT lookup table

Cloud optical properties are functions of microphysical prop-
erties such as the droplet size distribution, droplet number
concentration, and thermodynamic phase. For water clouds,
the absorption and scattering of solar irradiance can be effi-
ciently characterised (Hu and Stamnes, 1993) by the effective
radius reff and cloud liquid water content (LWC), which can
be related to cloud optical depth (COD, τc) through

τc =
3LWP

2 reff ρH2O
, (10)

where the liquid water path (LWP) is the integral of the LWC
across the height of the cloud. The derivation of this equa-
tion (see for instance Petty, 2006) assumes large Mie extinc-
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tion, which is justified since clouds appear to be (mostly)
white in the solar spectrum. Although both τc and reff can
be accurately retrieved from spectral measurements of re-
flected radiation, the transmission of light through clouds is
mostly sensitive to the cloud optical depth. This is due to the
fact that changes in transmission due to variations in single-
scattering albedo and the asymmetry factor (which depend
on reff) are small compared to those due to changes in opti-
cal depth (Leontyeva and Stamnes, 1994). For illustration, in
the two-stream approximation for conservative scattering (no
absorption), the transmittance T can be shown to be (see for
instance Petty, 2006)

T =
1

1+ (1− g)τc
, (11)

where g is the asymmetry factor. For liquid water clouds,
scattering is mostly in the forward direction, with g ' 0.85,
whereas for ice clouds g ' 0.7. In both cases the variations
in g are small so that τc is the primary factor influencing
T . The hyperbolic dependency of T on τc means that the
transmission curve is rather steep at small optical depths but
flattens out for COD& 15. This has implications for the ac-
curacy of ground-based retrievals, as discussed in detail in
Sect. 4.4. It must also be noted that in the algorithm described
in Sect. 2.3.1, spectral variations in cloud optical properties
are not taken into account. In practice this means that vari-
ations in the single-scattering albedo at higher wavelengths
around 1 µm (silicon PV modules are still sensitive to wave-
lengths up to 1.2 µm) may be unaccounted for.

In this work a lookup table for the optical depth of a typical
stratus cloud is constructed using DISORT in 15 min time in-
tervals, under the assumption of a pseudospherical or plane-
parallel atmosphere with horizontally homogeneous liquid
water, clouds, and a completely cloudy sky. This means that
3D effects are not taken into account, and the results need
to be interpreted with care, especially in situations with bro-
ken clouds. In addition, different cloud types such as thicker
cirrus clouds, mixed-phase clouds, or multi-layer clouds are
not properly represented by the LUT. Due to the pseudo-
spherical approximation only SZAs up to 75◦ are consid-
ered (for SZAs above 75◦ with cloud cover the pseudospher-
ical DISORT solver is unstable). The cloud parameters in
Table 4 are input into libRadtran, and the COD at 550 nm
(τc,550 nm) is varied on a 16-step logarithmic scale between
COD= 0.5 and COD= 150, using the default Hu parame-
terisation (Hu and Stamnes, 1993) and 16 streams. Note that
the COD LUT also implicitly contains aerosol information
as an input, since here the aerosol properties are fixed using
the OPAC database (Hess et al., 1998), and the Ångström pa-
rameters from AERONET are used.

As described for the clear-sky simulation in Sect. 2.2, the
direct irradiance and diffuse radiance field are calculated
with libRadtran, the latter in this case with a coarser res-

Table 4. Cloud parameters for the DISORT simulation of a conti-
nental stratus cloud (Hess et al., 1998).

Cloud parameter Value

Liquid water content (LWC) 0.28 g m−3

Effective radius (reff) 7.33 µm
Cloud height (h) 1–2 km

olution of 10◦ in both azimuth and elevation angles.4 The
LUT is then used to find the COD by first calculating the
plane-of-array irradiance for the corresponding PV system
or pyranometer orientation (see Sect. 2.3.1) and then inter-
polating the COD in time to match the resolution of the mea-
sured data. For this purpose the original 1 Hz pyranometer
and PV data are smoothed to 1 min resolution, whereas the
low-frequency PV data are kept at 15 min resolution (see
Sect. 3.1).

In order to determine the exact time points at which a cloud
is above the sensor, the cloud fraction is determined by cre-
ating a mask based on the clearness index in Eq. (9) using a
threshold of 0.8 and overshoot limit of 1.1; i.e.,

cf =

 1 if ki ≤ 0.8
0 if 0.8< ki ≤ 1.1
nan if ki > 1.1.

(12)

This binary cloud mask (clear= 0, cloudy= 1) is then also
smoothed with a moving average function over 60 min in or-
der to create an estimate of the cloud fraction (〈cf 〉60). Vary-
ing the thresholds in Eq. (12) shows that the cloud fraction
computed in this way depends less on the exact threshold
used but more on the window size chosen for the moving av-
erage. Indeed, comparison with concurrent cloud camera re-
trievals shows that 60 min is a reasonable averaging time to
use, when averaging a cloud mask created with data at 1 min
resolution. However, the algorithm is limited by the viewing
angle of the respective PV system or pyranometer, so it can
be inaccurate when there are many clouds on the horizon, for
instance.

The COD is then only extracted for data points for which
cf = 1, i.e. by finding the values of τ c,550 nm for which

G
6

tot,SW,meas/inv =G
6

dir,SW,cloudy
(
τ c,550 nm

)
+G

6

diff,SW,cloudy
(
τ c,550 nm

)
(13)

for all points under a cloud, where meas or inv refers to mea-
sured or inverted GTI from pyranometers or PV systems, re-
spectively. The corresponding direct and diffuse components
can then also be extracted from the LUT, although in this
case the direct irradiance is basically zero (beneath a cloud).

4Note that for more accurate radiance calculations one could use
the Mie option in libRadtran, which uses pre-calculated tables for
Mie scattering but is however computationally more expensive.

https://doi.org/10.5194/amt-16-4975-2023 Atmos. Meas. Tech., 16, 4975–5007, 2023



4984 J. Barry et al.: Irradiance and atmospheric optical properties from PV power

As mentioned above, this approach is limited by the fact
that a 1D radiative transfer solver such as DISORT cannot
take into account horizontal transport of photons so that 3D
effects such as radiative enhancement under broken-cloud
conditions (see for instance Schade et al., 2007) are not taken
into account. For this reason only situations with overcast
conditions will be considered when applying this method. In
situations with low overall cloud cover, the COD is not the
main determinant of the total irradiance received by the sen-
sor or PV system but rather the cloud fraction and the AOD.
To this end a complementary approach using a MYSTIC-
based LUT (see Sect. 2.3.5) is used in order to translate mea-
sured tilted irradiance to horizontal irradiance under broken-
cloud conditions.

2.3.4 Aerosol optical depth with DISORT lookup table

As mentioned above, in this work the extraction of the AOD
is not discussed in detail. However the procedure will briefly
be described here, since this is used as an alternative method
for determining the GHI from tilted irradiance measure-
ments. An AOD-GTI lookup table can be created in a sim-
ilar way to the COD LUT described in Sect. 2.3.3, where
in this case the AOD at 500 nm is varied on a logarithmic
scale in 16 steps between AOD= 0.01 and AOD= 1. In ad-
dition, the aerosol properties are fixed to the so-called conti-
nental average scheme from the OPAC database (Hess et al.,
1998), and for the inversion procedure the AERONET-based
Ångström parameters are not used as input. In this context
it must be noted that the typical dust event reaching Europe
does not have such a high AOD but is rather characterised by
small values of the Ångström exponent of less than 1, indicat-
ing the presence of coarser dust particles. For example, one
study of the climatology of dust events found a mean AOD of
0.155, 0.32, and 0.122 for dust plumes in southern, central,
and northern Europe, respectively (Mandija et al., 2018).

Using the AOD-GTI lookup table, the AOD can be ex-
tracted on clear-sky days, and from this also the direct and
diffuse irradiance as well as the global horizontal irradiance.
In this way the AOD is used as an intermediate step for the
reverse transposition of GTI to GHI. In Germany and espe-
cially in the Allgäu region the AOD is usually very small
(during the measurement campaigns it did not exceed 0.5 at
550 nm) so that any errors in the calibration procedure lead
to large relative biases in the AOD. This then leads to bi-
ases in the direct and diffuse components, but since there are
very few absorbing aerosols, these errors have opposite signs
and largely cancel out in the determination of the GHI. In
Sect. 4, the GHI extracted via both COD and AOD under
different conditions is compared to that measured by pyra-
nometers and satellites, as well as the GHI predicted by the
COSMO weather model. However the inferred AOD itself is
not examined in detail.

Table 5. Limits on the input parameters for the MYSTIC LUT.

Input parameter Limits

SZA (θ0) [20◦,60◦]
Tilt angle (θ ) [0◦,50◦]
Relative azimuth (|φ−φ0|) [0◦,90◦]
Cloud fraction [0.13,0.82]

2.3.5 From tilted to horizontal irradiance with
MYSTIC lookup table

In order to extract the global horizontal irradiance from
the tilted irradiance (from pyranometers or PV systems), a
MYSTIC-based LUT for the GHI was developed using large-
eddy simulation (LES) cloud fields (Črnivec and Mayer,
2019), taking into account various factors such as albedo, wa-
ter vapour, sensor geometry, and cloud fraction. Detailed 3D
radiative transfer simulations were carried out, and the most
important factors simply turned out to be the sensor and sun
geometry as well as the cloud fraction. A detailed descrip-
tion of the MYSTIC LUT is given in Chap. 9, Sect. 9.1.5, of
Meilinger et al. (2021b).

Table 5 shows the limits of applicability of the MYSTIC
LUT, for which there are three major reasons. Firstly, despite
several optimisations like the reduction in the number of pho-
tons used for the Monte Carlo simulations, the computational
demand for calculating the LUT is high. For this reason, 20◦

is chosen as the lower limit for the SZA, since in the lat-
itudes under investigation no smaller values occur. Similar
considerations apply to the tilt angle of PV panels – in All-
gäu, Germany, one rarely encounters title angles larger than
50◦. The second limiting factor relates to the derivation of a
cloud mask and cloud fraction from the radiation measure-
ments (see Eq. 12). Firstly, this is only possible when there is
a direct line of sight between the sun and the module or sen-
sor, which limits the relative azimuth angle between the sun
and the PV panel. Secondly, the derivation of cloud fraction
from temporally resolved radiation measurements becomes
imprecise at large SZAs for geometrical reasons so that the
upper limit of the SZA is set to 60◦. Finally, the cloud frac-
tion limits are determined by two factors: firstly, the LUT
model was developed and tested for partly cloudy situations.
The special cases of 0 % and 100 % cloud fraction are con-
sidered separately with the DISORT-based LUTs, as other
parameters like AOD and COD become relevant here. Sec-
ondly, the exact cloud fraction limits (0.13 and 0.82) given
in Table 5 are constrained by the available cloud scenes from
LES simulations.

The measured or inverted tilted irradiance, together with
the average cloud fraction over the last hour (as described
above; see Eq. 12), is fed into the MYSTIC LUT, along with
the sensor and sun geometry. In this way the GHI can be
extracted from the GTI under broken-cloud conditions. This
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method can however not be used to determine the optical
depth, nor can the direct and diffuse irradiance components
be separated from each other, since the fit was created using
the GTI and GHI.

3 Measurement and validation data

3.1 Ground-based measurements

Model calibration and inversion are performed with PV
power data recorded over two measurement campaigns in au-
tumn 2018 and summer 2019 as part of the MetPVNet mea-
surement campaign (see Chap. 3 of Meilinger et al., 2021b).
There were a total of 24 stations spread out in the region
around Kempten (47.715924◦ N, 10.314006◦ E), as shown in
Fig. 3, with 22 of them equipped with silicon-based pyra-
nometers measuring both GHI and GTI in the plane-of-array
of the PV system. Two master stations (MS01 and MS02)
were also equipped with secondary standard pyranometers
and pyrheliometers in order to measure both components of
the incoming short-wave radiation, cloud cameras, and spec-
trometers to record spectral information. The MS01 station
also contained a sun photometer to determine aerosol prop-
erties, as part of AERONET, and a pyrgeometer to measure
long-wave downwelling irradiance.

The PV power data were for the most part provided by
the local distribution network operator Allgäuer Überlandw-
erk GmbH (AÜW), recorded in 15 min intervals. These data
represent the amount of energy generated in the last 15 min
so that care needs to be taken to translate them into a mea-
sured power corresponding to a specific time stamp. For this
purpose the data are simply shifted by half a period and re-
sampled, since by integration of power over 15 min one ef-
fectively smooths the power curve. In addition there were
five stations equipped by egrid GmbH with high-frequency
power measurement devices: for these stations the power was
recorded in 1 Hz resolution.

Analysis of the measured data revealed a total of 12 clear-
sky days that occurred between 12 September and 14 Oc-
tober 2018, as well as 9 clear-sky days between 25 June
and 13 August 2019, as shown in Table 6. COSMO model
data for the corresponding days were procured from Ger-
many’s national meteorological service, the Deutscher Wet-
terdienst (DWD), in order to accurately recreate atmospheric
conditions using cosmomystic. These days are used for
calibration of each PV system.

The network of PV systems was equipped with low-cost
silicon-based pyranometers, with two devices per station:
one mounted in the plane of the PV array and one horizon-
tal, with 1 Hz resolution and an overall accuracy of 5 %. An
absolute calibration of these sensors had been carried out at
the Leibniz Institute for Tropospheric Research (TROPOS)
prior to the campaign by comparing their output to that of a
secondary standard pyranometer (2 % accuracy). In order to

compensate for errors in mounting the plane-of-array pyra-
nometers, the calibration algorithm described in Sect. 2.2 is
also applied to the pyranometer data, in this case without an
optical model and only using data up to an SZA of 60◦. Due
to the substantial cosine bias, a correction factor is empiri-
cally determined:

C(µ)=−3.01µ3
+ 5.59µ2

− 3.34µ+ 1.45, (14)

where µ= cosθ0 for horizontal sensors and µ= cos2 for
tilted sensors (θ0 is the SZA and 2 the angle of incidence;
see Eq. A8). The pyranometer data are used for comparison
with the inverted irradiance (both tilted and horizontal) and
for finding atmospheric optical properties using the lookup
table method.

In order to validate the PV- and pyranometer-based COD
retrievals, it would be appropriate to use another ground-
based source of cloud optical properties; however unfortu-
nately there are no appropriate meteorological stations in the
immediate area that could have been used for this purpose.
Although there are several DWD stations in the Allgäu re-
gion (in Kempten, Oberstdorf, and Hohenpeissenberg), these
provide information on irradiance (direct and diffuse) but not
on cloud optical properties (see Becker and Behrens, 2012).
Thus, a true validation would have to be done for another
dataset with PV systems closer to a measurement station
that has ground-based retrievals of COD. For this reason, the
COD retrievals are simply compared to the corresponding
cloud properties from weather models and satellite data.

3.2 Weather model data

The Consortium for Small-scale Modelling (COSMO) nu-
merical weather model is a nonhydrostatic regional model
developed by the DWD (Baldauf et al., 2011). Note that this
model was recently replaced by the so-called ICOsahedral
Nonhydrostatic (ICON) model, which has been fully opera-
tional since January 2021. Since the measurement campaigns
took place in 2018 and 2019, in this work the COSMO-EU
model with a spatial resolution of 2.2 km is used, as input to
the clear-sky irradiance simulation (see Sect. 2.2.1), for PV
model calibration (see Sect. 2.2.2), and for validation and
comparison of the inverted irradiance with weather model
predictions. For the clear-sky simulation, temperature and
pressure profiles as well as the water vapour column are ex-
tracted from COSMO data, whereas for both the calibration
and the inversion procedure the surface temperature and wind
speed are used. For comparison and validation both direct
and diffuse downward irradiance data are used.

In order to compare COSMO COD data with the cloud op-
tical depths extracted from the PV systems, a 2D COD field
must be computed from the 3D cloud variables generated by
the COSMO model. For each grid cell, a cloud fraction vari-
able in COSMO indicates which fraction of the cell is cov-
ered by clouds. To derive a vertically integrated COD, an as-
sumption needs to be made as to how these clouds overlap
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Figure 3. Map showing the locations of PV systems used in the MetPVNet measurement campaign (taken from © Google Earth). The top-left
corner is at 47.85◦ N, 10.09◦ E and the bottom-right corner at 47.38◦ N, 10.52◦ E. The yellow line marks the border between Germany and
Austria; the grey line is the border between the states of Bavaria and Baden-Württemberg.

Table 6. Dates of clear-sky days during the measurement campaigns in autumn 2018 and summer 2019.

First campaign
12 September 2018 17 September 2018 20 September 2018 27 September 2018 30 September 2018 4 October 2018
5 October 2018 8 October 2018 10 October 2018 12 October 2018 13 October 2018 14 October 2018

Second campaign
26 June 2019 27 June 2019 28 June 2019 29 June 2019 30 June 2019 4 July 2019
23 July 2019 24 July 2019 25 July 2019

in a model column. Following Scheck et al. (2018), the com-
monly used random-maximum cloud overlap assumption is
adopted, along with the method of Matricardi (2005), in or-
der to compute the vertically integrated COD for a number of
subcolumns within each model column. From these subcol-
umn values a mean COD for the cloudy part of the column is
derived. A total COD is then computed as the average of the
column mean COD over 5× 5 columns centred around the
column containing the relevant ground station.

3.3 Satellite data

The Copernicus Atmospheric Monitoring Service (CAMS)
radiation service (Qu et al., 2017; Schroedter-Homscheidt et
al., 2022) is an online satellite-based and numerical-model-
based service with radiation as well as cloud and aerosol
data available to download for free, covering the period from
February 2004 to the present. The spatial coverage is Europe,
Africa, the Middle East, the eastern part of South America,
and the Atlantic Ocean, interpolated to the point of interest,
and with a time resolution of up to 1 min. In this work the
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global, direct, and diffuse components of irradiance are im-
ported from CAMS (version 4.0), for each station and for all
days in the two measurement campaigns. These data are used
as a comparison for the irradiance inverted from PV systems.

In addition to irradiance, CAMS provides data on cloud
and aerosol properties. In this work, the cloud parame-
ters from the Advanced Very High Resolution Radiome-
ter (AVHRR) Processing scheme Over cLoud, Land, and
Ocean Next Generation (APOLLO_NG) analysis (Kriebel
et al., 2003; Klüser et al., 2015) are used, using data from
the Spinning Enhanced Visible and InfraRed Imager (SE-
VIRI) instrument on board the Meteosat Second Generation
(MSG) satellite. In this case the so-called Stephens method
(Stephens et al., 1984) is used to determine the COD, using a
two-stream solution of the radiative transfer equation, along
with an updated algorithm using a probabilistic approach for
cloud detection (Klüser et al., 2015). For comparison with
the COD inferred from the PV systems, APOLLO_NG data
are extracted for the closest pixel to each station.

4 Results

The calibration and inversion procedure described in Sect. 2
is applied to the data from the measurement campaign de-
scribed in Sect. 3 in order to extract irradiance and optical
properties from the PV systems in the Allgäu region. After
a brief summary of the calibration results in Sect. 4.1, the
retrievals of tilted and horizontal irradiance are presented in
Sect. 4.2 and 4.3, and the inferred COD results are shown in
Sect. 4.4.

4.1 Model calibration and uncertainty

The PV models in Eqs. (1) and (2) are used together with the
clear-sky simulation described in Sect. 2.2.1 and the clear-
sky days (in Table 6) in order to calibrate each system. In
each individual case the days that turned out not to be clear
are discarded from the calibration dataset, and the data are re-
stricted to the time periods in which the required inputs such
as ambient temperature, atmospheric long-wave irradiance,
and wind speed are available. In order to validate the calibra-
tion results, the retrieved elevation and azimuth angles are
compared to ground truth data from the Bavarian Agency for
Digitisation, High-Speed Internet and Surveying (LDBV).
The so-called Level of Detail 2 (LoD2) database (https://
ldbv.bayern.de/produkte/3dprodukte/3d.html, last access: 24
October 2023) contains a 3D building model constructed us-
ing airborne laser scanning so that the roof pitch of individual
buildings can be extracted. Figure 4 shows a comparison of
the retrieved orientation angles with the ground truth values
for each system and using the linear temperature model.

In most cases the algorithm finds reasonable values for the
angles: the larger deviations can usually be explained for in-
dividual cases; for instance for PV04 the inverter MPP track-

ing algorithm distorts the clear-sky days, whereas for the sys-
tems at PV11 the different PV arrays at the site are not well
characterised (see the point labelled 11,3 in Fig. 4). In other
cases shading effects played a role: in most cases the calibra-
tion performed better when using both summer and autumn
data, since in summer the sun is much higher, and shading
effects play a smaller role. In general the model calibration
works best when using as much data as possible, since there
is for instance more variation in temperature in order to find
more reliable temperature model parameters.

As discussed in Sect. 2.2.2, several parameters are corre-
lated with each other: the size of the PV system (captured by
the factor s) correlates with the tilt angle θ , whereas the az-
imuth angle φ shows a large correlation with the parameters
of the temperature model, since the warming up and cooling
down of the PV system are delayed with respect to the diur-
nal variation in solar irradiance. In general the use of mea-
sured module temperature leads to better calibration results.
It turns out that the calibration algorithm presented here does
not perform well when using the non-linear Faiman temper-
ature model and 15 min power data, even though this model
couples irradiance and wind speed in a more physically cor-
rect way (see for instance Faiman, 2008; Barry et al., 2020).
The benefit of this model is lost for coarsely resolved 15 min
data so that in the end the algorithm proposed here does not
always find an optimal solution, specifically if the tempera-
ture model parameters are unknown. The bias that then oc-
curs in the final tilted irradiance inversion results can be seen
in the plots in Sect. 4.2 as well as in the results in Tables 8
and 9. However, this bias in the tilted irradiance does not al-
ways translate into a bias in GHI, as is seen below. Table 7
lists the PV systems used in this work, along with the corre-
sponding time resolution of their data.

4.2 Global tilted irradiance from PV power data

In this section the plane-of-array irradiance from PV power
retrievals is compared to the tilted pyranometer measure-
ments at selected stations during the two measurement cam-
paigns. The results are obtained using two different ap-
proaches for module temperature: (i) the linear temperature
model (Eq. A3) and (ii) the non-linear Faiman temperature
model (Eq. A4). The results are compared in Tables 8 and 9,
and scatterplots for both models are shown. Both stations
with 15 min power data as well as those with high-frequency
data (1 Hz data, smoothed to 1 min resolution) are included
in the analysis, and in each case a comparison is made with
the measurements from TROPOS silicon-based pyranome-
ters, except for the MS02 master station, where the tilted
Kipp & Zonen CMP11 pyranometer is used for validation.
In all cases a limit of 80◦ is imposed on both the solar zenith
angle and the incident angle in order to avoid possible errors
from both the radiative transfer simulation and the optical
model.
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Figure 4. Comparison of the retrieved elevation angles (θopt, left plot) and azimuth angles (φopt, right plot) with the corresponding ground
truth angles (θactual and φactual) from airborne laser scanning data, for PV systems with 15 min AÜW (red points) and 1 Hz egrid (blue points)
data (cf. Table 7 and the description in Sect. 3.1).

Table 7. List of the PV systems used for this work (see also the map in Fig. 3). The data resolution column indicates whether a particular
system is used for this analysis or not, with an explanation given in the cases where the system is omitted. Note that stations MS01 and PV02
had no PV systems, only pyranometers and other measurement equipment. PV11 has four separate PV systems.

Station Data resolution Mounting Comments

2018 2019

MS02 15 min 15 min/1 s Ground
PV01 15 min 15 min Rooftop
PV03 – – Rooftop Calibration errors
PV04 – – Rooftop Calibration errors
PV05 – – Rooftop No data
PV06 15 min 15 min Ground
PV07 – – Rooftop Calibration errors
PV08 15 min – Rooftop No data in 2019
PV09 – – Rooftop open Calibration errors
PV10 15 min 15 min Ground
PV11,1 15 min 1 s Rooftop
PV11,2 15 min 15 min Rooftop
PV11,3 15 min 15 min Rooftop
PV11,4 1 s – Ground No data in 2019
PV12 1 s 1 s Rooftop
PV13 – – Rooftop No 2018 data, calibration problems
PV14 15 min 15 min Rooftop open
PV15 1 s 1 s Rooftop
PV16 15 min 15 min Rooftop
PV17 15 min 15 min Rooftop
PV18 15 min 15 min Rooftop
PV19 1 s 1 s Rooftop
PV20 – – Rooftop No data
PV21 15 min 15 min Rooftop
PV22 – – Rooftop Calibration errors
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Table 8. Mean bias error (in W m−2) and relative mean bias error (in brackets in %) of GTI retrievals compared to tilted pyranometers. The
values marked with ∗ are high due to calibration errors using the non-linear temperature model with 15 min data.

2018 2019

Linear Non-linear Linear Non-linear

1 min 16.23 (3.2) 5.29 (1.0) 21.12 (4.1) 12.25 (2.4)
15 min 28.74 (5.9) 87.55∗ (18.0)∗ 40.20 (7.8) 96.40∗ (18.6)∗

Table 9. Root mean squared error (in W m−2) and relative RMSE (in brackets in %) of GTI retrievals compared to tilted pyranometers. The
values marked with ∗ are high due to calibration errors using the non-linear temperature model with 15 min data.

2018 2019

Linear Non-linear Linear Non-linear

1 min 72.34 (14.3) 82.68 (16.4) 73.97 (14.2) 79.71 (15.3)
15 min 108.27 (22.2) 172.96∗ (38.1)∗ 83.94 (16.3) 197.83∗ (38.2)∗

Figures 5 and 6 show a comparison between the retrieved
GTI and that measured by pyranometers for the 1 and 15 min
data, respectively, for each measurement campaign and us-
ing both the linear and the non-linear temperature models.
The corresponding statistical measures of the mean bias er-
ror (MBE), defined by

MBE=
1
n

n∑
i=1

(
Xinv,i −Xref,i

)
, (15)

and the root mean squared error (RMSE), defined by

RMSE=

√√√√1
n

n∑
i=1

(
Xinv,i −Xref,i

)2
, (16)

for the inverted quantities Xinv,i and the reference quantities
Xref,i are shown in Tables 8 and 9, along with the relative
error metrics rMBE and rRMSE calculated by normalising
the MBE and RMSE with the mean of the reference quantity,
〈Xref〉. The scatterplots throughout this work are coloured ac-
cording to a probability density function calculated using the
multi-variate Gaussian kernel density function gaussian_kde
in the Python toolbox SciPy, with yellow (light grey) for
high- and blue (dark grey) for low-frequency points in the
colour (black and white) version. In Figs. 5 and 6 one can see
that most points lie close to the 1 : 1 line, for both campaigns,
albeit with a positive bias in all cases. The 1 min data show a
slightly larger spread of points than the 15 min data, since in
the former case there are more outliers caused by (i) temper-
ature effects, (ii) 3D radiative transfer effects, and (iii) spa-
tial effects due to the differences in cloud cover and the sen-
sor position between the PV and pyranometer. In addition
the slightly different geometry of flat PV arrays compared
to glass-dome-shaped pyranometers could play a role, espe-
cially when it comes to their sensitivity to different viewing

angles. Another possible reason for the positive bias could
be a systematic bias in the tilted pyranometer measurements,
even after the bias correction described in Sect. 3.1.

The two different temperature models achieve similar re-
sults for the 1 min data, with the non-linear model show-
ing an MBE of 5.29 W m−2 (12.25 W m−2) in autumn 2018
(summer 2019) compared to an rMBE of 16.23 W m−2

(21.12 W m−2) for the linear model. In general the algo-
rithm performs worse with 15 min data, which has to do
with errors from the calibration procedure and uncertainties
in the PV power measurements – the systems with high-
frequency measurements are thus in general better charac-
terised and deliver more accurate irradiance retrievals, as
shown in Sect. 4.3 below. This effect is quite extreme for the
non-linear Faiman temperature model (see the values marked
with ∗ in Tables 8 and 9 as well as the plots in the lower
panels of Fig. 6), since in some cases the calibration algo-
rithm cannot find an optimal solution, and the a priori val-
ues have to be relied upon, leading to an average MBE of
91.98 W m−2.

4.3 Global horizontal irradiance from PV power data

In the following the global tilted irradiance (GTI) retrievals
are converted to global horizontal irradiance (GHI) and com-
pared to the measurements from pyranometers as well as to
the satellite and weather model data. This conversion is per-
formed in three different ways, depending on the prevailing
weather conditions, as described in Sect. 2.3. In the case of
clear skies, the DISORT-based LUT is used to find the value
of aerosol optical depth, and the inferred AOD is then used
to calculate the direct and diffuse horizontal irradiance com-
ponents, which result in the GHI. The same method is used
under cloudy skies using the DISORT-based COD LUT but
only for times at which the sensor is under a cloud, using the
inferred cloud fraction method as described in Sect. 2.3.3.

https://doi.org/10.5194/amt-16-4975-2023 Atmos. Meas. Tech., 16, 4975–5007, 2023



4990 J. Barry et al.: Irradiance and atmospheric optical properties from PV power

Figure 5. Combined comparison of GTI retrieved from PV power measurements with that measured by tilted pyranometers, using data in
1 min resolution from MS02, PV11, PV12, PV15, and PV19 (see Table 7), for 2018 (a, c) and 2019 (b, d), together with the linear (a, b) and
non-linear (c, d) temperature models. The relative mean bias error (rMBE) and relative root mean squared error (rRMSE) are shown in the
inset, along with the mean of the reference GTI and the number of data points used, denoted as 〈Gref〉 and n, respectively.

For this reason, this method tends to underestimate the GHI
under broken-cloud conditions, which is discussed in detail
below.

The third approach for finding the GHI is using the
MYSTIC-based LUT described in Sect. 2.3.5, where the
LUT input parameters are simply the array geometry, sun
position, and cloud fraction. In this case there are certain re-
strictions on these parameters, as shown in detail in Table 5.
This means that not all of the retrieved GTI data points can
be transformed into GHI using this method – in particular the
SZA is limited to between 20 and 60◦ and the cloud fraction
to between 0.13 and 0.82 so that neither completely overcast
nor clear-sky conditions are taken into account. This method
thus deals with the case of mixed-/broken-cloud conditions,
in which it is more likely that there will be errors due to 3D
effects and the sensor position.

4.3.1 GHI retrieval validation with pyranometer
measurements

As discussed in Sect. 4.2 above, the PV systems with 1 min
data show the best calibration results and the most accurate
tilted irradiance retrievals. The scatterplots in Fig. 7 com-
pare the GHI retrieved from these systems to that measured
by horizontal pyranometers, using all three methods and for
both temperature models. The statistical measures of the dif-
ferent retrievals are shown in Table 10, where it can be seen
that the mean bias error reaches the goal of 5 W m−2 only in
certain cases.

Under clear conditions (top row of Fig. 7), the linear model
applied to 1 min PV data achieves an rMBE for the GHI
of 18.15 W m−2 (3.9 %) in autumn 2018 and 9.44 W m−2

(1.4 %) in summer 2019. Note that the mean irradiance is
higher in summer, but there are less points that can be classi-
fied as clear (n' 9400 compared to n' 13400 in autumn).
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Figure 6. The same as Fig. 5 using data in 15 min resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16, PV17, PV18, and
PV21 (see Table 7) for 2018 (a, c) and 2019 (b, d). Note that the large errors in the non-linear model in the bottom row result from errors in
the calibration procedure (see the values marked with ∗ in Tables 8 and 9).

Table 10. The mean bias error and root mean squared error (in W m−2) along with the rMBE and rRMSE (in brackets in %) of GHI retrievals
using the 1D DISORT (AOD and COD) and the 3D MYSTIC LUTs compared to horizontal pyranometers, for 1 min and 15 min data.

Data Measure LUT 2018 2019

Linear Non-linear Linear Non-linear

1 min

1D AOD 18.15 (3.9) 1.83 (0.4) 9.44 (1.4) 9.75 (1.5)
MBE 1D COD 18.32 (8.2) 16.68 (7.4) 13.85 (4.7) 8.73 (2.9)

3D GHI 29.90 (5.6) 0.60 (0.1) 20.69 (3.1) 3.39 (0.5)

1D AOD 30.17 (6.5) 33.55 (7.3) 33.81 (5.1) 35.24 (5.3)
RMSE 1D COD 63.10 (28.2) 64.70 (28.6) 66.72 (22.7) 70.38 (23.3)

3D GHI 89.76 (16.8) 87.89 (16.3) 102.69 (15.4) 111.28 (16.5)

15 min
MBE

1D AOD 10.01 (2.3) 1.76 (0.4) 1.75 (0.3) 6.44 (1.0)
1D COD 37.34 (15.5) 40.65 (17.5) 46.39 (15.6) 44.55 (15.4)

RMSE
1D AOD 38.96 (9.0) 39.59 (9.5) 35.93 (5.2) 36.89 (5.5)
1D COD 78.32 (32.5) 82.74 (35.6) 91.96 (30.8) 100.71 (34.8)
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Figure 7. Combined comparison of GHI retrieved from PV power measurements with that measured by horizontal pyranometers, using data
in 1 min resolution from MS02, PV11, PV12, PV15, and PV19, for 2018 (left two columns) and 2019 (right two columns), and both the
linear and the non-linear temperature models. The top row shows GHI retrieved via AOD under clear skies using the DISORT AOD LUT,
the middle row is for cloudy periods via the COD using the DISORT COD LUT, and the bottom row is for broken-cloud periods using the
MYSTIC 3D LUT.

The non-linear model performs significantly better in au-
tumn, with an rMBE for the GHI of 1.83 W m−2 (0.4 %), but
in summer the bias is similar to the linear model [9.75 W m−2

(1.5 %)]. Interestingly the linear temperature model performs
better in summer than in autumn, whereas the non-linear
model performs better in autumn. This could be attributed to
differences or uncertainties in the calibration of the tempera-
ture models. In general these results show that the DISORT
LUT method performs comparably well for extracting GHI
from PV power measurements under clear conditions. In all
cases the rRMSE is of the order of 5 % to 7 %, on average
33.19 W m−2.

It is evident from the middle row of Fig. 7 that the bias
is greater under cloudy skies, with an average over both
campaigns of 11.29 W m−2 for the non-linear model and

17.50 W m−2 for the linear model. In autumn the lower aver-
age irradiance of 225 W m−2 leads to a higher relative MBE
than in summer, where the average irradiance is 298 W m−2.
At this point it is worth mentioning that the algorithm only
finds the COD and thus the GHI when the sensor is un-
der a cloud, hence the lower average irradiance in compar-
ison with that under clear skies, and the RMSE is higher
(66.23 W m−2 on average) than in the case of clear skies,
where it is 33.19 W m−2 on average, as expected. This also
means that averaging these results over 60 min can lead to
erroneous values for the irradiance, especially under broken
clouds, since the periods of cloud enhancement within each
1 h window will not be taken into account.

The GHI retrieved from the 3D MYSTIC LUT shows sig-
nificantly lower bias in the case of the non-linear temper-
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ature model (2.00 W m−2 compared to 12.71 W m−2 using
the DISORT COD method, averaged over both campaigns),
but in the case of the linear temperature model the bias is
higher (25.30 W m−2 compared to 16.09 W m−2). The good
performance of the non-linear model could indeed be a re-
sult of the improved treatment of the PV module tempera-
ture during broken-cloud conditions: although neither model
contains a dynamic term, the non-linear model couples ir-
radiance and wind speed in a more physically correct way.
However, it must be noted that due to the restrictions on the
MYSTIC LUT (see Table 5), the number of inferred irradi-
ances included in the statistics is far lower than for the COD
method. Another confounding factor could be that the PV
panels show better efficiency at higher irradiance, and since
the MYSTIC method also takes overshoots into account, the
irradiance is on average higher: 603.78 W m−2 compared to
261.45 W m−2 for the COD method. The larger fluctuations
in irradiance under broken-cloud conditions also lead to a
larger RMSE than for the case of cloudy skies, and in sum-
mer the RMSE is the highest, as expected.

Figure 8 shows the GHI retrievals from the AÜW systems
with 15 min PV power measurements, under clear (top row)
and cloudy (bottom row) skies. In this case the MYSTIC
3D LUT is not used, since the determination of the cloud
fraction with coarsely resolved data leads to erroneous re-
sults, and the rapid fluctuations in irradiance under broken
clouds are not properly captured at 15 min resolution. The
DISORT 1D LUT performs well under clear skies, as to be
expected, with the linear model showing an average MBE
of 5.88 W m−2 and the non-linear model 4.10 W m−2. Once
again the non-linear model outperforms the linear one in au-
tumn 2018, but this trend is reversed in summer 2019. This
systematic effect is most probably due to uncertainties in
the temperature model calibration. Under cloudy skies the
GHI retrievals show a significant positive bias of on aver-
age 41.87 W m−2 (42.60 W m−2) for the linear (non-linear)
model, which means that the retrieved COD is too small. This
is discussed further in Sect. 4.4. Interestingly the large bias
errors in tilted irradiance for the non-linear model are not
evident in the horizontal irradiance results, which is proba-
bly due to the fact that far less points are taken into account
in the statistics for GHI (compare the values of n in Figs. 8
and 6). In other words, the outliers have been removed by se-
lecting either clear-sky days or periods for which the cloud
fraction is 100 %.

4.3.2 Comparison to satellite and weather model
irradiance data

One of the main aims of this work is to show that PV systems
can provide a reliable source of information on global hori-
zontal irradiance that is complementary to that from satel-
lite and weather models. Figures 9 and 10 (with correspond-
ing statistical measures in Table 11) show the comparison
between GHI retrieved from PV power using the aerosol

and cloud optical depths and that from the CAMS retrieval,
for 1 and 15 min power data, respectively. Under clear-sky
conditions the retrieved GHI shows an average MBE of
15.95 W m−2 for the linear model and 7.54 W m−2 for the
non-linear model. These values are similar to those found
by comparing with ground-based pyranometers, confirming
the accuracy of the CAMS data. On the other hand, the GHI
retrieved using the DISORT COD LUT under cloudy skies
shows a significant negative bias compared to the CAMS
retrieval (−37.77 W m−2 in autumn and −86.87 W m−2 in
summer). There are two possible reasons for this: firstly the
simplification to one cloud type means that thinner clouds or
multi-layer cloud situations are not properly represented in
the model (see the discussion on COD retrievals in Sect. 4.4
below). However, the main reason is related to the retrieval
algorithm: by only considering measurements where the PV
system is under a cloud, only the periods with lower irra-
diance values are retrieved, and overshoots are ignored so
that at 1 min resolution a large negative bias in irradiance
is found. Since the CAMS irradiance retrieval is based on
the Heliosat-4 method, in which cloud properties from the
APOLLO_NG method are updated every 15 min (Qu et al.,
2017), one should expect this bias to reduce at coarser reso-
lution. Indeed, the 15 min data in the bottom row of Fig. 10
confirm this: the average bias is reduced to −3.73 W m−2 in
autumn and −15.07 W m−2 in summer. Note that an averag-
ing to 60 min is not performed due to the limitations of the
DISORT COD algorithm, as discussed in Sect. 4.3.1.

The comparison with COSMO model data is shown in
Fig. 11 and Table 12, where in this case the data are av-
eraged over a 60 min period. It is evident that the COSMO
model shows a bias under clear-sky conditions: here the as-
sumed AOD is too high so that the irradiance turns out to
be too small, with an average bias of 60.92 W m−2. On the
other hand, under cloudy conditions and especially under
low-light conditions in summer, the irradiance from COSMO
is larger than that retrieved from PV plants, which means that
the COD in COSMO is too small. Here the average bias is
−38.36 W m−2. These results confirm the findings of Frank
et al. (2018) and Zubler et al. (2011) and are discussed fur-
ther in connection with the cloud optical depth in Sect. 4.4
below.

4.4 Cloud optical depth retrievals

As discussed in Sect. 2.3.3, the cloud optical depth is re-
trieved from both PV systems and pyranometers, using a
DISORT-based LUT. In order to avoid errors due to 3D ef-
fects, in this work only data with a cloud fraction of 1 are
considered, in other words only completely overcast con-
ditions. The results for the linear temperature model are
shown in Figs. 12 and 13, compared to the APOLLO_NG
and COSMO data, respectively. As can also be seen in Ta-
bles 13 and 14, in most cases a smaller COD is extracted
from PV systems, except for the comparison between the
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Figure 8. Combined comparison of GHI retrieved from PV power measurements with that measured by horizontal pyranometers, using data
in 15 min resolution from MS02, PV01, PV06, PV08, PV10, PV11, PV14, PV16, PV17, PV18, and PV21, for 2018 (left two columns) and
2019 (right two columns), and both the linear and the non-linear temperature models. The top row shows GHI retrieved via AOD under clear
skies using the DISORT AOD LUT, and the bottom row is for cloudy periods via the COD using the DISORT COD LUT.

Figure 9. Combined comparison of GHI retrieved from PV power measurements with that from CAMS, using data in 1 min resolution from
MS02, PV11, PV12, PV15, and PV19, for 2018 (left two columns) and 2019 (right two columns), and both the linear and the non-linear
temperature models. The top row shows GHI retrieved via AOD under clear skies using the DISORT AOD LUT, and the bottom row is for
cloudy periods via the COD using the DISORT COD LUT.
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Figure 10. Combined comparison of GHI retrieved from PV power measurements with CAMS, using data in 15 min resolution from MS02,
PV01, PV06, PV08, PV10, PV11, PV14, PV16, PV17, PV18, and PV21, for 2018 (left two columns) and 2019 (right two columns), and
both the linear and the non-linear temperature models. The top row shows GHI retrieved via AOD under clear skies using the DISORT AOD
LUT, and the bottom row is for cloudy periods via the COD using the DISORT COD LUT.

Table 11. The mean bias error and root mean squared error (in W m−2) along with the rMBE and rRMSE (in brackets in %) of GHI retrievals
using 1D DISORT (AOD and COD) and the 3D MYSTIC LUT compared to CAMS, for 1 and 15 min data.

Data Measure LUT 2018 2019

Linear Non-linear Linear Non-linear

1 min
MBE

1D AOD 18.07 (3.9) 1.16 (0.3) 13.83 (2.1) 13.91 (2.1)
1D COD −37.68 (−13.4) −37.86 (−13.5) −85.85 (−22.1) −87.88 (−22.3)

RMSE
1D AOD 23.51 (5.1) 32.19 (7.0) 31.99 (4.8) 32.48 (4.9)
1D COD 112.68 (40.2) 112.78 (40.2) 163.15 (42.0) 163.61 (41.6)

15 min
MBE

1D AOD 5.74 (1.3) −1.25 (−0.3) 1.31 (0.2) 5.78 (0.9)
1D COD −6.09 (−2.1) −1.37 (−0.5) −13.70 (−3.8) −16.44 (−4.7)

RMSE
1D AOD 28.74 (6.5) 30.95 (7.3) 29.26 (4.3) 25.43 (3.8)
1D COD 75.78 (26.6) 79.69 (29.0) 114.36 (32.1) 117.01 (33.6)

summer campaign and COSMO data, in which case a pos-
itive mean bias of approximately COD= 8 is found. Overall,
the COD is mostly in the range between 1 and 10, for both
campaigns. Taken at face value, the negative bias with re-
spect to APOLLO_NG would imply a positive bias in GHI
with respect to CAMS, which is not seen in the 1 and 15 min
retrievals. However these results cannot be directly compared
due to the effect of both spatial and temporal averaging as
well as the limitation of the DISORT COD LUT algorithm,
which ignores 3D effects.

Figures 14 and 15 show the same results using measured
pyranometer data to infer the COD. These retrievals show a

trend similar to the PV-based ones: once again it is evident
that the COD is mostly below 10, and in this range the re-
trieved data have a positive relative bias. There are several
possible reasons for this: firstly it is evident from Eq. (11)
that the retrieval is more sensitive to errors in inverted irra-
diance (transmission) for smaller COD. On the other hand,
it must also be noted that the efficiency of both PV mod-
ules and silicon-based pyranometers shows a logarithmic de-
pendence on irradiance so that any inaccuracies in the PV
model parameters or the pyranometer calibration will have a
larger effect on the inverted irradiance under low-light condi-
tions (higher COD). In addition, since the LUT is constructed
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Figure 11. Combined comparison of GHI retrieved from 60 min averaged PV power measurements under clear (top row) or completely
cloudy (bottom row) conditions using the optical depth via DISORT LUT with that from the COSMO model, for all stations and for 2018
(left two columns) and 2019 (right two columns), using both the linear and the non-linear temperature models.

Table 12. The mean bias error and root mean squared error (in W m−2) along with the rMBE and rRMSE (in brackets in %) of 60 min
averaged GHI retrievals using 1D DISORT (AOD and COD) and the 3D MYSTIC LUT compared to COSMO model data.

Data Measure LUT 2018 2019

Linear Non-linear Linear Non-linear

60 min average
MBE

1D AOD 65.90 (16.2) 57.72 (14.7) 58.74 (9.9) 61.33 (10.5)
1D COD 14.34 (5.2) 16.77 (6.1) −37.50 (−9.4) −39.21 (−9.8)

RMSE
1D AOD 72.71 (17.9) 67.70 (17.2) 65.65 (11.1) 67.32 (11.5)
1D COD 124.16 (44.8) 125.12 (45.4) 143.86 (36.1) 144.96 (36.4)

with water clouds, the effect of optically thin ice clouds is
not properly taken into account. Since ice particles scatter
slightly less in the forward direction, 1− g ' 0.3 is larger
than for water clouds (1− g ' 0.15), and thus a smaller op-
tical depth could lead to similar irradiance at the ground (see
Eq. 11). Thirdly, since clouds become more absorbing in the
near infrared and considering that silicon PV is sensitive to
wavelengths up to 1200 nm, spectral effects could also lead
to a bias in the results. In general it must be said that even
with measurements at two different wavelengths there ex-
ists an ambiguity in the determination of effective radius and
COD (Nakajima and King, 1990) so that in the case of spec-
trally integrated PV-inverted irradiance one cannot expect to

have enough information to accurately determine cloud opti-
cal properties in all situations.

Notwithstanding the bias in COD retrievals, the ground-
based method presented here can still complement satel-
lite retrievals, in particular due to the potentially higher
spatiotemporal resolution achievable with large amounts of
high-frequency data spread over a large area. Once again, for
the summer months the COSMO data show a large mean bias
error of COD= 7.69, even for large values of COD, confirm-
ing the findings of Frank et al. (2018).
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Figure 12. Combined comparison of COD retrieved from PV power measurements under completely cloudy conditions using the DISORT
LUT with that from APOLLO_NG, for all stations and for 2018 (a) and 2019 (b), using the linear temperature model and averaged over
60 min.

Figure 13. The same as Fig. 12 but compared to the total COD from the COSMO model.

Table 13. The mean bias error and root mean squared error (in W m−2) along with the rMBE and rRMSE (in brackets in %) of COD
retrievals from PV systems compared to the APOLLO_NG data.

Data Measure 2018 2019

Linear Non-linear Linear Non-linear

60 min average
MBE −3.22 (−25.0) −3.57 (−27.2) −3.58 (−15.4) −3.24 (−13.6)
RMSE 15.20 (117.9) 15.66 (119.3) 18.99 (81.7) 19.30 (81.2)
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Table 14. The mean bias error and root mean squared error (in W m−2) along with the rMBE and rRMSE (in brackets in %) of COD retrievals
from PV systems compared to the COSMO model predictions.

Data Measure 2018 2019

Linear Non-linear Linear Non-linear

60 min average
MBE −8.78 (−47.6) −9.16 (−49.0) 7.32 (59.3) 8.06 (64.6)
RMSE 25.77 (139.7) 26.06 (139.2) 22.22 (180.1) 23.52 (188.6)

Figure 14. Combined comparison of the COD retrieved from tilted (plane-of-array – poa) pyranometer measurements under completely
cloudy conditions using the DISORT LUT with that from APOLLO_NG, for all stations and for 2018 (a) and 2019 (b), using the linear
temperature model and averaged over 60 min.

Figure 15. The same as Fig. 14 but compared to the total COD from the COSMO model.
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5 Conclusions and outlook

In summary, in this work a framework for extracting both
global tilted and horizontal irradiance from PV power data
has been presented, and a first test for retrieving cloud opti-
cal depth is carried out. The algorithm makes use of state-of-
the-art radiative transfer solvers in libRadtran, in conjunction
with different sources of data for the state of the atmosphere,
in particular the aerosol and water vapour content. The cali-
bration procedure uses an explicit calculation of diffuse and
direct irradiance, taking into account the spectral response
of the relevant PV technology and the optical properties of
the glass surface. Where necessary the module temperature is
modelled using weather model data for ambient temperature
and wind speed input. The PV systems are calibrated using
a libRadtran clear-sky simulation with the DISORT solver,
with inputs from the COSMO model and AERONET, and
the algorithm can be adapted to each system and situation,
depending on which parameters are known and which need
to be determined by non-linear optimisation.

Once calibrated, the measured PV data are used to extract
global tilted irradiance under all sky conditions. In order to
take into account the spectral mismatch between the spec-
tral response of PV modules and the entire broadband spec-
trum, a situation-dependent fit for the dependence of this mis-
match on atmospheric conditions is performed, using simu-
lated data for clear-sky conditions and the water vapour and
aerosol load of each site. The GTI is then compared to that
measured by tilted pyranometers: the retrieved GTI at 1 min
(15 min) resolution has a mean bias error of 18.68 W m−2

(34.47 W m−2) averaged over the two measurement cam-
paigns, using the linear temperature model. The non-linear
Faiman temperature model achieves a mean bias error of
8.77 W m−2 for the systems with 1 min data, but for those
with 15 min data the calibration algorithm fails to find an op-
timal solution in several cases so that in the end the mean bias
error is 91.98 W m−2. This shows that an accurate calibration
is essential in order to accurately extract irradiance.

The inverted GTI is used to find the global horizontal ir-
radiance using three different methods: (i) under persisting
clear or (ii) cloudy conditions a lookup table based on a 1D
DISORT simulation is used in order to find either the AOD or
the COD and thus the global horizontal irradiance; (iii) under
broken-cloud conditions a LUT based on 3D MYSTIC sim-
ulations is used to translate the tilted irradiance to horizontal
irradiance, using the geometry of the system, sun position,
and cloud fraction as inputs. The retrieved GHI is then com-
pared to pyranometer measurements: in the case of the 1D
LUT method, with 1 min data under clear (cloudy) skies, the
mean bias error is 13.79 W m−2 (16.09 W m−2) for the lin-
ear model and 5.79 W m−2 (12.71 W m−2) for the non-linear
temperature model. Comparison of the 15 min GHI retrievals
with CAMS data reveals a positive bias under clear skies of
3.53 W m−2 (2.27 W m−2) for the linear (non-linear) model,
whereas under cloudy skies there is a negative bias of −9.90

and −8.91 W m−2, respectively. Considering the difference
between point measurements and satellite pixels, as well as
the inherent bias from considering only periods with 100 %
cloud fraction for the DISORT method, these results must be
interpreted with care. In the case of clear skies, small errors
in the temperature model can lead to large errors in extracted
irradiance, and in the case of cloudy skies, simplifying as-
sumptions on the cloud type can lead to errors in COD and
extracted irradiance.

The retrieved GHI shows a large bias when compar-
ing it with COSMO model data, thus confirming the re-
sults of Frank et al. (2018) and Zubler et al. (2011): un-
der clear skies the 60 min averaged GHI has a mean bias
error of 60.92 W m−2, since COSMO has in general a too
large aerosol load, whereas under cloudy skies in summer
the MBE is −38.36 W m−2, since under cloudy conditions
the COSMO model generally tends to overestimate the irra-
diance. The latter result is also confirmed by the COD re-
trievals: in summer there is a positive bias of 7.69 for the
retrieved COD relative to COSMO – the COD in the weather
model is thus on average too small.

Overall, the largest source of error in the model chain
comes from the PV model itself – an accurate calibration is
vital in order to be able to extract irradiance reliably. In gen-
eral the non-linear temperature model performs the best with
high-frequency PV data. In this regard it is helpful to use
measured module temperature rather than relying on temper-
ature models. More accurate results could also be achieved
by using PV current measurements, since in this case the
temperature dependence is almost negligible. This will be ex-
plored in future work.

The DISORT LUT is only employed during periods of per-
sistent cloudy or clear-sky conditions in order to infer COD
or AOD, respectively, whereas the effect of 3D transport of
photons is only taken into account with the MYSTIC LUT
for the GHI. This means that the algorithm in its present form
can only extract direct and diffuse components reliably under
stable conditions for which 1D radiative transfer is still a rea-
sonable approximation. A possible extension to this will be
studied in future work, in which explicit 3D simulated cloud
fields will be used in conjunction with the 1D DISORT simu-
lation in order to quantify the error that results from neglect-
ing 3D radiative transfer. It is only once the three dimension-
ality of atmospheric radiative transfer and additional infor-
mation on cloud type are taken into account that one can ac-
curately extract the direct and diffuse irradiance components
under broken-cloud conditions.

Another aspect not taken into account in this study is the
possible gain in using several different PV systems that are
close enough to each other so as to be able to see the same
or similar portions of the sky. In this case it is conceivable
that one could extract more information about cloud proper-
ties and irradiance compared to that obtained from just one
system. Indeed, the rapid proliferation of PV installations
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could make such multi-sensor inversions an interesting fu-
ture prospect.

The ultimate goal of this work is to show that PV power
data can be used to infer global horizontal irradiance and
optical properties of the atmosphere, and the algorithm pre-
sented here is the first step in this direction. Although it is
clear from the above that this is feasible, moving towards op-
erational use would require several further steps. The largest
source of bias comes from the calibration step, in particu-
lar the effect of temperature. Access to direct current (DC)
data on the inverter level would allow for a much more ac-
curate extraction of the irradiance, without the confounding
effect of temperature, since the dependence of MPP current
on temperature is an order of magnitude smaller than that of
MPP voltage and power. Since inverter data are commonly
available in industry, this should be possible provided one has
the legal right to access the data. Additionally, the data pre-
processing needs to be automated. For instance, one needs to
exclude PV systems and/or data subsets that do not meet cer-
tain criteria such as shading of PV modules or inverter clip-
ping, and one needs to be able to detect clear-sky periods au-
tomatically, even if the system orientation is unknown. This
could be done by developing a hybrid approach using both
physical modelling and artificial intelligence (AI) algorithms
for pattern recognition. In addition, the calibration procedure
itself could be augmented with AI to find the unknown pa-
rameters more effectively.

Once these aspects are overcome and appropriate agree-
ments with industry partners are made for access to the data,
there should be nothing standing in the way of operational
use. If this could be achieved at a large scale it would allow
for a better characterisation of solar irradiance at the ground
and open up several possibilities for improving PV power
forecasts at different time horizons. At shorter timescales
(sub-hourly) one could use the additional information on ir-
radiance variability as further input to empirical forecasts
based on statistical methods, whereas at longer timescales
(more than 3 h) these data could be assimilated into weather
models. In order for this to make a difference one needs a
much larger dataset of PV systems for the analysis, which
then requires further automation. The first steps in this direc-
tion are currently being explored.

Appendix A: Modelling details

A1 Parametric power model

In Buchmann (2018) a simple model is proposed, based on
the combination of several different modelling steps from the
literature (see for instance Skoplaki and Palyvos, 2009, or
Dows and Gough, 1995). Here the PV power output is written

as

PAC,mod

= AηDCACηmodule

(
T ,G

6

tot,SW,τ ,vwind

)
G
6

tot,PV,τ

= AηDCACηmodule

(
T ,G

6

tot,SW,τ ,vwind

)
[
G
6

dir,PV,τ +G
6

diff,PV,τ

]
, (A1)

where A is the surface area of the PV system; ηDCAC is
the converter efficiency; and the direct and diffuse compo-
nents of the irradiance in the plane of array and underneath
the glass covering (see Sect. A2) are given by G6dir,PV,τ and

G
6

diff,PV,τ , respectively. The temperature-dependent module
efficiency is defined by (Evans and Florschuetz, 1977)

ηmodule

(
T ,G

6

tot,SW,τ ,vwind

)
= ηmodule,n

[
1− ζ (T module− Tn)

]
, (A2)

where ηmodule,n and ζ are the module efficiency and temper-
ature coefficient under standard test conditions (STC); i.e. at
Tn = 25 ◦C,G6tot,SW,n = 1000 W m−2 with an air mass of 1.5.
Note that in principle one could include a logarithmic depen-
dence of the module efficiency on irradiance (Sauer, 1994),
which is however not considered here. The module tempera-
ture is modelled using both the linear model (TamizhMani et
al., 2003) defined by

T module = u0T ambient+ u1G
6

tot,SW,τ + u2vwind

+ u3T sky (A3)

and the non-linear model (Barry et al., 2020; Faiman, 2008)
defined by

T module = T ambient+
G
6

tot,SW,τ

u1+ u2 vwind

+ u3
(
T sky−T ambient

)
, (A4)

where vwind is the wind speed at 10 m above the ground,
T 4

sky =G
↓

LW/(ε σ ) defines the sky temperature, and u0,1,2,3
are model parameters. Here an emissivity of ε = 1 is as-
sumed, and σ is the Stefan–Boltzmann constant. Note that
Eqs. (A1), (A2), (A3), and (A4) can be combined into the
general non-linear expressions given in Eqs. (1) and (2) (see
for instance Skoplaki and Palyvos, 2009; Dows and Gough,
1995), where in this special case the coefficients are given by

b1 = s (1+ ζ 25), b2 =−u1s ζ, b3 =−u0s ζ,

b4 =−u2s ζ, b5 =−s ζu3 (A5)

for the linear and

b′1 = s (1+ ζ 25), b′2 =−
u1

s ζ
, b′3 = s ζ(u3− 1),

b′4 =−
u2

s ζ
, b′5 =−s ζu3 (A6)
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for the non-linear temperature model, where
s ≡ AηDCAC ηmodule,STC is a constant scaling factor.
The model equations in Eqs. (1) and (2) are used in this
work, and the coefficients u0,1,2,3, ζ , and s are allowed
to vary freely, unless their a priori values are known from
datasheets and/or from temperature modelling. In the cases
where measured temperature is available, the parameters
u0,1,2,3 fall away.

A2 Optical model of glass covering

A2.1 Model formulation

In order to model the optics of the glass surface of the PV
modules the following equation for the transmission of pho-
tons as a function of the incident angle2 is used (De Soto et
al., 2006; Sjerps-Koomen et al., 1996):

τPV(2)= exp
(
−

κL

cos2r

)
(

1−
1
2

[
sin2 (2r−2)

sin2 (2r+2)
+

tan2 (2r−2)

tan2 (2r+2)

])
, (A7)

where 2r is the angle of refraction from Snell’s law
(nsin2r = sin2), n is the index of refraction of glass, κ is
the glazing extinction coefficient, and L is the glazing thick-
ness. The incident angle 2 is the angle between the solar
position vector and normal vector of the PV array, defined by

cos2= cosθ0 cosθ + sinθ0 sinθ cos
(
φ0−φ

)
, (A8)

where θ is the angle of inclination of the PV array, φ is its
orientation, θ0 is the solar zenith angle, and φ0 is the solar
azimuth.

In principle one should take into account the wavelength
dependence of n and κ; however for most materials they are
relatively constant, with n increasing slightly at lower wave-
lengths, and since in practice the exact properties of the glass
covering for each system are unknown, it suffices to use the
effective values for all wavelengths.

The so-called incidence angle modifier (see also Duffie
and Beckman, 2013) is defined by the ratio of the transmis-
sion τPV(2) and the transmission at normal incidence; i.e.,

τPV,rel(2)≡
τPV(2)

τPV(0)
, (A9)

where

τPV(0)
= e−κL

[
1−

(
n−1
n+1

)2
]

= e−κL 4n
(n+1)2 .

(A10)

The use of a relative transmission coefficient is justified by
the fact that the absolute transmittance is already taken into
account when characterising the solar cell under standard
conditions (Sjerps-Koomen et al., 1996). The normalisation

with τPV(0) means that the result is less sensitive to the
product κL and more to the angle of incidence. In the for-
ward model the wavelength-integrated direct irradiance and
the diffuse radiance beams are each multiplied with the fac-
tor τPV,rel(2) in order to take into account the attenuation
due to the glass surface. The values of the extinction coef-
ficient and thickness of the glass are fixed to κ = 4 m−1 and
L= 0.002 m, respectively (De Soto et al., 2006), whereas the
effective refractive index n is allowed to vary (n= 1.526 with
an a priori error of 1 %). In principle one could also vary the
product κL that controls the absorption, but as mentioned
above the incident angle modifier approach is applicable to
a wide range of glass covers (Duffie and Beckman, 2013;
Klein, 1979).

A2.2 Optical model in forward model calibration

In the forward model calibration, the transmission function
can then be used to calculate the direct and diffuse irradiance
G
6

dir,PV,τ and G6diff,PV,τ as

G
6

dir,PV,τ =
cos2
cosθ0

G
↓

dirτPV,rel(2) (A11)

and

G
6

diff,PV,τ =

2π+φ∫
φ

π/2−θ∫
−θ

L�diff cos2′τPV,rel(2
′)d�,

for cos2′
≥ 0, (A12)

where L�diff is the diffuse radiance distribution calculated by
DISORT. In this way there is no need for an empirical inci-
dence angle modifier, since the direction of each diffuse pho-
ton is explicitly described. The same formulation is used to
calculate G6dir,SW,τ and G 6diff,SW,τ , i.e. over the whole wave-
length range.

A2.3 Inversion of the optical model

For the inversion of the PV model, two different methods
are used: for the extraction of cloud optical depth with DIS-
ORT, the optical model can be explicitly taken into account
in the radiative transfer simulation, whereas for the direct ex-
traction of GTI and its translation to GHI with the MYSTIC
lookup table, the empirical formulation (Duffie and Beck-
man, 2013) for the effective angle for diffuse photons as a
function of tilt angle θ ,

2diff = 59.7− 0.1388θ + 0.001497θ2, (A13)

is used for all time points with a clearness index below 0.3
so that the final inverted GTI is given by

G
6

tot,SW,inv =
G
6

tot,SW,inv,τ

τPV,rel,eff
, (A14)
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where

τPV,rel,eff =

{
τPV,rel(2dir) if ki ≥ 0.3
τPV,rel(2diff) if ki < 0.3 (A15)

is the effective incidence angle modifier for clearness in-
dex ki .

A3 Spectral mismatch fitting procedure

The ratio of silicon PV irradiance to broadband irradiance as
defined in Eq. (5) is a function of the atmospheric composi-
tion (primarily water vapour content) and angle of incidence
of the incoming solar beam. Indeed, the shape of the diurnal
variation in ξ spec,GTI is dependent on the azimuth angle of
the PV plant, as shown in Figs. A1 and A2, where the ratio
is plotted for both GHI and GTI, for two different PV sys-
tems with different orientations, using libRadtran clear-sky
simulations from the different measurement campaigns. The
points in the upper (lower) plots in each figure are coloured
according to precipitable water (AOD), and it is evident that
for a given incident angle the water vapour plays the largest
role in determining the ratio.

The mismatch ratio remains at roughly 0.83 throughout
the day, depending on water vapour column. In the case of
PV12 in Fig. A1, one can see that in the mornings the ratio
is smaller, i.e. more red light, whereas in the evenings the
ratio is larger, since the panel is facing more to the south-
east. This means that the panel detects more diffuse light in
the evenings. The behaviour at PV15 (Fig. A1) is the op-
posite – in the morning the ratio is larger, since the panel
looks more to the south-west (mornings have a higher diffuse
component, i.e. more blue light), whereas in the evenings it
is smaller. However in the summer time when the sun goes
down far to the north, the diffuse component again plays a
role so that the ratio becomes larger (right-hand plot). In gen-
eral the variation is the greatest for larger SZAs, as seen in
the greyed-out areas in the plots.
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Figure A1. The spectral mismatch ratio at PV12 (azimuth angle φ ' 133◦) as a function of time (mean incident angle) as well as the water
vapour column (a, b) and AOD (c, d), for both 2018 (a, c) and 2019 (b, d) measurement campaigns. 2min is the minimum incident angle.
The solid and dashed black lines represent the mean mismatch ratio for GTI and GHI, respectively. The fit for GTI corresponding to Eq. A16
is shown as a dashed red line and is performed up to an SZA of 80◦.

Figure A2. The same as Fig. A1 but for PV15 (azimuth angle φ ' 228◦).
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As shown in Figs. A1 and A2, the data are first grouped by
the time of the day in order to calculate the mean value, then
split into two halves on either side of the minimum incident
angle (2min). Each branch can then be fitted with the function

〈ξ spec,GTI〉 = x0 exp
(
−

x1

cos2
−

x2

cos22

)
, (A16)

shown as the dashed red line in the plots. This shows the
general form of the diurnal variation in spectral mismatch
and that for silicon PV the ratio is about 83 % for most of the
day.

In order to capture the effect of precipitable water and
AOD, the function

ξ spec,GTI = p0 exp(−p1 [H 2O ]−p2τ a) (A17)

is fitted to the irradiance data for each time step (aver-
aged over all days of the respective measurement campaign),
where [H 2O ] is the precipitable water from COSMO and τ a
the AOD at 500 nm from AERONET. The fit coefficients are
then interpolated over the entire dataset in order to calculate
ξ spec,GTI at any time of the day. Future work will examine the
effects of clouds on the spectral mismatch factor – here the
clear-sky fit is applied to all data, which due to whitening of
the skylight by clouds could lead to a bias in the final result.
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