PRIVACY-ENHANCING MECHANISMS
FOR DECISION-MAKING DAPPS

vorgelegt von
M. Sc.
Robert Muth

an der Fakultit IV — Elektrotechnik und Informatik
der Technischen Universitit Berlin
zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
- Dr. rer. nat. -

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Stefan Tai
Gutachter: Prof. Dr. Florian Tschorsch
Gutachter: Prof. Dr. Axel Kiipper
Gutachter: Prof. Dr. Arthur Gervais

Tag der wissenschaftlichen Aussprache: 14. September 2023

Berlin 2023

Robert Muth:
Privacy-Enhancing Mechanisms for Decision-Making DApps
© September, 2023

ABSTRACT

Blockchain-based decentralized applications (DApps) promise trust
and transparency as their execution can be verified publicly and do
not rely on trusted third parties. To this end, DApps leverage smart
contracts and immutable blockchain storage that allow all participants
to verify their correct execution. This makes it possible to verify all
DApp interactions and corresponding blockchain transactions, includ-
ing past ones, and thus prevents subsequent manipulations without
being noticed. Unlike traditional legal contracts and centralized web
applications, a smart contract ensures that agreements must be exe-
cuted as implemented, and invalid interactions will be rejected. In
particular, there are no designated third parties or other intermediary
instances that can violate a smart contract agreement without being
explicitly permitted to do so by its implementation. Moreover, smart
contracts will automatically execute agreements once their terms and
conditions are met.

These inherent properties make DApps particularly attractive for
decision-making use cases, such as decentralized autonomous orga-
nizations (DAOs) and governance platforms, allowing stakeholders
to decide on funding and change proposals. Such decision-making
DApps implement regulated processes for stakeholders who may have
different interests but still want to make a consensual decision, e.g.,
by majority or stakes. However, DApps can only work if their interac-
tions and available data are reliable and accurate. To avoid potentially
negative outcomes for the stakeholders, DApps must implement mech-
anisms to ensure that only trusted data is processed. For instance, they
must authenticate their data and users; otherwise, binding decision-
making processes could be influenced or exploited by malicious parties.
On the one hand, DApps can ask for user credentials to ensure that only
authorized users can interact with them. On the other hand, DApps put
users’ privacy at risk by requesting personal data that is processed on-
chain, e.g., user names, addresses, or other personal information. This
is particularly important because all data from all interactions with a
smart contract will be available to everyone on the blockchain and can
no longer be removed. For this reason, privacy-enhancing mechanisms
that limit access to personal data and keep it private from the public
become relevant for decision-making DApps. At the same time, the
secure and transparent on-chain execution allows users to verify how
their personal data is processed securely and privately, without being
disclosed to third parties.

In this thesis, we study how privacy-enhancing mechanisms, i.e.,
zero-knowledge proofs, anonymous credentials, and secure off-chain

ii

communication channels, can be implemented in decision-making
DApps. In particular, we focus on how to implement as much of the
cryptographic program logic as possible in a smart contract and execute
it on-chain, including routines for privacy protection and proof verifi-
cation. Furthermore, we evaluate the capabilities of privacy-enhancing
mechanisms for DApps in a real-world deployment by implement-
ing a new DApp for urban participation. To this end, we evaluate
practical feasibility requirements, i.e., cost and scalability, through the
decision-making processes of real-world construction projects. We use
these insights to identify privacy challenges and constraints in or-
der to design feasible on-chain privacy solutions for decision-making
DApps. Specifically, we contribute privacy-focused mechanisms and
proof-of-concept implementations for secure on-chain key exchange,
anonymous credentials verification, and anonymous voting for DApps.

iv

ZUSAMMENFASSUNG

Blockchain-basierte dezentrale Anwendungen (DApps) versprechen
Vertrauen und Transparenz, da ihre Ausfithrung 6ffentlich tiberpriift
werden kann und nicht von Dritten abhéngig ist, denen vertraut wer-
den muss. Zu diesem Zweck nutzen DApps Smart Contracts und den
unverdnderlichen Blockchain-Speicher, welche es allen Teilnehmern
ermoglichen, die korrekte Ausfiihrung zu tiberpriifen. Dies ermoglicht
es, alle DApp-Interaktionen und die entsprechenden Blockchain-
Transaktionen, auch schon vergangene Transaktionen, zu verifizieren
und so unbemerkte, nachtragliche Manipulationen zu verhindern. Im
Gegensatz zu herkdmmlichen juristischen Vertrdgen und zentralisier-
ten Webanwendungen stellt ein Smart Contract sicher, dass Vereinba-
rungen wie implementiert ausgefiihrt werden miissen und ungiiltige
Interaktionen zuriickgewiesen werden. Insbesondere gibt es keine de-
signierten Dritten oder andere zwischengeschaltete Instanzen, die eine
Smart-Contract-Vereinbarung verletzen konnten, ohne dass dies durch
die Implementierung ausdriicklich erlaubt wére. Aufierdem fithren
Smart Contracts Vereinbarungen automatisch aus, sobald ihre Bedin-
gungen erfiillt sind.

Diese inhédrenten Eigenschaften machen DApps besonders attrak-
tiv fiir Entscheidungsfindung-Anwendungsfille, wie z. B. dezentra-
le autonome Organisationen (DAOs) und Governance-Plattformen,
die es den Beteiligten ermoglichen, iiber Finanzierungs- und
Anderungsvorschlige zu entscheiden. Solche DApps zur Entschei-
dungsfindung implementieren geregelte Prozesse fiir Interessengrup-
pen, die zwar unterschiedliche Interessen haben, aber dennoch eine
einvernehmliche Entscheidung treffen wollen, z. B. durch Mehrheit
oder Beteiligungen. DApps konnen jedoch nur funktionieren, wenn
ihre Interaktionen und verftigbaren Daten zuverldssig und genau sind.
Um potenziell negative Ergebnisse fiir alle Beteiligten zu vermeiden,
miissen DApps Mechanismen implementieren, die sicherstellen, dass
nur vertrauenswiirdige Daten verarbeitet werden. So miissen sie bei-
spielsweise ihre Daten und Nutzer authentifizieren, da sonst verbindli-
che Entscheidungsprozesse von boswilligen Parteien beeinflusst oder
ausgenutzt werden konnten. Einerseits konnen DApps z. B. Benutzer-
daten abfragen, um sicherzustellen, dass nur autorisierte Benutzer in-
teragieren konnen. Andererseits gefdhrden DApps die Privatsphére der
Nutzer, wenn sie personliche Daten abfragen, die auf der Blockchain
verarbeitet werden, z. B. Namen der Benutzer, Adressen oder andere
personliche Informationen. Insbesondere, weil alle Daten aus allen
Interaktionen mit einem Smart Contract fiir jeden auf der Blockchain
verfiigbar sind und nicht mehr entfernt werden konnen. Aus diesem
Grund werden Datenschutz-Mechanismen fiir entscheidungsrelevante

DApps relevant, die den Zugriff auf persénliche Daten begrenzen und
diese vor der Offentlichkeit schiitzen. Gleichzeitig ermdglicht die siche-
re und transparente Ausfithrung auf der Blockchain den Nutzern zu
iiberpriifen, wie ihre personlichen Daten sicher und privat verarbeitet
werden, ohne dass sie an Dritte weitergegeben werden.

In dieser Dissertation untersuchen wir, wie Mechanismen zur
Verbesserung der Privatsphére, z. B. mit Zero-Knowledge-Proofs,
dem Konzept von Anonymous Credentials und sicheren Off-Chain-
Kommunikationskanilen, in Entscheidungsfindung-DApps implemen-
tiert werden konnen. Insbesondere konzentrieren wir uns auf die
Frage, wie moglichst viel der kryptographischen Programmlogik in
einem Smart Contract implementiert und auf der Blockchain aus-
gefiihrt werden kann, einschliefdlich Routinen fiir den Schutz der Pri-
vatsphire und die Uberpriifung von Beweisen. Ferner evaluieren wir
die Moglichkeiten von Technologien zur Verbesserung der Privatsphére
fiir DApps in einem realen Einsatz, indem wir eine neue DApp fiir
die stadtische Partizipation implementieren. Zu diesem Zweck be-
werten wir die Anforderungen an die praktische Durchfiihrbarkeit,
also Kosten und Skalierbarkeit, anhand von Entscheidungsprozes-
sen bei tatsachlichen Bauprojekten. Wir nutzen diese Erkenntnisse,
um Herausforderungen und Einschrédnkungen fiir den Datenschutz
zu identifizieren, um praktikable On-Chain-Datenschutzlésungen fiir
DApps zur Entscheidungsfindung zu entwickeln. Insbesondere erar-
beiten wir datenschutzorientierte Mechanismen und Proof-of-Concept-
Implementierungen fiir einen sicheren On-Chain-Schliisselaustausch,
anonyme Identitats-Verifizierung und anonyme Abstimmungen fiir
DApps.

vi

PUBLICATIONS

Publications that are an integral part of this thesis:

[MT23]: Robert Muth and Florian Tschorsch. “Tornado Vote:
Anonymous Blockchain-Based Voting.” In: International Confer-
ence on Blockchain and Cryptocurrency (ICBC). IEEE, 2023, pp. 1-
9

[Mut+22a] Robert Muth, Tarek Galal, Jonathan Heiss, and Flo-
rian Tschorsch. “Towards Smart Contract-based Verification of
Anonymous Credentials.” In: Financial Cryptography Workshop on
Trusted Smart Contracts. Vol. 13412. Lecture Notes in Computer
Science. Springer, 2022, pp. 481498

[Mut+22b]: Robert Muth, Beatrice Ietto, Kerstin Eisenhut, Jochen
Rabe, and Florian Tschorsch. “Lessons Learned: Transparency in
Urban Participation Utilizing Blockchains.” In: Eurasian Studies
in Business and Economics. In publication. Springer, 2022

[MT21]: Robert Muth and Florian Tschorsch. “Empirical Analysis
of On-chain Voting with Smart Contracts.” In: Financial Cryptogra-
phy Workshop on Trusted Smart Contracts. Vol. 12676. Lecture Notes
in Computer Science. Springer, 2021, pp. 397412

[MT20]: Robert Muth and Florian Tschorsch. “SmartDHX: Diffie-
Hellman Key Exchange with Smart Contracts.” In: Interna-

tional Conference on Decentralized Applications and Infrastructures
(DAPPS). IEEE, 2020, pp. 164-168

[Mut+19]: Robert Muth, Kerstin Eisenhut, Jochen Rabe, and Flo-
rian Tschorsch. “BBBlockchain: Blockchain-Based Participation
in Urban Development.” In: International Conference on eScience.
IEEE, 2019, pp. 321-330

Other works by the author may be cited, but are not included in this
thesis:

[Let+23]: Beatrice Ietto, Jochen Rabe, Robert Muth, and Federica
Pascucci. “Blockchain for citizens” participation in urban plan-
ning: the case of the city of Berlin. A value sensitive design ap-
proach.” In: Elsevier Cities Journal 140 (2023), p. 104382

[Hei+22]: Jonathan Heiss, Robert Muth, Frank Pallas, and Ste-
fan Tai. “Non-disclosing Credential On-chaining for Blockchain-
Based Decentralized Applications.” In: International Conference on

vii

Service-Oriented Computing (ICSOC). Vol. 13740. Lecture Notes in
Computer Science. Springer, 2022, pp. 351-368

[GMF22]: Marcel Gregoriadis, Robert Muth, and Martin Florian.
“Analysis of Arbitrary Content on Blockchain-Based Systems
using BigQuery.” In: Companion of The Web Conference. WWW "22.
ACM, 2022, pp. 478-487

[Let+22]: Beatrice Ietto, Kerstin Eisenhut, Robert Muth, Jochen
Rabe, and Florian Tschorsch. “Transparency in Digital-Citizens
Interfaces Through Blockchain Technology: BBBlockchain for Par-
ticipation Processes in Urban Planning.” In: European Technology
and Engineering Management Summit (E-TEMS). IEEE, 2022, pp. 65—
71

[Rab+21]: Jochen Rabe, Beatrice Ietto, Robert Muth, Kerstin Eisen-
hut, and Federica Pascucci. “Citizens” Engagement in Urban De-
velopment through Blockchain: a Human-centered Design Ap-
proach.” In: International Conference on Technology Management,
Operations and Decisions (ICTMOD). IEEE, 2021, pp. 1-6

[Bra+19]: Samuel Brack, Robert Muth, Stefan Dietzel, and Bjorn
Scheuermann. “Recommender Systems on Homomorphically En-
crypted Databases for Enhanced User Privacy.” In: Local Computer
Networks Conference (LCN) Symposium. IEEE, 2019, pp. 74-82

[Bra+18]: Samuel Brack, Robert Muth, Stefan Dietzel, and Bjorn
Scheuermann. “Anonymous Datagrams over DNS Records.” In:
Local Computer Networks Conference (LCN). IEEE, 2018, pp. 536-544

viii

ACKNOWLEDGMENTS

My entire academic journey has been accompanied by so many in-
credible people. First and foremost, Florian Tschorsch, whose exper-
tise and endless patience allowed me to explore and pursue my per-
sonal research interests. Special thanks to Prof. Dr. Arthur Gervais,
Prof. Dr. Axel Kiipper, and Prof. Dr.-Ing. Stefan Tai for their time, ef-
fort, and all the feedback. And all of my fellow colleagues, Christoph
Dopmann, Elias Rohrer, Erik Daniel, and Saskia Nufiez von Voigt, for
putting up with me in the same office. As well as the new colleagues,
Carolin Brunn, Charmaine Ndolo, Lukas Gehring, and Maximilian
Weisenseel. And my project colleagues Beatrice Ietto, Jochen Rabe, and
Kerstin Eisenhut. Not to forget, the colleague from upstairs, Jonathan
Heiss. Also, Bjorn Scheuermann and his former team at the Humboldt-
Universitdt zu Berlin, especially Samuel Brack. Furthermore, all the
students I had the honor to support: Aljoscha F., Carolin N., Elio D.,
Florens B., Jonathan P., Jorrit P., Natalie P, Nathan D., Stanislav T.,
Thore W., and Tarek Galal. This fruitful collaboration was only possible
thanks to all colleagues at the Technische Universitidt Berlin and the
Einstein Center Digital Future.

I'have no doubt that this work would not have been possible without
the support of my entire family. I cannot express my gratitude enough
to my parents, Christine Muth and Thomas Muth, who have been
so incredibly dedicated to my personal success and well-being, as
well as my grandparents, Anneliese Sailer, Bernd Muth, Franz Sailer,
and Waldtraut Muth. And last but not least, my partner Alexander—
je t'aime.

Thank you all,
~ Robert

ix

CONTENTS

IT

111

Introduction

1.1 Motivation
1.2 ResearchQuestions
1.3 Outline
1.4 Contributions

Decentralized Applications

Background and Related Work

2.1 Technical Background
2.2 Decision-Making DApps
2.3 RelatedWork
DApp Analysis

3.1 Key Metrics of Ethereum
3.2 Relevance and Trends of Blockchain-Based DApps . . .
Decision-Making DApps

4.1 Empirical Analysis
4.2 Peasibility Analysis, .
4.3 Voting Beyond Ethereum
4.4 Relevance of Decision-Making DApps

Decision-Making for Urban Participation

BBBlockchain

5.1 Citizen Participation Processes
5.2 BBBlockchain Use Cases for Urban Participation
5.3 BBBlockchain Architecture
5.4 Pilot Deployment

Privacy Mechanisms

SmartDHX

6.1 Motivationo
6.2 Proofof Concept
6.3 Conclusion
Anonymous Credentials Verifier

7.1 Motivation
7.2 Anonymous Credentials
7.3 Proof Verification
7.4 Implementation
7.5 Discussion
7.6 Self-Sovereign Identities
7.7 Conclusion
Tornado Vote

8.1 Motivation

(S T VRSN

37
38
42
48
52

63
63
65
72
73
73
75
78
82
85
87
87
89

8.2 Background
8.3 TornadoVote.
8.4 Evaluation
85 Conclusion

Conclusions
Discussion and Conclusion

9.1 Discussion
9.2 Conclusion

Publications by the Author
Bibliography

Web Resources

CONTENTS

106

............ 106
............ 108

110

111

123

X1

INTRODUCTION

1.1 MOTIVATION

Ethereum introduced full-fledged smart contracts in 2017, which are
custom, Turing-complete programs that can be deployed, verified, and
executed independently by all blockchain peers [@But23b; Wo022].
Ethereum therefore allows anyone to access and execute a deployed
smart contract without the need for a trusted third party (TTP), such
as an external server or another user [Mil19]. Smart contracts can also
be deployed by anybody, however, they cannot be modified or deleted
anymore once they are deployed [Woo22]. To this end, smart contracts
promise greater trust than traditional written contracts because their
program logic is binding, not open to vague interpretation, and not
necessarily dependent on TTPs [AM17; Sza97]. As a result, once de-
ployed, smart contract-based agreements must be followed and will
eventually be executed in a virtually automated process [@But23b].

With Ethereum, smart contracts can be used to develop decentralized
applications (DApps) [Met20]. A DApp leverages one or more smart
contracts and provides a frontend for users to conveniently interact
with the DApp’s smart contracts. Furthermore, DApps promise to be
more reliable, available, and censorship-resistant than centralized web
applications because their smart contracts do not necessarily depend
on servers or TTPs that can fail or cause errors. To this end, several
popular DApps have emerged, such as decentralized autonomous
organizations (DAQO), decentralized financial applications (DeFi), a
decentralized name server (ENS), and more [@]Jen16; Sch21; Xia+21;
Wul9].

In fact, because of the blockchain-inherent properties, such as trust
and transparency, it is particularly attractive for DAOs and governance
DApps to implement decision-making processes. For example, DAO
and governance DApps therefore allow users to make decisions in a
consensual and systematic process, e.g., by majority or stakes. Such
decision-making DApps implement proposal-based votings on pre-
defined outcomes that, if approved, are automatically executed by the
smart contracts, e.g., cryptocurrency transfers. The powerful technical
capabilities of smart contracts can implement even complex decision-
making processes. However, while such decision-making processes
may involve complex rules and logic, they can still be trusted to make
and execute a decision in a transparent and trustworthy manner.

Hence, at first glance, DApps benefit from their smart contracts’
promised trust and transparency; however, many DApps must make

1.1 MOTIVATION

trade-offs in their trust assumptions and decentralization to protect
their users’ personal data. Processing personal data with smart con-
tracts requires special attention to privacy and security, as all data on
a public permissionless blockchain is publicly exposed and cannot be
deleted. For example, established financial DApps require their users
to identify themselves to prevent money laundering [MSS22], but any
kind of personal identity data on a public blockchain compromises
user privacy. The same issue applies to decision-making DApps that
rely on reliable user identification for trusted voting processes. There-
fore, many DApps use oracles to delegate personal data processing
to centralized TTPs, such as external servers, and therefore rely on
trusted, external infrastructures [HET19; CE21; Miih+20]. However,
while oracles may be a solution for data protection, such dependencies
jeopardize the decentralization and transparency of a DApp.

Nevertheless, privacy-enhancing off-chain computation techniques
have emerged that trade off the decentralization and trust assumptions
of a DApp while ensuring on-chain verifiability. With such techniques,
privacy can be achieved with off-chain computation that is on-chain ver-
ifiable. Therefore, personal data can be processed by a DApp without
relying on oracles or TTPs. For example, verifiable off-chain compu-
tation with on-chain verifiable zero-knowledge proofs (ZKP) [ET18],
trusted execution environments (TEE) [Kar+21], and homomorphic
encryption (HE) [Ste+19; Ste+22]. Unfortunately, these techniques are
still not very practical for many DApp use cases, or are difficult to im-
plement [Len+22]. For example, ZKP generation becomes memory and
computationally intensive as soon as it has to prove complex off-chain
calculations [ET18; Grol6]. Homomorphic encryption also becomes
very computationally intensive as soon as it is used for complex calcula-
tions [Bra+19; Arm+15]. Furthermore, while TEEs promise performant
execution and could help overcome scalability and privacy issues, they
require proprietary, trusted hardware, which currently prevents their
widespread use for permissionless DApps [Erw+20; GY19].

The main problem with many privacy-enhancing techniques and
mechanisms for DApps is that they cannot perform resource-intensive
privacy operations on-chain, and their artifacts (e.g., keys and proof rou-
tines) cannot be stored economically due to the scalability constraints
of the blockchain [Hei+22]. However, many existing DApps already
successfully implement privacy-enhancing techniques by performing
resource-intensive operations off-chain while remaining verifiable on-
chain [@Ale19; GAC19; SHS20]. For this purpose, the smart contracts
do not perform the privacy operations on-chain, but expect predefined
routines to be executed off-chain on the client computers and return the
results and a corresponding proof [Gro16; ET18]. The results can then
be cryptographically verified to confirm that the intended operations
were performed as expected, without having to repeat the entire com-
putation on-chain with a smart contract. For example, a ZKP can be

1.2 RESEARCH QUESTIONS

generated off-chain to attest the validity of a cryptographically signed
date of birth as proof of legal age from a trusted instance without reveal-
ing the exact date in clear-text. A smart contract therefore only verifies
the validity of the proof on-chain, and the date of birth is not published
on the blockchain [Hei+22]. The most important difference between
this approach and an oracle is that it does not rely on a centralized
authority whose processing cannot be publicly verified. Unfortunately,
such ZKPs may consist of large key files or other artifacts that are expen-
sive to store on the blockchain; however, with certain ZKP techniques
it is possible to distribute these artifacts off-chain and verify their exe-
cution results with an efficient on-chain verifier [Gro16]. In summary,
hence, decision-making DApps face the challenge of reconciling the
constraints of a blockchain with the needs of privacy-enhancing tech-
niques, and of finding suitable mechanisms that do not compromise
the trust assumption of DApps. To this end, decision-making DApps
have to ensure that trust-relevant processes remain on-chain and that
resource-intensive operations can be outsourced without any loss of
trust.

1.2 RESEARCH QUESTIONS

In this thesis, we study the potentials, capabilities, and barriers of
privacy-enhancing techniques and mechanisms for public decision-
making DApps. To this end, we design and develop a new Ethereum
DApp for urban participation that inherently depends on privacy for
successful decision-making outcomes. With this DApp, we identify
current challenges for privacy-enhancing techniques with public, per-
missionless blockchains in practice. Therefore, this thesis addresses the
following two research questions:

e How to implement verifiable privacy protection mechanisms for
decision-making DApps? In particular, how to verify personal
data without exposing it to the public for reliable decision-making
processes?

¢ Which decision-making processes can be executed off-chain while
keeping their results on-chain verifiable to maintain trust in smart
contract execution? Specifically, how to implement as many cryp-
tographic procedures as possible in a smart contract with respect
to the capabilities and principles of the blockchain?

More specifically, this thesis focuses on the implementation of pri-
vacy protection mechanisms for anonymous voting, anonymous au-
thentication, and secure key exchange for DApps on permissionless
blockchains with practical, real-world requirements. In contrast to the-
oretical privacy research, this raises a number of practical issues, such
as limited blockchain scalability, costs, and accessibility. In this context,
we identified a gap in the existing research on decision-making DApps,
which we address as follows.

1.3 OUTLINE

Part | Part Part 11l Part IV
Ethereum DApps BBBlockchain Privacy Mechanisms Conclusions
Back d and Urban participation g)
ackground an .)
Discussion
related work background SmartDHX
N AIRN AN J
e ||/ ||~ 7
DApp & blockchain Blockchain-based Anonymous Conclusion
analysis use cases \Credentials
N N
/D - Ki N N o N
ecision-maxing DApp architecture | ||| Tornado Vote
analysis
N\ VAIRN AN J
Y
Pilot deployment
-~

Figure 1. Organization of this thesis.

1.3 OUTLINE

First, this thesis begins with an introduction to DApps and the rele-
vant technical background. Additionally, we analyze existing DApps to
point out their relevance. Second, we develop a new decision-making
DApp for urban participation to analyze the current state of DApp
development with a focus on privacy. In preparation for answering our
first research question, we identify technical limits for implementing
on-chain verifiable privacy mechanisms based on the experience with
our DApp. Third, we contribute new privacy mechanisms to enhance
privacy for decision-making DApps: A solution for establishing trusted
secure communication channels to address blockchain scalability capa-
bilities, an anonymous credentials verifier for Ethereum, as well as an
anonymous DApp-based voting system. Therefore, each contribution
presents its own conclusions and key findings. Finally, we conclude
this thesis with an open discussion about the role of decision-making
for DApps and recap our research questions.

To this end, the main body of this thesis is divided into four parts
after this introduction, as shown in Figure 1: Part I focuses on Ethereum
DApps. Chapter 2 introduces technical concepts and background
knowledge relevant to all following parts. Chapter 3 provides addi-
tional background, focusing on blockchain data analysis, and presents
an overview of key metrics and the relevance of DApps. Chapter 4
extends this analysis to an empirical exploration of the current state of
decision-making DApps.

Part II focuses on a decision-making DApp for urban participation
processes. In Chapter 5, we introduce BBBlockchain. Chapter 5.1 in-
troduces the basics of urban participation and civic tech. Building on
this, Chapter 5.2 proposes suitable DApp-based use cases for urban
participation. Chapter 5.3 presents the architecture of BBBlockchain
to implement the use cases and specifies requirements for a participa-
tion decision-making DApp. In Chapter 5.4, we design and implement

4

1.4 CONTRIBUTIONS

BBBlockchain for a pilot deployment by introducing it in two real con-
struction projects to gain practical experience with a decision-making
DApp and evaluate our key findings during the deployment.

Part III presents novel mechanisms for on-chain privacy in decision-
making DApps based on the experiences with BBBlockchain. Chapter 6
presents a key exchange protocol whose communication and proto-
cols are completely secured by the blockchain. Chapter 7 presents an
on-chain anonymous credentials verifier to improve voting reliabil-
ity while keeping the voters anonymous. Lastly, Chapter 8 presents
a new anonymous voting system, Tornado Vote, which is based on a
well-established cryptocurrency mixer.

Part IV concludes this thesis. In Chapter 9.1, we discuss the role of
our contributions in achieving on-chain privacy for decision-making
DApps. Finally, in Chapter 9.2, we recap the research questions and
conclude this thesis.

1.4 CONTRIBUTIONS

In summary, we present the following contributions of this thesis:

* An empirical analysis of existing decision-making DApps to ex-
plore the current state and to reveal the limitations of on-chain
voting with a model-based scalability evaluation.

* BBBlockchain, a DApp for public participation processes. There-
fore, we investigate and study possible blockchain-based use
cases for participation processes in order to implement them in ex-
isting building projects. As a result, we propose blockchain-based
voting, token-based incentivization, and content timestamping
use cases to inform and consult citizens. In an interdisciplinary
collaboration between an urban development and a computer
science research team, we explore how blockchains can meet real-
world requirements and gather practical experience to implement
new technical approaches and mechanisms to overcome the bar-
riers identified. To this end, we introduced BBBlockchain in two
participation projects in Berlin, Germany from 2019 —2022.

e SmartDHX, a multi-party Diffie-Hellman key exchange protocol
to establish secure communication channels between blockchain
participants. Unlike existing key exchange implementations, we
develop a novel technique to store all execution logic on-chain,
thus securing the entire key exchange process on-chain. The main
goal is to implement and execute as many cryptographic opera-
tions as possible on-chain. To this end, we design two different
Diffie-Hellman key exchange protocols, i.e., for two-party and
for multi-party key exchanges. The key feature is that the Smart-
DHX smart contract contains off-chain executables that control
the smart contract itself.

5

1.4 CONTRIBUTIONS 6

* An EVM-compatible, on-chain anonymous credentials verifier. Tech-
nically, anonymous credentials allow to prove the possession of
personal identity features without having to disclose personal
data. For example, a person can prove that she or he is eligible
to vote and has not previously voted without revealing personal
information such as name, address, or date of birth. Anonymous
credentials are particularly useful because they can be verified
by anyone without third-party involvement. To this end, we im-
plement a smart contract-based, on-chain anonymous credentials
verifier which is compatible to existing identity systems.

e Tornado Vote, an anonymous voting system to decouple voters” ac-
counts from their votes. Therefore, we are adapting the Tornado
Cash cryptocurrency mixer protocol, and ensure the security of
our adaptations through formal verification, vulnerability scan-
ners, and unit tests. While we found that Tornado Cash could be
used directly to implement anonymous voting with coins, this
approach would not allow a fair voting process. Therefore, our
implementation adapts the Tornado Cash protocol and imple-
ments an additional commitment phase to privately collect all
votes before revealing them all-together. We therefore implement
a proof-of-concept to evaluate the feasibility of Tornado Vote.

Partl

DECENTRALIZED APPLICATIONS

BACKGROUND AND RELATED WORK

In this part, we introduce the technical concepts of decision-making
DApps and present related work in Chapter 2. In Chapter 3, we intro-
duce the concepts of blockchain analysis in order to show the impor-
tance and relevance of existing DApps. Lastly, in Chapter 4, we focus
on decision-making DApps, their underlying technical concepts, and
analyze their relevance and technical capabilities.

In general, it is difficult to define blockchain technologies and their
concepts in a consistent and universal valid form, as there are too many
differences between the different types of blockchains. We therefore in-
troduce the relevant blockchain concepts in the following chapters, i.e.,
DApps, smart contracts, decision-making, and blockchain-based vot-
ing, primarily for Ethereum and EVM-compatible blockchains. Since
there may be differences between our definitions and those in other
works, the following definitions serve to provide consistency through-
out all chapters of this thesis.

2.1 TECHNICAL BACKGROUND

The Ethereum blockchain [@But23b] allows the execution of arbitrary
code in the user transactions with smart contracts [Wo022]. This en-
ables Ethereum and similar capable blockchains to deploy, host, and
execute smart contracts that implement powerful logic and routines.
While it can be argued that Bitcoin first introduced smart contracts
with Bitcoin Script in 2008, Ethereum introduced much more powerful
smart contract capabilities in 2015. To this end, the Ethereum block-
chain executes smart contracts in the so-called Ethereum Virtual Ma-
chine (EVM) [Wo022]. Technically, smart contracts consist of assembly-
like EVM commands and have access to the current blockchain state.
Therefore, smart contracts can hold and transfer cryptocurrencies based
on their implemented logic. All users on the Ethereum blockchain can
deploy new smart contracts, interact with them, and verify their cor-
rect execution. Furthermore, smart contracts can hold cryptocurrencies
and transfer them based on their implemented logic. Because of the
immutability of the blockchain, a smart contract cannot be removed or
changed once it is deployed.

Smart contracts provide a technical interface for interactions, i.e., an
application binary interface (ABI). An ABI specifies the available func-
tionality of a smart contract, but is not designed for user interaction.
To interact with smart contracts, users typically use a DApp. DApps
leverage one or more smart contracts and provide a graphical frontend.

2.1 TECHNICAL BACKGROUND

Develop Deplo Sync.
ﬂ Smart Contract ploy Ethereum Y Node
(e.g., Solidity) EVM Code Network
DApp
Developer 48, Tx | | Receipt
Result
ﬂ Request Call Wallet
_ Frontend (e.g., Metamask)
User Display Result

Figure 2. Exemplary DApp setup with a smart contract deployment on the
Ethereum blockchain by a DApp developer, and user interactions with a
frontend connected to a blockchain node via a wallet.

Usually, DApps provide frontends that are implemented as an interac-
tive web page for standard browsers. The frontend can be hosted on a
central web server, following a typical view and data separation model,
so it only implements the view and does not store or control any user
data. For data access, browser-based frontends require an additional
plugin to connect the web page with the blockchain, e.g., Metamask!,
to connect to a synchronized local blockchain node or an external node,
e.g., Infura.?

Figure 2 shows an exemplary setup for a DApp that can be interacted
with using a web frontend. First, the developer deploys the DApp’s
smart contracts by compiling the source codes and submitting a trans-
action with the resulting EVM code to the Ethereum blockchain, i.e.,
the Ethereum Mainnet or a test network. Additionally, the developer
generates an ABI that specifies the smart contract functions which have
been stripped by the compiler for the deployment. This ABIis provided
to the frontend, which uses it to interact with the smart contracts. Next,
a user interacts with the frontend, for example, to call a smart contract
function or to send a transaction. Alternatively, it is also possible to
interact directly with a DApp (without a frontend), but in both cases
the developer must provide an ABI or the smart contract source codes.
The user can then call a smart contract function without submitting a
transaction to the blockchain, allowing the DApp to only display the
function’s return value; alternatively, a user can also call a function
and submit a new transaction to persist the function execution on the
blockchain and receive a corresponding receipt.

To date, DApps have been implemented for many different use
cases [MM18]. With a current market capitalization of more than 2 bil-
lion USD, Ethereum is the second most successful blockchain and the
leading platform for hosting DApps [@C0i23]. In the following, we
therefore focus primarily on Ethereum and decision-making use cases.

1 https://metamask.io
2 https://infura.io

https://metamask.io
https://infura.io

2.2 DECISION-MAKING DAPPS

2.2 DECISION-MAKING DAPPS

The definition of decision-making DApps encompasses many blockchain
concepts. Therefore, in this section, we introduce the relevant technical
background and related work for decision-making DApps. Since there
is no universal and precise definition for a decision-making DApp, we
introduce each of the related concepts separately. We therefore distin-
guish between the concepts of a DApp and a smart contract, decision-
making and governance, and lastly, voting and e-voting. Furthermore,
we introduce the technical background for building a decision-making
DApp and analyze deployed DApps. Lastly, we present related work
on privacy for decision-making DApp use cases.

Decision-Making, DAO, and Governance DApps

With blockchain-based decision-making, users agree on rules that can
be implemented with smart contracts or in the blockchain protocol.
The term decision-making is not well defined and applies to a broad
range of DApp use cases [Zio+19; Yan+19; EAA22]. However, most
decision-making applications have one thing in common, usually some
type of voting process. Therefore, for this thesis, we define decision-
making DApps as a general term for DApps that implement user-driven
decision-making processes, such as voting by majority or stakes. One
of the most prominent examples of a decision-making DApp is The
DAO [@]en16], which attracted a lot of attention in the Ethereum com-
munity when it launched in 2016. Decentralized autonomous organi-
zations (DAO) allow stakeholders to manage funds in a decentralized
manner without trusted intermediaries or management entities. To this
end, DAOs typically issue their own tokens [@]en16] to their users
as voting rights, which decouples voting rights from fluctuations in
cryptocurrency exchange rates. Users can then make organizational
proposals, similar to fundraising and crowdfunding campaigns. Other
users use their tokens to signal acceptance and attach funding in the
form of cryptocurrency, or they reject a proposal. Finally, accepted
proposals can then transfer the funds to a dedicated smart contract
and return the profits (i.e., tokens or cryptocurrency) to the support-
ers [@]en16].

Another advantage of DAO is that blockchains allow them to transfer
funds globally without relying on banks or other third-party institu-
tions with their cryptocurrencies. In fact, DApps can implement asset
transfers easily and without much administrative overhead, which
would not be possible with traditional bank transfers. Combined with
the immutability of an underlying public, permissionless blockchain,
payment transfers can be confirmed and tracked internationally. But
this also has its advantages and disadvantages: Transactions are reli-
able once they have been sent, verified, and confirmed by a sufficient

10

2.3 RELATED WORK

DApp

[0]
Off-Chain Smart Contract e
@) [\
< =
fa) o
Consensus / Ledger g

Network

Figure 3. Simplified blockchain layer model showing the direction of impact
for DAO and governance DApps.

number of blocks. On public, permissionless blockchains, however,
transactions are open to everyone, which means there is no privacy in
the first place. The immutability also led to a hard fork of the Ethereum
Mainnet in 2016 [MS19; @Wil16], when the smart contracts of The DAO
were exploited. However, many other successful DAOs have been
implemented, such as MakerDAQO [@Thel7], to realize a token-based
stable coin on Ethereum.

Another example of decision-making DApps are governance DApps.
From a technical point of view, governance DApps and DAOs are
not too different. In fact, the technical overlap is significant, as both
implement voting processes for their users. The main difference is,
that governance use cases operate in and for their ecosystems, such as
users and developers voting together on technical protocol changes.
For example, Bitcoin implements version bits for its governance on
the protocol level [@Pan17], and the Dash blockchain provides a full-
fledged DApp platform for its governance (see Section 4.3 for more
details). In comparison, as shown in Figure 3, DAOs use blockchain
technologies as a means for trusted decision-making processes that can
technically have an impact beyond the blockchain, while governance
DApps are used to improve the technical ecosystem. Also, while the
underlying technology of blockchains must constantly make decisions
in order to operate, we mainly build on the DApp layer of blockchains
in this thesis.

Ultimately, for this thesis, the term decision-making DApps encom-
passes DAOs, governance DApps, and other DApps that implement
user-driven voting. However, we distance ourselves from blockchain-
based e-voting for elections, as we will explain in the following related
work.

2.3 RELATED WORK

In this section, we present related work, which is structured along the
lines of our different research directions. To this end, we first present re-
lated work on blockchain-based voting and draw a distinction between
it and blockchain-based e-voting for elections. Second, we present

11

2.3 RELATED WORK

related work on privacy with public blockchains, and introduce es-
tablished techniques and DApps. Next, we present related work on
blockchain scalability and transaction fees to pave the way for the
research problems and requirements that follow. Finally, we present
related work on off-chain computation as a solution to scalability, costs,
and privacy issues.

Blockchain-Based Voting and E-Voting

There are many other DApps that implement voting as utility for their
primary use case (as we will see in Chapter 4), as well as specialized
voting DApps [AKW20; MSH17; SGY20]. However, while decision-
making DApps also encompass e-voting for elections (e.g., for nation-
wide elections), we exclude this use case in this thesis, mainly for yet
unresolved privacy and security reasons [Hei+18; BV16; ECW21].

In this thesis, we primarily focus on blockchain-based voting for
DAO and governance use cases. Furthermore, while blockchain-based
voting is a commonly implemented concept [Gar+19; @Jen16], we
specifically focus on anonymous voting. For example, McCorry, Shahan-
dashti, and Hao [MSH17] implement an anonymous voting protocol
based on the Open Vote Network. It is implemented for Ethereum and
allows up to 40 voters. A self-tallying mechanism computes the final
results, but also constitutes a computational bottleneck which prevents
practical implementation in larger-scale voting DApps. In order to im-
prove scalability, Seifelnasr, Galal, and Youssef [SGY20] introduce an
off-chain tallying process for the voting implementation in [MSH17].
Therefore, they rely on at least one trusted instance.

Killer et al. [Kil+22] implement an anonymous blockchain-based
voting that is receipt-free. However, their proposal requires its own per-
missioned blockchain and therefore cannot be deployed on Ethereum.
By relying on a proof-of-authority consensus, Killer et al. achieve sig-
nificant better scalability and performance than with a permissionless
blockchain.

Other blockchain-based voting protocols defer to completely private
networks [Yu+18; Har+18; Hja+18].

Privacy on Public Blockchains

Public blockchains, whether permissionless or permissioned, enable
verifiability and thus promise trust. However, this also puts privacy at
risk, and not just for anonymous voting. If all transactions are public, all
user interactions can be monitored. Although it is possible to create new
accounts without much technical effort and thus achieve pseudonymity,
it remains difficult to keep interactions between accounts and smart
contracts secret. Therefore, several public permissionless blockchains
have already taken measures to address privacy. For example, Mon-

12

2.3 RELATED WORK

ero [@Van13] and Zcash [@Hop+16] implement privacy mechanisms to
protect or obfuscate cryptocurrency transfers directly in their protocol.
Also Ethereum recently proposed the concept of stealth addresses to
achieve privacy [@But23a].

Other approaches have also emerged that do not require blockchain
protocol changes, but instead build on the technical capabilities of the
blockchains. For example, CoinShuffle [RMK14] for Bitcoin, or Tornado
Cash [@Ale19] for Ethereum. Both examples build on the principle of
mixing coins in an anonymity set. To this end, multiple coin owners de-
posit the same amount of coins into a shared wallet, and then withdraw
the coins with a different account at a later time. As long as there is no
traceable connection between the deposit and withdrawal transactions,
an observer cannot be certain that the deposit and withdrawal accounts
belong to the same person. More specifically, an observer can only re-
late two transactions with a probability of one to the number of other
participants in the anonymity set. Nevertheless, advanced clustering
techniques, time correlations, and technical metadata could be used to
reduce the size of the anonymity set [M6s+18; Vic20; Bér+21] and thus
compromise the privacy of the participants.

The same privacy issues apply to smart contract interactions pro-
cessed through public transactions. Decision-making DApps, in par-
ticular, must protect their users” privacy for reliable outcomes. For
example, the reliability of a voting can be improved by making the
entire voting process anonymous. This can give voters a greater sense
of democratic freedom and confidence to make their decision with-
out outside pressure or influence. Alternatively, for more complicated
decision-making processes, participants may need to discuss details
via a secure communication channel. Currently, most of the communi-
cation for DAOs takes place off-chain in web forums. Either publicly
in public discussion forums or privately via direct messaging. There-
fore, such communication platforms do not offer the same trust and
transparency properties as blockchain-based DApps. However, they
are easily scalable and do not incur significant costs, which are aspects
that we will inspect in more detail in the following.

Scalability and Transaction Fees

Besides privacy, there is another major obstacle to widespread adop-
tion of public permissionless blockchains at the current stage of devel-
opment: scalability or transactions throughput, respectively. Due to
limited block sizes and static block generation rates, the transaction
throughput of a blockchain is limited [Wo022]. The limited scalabil-
ity, however, leads to sometimes high transaction costs and longer
transaction processing times.

For decision-making DApps, this can occasionally lead to two major
problems: First, the cost of DApp interactions is significantly higher

13

2.3 RELATED WORK

than for centralized applications. Second, DApp interactions may not
be executed due to the scalability limitations, which may compromise
the inherent censorship-resilience of the blockchain.

Blockchains use transaction fees for Sybil and spam protection, and to
reward active miners to keep the network up and running [TS16]. To
this end, different blockchains implement different techniques for the
calculation of transaction fees. For instance, as the pioneer of public per-
missionless blockchains, i.e., Bitcoin, implements a fee system based on
supply and demand [NakO8]. In principle, the senders of new transac-
tions determine themselves how much they are willing to pay for their
transactions, before they submit them to the miners. The miners then
decide for themselves whether they are willing to accept a transaction
when they generate the next block. Since the size of each block is lim-
ited, the fees naturally increase when there are a lot of transactions, i.e.,
the blocks are filled more. Other blockchains, e.g., Ethereum [@But23b]
and Dash [@DD18], implement similar approaches for transaction fees.

Nevertheless, one of the biggest problems with such a supply-and-
demand control system is that it allows miners to disproportionately
reward themselves beyond their efforts. Especially if the blockchain
network experiences a lot of traffic, transaction costs will increase signif-
icantly, and miners will only include the transactions with the highest
reward for them. Ethereum, therefore, was looking into alternatives for
calculating the transaction fees. First, Ethereum already implements
a different fee calculation than Bitcoin, that is based on the complex-
ity and resource consumption of transactions [Woo022]. To this end,
Ethereum uses variable costs for executing commands in a transaction,
and charges them in the form of Gas, an Ethereum specific pseudo-
unit. For example, simple arithmetic operations are much cheaper than
storage allocations. However, Ethereum started with an approach sim-
ilar to other permissionless blockchains: with a supply and demand
regulation. A transaction sender specified how much Ether (i.e., the
native cryptocurrency) she or he is willing to pay per Gas [Woo22].
As a result, when demand increases significantly, transaction fees on
Ethereum suffer from the same issues.

EIP-1559 In 2019, Buterin et al. proposed a new transaction fee
calculation mechanism for Ethereum with EIP-1559 [@But+19]. The
authors’ intention is that miners will no longer be able to benefit dispro-
portionately due to much traffic. In summary, the Gas costs remained
the same, but the exchange rate, i.e., the base fee per Gas, will be reg-
ulated with a demand controlling mechanism. To this end, the base
fee increases if the most recent block required too much Gas to pro-
cess all transactions, but decreases if there is enough residual capacity.
EIP-1559 therefore specifies a target threshold of 15M Gas, however,
blocks can actually process up to 30M Gas. Whenever the threshold is
crossed, the base fee per Gas will increase or decrease proportionally

14

2.3 RELATED WORK

by £12.5 %. However, the base fee does not go to the miners. Instead, it
is multiplied by the amount of Gas used in the transactions and burned.
It is still possible, but not mandatory, for the transaction sender to add
a small tip to the miners for prioritized processing.

As a result, transaction fees can no longer increase abruptly, and
miners no longer have an incentive to favor the most expensive transac-
tions [@But+19]. In addition, participants gain a degree of predictability
about transaction costs in the near future, as they can increase by a
maximum of 12.5 % per block. This prevents transactions from unex-
pectedly disappearing into the mempool, which is a pool of pending
transactions.

PROOF-OF-WORK & PROOF-OF-STAKE EIP-1559 was not the
only major protocol change for Ethereum. In September 2022, Ethereum
switched from a proof-of-work (PoW) consensus algorithm to proof-of-
stake (PoS). The main goals for switching to PoS were to save energy by
not wasting computing power on solving random puzzles [@But17b],
and to improve the security of the network [@But20]. With this hard
fork (also known as The Merge), the miners’ leader election no longer
depends on randomness and available computing power, but on in-
dividual cryptocurrency stakes. When the miners follow the protocol
correctly, they are rewarded with the block reward and priority tips.
However, if they fail to comply with the protocol, they will receive a
penalty.

Ultimately, while changing the consensus algorithm had a huge
impact on the consumption of energy resources due to the elimination
of PoW, the available capabilities of the Ethereum network remained
the same. Therefore, the impact on network congestion and transaction
fees can be considered moderate, as we show in the following chapter.
Nevertheless, the switch from PoW to PoS can be considered a success,
both technically and operationally [Cor+23].

Off-Chain Solutions and Computations

Blockchains implement leader election mechanisms and transaction
fees to prevent Sybil attacks and too much traffic in general [TS16].
Unfortunately, transaction fees can be very high depending on the
current transaction load and the complexity of a transaction. However,
off-chain solutions can be used to reduce transaction fees, e.g., to enable
micro-payments. For example, the Lightning network [@PD16] enables
cheaper and faster Bitcoin transfers by establishing off-chain payment
channels between participants. As a result, only the final result of
one or more payments will be recorded on the blockchain. Similarly,
Raiden [@Est21] was developed to improve the scalability of Ethereum.

DApps can also leverage off-chaining to reduce transaction costs.
With verifiable off-chain computations and ZKPs, DApps can run

15

2.3 RELATED WORK

programs on client machines that would be very expensive to run
on-chain [ET18]. However, the correct execution of the program can
be verified on-chain at lower cost and without repeating the entire
program execution [Grol6]. In addition, off-chain computations can
process personal data on local machines, so it does not need to be
stored on the blockchain. Therefore, off-chain computation can also
be seen as a suitable solution for achieving privacy. We will look into
off-chain computations and ZKPs in detail in Sections 7 and 8, where
we leverage them to achieve privacy.

Blockchain Analysis

In this thesis, we analyze the variety of decision-making DApps and
on-chain voting, independent of any specific use case or property. A se-
ries of papers explore blockchain data in terms of several other aspects,
including privacy [Bér+21; RH11], data storage [Mat+18; GMF22], and
smart contract metrics [Pin+19]. There is, moreover, model-based anal-
ysis on the security [KDF13] and scalability [Cro+16] of blockchains
available. Specifically for voting, Heiberg et al. [Hei+18] evaluate the
trade-offs of blockchain-based voting on a qualitative level. They dis-
cuss aspects such as complexity, costs, and scale, which go in a similar
direction as our paper. However, we will complement their discussion
with an empirical analysis and provide new insights, for example, on
the magnitude of on-chain voting. Methodologically similar to our
approach are [FFB19; RYM19; VL19; Pin+19]. Victor and Liiders [VL19]
inspect the Ethereum blockchain for token implementations, which
are managed by the ERC-20 [@VB15] smart contract template. While
EIP-1202 [@ZEX18] proposes a similar standard for voting smart con-
tracts, it is not as established as the ERC-20 compatible token standards
are. Frowis, Fuchs, and Bohme [FFB19] search for token-related be-
havior with symbolic execution analysis techniques and compare the
effectiveness of both methodologies. The diversity of voting schemes,
features, and privacy mechanisms make it more difficult to identify vot-
ing smart contracts by their EVM bytecode. In contrast to automated
smart contract inspection, the authors of [RYM19; Pin+19] present
approaches that are based on manually collected exchange listings
and corresponding source code publications on CoinMarketCap® and
Etherscan.

3 https:/ /coinmarketcap.com

16

https://coinmarketcap.com

DAPP ANALYSIS

Blockchain P2P Network Google Cloud Data Analysis

o de » \ SQL Query ﬂ
E _—
o . Result

A Node 3 Monitoring BigQuery User

Node

Node 2
Figure 4. Data analysis infrastructure with Google BigQuery.

In this chapter, we scan the Ethereum Mainnet to analyze its key met-
rics in order to show its relevance. Therefore, we present background
knowledge and related work to analyze the blockchain and related
data, such as historical exchange rates. In the following chapter, we use
this knowledge to specifically analyze decision-making DApps on the
Ethereum Mainnet.

Blockchain data can be analyzed in several ways. A fully synchro-
nized blockchain client downloads and verifies all block data, so it can
be used for data analysis right away. Unfortunately, most blockchain
client implementations are so optimized for their cryptocurrency use
case that efficient data analysis becomes very difficult. For example,
most blockchain clients do not need to maintain database indexes to
quickly access arbitrary historical data. This makes accessing and an-
alyzing the data very slow and requires a lot of memory. Therefore,
blockchain clients can download block data and export it to a more
powerful database via an extract, transform, load (ETL) pipeline. By
doing so, it is possible to insert block data, transactions, etc. into a
relational database (RDB). The data can then be easily managed and
analyzed using SQL queries.

Therefore, the Ethereum ETL* project provides an automated process
to convert the Ethereum blockchain into CSV files that can be im-
ported into an RDB. Unfortunately, inserting entire blockchains into a
database requires a lot of storage, and analyzing them still requires a lot
of memory as well. For comparison, the Ethereum client Geth required
approximately 1 TB of storage in May 2023. Fortunately, there are data
warehouse platforms that already synchronize the current blockchain
into an RDB and provide read-only access to their customers. For
example, Google Cloud BigQuery® provides access to multiple syn-

4 https:/ /github.com/blockchain-etl/ethereum-etl (Accessed: 2023-06-08)
5 https://console.cloud.google.com/bigquery

17

https://github.com/blockchain-etl/ethereum-etl
https://console.cloud.google.com/bigquery

3.1 KEY METRICS OF ETHEREUM

—m— Smart Contract Deployments .

15000k |- | —®— Unique Smart Contracts Deplymts. 1 300k g

€ 10000k | {200k =

> [

g 5
[0]

o 5000k - <1100k &

g

c

>

0+ -0

| | | | | | | |
2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 5. The number of all new smart contract deployments and the number
of new smart contracts with unique EVM byte code on the Ethereum Mainnet
per year.

chronized blockchains, including Bitcoin [Nak08], Ethereum [Woo022],
Dash [@DD18], Dogecoin6, and others. As shown in Figure 4, Big-
Query uses a monitoring node that is synchronized with the current
state of the blockchain networks. Once blocks can be considered con-
firmed, the latest blocks, transactions, receipts, smart contracts, and
other blockchain data are inserted into public, read-only RDB tables.
Users can then use SQL queries to analyze the blockchains without
worrying about any computational requirements. BigQuery therefore
orchestrates powerful server resources in the background, which are
charged according to the amount of data processed. In addition, more
blockchain-specific data analytics platforms, such as Etherscan’, have
emerged. Such platforms analyze transactions and enrich the raw data
with insights from source codes, exchanges, and user inputs.

In this thesis, we use the different approaches to gain insights into
the blockchain, especially for decision-making use cases (as shown in
Chapter 4). We thus combine multiple sources for an extensive data
analysis pipeline. We specifically focus on Ethereum, but we will also
look at other blockchains for comparison where relevant. However, in
the following, we first analyze general blockchain and smart contract
metrics to highlight the overall relevance of DApps.

3.1 KEY METRICS OF ETHEREUM
Deployments

To get an overview of past demand, we analyzed the number of smart
contract deployments on the Ethereum Mainnet. Figure 5 shows the
number of all smart contract deployments by year. Therefore, we identi-
fied the date of all successful smart contract deployments and summed
them by year. Since one and the same smart contract implementation

6 https://dogecoin.com
7 https://etherscan.io

18

https://dogecoin.com
https://etherscan.io

3.1 KEY METRICS OF ETHEREUM

I I I I I
30 [| _m— Smart Contract Balances in Ether 1100
—e— Smart Contract Balances in USD
2 20| 3
i D
5 -1 50 é
s o
= 10|
-0

| | | | | | | |
2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 6. The balance of all smart contracts on the Ethereum Mainnet per year
in Ether and USD. The exchange rate between both balances corresponds to
the median of all exchange rates of the year [@Eth23].

can be deployed multiple times, we also summed all smart contract
deployments with unique EVM byte codes. While the number of de-
ployments increased from 2015 to 2020, it has steadily decreased since
then. In contrast, the number of smart contracts with unique byte codes
also increased until 2018, temporarily decreased for one year, and then
actually reached an all-time high in 2022. In both cases, we see a consis-
tent high demand and popularity for smart contracts on the Ethereum
Mainnet. This could be due to the high demand for crypto tokens
implemented in smart contracts, and the declining popularity of the
native Ether cryptocurrency.

Funds

Similar to the number of deployments, we use the balances of smart
contracts to get an overview of their past demand and relevance. For
this purpose, we analyzed the balances of all smart contracts per year,
as shown in Figure 6. To this end, the balance does not belong to a user’s
Ethereum account, but is completely managed by a smart contract. To
better understand the funds, we also determined the median exchange
rate of Ether to USD for each year. While both metrics show a moderate
increase from 2015-2020, smart contract balances increased significantly
in 2021. In 2022, the value of Ether decreased, and therefore the smart
contract balances in USD, but the balances in Ether remained constant.
Although the exchange rate of USD/Ether is basically regulated by
supply and demand, the introduction of EIP-1559 and the switch from
PoW to PoS could be a reason for less interest in Ether. Therefore, we
provide a more detailed analysis of the exchange rate in the following.

19

3.1 KEY METRICS OF ETHEREUM

EIP-1559 PoS

1 1

1 1

- Gas Price (Median) ' '

- 1.5 | | —— USD/Ether Exchange Rate (Median) ! ! - 4000

o —
. f : g
g 1 . : -
5 : 12000 &
o 1)
g 0.5 I‘ ‘ . a8

’ s

1

ol wliliTll || |“|" -0

2015-08
2016-01
2017-01
2018-01
2019-01
2020-01
2021-01
2022-01
2022-12

Figure 7. Median Gas price in Gwei per Gas and the median exchange rate
from Ether to USD [@Eth23], grouped by month. The dashed lines indicate
when the Ethereum Mainnet implemented EIP-1559 and PoS, respectively.

Transaction Fees

Analyzing the fluctuations in Gas prices and USD/Ether exchange rates
provides valuable insights into the relevance of Ethereum and the de-
ployed smart contracts over time. Figure 7 therefore shows the median
of both metrics per month since Ethereum’s launch. While technical ad-
justments and advancements lead to decreasing Gas prices at first, the
interest in Ethereum started to increase by the beginning of 2018. In fact,
Ethereum has since made numerous protocol changes to revise Gas
costs for various EVM commands [@Butl6; @Akh+19; @BS20]. Most
notably, EIP-1559 [@But+19] changed not only how Gas charges are
calculated, but how they are charged to the transaction sender, as de-
scribed in Chapter 2.3. However, this peak in 2018 is primarily a result
of the sudden success of the blockchain game CryptoKitties [SSH21].

Since 2020, Ethereum also experienced increased traffic due to var-
ious other events. On the one hand, this led to a rise in demand and
traffic, resulting in an increase in the USD/Ether exchange rate. On the
other hand, the increasing value of Ether made smart contracts more
relevant as they managed more valuable assets. Also since 2020, we
can see the increasing interest in Defi DApps and tokens. Especially
the trend of non-fungible tokens (NFT) brought a lot of attention to
Ethereum. However, we can expect this trend to end soon, like other
hype-based trends before.

In addition, in 2021, the introduction of EIP-1559 and the shift from
PoW to PoS have noticeably affected Gas prices and the value of Ether.
Nonetheless, it is important to note that the prices are largely influenced
by investment and speculation, and may not accurately reflect technical
advancements.

20

3.2 RELEVANCE AND TRENDS OF BLOCKCHAIN-BASED DAPPS

3.2 RELEVANCE AND TRENDS OF BLOCKCHAIN-BASED DAPPS

In conclusion, since its launch in 2015, Ethereum has seen a steady
increase in interest, both from a technical perspective and in the value
of its cryptocurrency, Ether. In particular, there have been several sig-
nificant events that have pushed the network to its limits, including
CryptoKitties in 2018 [SSH21], Defi since 2020 [BCL21; Ten+22], and
NFTs since 2021 [WMP22]. It is important to note that miners have
also entered the investment business in an eager attempt to earn Ether
through block rewards and maximize transaction fees. Fortunately,
as we can see with both metrics in Figure 7, EIP-1559 has prevented
this trend from continuing since the end of 2022, and the hype around
blockchains can also be considered to have subsided since then.

However, we have not specifically addressed decision-making
DApps and their relevance in our analysis. It is important to note
that decision-making DApps handle significant amounts of monetary
assets as well, although they have not yet caused a significant surge in
Ethereum. Therefore, in the following chapter, we are going to focus
specifically on analyzing decision-making DApps.

21

DECISION-MAKING DAPPS

In general, smart contracts offer transparency, trust, verifiability, and au-
tomated execution, making them an attractive option for implementing
blockchain-based voting [KV18; Hei+18; Hja+18] as everyone can ver-
ify the correct execution. As a result, decentralized governance DApps
have emerged that leverage smart contracts to implement decision-
making processes. Against this background, numerous decentralized
governance platforms have arisen with decision-making processes,
such as proposal-based voting by majority or stakes. In this chapter,
we therefore build an analysis pipeline to empirically identify decision-
making DApps and investigate the most relevant DApps based on the
number of interactions, i.e., votes and their funding.

To that end, we first develop an analysis pipeline to reveal decision-
making smart contracts on the Ethereum blockchain and present an
overview of key metrics, which emphasize the relevance of on-chain
voting. Second, we assess the technical limitations of on-chain voting
with a model-based comparison of blockchain specifications as well
as an analysis using historic block data. More specifically, we evaluate
the DApps voting capabilities in small-scale and large-scale scenarios.
We additionally give an outlook on other relevant blockchains with
on-chain voting, i.e., Bitcoin and Dash.

Permissionless blockchains like Ethereum [Wo022] inherently allow
anyone to verify all blockchain transactions. Therefore, DApps run-
ning on Ethereum allow anyone to verify that a vote was stored and
counted correctly in a transaction. It has been, however, shown and
argued that blockchain-based voting has fundamental issues [Hei+18;
Par+21], including security [SKW20; Nat18] and privacy [HHK18]
problems. While blockchain-based online voting certainly polarizes,
on-chain voting is still being used for reasons such as the decentralized
governance of funds. Most prominently, decentralized autonomous
organizations, e.g., The DAO [@]en16], allow fundraising and enable
stakeholders to manage the distribution of funds with on-chain voting.
Smart contracts render the decision-making process transparent and
self enforcing. Since its debut in 2016, The DAO raised approximately
150 million USD, but at the same time lost about 60 million USD due
to an exploit [ABC17]. While we distance ourselves from the idea of
blockchain-based online e-voting, e.g., for official elections, we argue
that on-chain voting still requires attention and further research.

We show the relevance of on-chain voting and derive limitations
in terms of scalability and transaction costs. To this end, we scan the
Ethereum Mainnet for smart contracts with voting functionality and

22

This chapter is based
on joint work
published in [MT21]
by Robert Muth and
Florian Tschorsch.
“Empirical Analysis
of On-chain Voting
with Smart
Contracts.” In:
Financial
Cryptography
Workshop on
Trusted Smart
Contracts.

Vol. 12676. Lecture
Notes in Computer
Science. Springer,
2021, pp. 397412

4.1 EMPIRICAL ANALYSIS

Pre-Processing Analysis Source

’ EIP-1202 Interface

SQL

’ 4byte.directory Sig-Hashes | Jupyter [votings Transactions | Ethereum
Notebook Mainnet
GitHub Voting Method BigQuery/
Source Codes Signatures Ethereum ETL

Figure 8. Our blockchain-based voting analysis toolchain with a Jupyter
Notebook and BigQuery (or another Ethereum ETL pipeline) based on given
pre-processed method signatures.

analyze their usage with respect to submitted votes, Gas costs, and
fundings. In order to understand the scalability potential of on-chain
voting, we analyze past residual blockchain capacities of Ethereum and
evaluate the feasibility of small and large-scale votings. We also look
beyond Ethereum and discuss other leading blockchains, including
Bitcoin [Nak08] and the governance network of Dash [@DD18]. We
provide a publicly available repository with the collected data sets and
our analysis pipeline. Our presented database driven analysis approach
is compatible with Google BigQuery and therefore does not require
any advanced setup.

4.1 EMPIRICAL ANALYSIS

In this section, we reveal the magnitude of on-chain voting in Ethereum.

We are particularly interested in the diversity of voting smart contracts
with respect to cost and fundings.

Toolchain and Methodology

As described in Chapter 3, there are different technical approaches
that can be used to receive historical blockchain data and analyze it in
more detail. Typically, analyzing blockchains requires a synchronized
node with all valid transactions. With Geth, the Ethereum foundation
provides such a node, which has been optimized to save computational
resources and memory. As it turns out, the very data-efficient data
structures make it difficult to quickly analyze historic data; especially
for our smart contract analytics requirements.

For this reason, we use Google BigQuery as a source for Ethereum
Mainnet transactions instead. As shown in Figure 8, we use BigQuery
as data source and to execute complex SQL queries for analysis. We
additionally develop a Jupyter Notebook, which manages the analysis
process, i.e., preparing input data from pre-processing, compiling SQL
statements, monitoring the execution, and preparing the results.

While smart contracts are generally stored publicly on the Ethereum

blockchain, only the compiled bytecode, i.e., EVM code, is available.

23

4.1 EMPIRICAL ANALYSIS

Similar to high-level programming languages, the original source code
compiles to an assembly-like language. To this end, compilers remove
comments and substitute identifiers, which render the bytecode dif-
ficult to understand without the original source code. In addition,
method signatures of smart contracts, i.e., method name and parameter
list, are represented by a hash pointer. More specifically, the first for
4 bytes of a method signature’s Keccak (basically SHA-3) hash value
are used to point to the respective stack code position. Since Keccak
is a cryptographic hash function, it is not possible to infer the method
signature from the hash value directly. Hence, it is neither straight
forward to search for a certain type of smart contract nor for a partial
method signature.

In order to analyze the Ethereum blockchain, we search for hash
values of method signatures that are usually part of voting smart con-
tracts. As shown in Figure 8 as part of the pre-processing, we collect
the hashed method signatures of the EIP-1202 voting interface, which
provides a standardized set of methods for voting. In addition, we
use the Ethereum Function Signature Database®, which provides a
list of method signatures and their corresponding hash values based
on known smart contract source codes and user submissions. We use
the database’s RESTful API to search for methods containing ‘vote’,
‘voting’, or ‘ballot’. As a result, we get a list of method signature and
hash value tuples, which are related to voting. We use these tuples
to retrieve the smart contracts that actually implement the respective
method. Finally, we analyze the source code of the DAO smart contract
on GitHub for identifying transactions to the original instance and
deployed copies with them same interface methods.

Inevitably, the approach can lead to some positives as well as
false negatives. For example, generic method signatures lead to mis-
classification of some smart contracts, e.g., setStatus (...) of the
EIP-1202 or dropVotes (...). We also encounter hash collisions
that indicate voting methods in a smart contract, but upon closer
inspection do not belong to voting. For example, the method sig-
natures voting_var (address,uint256,int128,int128) and
totalSupply () share the same hash value 0x18160ddd and lead to
false-positives. In an attempt of manual inspection, we exclude these
instances from our analysis. In order to prioritize precision (over sensi-
tivity), we consider smart contracts that implement at least two method
signatures related to voting only. However, since the bytecode in the
blockchain remains a black box, we cannot completely exclude false
classifications.

The described methodology enables analyses of Ethereum smart con-
tracts in general and can be used to reveal multitudes in the blockchain.
We used it to analyze voting smart contracts with respect to scale and
Gas cost in general and the interaction with these contracts in particu-

8 https:/ /4byte.directory

24

https://4byte.directory

4.1 EMPIRICAL ANALYSIS 25

Calls Hash Signature Avg. Gas Avg. Gas Price
1 80682 0x0121b93f vote (uint256) 210k 2.4 Gwei
2 7694 0x15373e3d castVote (uint256,bool) 87k 42.9 Gwei
3 7120 O0xb384abef vote(uint256,uint256) 56k 29.8 Gwei
4 6420 0xfc36el5b vote(string) 449Kk 3.2 Gwei
5 4534 0xddb6ell6 vote(uintl6) 77k 3.7 Gwei
6 4283 0x3850£f804 castVote (uint256, ¢« 239k 46.8 Gwei
uint256[],uint256,uint256)
7 2934 0Ox6cbf9cbe commitVote (uint256, <« 642k 4.1 Gwei
bytes32,uint256,uint256)
8 2624 0x5e8254ea commitVoteOnProposal (< 204k 7.0Gwei
bytes32,uint8,bytes32)
9 2161 0x9efl204c vote(bytes32,uint256) 283k 9.6 Gwei
10 2124 0xcff9293a vote (uint32,uint32) 107k 12.1 Gwei

Table 1. Top ten voting methods with respect to their number of calls.

lar. We inspected the Ethereum blockchain for the timespan between
October 16, 2017 and December 31, 2022. Moreover, we developed a
Jupyter Notebook® which connects to BigQuery, our own local data
records (e.g., historical exchange rates), and other external data sources.
A data dump of the following results, the implementation to gather the
data set independently, and our full analysis pipeline to reproduce the
results is publicly available on GitHub.!°

Implementation Complexity

In total, we found 1472 relevant method signatures related to voting,
which are implemented in 3 512 smart contracts. Overall, 168 758 086
transactions interacted with these smart contracts and called 140396
times one of the voting methods. After data cleaning, 3512 voting
smart contracts remained and are subject of the following analysis.

In Table 1, we show the ten most often called voting methods and
their average consumed Gas. None of the deployed voting smart con-
tracts implemented EIP-1202 [@ZEX18] completely, but only a subset
of its standardized method signatures. While most of the method signa-
tures in Table 1 are not surprising, methods 7 and 8 lead us to expect a
commit-and-reveal voting scheme, where voters submit their votes cryp-
tographically concealed, e.g., by using a hash function, and reveal their
individual votes later with another transaction. Since such a scheme is
more complex, it typically requires more Gas.

Method signatures with more than one parameter mostly belong to
smart contracts that conduct multiple votings and allow to specify a
proposal. For example, most calls with method signature 9 belong to a
DAO smart contract that conducts multiple votings, where the byte32

9 https://colab.research.google.com/drive/1r9VxRHurM0PaZkf7vNElvvTisAILOmVC
10 https://github.com/robmuth/blockchain-voting-analysis/tree/dissertation

https://colab.research.google.com/drive/1r9VxRHurM0PaZkf7vNElvvTisAlL0mVC
https://github.com/robmuth/blockchain-voting-analysis/tree/dissertation

4.1 EMPIRICAL ANALYSIS

I Voting method calls | |

109

Vote Method Calls
(Logarithmic Scale)

D~
i
i
i
=
om
i N
4 1o
10 B~
[ee)
B
102 |- EE 1
o N2
O P DN @mmo\ooo D~ -
O™ NN N A
100 | i ERllAelmml 22— |

Maximum Gas - 108

Figure 9. Complexity of voting methods (measured in Gas) in comparison to
the number of calls (in total 115407 calls).

Funds in Ether

Smart Contract Received Balance

1 N/A (Congress Contract) 5030 4979 ($ 8360k)
0x3de0c040705d50d62d1c36bdelccbad20606515a

2 HONG / hongcoin 3936 1004 ($ 1686k)
0x9fa8fa6lal0ff892e4d4ebceb7f4e0fc684c2celald

3 The DAO 12456 352 43 ($72k)
0xbb9%bc244d798123fde783fcclc72d3bb8c189413

4 Unicorn Token (Congress Contract) 5924 32 ($52k)

0xfb6916095caldf60bb79ce92ce3ea’74c37¢c5d359

Table 2. Top four smart contracts with respect to their funds.

parameter references the proposal and the uint 256 parameter encodes
the user’s choice.

In Figure 9, we compare the complexity of voting methods to the
number of method calls. The required Gas (on the x axis) is an indicator
of the computational complexity. We grouped Gas values in buckets
of 100 - 10* Gas. The consumed Gas ranges from 18 120 Gas to a max-
imum of 4590 068 Gas with an average of 84419 Gas. The figure also
shows that most voting method calls consume between 100 000 and
300000 Gas (mind the log scale).

Acquired Funds

Many smart contracts combine voting with fund management in one
way or another. In Table 2, we therefore show the four most used voting
smart contracts in terms of their funds. We distinguish between the
total funds received and their current balance (as of December 31, 2023).
For example, the Unicorn Token uses the Ethereum Foundation DAO
Congress contract, which allows members to deposit Ether and submit
proposals for funding; other members can then vote on whether the

26

4.1 EMPIRICAL ANALYSIS

I Received
T 108 | I1 Balance ||
8
»
g 10 1
g
®
5/7 102 - |
100 1
T T T T T T T
0 50 100 150 200 250 300

Found Voting Smart Contract Instance

Figure 10. Received and current balance of Ether per voting smart contract,
limited to 300 of 3454 smart contracts in total (as of 2022-12-31).

T T T T T
280000 —m— Deployed voting contracts 14 %
» 240000 —e— Transactions to contracts 600 g
T c
S 200000 |- 11200 3
S 160000 |- s T
ko) | £
< 120000 1 400 (g
% 80000 |- 8
> 40000 | 1200 2
or | | | | | | | | 10 °

2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 11. Number of newly deployed voting smart contracts and transactions
to them by year (2015-09-06 —2022-12-31).

proposal is accepted. After the voting period ends and a pre-defined
quorum has accepted the proposal, the Ether is automatically trans-
ferred to the proposer.

In Figure 10, we show the distribution of funds (limited to 300 of 3 454
voting smart contracts which have received Ether). We can clearly ob-
serve a long tail distribution (log scale). However, many of the orig-
inally acquired funds are already withdrawn. From all of the funds
received, 0.03 % are still deposited. All analyzed voting smart contracts
together have a balance of more than 6 307 Ether, which equals approx-
imately 10.59 million USD.!! The amount of acquired funds can be
considered as an indicator for the relevance of on-chain voting.

Trend

In order to get an understanding of the trend, we analyze the transac-
tions as a time series over the last eight years since Ethereum’s release
in 2015. We particularly focus on the interest and relevance of votings
in Ethereum over time.

11 Median exchange rate in 2022 was 1679 USD [@Eth23]

Ether

27

4.1 EMPIRICAL ANALYSIS

I I
109 - —m— Deposits R
< —e— Withdrawals
3 6 - - - Balance (cumulative)
%] I .
50 10
£ E
S
S 103 |)
(o)
S
100 |]

| | | | | | | |
2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 12. Ether deposits to and withdrawals from voting smart contracts and
corresponding balances of voting smart contracts per year (2015-09-06 —2022-
12-31).

In Figure 11, we show the number of voting method calls (left y
axis) as well as the number of deployed smart contracts related to
voting (right y axis). Once deployed, smart contracts remain active
and are not counted again in the following years, i.e., the figure shows
the deployment of new smart contracts. In addition, we analyzed the
deposits, withdrawals, and corresponding balances of each voting
smart contract over time, which are shown in Figure 12.

We generally observe that with the debut of the DAO [@]en16] in
2016, the number of smart contracts with voting functionalities as
well as the number of transactions that interact with voting contracts
increases with a peak in 2018. After 2018, we observe a decline of both
metrics. While the trend might suggest a decline in interest, the balances
remain stable over time. Upon closer examination, comparing Figure 10
and Figure 12, the total balance in 2022 is almost entirely contributed by
the top two voting contracts (with more than 1000 Ether). That is, while
the balances were previously spread across many smart contracts, we
can infer that the funds are more centralized now. We conclude that the
dynamics and interactions of voting smart contracts have decreased
over time, but on-chain voting is still relevant in terms of funding.

Summary

In our empirical analysis, we found 3512 deployed Ethereum smart
contracts related to voting, which held 6 243 Ether at the end of 2022,
or more than 10.48 million USD (using the median exchange rate of
2022). From these smart contracts, we identified 88 instances of the
DAO (deployed smart contracts that are based on the original DAO
source code), which in total received 5929 votes, so far. Over the past
years, voting smart contracts in general accumulated and processed
12094 377 Ether. Our analysis suggests a continuously high amount of
monetary investments in and interaction with voting smart contracts,
indicating a high popularity and relevance.

28

4.2 FEASIBILITY ANALYSIS

Avg. Block Generation Rate

E
~l
§ } Transactions
G
§ (Gas)
3 Block #1 Block #2 Block #3 Block #4
Time

Figure 13. Blockchain partially filled with transactions, leaving residual Gas.

4.2 FEASIBILITY ANALYSIS

In the following, we present a feasibility analysis of on-chain voting.
In particular, we analyze scalability limitations using a model-based
analysis as well as an empirical analysis based on historical blockchain
data.

Block Capacities

One of the central scalability parameters is the maximum number
of transactions per block interval, i.e., transaction throughput, which
ultimately limits the possible number of votes. Since the switch from
PoW to PoS, Ethereum has been aiming for a block generation rate
of 12 seconds [@RB20] and a block Gas limit of 15 million Gas, with
the flexibility to temporarily max it out to 30 million Gas [@But+19].
The notion of Gas was introduced to measure the total computational
complexity of transactions. Ethereum accordingly charges transaction
fees based on the transaction’s complexity. The sender of a transaction
sets a price in Ether, which determines the amount they are willing to
pay per computational unit, i.e., the Gas price.

Depending on the number of transactions per block and their com-
plexity, transactions might not make use of the available block Gas
limit and leave residual Gas. In Figure 13, we visualize the concept of
the Gas consumption and residual Gas. The residual Gas determines
the space for additional transactions on top of the baseline activities of
Ethereum. Later, we make use of the notion of residual Gas to evaluate
the feasibility and scale of on-chain voting.

Model-Based Scalability Analysis

Our analysis is based on overly optimistic model-based assumptions
to reveal upper limits, which allow us to make fundamental statements
about the (in)feasibility of on-chain voting. To do so, we start with a
number of votes u that we would like to cast. We are then interested
in the number of blocks 7 that are necessary to cast y votes. Given the
block generation rate, we can approximate the time it takes to mine

29

4.2 FEASIBILITY ANALYSIS

n blocks, which we denote with A. For a block i with a blockGasLimit (i)
and a certain gasCost per vote, we can calculate the maximum number
of votes per block by blockGasLimit (i) / gasCost.

Based on our blockchain analysis results from Section 4.1, we evalu-
ate two different scales of voting. Since our measurements show that
most voting methods were called between 2k-7k times, we consider
u = 2000 to be a small-scale voting, and y = 100000 to represent fu-
ture large-scale votings. Moreover, we introduce three on-chain voting
“schemes”, which are either overly simple or taken from our previous
analysis. Please note that these simple voting schemes are not meant to
facilitate general voting principles, e.g., anonymity and secrecy.

The naive voting provides different addresses, each representing a vot-
ing option. Voters can transfer coins to the respective address until the
voting ends, where the balances determine the final voting result. This
naive approach can basically be implemented in every cryptocurrency.
In Ethereum, the Gas costs are 21 000 Gas.

The minimal voting uses a smart contract for counting votes. To this
end, we implemented a synthetic voting smart contract that only con-
sists of a single method for counting votes (available in our GitHub
repository). We are aware, though, that the Solidity compiler does not
generate perfectly optimized bytecode. While an optimized voting
smart contract with a completely assembly-style built bytecode would
need less Gas, we consider the Solidity compiler the most prevalent
way to compile smart contract code. After deployment, the minimal
voting requires at least 41 897 Gas per method call.

For the purpose of more realistic statements, we also analyzed the
median Gas costs of votes to the DAO. To this end, we used our analysis
pipeline described in the previous section, which yields 150k Gas per
DAOQ voting call. As expected, this is more complex than our minimal
voting as it also manages funds and quorum regulations.

In Table 3, we show the minimum duration of small-scale and
large-scale votings for the various voting schemes (see “Model”
columns). For Ethereum, we assumed a block generation rate of 12 sec-
onds [@RB20] and two different block Gas limits w.r.t. EIP-1559: 12 - 10°
Gas and 30 - 10° Gas. For comparability, we also included the naive
voting for Bitcoin and Dash, which we will discuss later in Section 4.3.
Based on this initial evaluation, we can expect that small-scale on-chain
voting is generally feasible in reasonable bounds. At the same time,
with 12 million Gas, large-scale votings require under idealistic circum-
stances more than six hours for the naive voting scheme, or even about
51 h for the DAO voting smart contract. With 30 million Gas, it takes
about 30 minutes and 4 h, respectively.

30

4.2 FEASIBILITY ANALYSIS

Implementation Gas Blocks n Duration A
Limit Model Median MAD Model Median MAD
Ethereum Naive 12M 4 21 12 00:01 00:05 00:03
Ethereum Minimal Voting 12M 7 48 30 00:01 00:13 00:09
o Ethereum The DAO 12M 25 219 142 00:05 00:51 00:35
; Ethereum Naive 30M 2 2 0 00:01 00:01 00:00
r‘é Ethereum Minimal Voting 30M 3 6 1 00:01 00:01 00:01
9 Ethereum The DAO 30M 10 20 1 00:02 00:04 00:01
Bitcoin Naive — 1 4 3 00:10 00:45 00:45
Dash — 1 0 00:03 00:00 00:00
Ethereum Naive 12M 175 1533 1042 00:35 06:23 04:29
Ethereum Minimal Voting 12M 350 3447 2389 01:10 14:08 09:58
o Ethereum The DAO 12M 1250 13192 9105 04:10 50:45 34:43
g Ethereum Naive 30M 70 141 2 00:14 00:29 00:02
;‘j" Ethereum Minimal Voting 30M 140 285 3 00:28 01:02 00:04
~ Ethereum The DAO 30M 500 1025 3 01:40 03:49 00:07
Bitcoin Naive — 3 41 36 00:30 06:30 05:51
Dash — 10 10 0 00:25 00:21 00:05

Table 3. Required blocks n and duration A [HH:MM] for different voting
implementations; median and median absolute deviation (MAD) are based
on residual block capacities (monthly intervals between 2015-12-28 and 2022-
12-31).

Residual Capacities Analysis

In the following, we enrich our model-based evaluation with historic
blockchain data to determine the residual Gas limits in Ethereum. This
approach provides a more realistic assessment of limitations. More
specifically, we define residualGas(i) = blockGasLimit(i) — usedGas(i)
for a block i. Please note that in Ethereum the block Gas limit is
block specific and changed over time before the London fork (c.f. EIP-
1559 [@But+19]). Since after, the maximum block Gas limit is fixed to
30 - 10° Gas, however, the protocol’s aim is to target 15 - 10° Gas. The
residual Gas is therefore determined by the used Gas at a certain point
in time.

In Table 3, we show the median number of blocks n as well as the du-
ration A for historical data in addition to our model-based evaluation.
We calculated 7 and A starting with the last mined block of 2022-12-31
and repeated the process for each preceding month until the genesis
block of Ethereum (2015-07-30). In general, our measurements yield
values under the (unlikely) condition that all voters submit their votes
in a perfectly aligned and coordinated order. We use this approach to
provide an (optimistic) understanding for the minimum Gas needed to
deploy and cast a single vote. Since we repeated the evaluation multi-
ple times by shifting starting points in monthly intervals, we present
the median absolute deviation (MAD).

31

4.3 VOTING BEYOND ETHEREUM

The results show that simple small-scale and large-scale voting yield
reasonable performance with approx. 1-13 min or less for 2k votes, and
between 32 min—14 h for 100k votes (w.r.t. the different Gas limits due
to EIP-1559). The exception is the more complex DAO implementation,
which takes more than 4-50 hours (w.r.t. the Gas limits).

Economic Analysis

Since Gas cost can be directly translated to Ether, we can also esti-
mate the economic efficiency of on-chain voting. As a first impression,
we consider a median Gas price 2.4 GGV;? (SD = 55.78) for the 137435
voting method calls from our data set. We used an exchange rate of
1679.00 USD per Ether as before. Hence, we can approximate the price
of a vote for our minimal voting scheme that approximately yields
0.17 USD per vote. For more realistic Gas cost, i.e., the most called vot-
ing methods require between 100-200k Gas, our price approximation
ranges between 0.40 USD and 0.81 USD per vote.

Voting costs are a relevant factor for high reachability and inclu-
sive participation. While fees for casting a vote might serve as Sybil
protection, they might also deter voters. In general, fees set a higher
participation threshold. In order to maximize participation, transaction
costs should be as low as possible for submitting votes—or just not
be charged, at all. Unfortunately, smart contracts in Ethereum are not
able to pay the transaction fees for the senders, e.g., for calling chosen
voting methods. It is possible to implement smart contracts that refund
transaction fees within the same transaction, but it still requires voters
to own initial Ether for paying the transaction fee in advance. Voters
who do not own any Ether hence face a greater hurdle to participate.

Interestingly enough, we want to point out an approach that is able
to store and release Gas to cover some of the Gas costs itself. Projects
like the GasToken!? exploit Gas reserving opcodes (i.e., SSTORE and
CREATE/SELFDESTRUCT) for saving Gas when the Gas price is low
and releasing it when Gas is more expensive. Unfortunately, releasing
reserved Gas requires Gas itself. That is, the transaction costs can be re-
duced but not covered completely, which leaves us back to the original
problem that voters need an initial Ether fund. For enabling future-
oriented use cases that require broad involvement, e.g., participatory
budgeting or crowd funding, we believe new solutions are required to
open on-chain voting.

4.3 VOTING BEYOND ETHEREUM

In the following, we consider other well-established cryptocurrencies,
namely Bitcoin [Nak08] and Dash [@DD18], that can also be used for
voting.

12 https://github.com/projectchicago/gastoken (Accessed: 2023-06-07)

32

https://github.com/projectchicago/gastoken

4.3 VOTING BEYOND ETHEREUM

Bitcoin

There are several proposals for Bitcoin-based voting [Bis+17; ZC15;
TFH17]. Unfortunately, due do the lack of a full-fledged scripting lan-
guage, Bitcoin heavily relies on external infrastructure to conduct vot-
ings, making it difficult to inspect the blockchain and reliably extracting
information with respect to voting. While we have found indications
for on-chain voting, infrastructures have been shut down and there-
fore prevent analysis. However, it is worth mentioning that Bitcoin
miners implement voting functionality for governance directly in the
blockchain protocol to agree on improvement proposals [@Wui+21].

We can however assume that voting would have at least the same
transaction requirements (w.r.t. transaction size and cost) as transfer-
ring coins. On this basis, we analyze residual transaction capacities
of past blocks and derive the maximum of possible votes over that
time span. To this end, we need to consider the specifics and changes
of the segregated witness proposal [@LLW15], which tackles signature
malleability issues and therefore separates signature data from the
transaction’s hashes. As a result, the maximum block size is then lim-
ited by the notion of block weight, i.e., block weight < 4 -10°, which
corresponds approximately to a block size of 4 MB. A standard Bitcoin
transaction for transferring coins from one address to another (P2WSH)
with segregated witness requires a block weight of approximately 110
(median over all corresponding transactions until December 2022 with
a standard deviation of 0.070). Other parameters include a target block
generation rate of 10 minutes.

Evaluation

We analyzed Bitcoin for small-scale and large-scale scenarios with
minimal transaction weights, which corresponds to our naive voting
implementation. In addition to a model-based evaluation, we also in-
vestigated the residual block capacities. Table 3 shows the minimum
amount of blocks as well as the time span it would take to cast u votes.
We assumed a transaction weight of 110 per vote. While Ethereum
requires at least 1-5 minutes (w.r.t. the Gas limit), Bitcoin requires
45 minutes for small-scale votings. Please note that Bitcoin indicates
very high MAD for n and A. Hence, Bitcoin’s residual capacities fluctu-
ate significantly compared to Ethereum, which makes it more difficult
to make predictions. For large-scale voting, Bitcoin requires signifi-
cantly less blocks (due to the larger block size) and despite its slower
block generation rate is faster than Ethereum.

Dash Governance Platform Analysis

Dash [@DD18] was released in 2014, initially named Xcoin and later
Darkcoin. Dash does not support smart contracts in the same way as

33

4.3 VOTING BEYOND ETHEREUM 34

160000 [Proposals - 225
140000 | | o Votes -1 200
120000 <175
g 100000 | 1150
5 80000| |2 g
60000 - 175 o
40000 |- -1 50
20000 - 125
-0

| | | | | | | |
2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 14. Dash governance proposals and votes, by year (2015-08-27-
2022-12-31).

Ethereum, but instead implements its own governance mechanisms
directly into its protocols. During the mining process, new coins will be
split and distributed over three stakeholders: master nodes and miners
each receive 40 %, and the remaining 20 % go to Dash’s Decentralized
Governance by Blockchain (DGBB) funding platform. Master nodes
then can vote on public proposals for distributing the collected funds.

The Dash Governance Platform (DGP) is natively implemented in
Dash’s application protocols and can therefore be monitored by all
nodes that have joined the network (also at DashCentral'®). After a
pre-defined voting phase, the number of yes-votes minus the no-votes
must exceed 10 % of the total number of master nodes for a proposal to
pass. Otherwise, the proposal will be rejected.

Evaluation

We analyzed 702 proposals between 2015-08-27 and 2022-12-31. Dur-
ing that time, 532 proposals were funded. In Figure 14, we show the
total number of votes and the number of proposals per year. Dash’s
governance proposals started at the same year as the first voting smart
contracts with Ethereum in 2015. Dash shows an increase and peak
of newly created proposals and votings between 2016 and 2018, and
similar to Ethereum, a steady decrease of interest afterwards. Dash’s
number of proposals at the peak is approximately 8 times lower com-
pared to Ethereum (c.f. Figure 11). Note that the analysis of Dash is
more precise and does not suppress any false-positives, which means
that the difference to Ethereum is probably even higher. The number of
votes at peak times is approximately 1-3 times smaller, when compared
to Ethereum. All successful proposals collected 181767 DASH, which
equals approximately 20.90 million USD according to the correspond-
ing exchange rates at the time of funding.!* Even though the presented
votings were not conducted on-chain, the blockchain’s protocol auto-

13 https://dashcentral.org
14 https://coinmarketcap.com/currencies/dash/historical-data (Accessed: 2023-04-24)

https://dashcentral.org
https://coinmarketcap.com/currencies/dash/historical-data

4.4 RELEVANCE OF DECISION-MAKING DAPPS

matically pays out fundings with Dash’s cryptocurrency and therefore
supports the role of on-chain voting.

Additionally, we evaluated the residual capacities of Dash. While
Dash is based on Bitcoin, it does not support segregated witness and
aims for a block generation rate of 2.5 minutes with a maximum block
size of 2 MB. As shown in Table 3, Dash has a lower transaction load
than Bitcoin or Ethereum, which directly leads to high residual capac-
ities and therefore better performance for small-scale and large-scale
voting. Our measurements show even better results than our model
approximation, because the proof-of-work consensus generated new
blocks faster than expected. We would nevertheless expect higher du-
rations with the same general load, i.e., residual capacity, as in Bitcoin.

4.4 RELEVANCE OF DECISION-MAKING DAPPS

We have shown that decision-making DApps have become a relevant
use case in Ethereum, most often to collectively manage funds. To this
end, we presented our blockchain analysis toolchain, that we used
to identify and analyze voting smart contracts with respect to their
popularity, complexity, and funds. On the one hand, our benchmark
of transactions to voting smart contracts and their respective fundings
confirm a high relevance. On the other hand, we observed a trend of
centralization due to the popularity of DAO contracts.

We further used these insights to assess the feasibility of future
large-scale voting on blockchains. Therefore, we also evaluated other
well-established blockchains, i.e., Bitcoin and Dash. While small-scale
voting scenarios seem feasible on all analyzed blockchains, large-scale
voting suffers from severe scalability issues. Although our model-based
calculations indicate that large-scale votings can theoretically be con-
ducted in reasonable time under perfect conditions, our measurements
on well-established public blockchains show that minimum durations
increase significantly due to the limited transaction throughput.

Despite all the shortcomings of blockchain-based voting, we have
shown that on-chain voting is especially relevant for decision-making
use cases.

35

PartII

DECISION-MAKING FOR URBAN
PARTICIPATION

BBBLOCKCHAIN

In this chapter, we present BBBlockchain, a decision-making DApp for
urban participation. The aim of this DApp is to improve transparency,
trust, and participation in urban planning processes. To this end, we
leverage blockchain technologies for urban participation projects to
prevent monopolistic control over information, and public decision-
making. We therefore identify and develop several blockchain-based
use cases to complement current participation processes. The use cases
include secure timestamping and document management, open dis-
cussion and social media integration, surveys and voting, and the
integration of blockchain tokens. With these use cases, we address
the different levels of participation [Arn69; @IAP14], ranging from
information and consultation to decision-making and empowerment
of citizens.

We therefore build BBBlockchain as an Ethereum DApp. We opt for
a permissionless design approach to make decision-making processes
transparent, accountable, and trusted. The deployed smart contracts
instantiate our use cases and allow users to interact directly with their
functions, e.g., to submit a vote. For user convenience and overall better
usability, we implement a web-based frontend so that a wide range of
non-technical experienced to blockchain experts can use the DApp. In
particular, we are looking for solutions to make the DApp available on
as many devices as possible, such as desktop computers and mobile
devices.

During the design phase of the BBBlockchain use cases, we identify
suitable blockchain features to improve participation processes. As
the complexity of blockchain features grows, so does the complexity
of the implementation. Hence, we are identifying potential technical
barriers that cause difficulties for non-blockchain experts to use the
BBBlockchain DApp as well. On the one hand, we therefore develop
visualizations and user interface concepts so that the DApp can be used
by as many people as possible. On the other hand, we take measures to
minimize the technical requirements for the users. For example, we can-
not expect BBBlockchain users to host their own wallet to participate.
However, to preserve the principles and fundamentals of blockchains,
it must remain possible to participate with a personal wallet, if one
already posesses one.

In this thesis, we envision BBBlockchain as a DApp to explore the
current state of the art, gain experience deploying the DApp in a non-
technical users” environment, and gain insights at a fundamental level.
As part of our research project, BBBlockchain is being deployed in two

37

This chapter is based
on joint work
published

in [Mut+19] by
Robert Muth,
Kerstin Eisenhut,
Jochen Rabe, and
Florian Tschorsch.
“BBBlockchain:
Blockchain-Based
Participation in
Urban
Development.” In:
International
Conference on
eScience. IEEE,
2019, pp. 321-330,
and in [Mut+22b] by
Robert Muth,
Beatrice Ietto,
Kerstin Eisenhut,
Jochen Rabe, and
Florian Tschorsch.
“Lessons Learned:
Transparency in
Urban Participation
Utilizing
Blockchains.” In:
Eurasian Studies in
Business and
Economics. In
publication.
Springer, 2022

5.1 CITIZEN PARTICIPATION PROCESSES

real-world pilot projects in Berlin, Germany. We therefore implement
the use cases for informing and consulting citizens. With the deploy-
ment, we analyze the DApp development phases and actual usage to
identify missing blockchain capabilities related to on-chain abilities
and privacy. In particular, establishing secure communication channels
to enable communication between participants, anonymous voting,
and anonymous authentication for reliable voting.

We first introduce the basics of civic participation processes and the
role of civic technology in urban participation in Section 5.1. Next, in
Section 5.2, we explore the potential of a blockchain-based participation
and propose various blockchain use cases. In Section 5.3, we introduce
the initial BBBlockchain DApp architecture and infrastructure for the
pilot deployment. Finally, in Section 5.4, we summarize our findings for
the BBBlockchain deployment and identify technical limits to improve
decision-making DApps in general.

5.1 CITIZEN PARTICIPATION PROCESSES
Motivation

In the context of urban planning, citizen participation processes have
always been considered an important element to improve democracy,
and in several countries, including Germany, they are enforced by
legislation [Amn06]. Today, citizen participation has become institu-
tionalized and implemented through structured methods as part of
the organizational logic of government [MK12]. In practice, however,
planning processes are mostly influenced by corporate and political
actors whose interests differ greatly from the democratic values of
participatory planning [Arn69]. Mistrust and the image of corruption
have therefore become the default perception of citizens of urban de-
velopment projects [WTC19].

The lack of trust among stakeholders has led to the need for more
transparency [PA19; GW12]. Historically, transparency has been dif-
ficult to achieve because of the indecisiveness of public officials, the
lack of clear mechanisms for establishing transparency, and the costs
involved [BC11; GM13]. When government procedures, policies, and
plans are made transparent, citizens can more easily detect improper
behavior and government officials can be held accountable for their
actions [WD13]. Historically, public participation in urban planning
has taken many forms, including dialogue meetings, opinion surveys,
panels, consultations, open labs, and so on [Whi96]. While these meth-
ods can be fruitful for gathering public opinion, previous research has
shown that they suffer from limited transparency, as they tend to limit
the expression of conflicting opinions, hide power imbalances, and
maintain the status quo [Whi%; AH12].

38

5.1 CITIZEN PARTICIPATION PROCESSES

A
5. Empowerment e Participatory Budget

.. g
4. Collaborate e Crowd Funding %
P I =
S . £
g. 3. Involve e Voting @
| 5
[$]
2. Consult e Feedback e Survey g
.. o

1. Inform e Timestamping e Document Management

IAP2 BBBlockchain Use Cases

Figure 15. Levels of participation according to the IAP2 spectrum of public
participation compared to our use cases.

Digitalization alone offers new opportunities to transform urban
participation processes. There is a growing number of so-called civic
tech platforms that provide online participation tools and attempt
to improve cooperation between citizens and government institu-
tions. However, previous studies have shown that current online tools
have processes that are similar to more established participation pro-
cesses [KL14; Ran+19]. Therefore, accountable outcomes are still lack-
ing.

Urban planning therefore requires citizen participation and trust-
worthy decision-making processes, especially as cities undergo rapid
change, such as accelerating urbanization, demographic and climate
change, and the increasing digitalization of cities. Collaboration on
a trusted decision-making platform is essential to ensure participa-
tion and inclusivity. Yet existing formal participation processes, while
valuable, often lack trust. We therefore envision a DApp for civic partic-
ipation processes that can mediate between stakeholders and overcome
the underlying problems, leveraging blockchain technologies. To this
end, we draw on well-established research in the field of civic partici-
pation, such as the ladder of participation [Arn69].

Levels of Participation

Civic participation is important in urban development, but the level
and quality of participation varies. Nevertheless, civic participation
has gained significant importance in urban development over the
past decade. In 1969, Arnstein introduced the ladder of participa-
tion [Arn69], arguing for increased involvement of the civil society in
decision-making, so that participation is meaningful and produces real
impact beyond mere pro-forma processes controlled by planners. Since
then, the ladder of participation [Arn69] has remained a valid bench-
mark for meaningful civil society involvement in decision-making.
In particular, participation is key to the successful implementation of
development plans, as this depends on the degree to which citizens ac-

39

5.1 CITIZEN PARTICIPATION PROCESSES

cept the plans [Ryd11]. This means that the successful implementation
of development plans depends on the acceptance of the plans by the
citizens.

In addition, the IAP2 spectrum [@]AP14], an international standard
for participation processes, outlines similar levels of public partic-
ipation in decision-making. It starts with one-way communication,
then moves to public consultation, stakeholder dialogue, government-
citizen collaboration, and finally public empowerment. Our research
also builds on this model.

Transparency and Accountability

Transparency and accountability are essential for successful urban par-
ticipation. Citizens need to know and trust the information provided
about changes, underlying causes, and future developments of ongoing
construction projects. In Germany, the right to information is a demo-
cratic right [Bun17], but transparency and accountability depend on
relationships between stakeholders. The success of these relationships
depends on how well these two concepts are achieved. Many cities cur-
rently aim to capture and channel these relationships in participation
guidelines [Hab15; @Deg+17].

Decision-Making and Empowerment

The basic concept of participation is the balance and distribution of
power. Public participation in urban development is essential for cit-
izens to shape their living environment, as well. Currently, power is
often delegated to elected officials, but some cities are promoting direct
democracy through innovations like participatory budgeting [Cab17].
Digital technologies, like blockchain, offer new alternatives for decision-
making and promote transparency and accountability. In particular,
and one of the key functions of a blockchain is to act as a neutral inter-
mediary. Thus, the full potential of this technology lies in providing
new alternatives for decision-making.

Civic Technology

The concept of using digital tools for local participatory processes
has been around for some time and is commonly referred to as civic
technology. Recent literature supports the idea of civic technology as a
movement, with citizens driving its development for technology-based
participation [Rum15; @Hen+16]. It combines a startup mindset with
civic participation, leveraging the wave of technology startups disrupt-
ing various industries. However, civic technologies have a focus on
social impact that goes beyond profit-driven motivation. Their ultimate
goal is to change the way our society interacts, ultimately reinventing

40

5.1 CITIZEN PARTICIPATION PROCESSES

current methods of governance. More specifically, civic technology soft-
ens boundaries by enabling “government from the outside” [DM]18].

Researchers have emphasized the importance of active citizenship
and involvement in decision-making processes through participatory
democracy and discourse [Bar(03; Dry02]. Civic technology studies
have shown that digital planning has the potential to remove barriers
and create accessible and ongoing engagement processes [WTC19]. For
example, there are related platforms, most notably Adhocracy [@Liq23],
that map participatory processes in an online format.

Most digital tools for urban planning participation follow traditional
(centralized) formats, ignoring the potential of technology to simplify
the process. The authors of [Sal+19] on civic technology reviewed
35 case studies and discovered that communication was primarily
one-way. Utilizing digital tools, yet, does not always result in account-
able decision-making. The use of digital tools does not always lead
to accountable decision-making. The transformative power of civic
technology is inherent because it is primarily bottom-up, however,
government commitment is still crucial for successful digital participa-
tion [Sal+19]. Furthermore, citizens are more motivated to participate
when they feel their input will have an impact. Unfortunately, current
online participation platforms are centrally controlled, leading to trust
and transparency issues.

Blockchain-Based Civic Technology

More recently, a growing body of research has argued that blockchain
can provide new opportunities to make government more transparent,
especially in situations where government decisions are likely to be
lengthy and controversial [Zhe+18; Swal8]. Blockchains ensure data
integrity and make stored data immutable, resulting in the ability to
track changes, which in turn supports initiatives to prevent (secret)
data manipulation. The permanence of data records also allows citizens
to better understand and monitor government decisions [Cen+21].
One platform employing blockchain technology is Social
Coin [@The20], which has been implemented in Barcelona, Spain. The
project explores ways to use blockchain tokens to incentivize citizens’
participation by handing out tokens that can be used for payment
in local shops. Another example is MiVote [@MiV18], a US-based
voting platform which is also based on blockchain technology. Instead
of voting for a party or representatives, MiVote aims for voting on
individual issues. While our concept can be compared to other civic
technology applications, the use of blockchain (and its principles)
is the key differentiator. Similar to the Social Coin project, tokens
are explored as an incentive, but the scope of BBBlockchain goes
further and includes functionalities like voting and surveys, as well
as providing a newsfeed for increased trust and transparency. Unlike

41

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

MiVote, BBBlockchain aims to test the impact on direct democracy by
exploring how decisions can be distributed between authorities and
citizens to achieve more representative levels of participation, both in
terms of quantity and diversity of participants.

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

The decentralized and immutable nature of a blockchain addresses
three issues for our decision-making use case: First, blockchain tech-
nology makes it possible to prevent monopolistic control of informa-
tion, thereby increasing trust and transparency. Second, one of the key
functionalities of the blockchain is the ability to act as an trusted inter-
mediary. Lastly, advanced blockchain technologies enable private and
anonymous decision-making processes that all stakeholders can trust,
i.e., through their verifiability. Blockchain technologies, thus, have the
potential to enhance participatory processes that rely on privacy and
anonymity for their decision-making processes.

BBBlockchain aims to unite three key stakeholder groups involved
in participatory processes: the private sector, the public sector and
civil society. That is, in our case, housing associations, governmental
institutions, and citizens, respectively. Therefore, our research examines
BBBlockchain’s ability to maintain ongoing stakeholder engagement
and consultation throughout the process. We additionally explore how
BBBlockchain can facilitate genuine citizen empowerment through
blockchain-based decision-making. Based on the IAP2 spectrum of
public participation, we develop a set of use cases for the deployment
of BBBlockchain in urban development decision-making processes.
Figure 15 therefore provides an overview and assigns the use cases to
the respective level of participation.

Therefore, we first explore the potential to enhance information shar-
ing throughout the often complex and protracted urban development
processes. Next, we also explore potential use cases from consultation
to empowerment. In addition, we seek to increase and diversify partici-
pation by introducing blockchain tokens that promise to enhance all
IAP2-based BBBlockchain use cases.

Timestamping

USE CASE Our first use case takes advantage of a feature inherent
to blockchains: it utilizes the immutability combined with the frequent
creation of blocks to realize a so-called timestamping service [HS91;
NakO08].

The use case addresses the first level and most fundamental layer
of participation to generate transparency;, i.e., to inform [@IAP14]. The
provision of verified information in long-term and often controversial
processes can thus be established with BBBlockchain, which is a major

42

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

step towards greater transparency in most urban development projects.
Public participation rules may also require the provision of specific
information by stakeholders at certain points in the planning process.
Citizens and nearby living residents, can verify whether this informa-
tion was provided on time and whether it has since been manipulated
or deleted. This allows all stakeholders to prove or assess whether in-
formation was provided in a timely manner and was followed during
the planning, permitting and construction process.

Therefore, with BBBlockchain, we develop a platform to continu-
ously track ongoing urban development projects and document the
planning and approval process. We do this by managing, archiving,
and securing documents such as land use plans, urban development
contracts, and general construction information and specifications. To
this end, each new publication will be timestamped on the blockchain.
This allows all users to reliably track the time of publication, author
information, and content of the publication. To do this, BBBlockchain
calculates the hash value of the publication and publishes it to all users.
With a similar concept as already established in 1991 by Haber and
Stornetta [HHS91], anyone can now verify if the hash value matches
and when this hash value was published. BBBlockchain therefore not
only covers the first layer of IAP2 [@]AP14] by informing the public,
but also ensures that all announcements are secured with blockchain
technologies.

IMPLEMENTATION To reduce on-chain storage costs, instead of
storing files (e.g., large PDF files or images) directly on the blockchain,
BBBlockchains stores the files on an external storage and secures their
cryptographic hash values on the blockchain. BBBlockchain therefore
leverages that cryptographic hash values represent arbitrary data as
fixed-length numbers. Thus, users can verify the integrity of large
documents and files by downloading them from the external storage,
calculating the hash values locally, and comparing them to the hash val-
ues in the blockchain. If an external file has been subsequently changed
or missing, the application will display an error to all BBBlockchain
users. For security reasons, the content and the corresponding hash
verification are performed locally on the users” devices.

Additionally, we use transaction verification as part of our visualiza-
tions to convey a secure transfer of information in an understandable
way, as we will show in Section 5.4. Once the participation content has
been downloaded, the DApp frontend calculates the corresponding
hash value locally and displays it at the top of each article.

Social Networks Integration

USE CASE While it is essential to provide comprehensive and reli-
able information, it is equally important to consult and involve citizens

43

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

in urban development projects (cf. JAP2 Level 2 and 3) [@IAP14]. To this
end, we propose a feedback mechanism. Citizens can submit their feed-
back, e.g., comment on information provided, participation workshops,
or statutory planning information. We record this event as hashed rep-
resentation in the blockchain but refrain from recording plaintext for
costs and legal reasons. This way, we also reduce the opportunity for
abuse of BBBlockchain as described in [GMF22; Mat+18].

IMPLEMENTATION We explore the integration of social networks
as feedback channels. For this purpose, we use a crawler that searches
for hashtags related to BBBlockchain projects. Messages found, e.g., on
Twitter, will be hashed and the hash values will be stored on the block-
chain. Another approach is to generate unique hashtags on demand
for specific topics managed by one of our smart contracts. App users
can then open documents and start a discussion about a topic with
others on social media, and the crawler can associate the messages with
specific topics. Again, to reduce abuse and save on-chain storage costs,
we do not record the plaintext. At the same time, we outsource the
detection of abuse to the respective social media platforms. Since we
are unable to detect botnet-driven manipulation, we rely on the social
networks’ security mechanisms. Once a social network publishes con-
tent to our service, it is timestamped and we can prove that the content
was published. The timestamp allows us to ensure that social networks
do not censor after the fact. However, intentionally deleted messages
(by users) can also be detected by comparing the stored timestamps. In
general, a DApp could display a notification when it detects a deleted
message. BBBlockchain thus establishes a multi-channel consultation
and targeted participation tool. Because urban development projects
are very diverse and cannot be easily standardized, BBBlockchain must
provide the flexibility to respond to specific communication channels
agreed upon by stakeholders from the beginning of a project.

Voting and Surveys

USE CASE For further options, to consult and involve the public, we
distinguish between voting, which we consider as a form of co-decision-
making, and surveys, which are a consultation feature. Depending on
the impact and the institutionalization of BBBlockchain voting, we
advance into the fourth and fifth of the IAP2 levels of participation,
collaborate and empowerment.

For example, housing associations commit to public participation on
different development or design options [@Deg+17], including a bind-
ing vote for the preferred option. In current practice, these infrequent
votings are usually neither legally binding nor sufficiently transparent
or private. Even with fully committed stakeholders the effort to con-
duct reliable votings often proves to be too onerous and difficult. It

44

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

often boils down to participation meetings and paper-based voting. As
a consequence, the current situation suffers from a lack of inclusiveness
and trust issues. With BBBlockchain, we aim to overcome these issues
in order to enable a more prolific use of voting in urban participation
processes.

IMPLEMENTATION While we envisage different ways to instantiate
votings and surveys, the easiest way is to save electoral processes in
an array, where each element represents a voting choice and with a
public function for increasing the respective counter. However, this
approach is vulnerable to fraud as voting multiple times by repeatedly
calling that function becomes possible. We therefore need a mechanism
to validate and authenticate voting rights, e.g., the voter’s identity or
a digital certificate of eligibility to vote. To prevent fraud and realize
reliable votings, BBBlockchain issues registered voting tokens for each
eligible citizen. The right to vote can only be exercised when a valid
token is passed with the function call.

In general, though, blockchain-based voting inherently suffers from
certain disadvantages [Sim04]. Most notably, the necessary prerequi-
sites for voting, e.g., identity checks, are more difficult to establish
and maintain online than in the offline world. For example, it is more
difficult to check identities and voting rights electronically than in
person at a voting office with personal IDs. This raises a number of
challenges for blockchain-based voting and boils down to a tradeoff:
On the one hand, blockchain offers unconditional voting transparency
and auditability. On the other hand, achieving voter anonymity is chal-
lenging, because all votes in a blockchain are fully traceable. As a first
step, we use pseudonyms as a first way of achieving privacy. How-
ever, contrary to public elections votes, in urban development projects
the local reach might allow or demand the public identification of the
voters. In [@Fou22a] for instance, video chat or video proofs are used
for identification. To be clear, BBBlockchain is not intending to replace
offline voting. Aligned to the project’s overall motivation to foster the
diversity and inclusiveness of public participation in urban develop-
ment projects, we investigate the pros and cons of blockchain-based
voting for participation use cases.

Tokenization

USE CASE One reason for the current popularity of blockchains
is the token system. We see tokenization as a cross-cutting feature
that can enhance most of the use cases discussed above in one way
or another. For example, we use tokens to manage voting rights and
to incentivize participation. While there are many possible uses, tok-
enization is likely to have the greatest impact on the upper levels of
participation, since tokens are by definition an instrument of exchange.

45

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

We therefore distinguish between coins and tokens to highlight technical
differences and different use cases: Cryptocurrencies issue coins as
their inherent trading currency, which typically has monetary value,
and use a blockchain to record transfers and balances. In Bitcoin, for
example, coins serve as a means of payment, but also to incentivize
miners to keep the system running [TS16]. Ethereum [@But23b] and
other blockchain-based systems also offer the ability to create and issue
custom tokens on top of the infrastructure. These tokens are issued
and managed by smart contracts, so they are not built into the pro-
tocol of the blockchain. They can follow their own specific rules, but
still provide basic functionality such as checking balances or making
transfers. For example, Ethereum provides standards for implement-
ing custom tokens [@VB15]. In BBBlockchain, we utilize both coins
and tokens: Since coins have monetary value, we use them to manage
a participatory budget, for example, an increasingly popular instru-
ment for co-decision-making, which we will discuss in the following
Section 5.2. Since tokens, on the other hand, can be decoupled from
monetary value, we use them as voting tokens and in various targeted
forms to incentivize participation. In the following, we will elaborate
on the latter use case.

VOTING AUTHENTICATION We use tokens to authenticate
whether a user is eligible to participate and vote. The amount of tokens
can indicate the priority of the user, i.e., more tokens give more weight
to their vote, but this depends on the voting scheme. In this way, we
could give more voting tokens to people who live near a project than to
people who live far away. Following the concept of liquid democracy,
users could delegate their voting rights to someone else. This function-
ality allows both higher participation rates (the representative can vote
even if the user is not available) and the accumulation of influence with
individually legitimized representatives with specific knowledge or
user status (e.g., mobility specialist or official tenant representative).
While it would also be possible to issue tokens in exchange for real
fiat money or coins, we distance ourselves from this approach because
incentivizing through monetary value is democratically questionable.

As a side effect, tokens can be used to achieve anonymity during
voting: For example, tokens can be issued as QR codes, shuffled, and
sent to residents. The shuffling of QR codes results in untraceable
pseudonyms. While this seems like a reasonable approach to achieve
some level of anonymity in practice, we prefer cryptographically se-
cured techniques over analog ones.

INCENTIVIZATION Tokens offer a wide variety of ways to provide
incentives for participation. For example, the use of the BBBlockchain
DApp can be rewarded with tokens that can be collected and used
for discounts. As a reward system, we provide an interface for shop

46

5.2 BBBLOCKCHAIN USE CASES FOR URBAN PARTICIPATION

owners to offer services or discounts in exchange for tokens. For ex-
ample, cafes near the building project location could offer a fixed price
discount to attract new customers. More importantly, the targeted
provision of tokens can attract citizens to support analogous on-site
participation formats such as permanent exhibitions or workshops in
neighborhood cafes. To further increase interest or site traffic we can
also distribute tokens throughout the neighborhood or at institutions of
particular of particular interest to the project, e.g., via printed QR codes
(municipalities, developers, showrooms, etc.). They could also be em-
bedded in relevant documents so that interested parties are rewarded
for participating in the process.

Participatory Budget and Crowdfunding

USE CASE DApps can be used to implement crowdfunding. Crowd-
funding is a type of online fundraising. Projects can collect small dona-
tions from a large number of people. In an urban context, crowdfund-
ing can serve as an alternative way to (co-)finance smaller projects for
the neighborhood. The provision of funds by many can be seen as a
public vote to realize certain projects, and similar to BBBlockchain’s
functionality to enable participatory budgeting, the smart contract can
enforce execution once the funding goal is reached. From a techni-
cal perspective, many variations are possible. An alternative funding
method would be crowdsourced participatory budgets. We can also
implement the concept of matching funds, where a certain amount of
crowdsourced coins is matched by other sources, such as a housing
authority.

The transfer of decision-making power in urban development from
the institutions that have been elected to represent the public good di-
rectly to the citizens obviously challenges the current balance between
direct and representative democracy. BBBlockchain enables function-
alities previously unavailable or infeasible in an urban development
process, and this project will need to explore and redefine the boundary
conditions that support both citizen empowerment and the common
good.

IMPLEMENTATION BBBlockchain can conduct votes using smart
contracts with binding results. It can also enforce the contractually
agreed results. Participatory budgeting is a powerful form of partic-
ipation that benefits from this functionality. Current analog formats
reserve a certain portion of the public budget that is centrally managed.
The use of this part of the budget within predefined spending corri-
dors is decided directly by citizens through voting. In our use case,
we are exploring a participatory budget in coins, bound in a smart
contract, outside the control of a central authority. A simple example is
the selection of public art in housing projects. Developers reserve the

47

5.3 BBBLOCKCHAIN ARCHITECTURE

BBBlockchain main contract
2

7 | N
i (...) BBBlockchain projects
7 N % AN
_ = Use case
L2 2 L2 L | contracts
Timestamping Voting Timestamping

Figure 16. Smart contract architecture of BBBlockchain.

mandatory budget for artwork (in some countries, such as Germany,
construction projects are legally required to fund art with a certain
amount of the total construction cost) and let residents, neighbors, or
a broader group of citizens vote for their preferences. After the vote,
the winning artist is contracted and the budget is transferred. A partici-
patory budget, secured by a smart contract, is thus a true transfer of
decision-making power to the eligible group of participants. Since the
voting results are directly implemented, the authorities or developers
can no longer interfere with the citizens” decision.

5.3 BBBLOCKCHAIN ARCHITECTURE

We implement the BBBlockchain DApp with smart contracts in Solidity.
We decided to build an Ethereum DApp because it is a public, permis-
sionless, and established blockchain that provides enough flexibility
to implement our platform. In the following, we will introduce the
BBBlockchain architecture and infrastructure. In addition, we explain
our design choices.

BBBlockchain Smart Contracts

The main BBBlockchain smart contract manages multiple other smart
contracts for all building projects and handles all permissions. Once
deployed, it provides all data for the app and manages multiple build-
ing projects and their use cases. As shown in Figure 16, it serves as a
central entry point. At this point, we have explicitly decided against
a proxy smart contract for future upgrade options to improve trust in
this case. Although we are committed to a permissionless platform,
not everyone is allowed to freely manage our projects. We distinguish
between read-only calls and write transactions in the smart contracts.
All data is stored openly for read-only access, but management of the
smart contract is restricted to a closed user group representing key
stakeholders.

48

5.3 BBBLOCKCHAIN ARCHITECTURE

An urban development project may have multiple use cases that
are implemented as separate smart contracts. The main smart con-
tract therefore maintains a list of all use case contracts. Currently, we
have implemented smart contract solutions for the following use cases:
timestamping, surveys, voting, and our own token. As each urban
development project has its own participation strategy we have taken
a modular approach; each use case can be activated individually, re-
peatedly or simultaneously. And because these strategies often change
over time, new functionality can be developed and added at any time.

Infrastructure

BLOCKCHAIN ACCESS Processing the Ethereum blockchain re-
quires high CPU resources and storage (about 1 TB for syncing
Ethereum Mainnet with Geth at the time of writing). Therefore, it is
not yet practical to run fully synchronized blockchain clients on mobile
devices for normal usage. For the pilot phase, we therefore installed
our own Ethereum node and provided access for BBBlockchain users
via a public server with an API. However, smart phones and recent
blockchain technologies enable direct access to the blockchain with
light client implementations, which do not process all transactions but
rely on public or self-hosted full synchronized clients. We intend to
implement different blockchain access capabilities to eventually replace
the BBBlockchain API server. However, the smart contracts support
direct access, so it also possible to interact with BBBlockchain without
the APL

The participating housing associations, local authorities, and resi-
dents’ representatives have been given access for publishing contents
on BBBlockchain with a fine-grained access control mechanisms. While
BBBlockchain is designed to give stakeholders direct access to the smart
contracts, we additionally provide a server-based web admin interface
for easier usage. We therefore run a content management system, so
authors can compose new posts in an intuitive editor interface. New
contents will then be added to the blockchain by an external monitoring
tool, basically a blockchain oracle.

DAPP ACCESS BBBlockchain relies on the Ethereum blockchain in-
frastructure and does not necessarily rely on self-hosted infrastructure.
However, we do not expect our users to be familiar with maintaining
an Ethereum wallet and interacting with a smart contract. Therefore,
we have implemented a mobile app for iPhone and Android devices
and also provide a website that offers most of the functionalities. We
also do not expect users to host a full node, so we provide an API that
basically mirrors all smart contract functionality and manages block-
chain interactions. The API provides access to our fully synchronized
Ethereum node and executes all smart contract calls. The app not only

49

5.3 BBBLOCKCHAIN ARCHITECTURE

visualizes the API data, but also verifies hash values locally to check
integrity (see Section 5.2). However, users can always execute the smart
contract functions themselves without the API, as all BBBlockchain
smart contracts are stored on a public blockchain that are open source.
Finally, we do not expect users to pay for their transactions, so we cover
transaction fees within BBBlockchain. While users can choose to run
their own node and verify transactions for full transparency, they then
have to pay the transaction fees themselves.

INITIAL ARCHITECTURE Figure 17 gives an overview of the initial
technical infrastructure and all implemented technologies for the first
pilot projects. Stakeholders at the top can access BBBlockchain with
a mobile app and web browser. We therefore host a centralized web
server for the graphical frontend and storage, and our own Ethereum
node for API access. However, the node and the storage can both be
mirrored by anybody for enhancing transparency. Again, our infrastruc-
ture is only provided for keeping participation barriers low, especially
by not operating full Ethereum nodes on mobile devices. Our hosted
Ethereum node can be replaced by other trustworthy parties as the
source codes are open-source.

For independence from Ethereum networks the smart contracts are
also compatible with Quorum [@Con18], which is a permissioned
version of Ethereum for enterprise usage, and other EVM-compatible
blockchains. We also want to emphasize our focus on accessibility and
inclusivity in our application. It is very important for us to make the
documents as accessible as possible. Additionally, we provide a content
management system (CMS) for conveniently creating new contents.

With the ongoing development of available tools for Ethereum, new
options have emerged to improve the architecture of the BBBlockchain
while the pilots were still in progress.

Citizen
Society \
Function

S% Hﬁ'ﬂ(@, @ Galls oo

LAte)
Housing / App/Web - BBBlockchain APl Smart Contract Blockchain
Agencies / Android/iOS/ - CMS (Wordpress) Solidity Ethereum
ﬁ Browser - Storage
Authorities

Figure 17. Initial BBBlockchain architecture and technologies with API access.

50

5.3 BBBLOCKCHAIN ARCHITECTURE

Public Permissionless Blockchains

As the name already implies, public blockchains can be accessed pub-
licly (whereas private blockchains keep all data confidential) and there-
fore are the only option for our intentions. When it comes to so-called
permissioned and permissionless blockchains the decision seems not as
clear. The pros and cons of both are not obvious and have a direct im-
pact on the transparency and integrity of the BBBlockchain. Basically,
the two approaches follow different strategies on who can participate
in the consensus algorithm, i.e., who can become a miner (or validator).

Permissionless blockchains generally allow anyone to join the net-
work, become a miner, and help to verify the blockchain. Thus, they
require a global consensus between miners and nodes. It is not nec-
essary to assume that nodes trust each other, but that the majority
is benign and uses the same consensus protocol. In contrast, permis-
sioned blockchains allow only a selected group of nodes, i.e., so-called
validators, to verify and advance the blockchain. It implies an authority
that decides on who is allowed to join, and who not. Permissioned
blockchains should not be confused with permissions in smart con-
tracts, though. Although a smart contract can limit who interacts with
it, e.g., who can participate in a survey, it does not matter whether the
blockchain itself is permissioned or permissionless.

In general, the consortium of miners/validators can also mutually
agree to change data stored in the blockchain. For BBBlockchain, we
opt for a permissionless blockchain, in our case Ethereum, to provide
full transparency of all stored data. Since we do not have influence
on the consensus algorithm, once published data cannot be manipu-
lated unnoticed; neither by us, housing associations, or governmental
authorities, as long as not more than half of the network approves it.

Test Network

For the first pilot deployment, BBBlockchain uses the Ethereum test
network Rinkeby, a centralized file storage, a BBBlockchain API server,
and an admin interface. We chose to use a test network because it
has no monetary exchange value for its cryptocurrency, unlike the
Ethereum Mainnet. This allows us to experiment during the initial
development phase without financial pressure. We also decided on
launching the first pilot phase on the Rinkeby test network, because
we cannot control or manipulate the blockchain ourselves, i.e., Rinkeby
can be considered permissionless, as anyone can join the network
and submit new transactions, except the miners, who are restricted
to a closed group. Therefore, it has comparable trust properties to the
Mainnet for our use cases. This means that our transactions cannot be
manipulated unnoticed by us or any other BBBlockchain stakeholder.
While on Rinkeby, we monitor the network for unexpected behavior
that would violate our assumptions.

51

5.4 PILOT DEPLOYMENT

Author: degewo

N P A NP S,
Kietzer Feld @ Block #9664269 18. Nov. 2021 Block #9664269 18. Nov. 2021
February 2022 Start of construction in the 2nd construction phase Start of construction in the 2nd construction phase

Author: degewo

22. Feb.

The second construction phase is now under
construction. The demolition of the garages is currently
underway.

Voting: Ne_ighborhood meeting 08:52> r{"sﬁﬂwm
point at Kietzer Feld Oxa
degewo

©8£340d6e29b21D767£529566£9Tb2c62
bbde84£l

Block Num:
9664269 (3112643 Confirmations)

As already communicated, some changes have

occurred. In order to protect the small wood on the

street Zur Nachtheide, the access road to the Block Hash:

06.Dez. garage will be located to the south. Also, 0x4555££67185€3¢£140a%a088db1b621a836atcE2c4c6
N 8d4239e4dfcl 38abeas

a planned building structure will not be erected at this

location; instead, we will build a longer building on

December 2021

Blockchain Hash:

Intarview partners wanted L Wendenschlosssirati. 6£93£20035c04910088a710£ 40a2005a6921d0 5008403
addéef1 fac
T Berlin Do you h tions? Feel free to cont: b
0 you have any questions? Feel free to contact us by Gontent Has
email at kietzerfeld@degewo.de. 6£932dd35cc4ag1c088a71cf4ea20052e921d0£5ebB403
November 2021 addbefidicodifac
Tags: BBBlockchain Contract:
18. Nov. :'« ceid 0x243dB7401B07£7F0293b010A9EE9C3572Ch436£2
ietzer Fe
» Project Conts
%mm:hm’l'mlnm-znd Lo 2 0x6CDA1233550£68¢730d609eb519111CT8C5ELA3L
degewo
September 2021
23. Sep.
Timeline ___Info Timeline __Info Timeline __Info

Figure 18. Initial timeline Figure 19. News entry Figure 20. Further block-
view without any block- view with blockchain vi- chain details for the en-
chain details. sualizations at the top. try.

5.4 PILOT DEPLOYMENT

BBBlockchain launched in 2019 with two pilot projects. Together
with the housing associations degewo and Gewobag, we deployed
BBBlockchain as an additional participation component in two real
building projects in Berlin, Germany. The pilot therefore focused on
the residents living in or near the building projects. In the following
we will present our DApp frontend, the use case implementations and
our experiences with BBBlockchain.

DApp Frontend

The BBBlockchain DApp frontend provides information in a strictly
chronological order to allow users to keep up with the latest updates
in an urban development project. The app interface therefore evolves
around a so-called timeline view, as shown in Figure 18. Its design was
developed in close collaboration with an experienced user interface de-
sign studio [@Nol+19]. It is intended to remind users of a calendar app
that provides a chronological, color-coded overview of all published
entries by participating stakeholders (e.g., news articles or official an-
nouncements). Users are initially exposed to as little blockchain details
as possible, but can explore all the details if they wish.

With recent posts at the top, the app also follows the concept of a
social media feed that lists titles and shortened contents. While the
timeline view is the starting point, opening a timeline post shows the
corresponding content, including rich media entries (e.g., with images
and file attachments), as shown in Figure 19. Users can also inspect
blockchain details for each entry’s transaction, as shown in Figure 20,

52

5.4 PILOT DEPLOYMENT

Blockchain hash: 0xf13b9c086b154f73271a Blockchain hash: 0xf13b9c086b154f73271a

Content hash: 0x£f13b9c086b154f73271a Content hash: 0x57cecb2200bdd55084b8

Figure 21. Hash value visualization and comparison.

allowing technically savvy users to verify the content without the
BBBlockchain app. For example, the transaction hash can be used to
verify blockchain details with an external blockchain explorer.

For a consistent look-and-feel of a mobile app, the navigation
between the timeline, posts, and further details, follows the well-
established concept of a navigation stack that allows users to go back
step-by-step by swiping on their mobile phones (or using the back
button). Additionally, the app header always displays navigation infor-
mation at the same positions and shows the author’s name and specific
color in further navigation levels as a recognizable orientation marker.

Timestamping

To visualize blockchain functionality, we implement a visualization
technique for the key concept of integrity verification, as shown in
Figure 21. To do this, we visualize cryptographic hash values for times-
tamped publications and documents. Such cryptographic hashes repre-
sent arbitrary data as numbers. They are mathematically designed as
one-way functions, so they are easy to compute, but computationally
very hard to reverse, i.e., to find the corresponding data for a given
hash value. Blockchains use this concept to verify the integrity of all
stored data. Therefore, the top plot line in Figure 21 represents the
immutable hash value of the original content on the blockchain when
the content was uploaded. The bottom line shows the hash value of
the corresponding content downloaded to the user’s device. Users
can now visually verify whether or not the lines match. In addition, a
check mark indicates whether the hash values match or not. A green
checkmark confirms the integrity of all data; a red cross appears if the
content was manipulated or deleted after it was published. The aim is
for users to be immediately aware of the integrity, whether or not they
are familiar with the underlying cryptographic concepts.

While this verification could be done hidden in the background of
the application’s backend, our visualization approach aims to help
non-technical users understand the cryptographic concepts of hash ver-
ification. Thus, the visualization is not necessary to improve technical
security, but helps users gain confidence in the verification process.

53

5.4 PILOT DEPLOYMENT

Costs Evaluation

Ethereum provides the blockchain technology and an existing broad
peer-to-peer network, but using its infrastructure is not completely
free of charge. While joining the network, validating transactions, and
querying data is free for everyone, persistent interactions will cost
flexible fees. Depending on the consumed Gas of a transaction and
how many transactions were proposed during the same time span,
the fee rises [@But+19]. The fee then has to be paid by the transac-
tion sender before it is executed, stored, and broadcast to other nodes.
Other blockchains can handle transactions fees differently, of course. In
addition, the Gas limit prevents the code from getting stuck in an infi-
nite loop or from consuming a disproportionate amount of computing
resources. If a transaction sender undercharges Gas, the miners will
ignore the transaction, or the transaction will fail and the Gas will be
wasted.

GAS COSTS We evaluate the Gas costs for various contract types,
including timestamping and voting. We also evaluate the total expected
costs of deploying BBBlockchain. To this end, we use the median Gas
price and Ether exchange price to USD of 2022. I.e., we used the me-
dian base fee per Gas of 35.05 - 10° GWei and 1679 USD per Ether for
estimating costs, as before in Chapter 4. We provide a public Git repos-
itory!®> with our test contracts that we used to estimate the Gas costs.
Its readme file explains how to run the Gas costs evaluation manually.
The repository contains three truffle-framework projects, each for times-
tamping, basic voting schemes and voting with ZoKrates. Migrating
the contracts with the framework outputs the estimated Gas costs.

TIMESTAMPING COSTS For us and other BBBlockchain hosts it is
especially interesting how much providing an API costs. For exam-
ple, predicting how expensive it is to offer a timestamping service is
important for operating the platform: The deployment of the times-
tamping smart contract costs approximately 2428484 Gas, which is
about 142.93 USD. Timestamping a data item and adding it to the
blockchain, i.e., registering a hash value with our smart contract, costs
approximately 214 650 Gas, which is about 12.63 USD per timestamp.

VOTING COSTS As explained in Chapter 2, the transaction fees
depend on the complexity of the instructions set and the current block-
chain load. In order to get a first overview, we distinguish between
different voting techniques. We therefore evaluated the Gas costs of
different voting schemes implemented in Solidity, as shown in Fig-
ure 22: The minimal implementation allows unlimited voting without
any control mechanisms. The address check implementation saves the

15 https://github.com/robmuth/bbblockchain-gaseval

54

https://github.com/robmuth/bbblockchain-gaseval

5.4 PILOT DEPLOYMENT

| | Bm Contract Deployment
I r Single Vote

0.5

Gas Costs - 108

Minimal Address Hash Token ERC-20 ZKP
Check Check

Figure 22. Gas costs for deployment and submitting a single vote using differ-
ent voting schemes.

sender’s address after voting and validates before voting, so one can
only vote once per sender address. That leads to slightly higher smart
contract deployment and voting fees. The hash token check requires
a secret token for voting, so deployment is more expensive because
of the hashing function. With ERC-20, we allow to set a weight to a
vote and transfer voting rights to other persons, leading to a more
complex smart contract. However, voting can become cheaper, because
one can vote multiple times for an option with a single transaction
for a higher vote weight. At the end we evaluated voting with a zero-
knowledge-proof for validating voting tokens and ensuring anonymity.
We used ZoKrates [EH18] for generating a validator smart contract and
proofs for the voting tokens. Validating voting tokens with complex
mathematically proofs become much more expensive.

DEPLOYMENT COSTS Deploying cost for a BBBlockchain project
can be estimated as well. The Gas cost is achieved by deploying the
main contract (1281973 Gas), utility contracts (758 106 Gas), a building
project (2383215 Gas), and its use cases. The Gas cost depends on the
meta data and therefore can only be approximated. Using the same
Gas price and Ethereum exchange rate as in Chapter 4, we assume
deploying BBBlockchain cost at least 260.34 USD right now, plus the
individual Gas costs for the use cases. We conclude that the Gas costs
for timestamping and voting as well as the deployment costs of BB-
Blockchain are reasonable. When compared to traditional participation
processes, which for example include providing public participation
offices, they even can be considered negligible.

Deployment

For the pilots, we deployed BBBlockchain on the Ethereum Rinkeby
test network. Unfortunately, the Rinkeby test network turned out to be
not as reliable as we wished for our pilots operation. Since the smart

55

5.4 PILOT DEPLOYMENT

contract-based framework was developed and tested, we could have
deployed BBBlockchain smart contracts to the Mainnet. This however
would imply to also reset timestamps. Current users would notice
inconsistencies by inspecting transaction timestamps, if we move BB-
Blockchain from one network to the other. Instead, we decided to fork
the Rinkeby test network. Hence, we operate our own blockchain net-
work without losing past transactions, and keeping the timestamps
intact. To maintain our trust assumptions, we installed three miners in
our own proof-of-authority blockchain, each located at another stake-
holder, i.e., university and two building agencies. While we believe that
for our research-driven pilot phase, this is an acceptable trade off, we
still envision that BBBlockchain operates in a permissionless setting.

Security

We successfully implemented and conducted several votings with BB-
Blockchain using hash tokens. Technically, the hash tokens are not im-
plemented as ERC-20 [@VB15] tokens. Instead, they are implemented
using a revealment scheme that uses random secret keys. Therefore, we
generated as many random keys as there are citizens eligible to vote.
We cryptographically hashed these random keys, stored the hashes in
the voting smart contract, and gave the plaintext keys to the housing
associations. Next, the housing authorities gave the list of tokens and
addresses of eligible voters to a postal printing service. The printing
service randomly assigned the tokens and mailed them to the voters.
Finally, the voters could prove that they were eligible to vote by re-
vealing the cleartext to the smart contract. Now, neither we nor the
housing authorities know who received which token. So we implement
anonymous voting with hash tokens by making it impossible to track
who voted and how, unless stakeholders conspire and cooperate.

While this approach worked well during the BBBlockchain pi-
lot deployment, we discovered a serious technical problem with it.
Blockchains do not guarantee that a submitted transaction will be ap-
pended to the next block. Therefore, new transactions can remain in the
so-called transactions mempool until a miner appends them to the next
block. Miners and other blockchain nodes can technically analyze these
pending transactions and thus learn the cleartext of the hash tokens.
Although this approach may not always be effective, if an attacker
generates a new transaction with higher transaction fees, it could po-
tentially lead to something similar to a front-running attack [EMC20]
on the transaction.

We have not seen such an attack while running BBBlockchain, how-
ever, we are looking for more secure techniques for anonymous voting.
In particular, for completely trustless solutions, where even stakehold-
ers could collaborate but anonymity is not compromised.

56

5.4 PILOT DEPLOYMENT

Publicor -~~~ """ 77 >

Citizen — private node g
Society \ N\e\a\\,\as\« 2 @‘3‘@
[% %l" A/Svmart Contract

|

|

! I

| |

Solidit ‘ ‘

o ey 2 | |
|

Housing App/Web IPFS/Swarm @ 1

Agencies Android/iOS/ ! |

y |

! I

! |

L !

Browser Bridge/Mirror File Storage
Public or local IPFS/Swarm

\

Blockchain
Ethereum

Public Peer-to-Peer Network

Authorities

Figure 23. Future BBBlockchain architecture based on development insights
after the pilot phase.

Future Architecture

After deploying BBBlockchain, we identified several potential tech-
nical improvements and technological advancements that led us to
propose an improved architecture. With three years of operation, we
propose several adjustments to the architecture, as shown in Figure 23.
First and foremost, we experienced difficulties with our self-hosted
infrastructures multiple times. Since we decided to use a CMS to create
new contents (see infrastructures in Chapter 5.3), its backend soft-
ware required several updates during the pilot phase. These updates
caused several problems by changing the way new and existing content
was rendered by the web browsers. BBBlockchain then detected (sup-
posedly) manipulations in the contents where no changes had been
made. We also experienced outages in our infrastructures, e.g., due to
increased load caused by media attention and attempted attacks.

To that end, we decided to get rid of the centralized CMS. Therefore,
all participants still access the BBBlockchain through a mobile app or a
web browser. But in the same way as most DApps currently interact,
the frontend receives data and controls the smart contracts via a local
wallet. We therefore propose that BBBlockchain uses either a light client
or a local wallet with an external node. For example, on Apple iOS, an
app can directly access Ethereum using the web3swift library [@V1a23]
with a local light-client or Infura. In the future, we plan to offer API
services only as a backup option. Additionally, for publishing new
contents, we propose to implement a browser-based user interface that
connects to Ethereum via Metamask and a local node. This will prevent
(unintentional) corruption by updates or infrastructure failures in the
future. We also suggest using IPFS or Swarm file storage [DT22] for
hosting files and images. This allows files to be replicated across all
stakeholders and other interested parties. Thus, everyone has access to
all files and can mirror these files on their own infrastructure. So, unlike
using a centralized storage provider, the files then become available

57

5.4 PILOT DEPLOYMENT

1500
1000
500 l

2019 2020 2021 2022
Year

Visits

Figure 24. Visitors per year (between Nov 2019 and December 2022).

App visits in %

8
6
4
2
0

T
OFNC’)VLO(DI\WQOFNC")Q'LOCOI\W(DOV—NO’J
—r ANANANAN

—_Fr—_r—_r—r———

Time of the day

Figure 25. Visits per hour in percent (between Nov 2019 and December 2022).

from multiple servers; if one server becomes unavailable, the files are
still available on other servers. As a result, network outages and main-
tenance issues would no longer affect the verification of BBBlockchain
entries.

However, we are not considering to get rid of all centralized infras-
tructures in the near future. We still believe that BBBlockchain will
benefit from native mobile applications and their typical system en-
vironment’s features. For example, features like push notifications on
mobile devices would allow us to provide instant updates, even if
such an approach requires centralized infrastructures. Nevertheless,
data management should be handled entirely by the smart contracts,
without any centralized databases or server infrastructures.

Outreach

BBBlockchain users were asked for their consent for user statistics
when they access the app for the first time. As shown in Figure 24,
between 2019-2022 more than 3.7k visitors used BBBlockchain. This
is particularly remarkable since BBBlockchain is not aimed for the
general public, but focused on nearby living residents at the pilot
projects” locations. Please note that the BBBlockchain pilots started at
the end of 2019.

Figure 25 shows the traffic on the BBBlockchain app per year. The
highest usage of the app was during average working hours. Interest-
ingly, the majority of users accessed the app via smart devices (69 per-
cent), rather than via desktop web browsers (cf. Table 4). We hence

58

5.4 PILOT DEPLOYMENT

User Device Type Visits

Smartphone & Tablet 66.40 %
Desktop Browser 31.10 %
Others / Unknown 2.50 %

Table 4. Used devices (between November 2019 and December 2022).

conclude that introducing the BBBlockchain app offers the potential to
reach a broader audience in participation processes than analog par-
ticipation formats, which is a key ambition of all urban participation
projects. However, we would like to stress that the BBBlockchain is not
designed to replace analogue participation methods, rather to offer a
hybrid option.

Key Findings

BBBlockchain provides a blockchain-based platform for participation
during urban development processes. From an operational perspective,
we showed how complex and long-term decision-making processes
for urban participation can offer more transparency with blockchain
technologies. Therefore, we have implemented real-word participation
use cases in smart contracts. We do not claim that blockchains solve all
trust issues for participation processes, but we consider the trade-offs
between its risks and disadvantages on the one hand, and its potential
and novel possibilities on the other hand.

TRANSPARENCY The BBBlockchain pilot projects have successfully
confirmed that our platform can improve transparency and make infor-
mation more accessible to citizens. From September 2019 to May 2023
a total of 48 entries were published on BBBlockchain by three main
stakeholders: two housing associations (44 entries), the involved mu-
nicipalities (2 entries) and the tenant council (2 entries).

However, the immutability of blockchain could increase account-
ability pressures on stakeholders. So, BBBlockchain has disrupted the
communication procedures of institutional stakeholders, prompting
them to rethink their approach. Additionally, using blockchain tech-
nologies had a big impact on stakeholders like housing associations and
local authorities. They had to share more information than usual, which
changed their analog communication practices. This was challenging
because collaborative and frequent communication is not the natural
approach of these stakeholder groups. Most importantly, blockchain’s
immutability raised concerns about accountability and exposure. Initial
communication difficulties, however, were overcome by implementing
new standards for transparent and inclusive sharing of information.

59

5.4 PILOT DEPLOYMENT

CONFLICT MANAGEMENT In order for conflicts to be properly
managed, the involved parties must be aware of the existing account-
ability mechanisms and how to use the available information. Currently,
it remains unclear to what extent citizens are legally empowered to
monitor urban planning project integrity [EFS21]. Therefore, it is im-
portant for policymakers to clearly articulate how each party can be
held accountable, by whom and how.

To this end, BBBlockchain is implemented to operate on public per-
missionless blockchains. Due to the permissionless design and an in-
tuitive visual representation of hash values, the app is conceptually
resistant to data manipulations and allows users, including non-expert
users, to check the integrity of the data. This enables all involved stake-
holders, citizens in particular, to openly monitor how urban planning
projects unfold and to what extent they deviate to what was previously
decided and agreed upon. Therefore, in case of conflicts among the
interested parties, the immutable historical record stored on the block-
chain, could represent a reliable and transparent basis to manage the
conflict. Nonetheless, during the pilot phase of BBBlockchain, we did
not observe any significant conflicts. Therefore, at this stage, we cannot
report any experiences.

USER SURVEY We analyzed the impact of transparency with BB-
Blockchain through a user survey. Our user survey consists of n = 25
participants, conducted during the end of the first phase of the pilot
project in September 2020. The scope of the survey specifically focused
on how the platform might have improved citizens accessibility to
information and if they truly felt that the platform could have their
opinion taken into account in decision-making processes. In summary,
our analysis suggests that the problem of improving citizen participa-
tion cannot only be solved through better technology. Technology is
only one dimension to effectively design and implement a citizen par-
ticipation platform. Effective participation needs to be conceptualized
considering the broader socio-cultural context of applications.

Building on BBBlockchain, there are also other studies that go
deeper into the results from an operational and participatory point
of view [Rab+21; let+22; Iet+23].

Design Challenges

From a technical perspective, the deployment of BBBlockchain has
highlighted several aspects that need improvement in terms of privacy
and on-chain functionality. We identified specific areas for improve-
ment, such as private communication, anonymous voting, and reliable
voter authentication. For example, we have shown that there are sig-
nificant transaction fees for publishing contents on the blockchain. If
we were to apply the same magnitude of cost to a DApp-based open

60

5.4 PILOT DEPLOYMENT

communication platform with secure messaging on BBBlockchain, the
costs would be high. Therefore, we need to find a solution to make com-
munication cost-effective for participants. In addition, BBBlockchain
revealed the need for reliable and anonymous blockchain voting. Since
our pilots revealed serious flaws in the current implementation, we
need to find better technical solutions. In the following, we use these in-
sights and findings to propose privacy improvements and mechanisms
for DApps in general.

61

Part II1

PRIVACY MECHANISMS

SMARTDHX

In this part, we present three privacy mechanisms for decision-making
DApps with a focus on on-chain verifiability. Through our experi-
ence with developing and operating BBBlockchain, we discovered
several technical limitations regarding privacy and scalability for re-
liable decision-making. One problem we have found is that DApp
participants, who need to communicate with each other for decision-
making, cannot handle all communication on the blockchain due to
privacy issues and transaction costs. However, it would be critical if
communication was hindered simply because it was too expensive,
especially for our BBBlockchain use case. To address these issues, we
developed an on-chain, multi-party Diffie-Hellman key exchange pro-
tocol that allows DApps to establish a secure off-chain communication
channel between participants and can help to keep transaction costs
low.

6.1 MOTIVATION

The core concept of decision-making DApps is that all actions take
place on the blockchain, rather than on centralized off-chain servers.
Therefore, we are looking for a solution to bring all communication on-
chain while preserving privacy and blockchain properties. We propose
to utilize Diffie-Hellman key exchange (DHKE), which is a building
block for many cryptographic algorithms, to establish a shared secret
over an open channel [DH76]. For example, to facilitate secure web
browsing, the client first negotiates a secret key with a web server to
encrypt the subsequent communication. Even a (passive) eavesdropper
cannot reconstruct the secret key when DHKE is employed. To this
end, we present SmartDHX, a blockchain-based DHKE scheme with
multi-party capabilities. In SmartDHX, all cryptographic operations are
implemented in a smart contract, without any client-side modifications
or any additional libraries. This enables DApps to load the code di-
rectly from the blockchain and to execute a DHKE verifiably on-chain.
With our scheme, DApp clients load runtime code from the SmartDHX
smart contract, and execute it locally with a given random seed in a
JavaScript environment. Therefore, clients do not have to know how
the key exchange internally works, because the runtime code handles
the interaction with the smart contract. For decision-making DApps,
such an approach enables DApp participants to establish secure com-
munication channels between their clients. For example, participants
can start messaging with each other or exchange files.

63

This chapter is based
on joint work
published in [MT20]
by Robert Muth and
Florian Tschorsch.
“SmartDHX:
Diffie-Hellman Key
Exchange with
Smart Contracts.”
In: International
Conference on
Decentralized
Applications and
Infrastructures
(DAPPS). IEEE,
2020, pp. 164-168

6.1 MOTIVATION

? a &
o ((\od & N (&
Pz < /)70
[SmartDHX)
® el
ﬂ encrypt(message;, key = B* mod P) ﬂ

Alice Bob

encrypt(message;. 1, key = A’ mod P)

Figure 26. Overview of the clear-text communication between two participants
and the SmartDHX smart contract for secure key exchange, and the resulting
encrypted communication channel between the participants using the securely
exchanged key.

Most DAOs still use the web for communication, e.g., participants
use a bulletin board for discussion or emails. However, this has draw-
backs for many decision-making processes, such as the lack of confiden-
tiality or unreliable verifiability. To this end, we propose SmartDHX to
establish a secure communication channel between DApp participants.
As shown in Figure 26, participants use SmartDHX for secure key ex-
change (details on the exchanged values follow in Section 6.2). As a
result, the securely exchanged key can be used to establish an encrypted
connection for direct communication, e.g., via TCP or UDP sockets. For
that, SmartDHX can run asynchronously because exchanged messages
are stored on-chain, enabling DHKE for participants who cannot be
online at the same time. Alternatively, for messaging, messages can be
encrypted and securely exchanged via the permissionless blockchain
using it as a mailbox. Since DHKE is designed to be secure in public
networks, it will also remain secure in a blockchain setting. In addition,
message integrity and authenticity are provided by the blockchain,
therefore effectively mitigating Man-in-the-Middle (MitM) attacks. It
is widely known, though, that “plain” DHKE is vulnerable to active
MitM attacks. In order to protect DHKE from these attacks, clients
cryptographically sign their messages, however, that requires a way to
verify signatures. With SmartDHX the messages are signed and verified
as blockchain transactions, and therefore do not need any extra public
key infrastructure (PKI).

We show that all logic for the DHKE can be implemented in a
smart contract without any modifications to the blockchain client, i.e.,
Ethereum or Geth, respectively. For this, we provide an implementation
of SmartDHX as proof-of-concept. To this end, we implemented the
cryptographic logic in Solidity with the Truffle framework and evalu-
ate the approach using an Ethereum test network. With our proof-of-
concept, we provide unit tests, which verify that multiple participants
can exchange a secret key without storing it on-chain. The implementa-
tion can be tested locally and with a variable number of participants.
As expected, the key exchange requires additional time due to the
blockchain overhead. In order to show that our proposed scheme is

64

6.2 PROOF OF CONCEPT

also capable of handling more complex cryptographic logic, we also
implemented multi-party capabilities for SmartDHX.

Similar to our approach, McCorry et al. utilize Bitcoin for authenti-
cated DHKE [McC+15]. To this end, the authors modified the Bitcoin
Core client and implemented the DHKE logic as remote procedure
commands, which are stored and executed off-chain. However, our
approach contributes to a larger vision of truly DApps which store their
logic on-chain without separating between a client and blockchain side.
Right now, DApps are usually split into frontend client-side code, and
the smart contract in the blockchain. Thinking one step further, our
approach enables new cryptographical use cases, e.g., DApps which
are completely stored on-chain, but can communicate with each other
encrypted.

6.2 PROOF OF CONCEPT

In the following, we introduce the concepts of SmartDHX, its multi-
party capabilities, and present our proof-of-concept implementation in
a smart contract.

Two-Party SmartDHX

Two-party Diffie-Hellman key exchange allows to exchange secret keys
between two participants for subsequent encryption without revealing
it on the communication channel [DH76]. The security is not compro-
mised when someone is passively listening. In order to exchange a
secret key, the participants have to agree on a prime number P and a
generator number G. Certain properties on the numbers have a direct ef-
fect on the security of the whole cryptographical computations [Boe88],
which we do not discuss further for the sake of simplicity. There are
also different cryptographic techniques for making DHKE more secure,
e.g., by using elliptic curve cryptography [Mil85]. After agreeing on P
and G, the participants choose private keys a, b randomly, and publicly
exchange their results of A = G? mod P and B = G? mod P, which
we call public keys. Finally, the participants calculate the secret key
s = (GB)* mod P = (G*)? mod P independently, however retrieving
the same result.

Listing 1 shows how to generate 2 and A for one party in Solidity,
how to send the public key A to another smart contract as a transaction,
and how to retrieve the final secret key s. For the sake of simplicity,
we assume that the seed is given. Later, we will provide a solution to
generate a random seed locally and securely without any additional
requirements. Under this assumption, a passive adversary is unable
to compute s, because she has neither learned 4 nor b from any of
the transactions. Only active MitM adversaries or weak cryptographic
parameters can weaken the security. Hence, as long as the discrete

65

6.2 PROOF OF CONCEPT 66

// Globals
uint public G, P, B; // set during initialization

// Call for retrieving private a and public A based on a secret seed
function getA (uint seed) public view returns (uint a, uint A) {

a = uint (keccak256 (abi.encodePacked (seed, block.timestamp)));

A G.bigMod(a, P); // RPC modulo
}

// Send transaction for sending A to other SmartDHX contract (as B)
function sendA (DHX other, uint A) public { other.setB(A); }

// Call for retrieving the secret s

function getS(uint a) public view returns (uint s) {
s = B.bigMod(a, P);

}

Listing 1. Two-party DHKE implementation in Solidity.

logarithm problem is considered difficult [Boe88], DHKE—and there-
fore also SmartDHX—can be used via untrusted channels such as
blockchains.

For a deeper understanding of SmartDHLX, it is important to notice
the difference between calling a smart contract function locally and
sending a transaction with a function call. All functions which use the
private key a are executed locally (cf. contract .method.call(...)).
By calling a function locally, no transaction will be broadcasted, and
thus nobody can see that the function has been called, nor will the
parameters be disclosed. Likewise, any changes on the blockchain’s
storage variables will be discarded without persistent change. The
function can, however, return a value based on the blockchain’s current
storage. We use this feature to generate the public key A (without
revealing the private key a) and to generate the secret key s. That
way, we can store protocol logic in the blockchain without revealing
any processed data. In contrast, “transmitting” the public A will be
executed as a transaction (cf. contract .method (...)) and therefore
permanently written into the blockchain. Please note, both parties
involved in the DHKE have the exact same view on the deployed smart
contract, using the exact same function for making their public key
available to the other party’s contract.

Multi-Party SmartDHX

DHKE can also be used for exchanging a single secret key between
more than two parties. Of course, all parties could exchange keys
bilaterally and then derive a common secret. Alternatively, all parties
could use multi-party DHKE to agree on a shared secret key. In the
following, we present multi-party SmartDHX, which generalizes the
two-party approach.

6.2 PROOF OF CONCEPT

Client A | | Client B | | Client C | | Smart Contract
a: b o - GP
5 P: : : G,P; =
’ G.P. $2
&P - G.P: m
| GPe——
AgA:G” modP : éA
; : d o
§ B=G'modP § j‘;
7 T [S]
CEC:GC modP . oF
: B,C:
B,C: E
| c © o
: AB = B" mod P, AC = C* mod P § R
AB, AC : : AB,AC | 8F
z BC;BC:cb mod P : @

5 - BC
o 5=BC" mod P :

Sﬁs:Acb mod P

Block #3
TXs: 0

. ©s = ABS mod P
S=AY modt

Figure 27. Multi-party SmartDHX for n = 3. Lower-case values remain secret,
upper-case values are publicly stored in the blockchain.

For multi-party SmartDHX, we follow the same philosophy and
implement the complete logic to perform the key exchange in a smart
contract. Specifically, the logic to provide prime P and generator G,
and the logic for calculating the random private keys a,b,c,... (with
a random seed), the public keys A, B,C, ..., and the secret key s =
GABC) mod P are implemented in a smart contract. Since we need
to coordinate the message exchange between all parties, we implement
an extra “control” smart contract.

Figure 27 shows an example for a three-party SmartDHX, including
all calculations and smart contract interactions required to compute
the secret key s. The first block contains the smart contract deployment,
and thus the runtime code as well as the common parameters P and G.
The arrows leading from the smart contract to the clients (right to left)
indicate a local execution. Inversely, arrows pointing towards the smart
contract (left to right) represent persisting transactions. The annotations
on the right summarize the number of required transactions. Please
note that a block can hold multiple transactions issued by different
parties.

Even though the control smart contract could act as a MitM,, it is
unable to obtain (or derive) the secret key. While the smart contract
could actually manipulate the exchanged messages between parties,
all transactions are publicly available in the blockchain. Each party can
therefore verify the correct execution of the smart contract. Thus, as
long as all transactions are executed correctly and the program code of
the smart contract is not malicious, a MitM attack is not possible.

67

6.2 PROOF OF CONCEPT

// Generate local secret seed (32 byte == uint256)
let secretSeed = [...Array(32)].map(() => parselInt (Math.random() =
256));

// Generate private a and public A (local call)
let dhxKeys = await dhx.generateA.call (secretSeed);

// Send public A to other participant via blockchain (transaction)
await dhx.sendA (dhxPartner.address, dhxKeys.A);

// Calculate secret key (local call)
return await dhx.calcS.call (dhxKeys.a);

Listing 2. Two-party key exchange implemented in JavaScript. The script
is loaded from the SmartDHX smart contract, handles the blockchain
communication, and returns the exchanged secret key.

Seeding SmartDHX

In order to generate a private key for DHKE, a client has to generate a
secret random number, which is not trivial to achieve when accepting
smart contract inherent code only. For one, the fundamental require-
ment of the Ethereum Virtual Machine (EVM) is a deterministic execu-
tion of all commands. Consequentially, Solidity does not offer a pseudo
random number generator (PRNG). Smart contract developers instead
retrieve a random number usually by using hash values of previous
blocks or implement a commit-reveal scheme [Dam98]. Such a random
number, however, would not be secret anymore and therefore is not
usable for DHKE.

Our solution to the problem is to use JavaScript’'s PRNG. In par-
ticular, we deliver a JavaScript snippet with the smart contract that
generates a 256-bit random number (as shown in Listing 2). Since this
snippet is executed locally, it will not disclose the random number to the
blockchain. For improved security, it would also be possible to import
an NPM library with a cryptographically secure PRNG, because the
JavaScript is executed in a Web3/Node.js environment.

Proof-of-Concept

We implemented SmartDHX in Solidity 5.8 with the Truffle frame-
work 5.0.22 and make the code publicly available on GitHub.!® The
implementation’s purpose is to showcase and analyze SmartDHX's
feasibility only and does not implement any additional security mea-
sures against hijacking the smart contracts. In order to initiate the key
exchange, each party deploys SmartDHX and executes JavaScript code
locally, which is stored in and retrieved from the smart contract as
shown in Listing 2. This script is executed in a Web3 environment

16 https://github.com/robmuth/smart-dhx

68

https://github.com/robmuth/smart-dhx

6.2 PROOF OF CONCEPT

// SmartDHX deployment
let dhx = await deployer.deploy (SmartDiffieHellman) ;
let dhxPartner = await SmartDiffieHellman.at (0x...);

// Generate secret and exchange public A with dhxPartner

let jsGenerateExchangeKeys = await dhx.jsInitTransmit () ;
let dhxKeys = await eval (" (async (dhx, dhxPartner) => {" +
jsGenerateExchangeKeys + "}) (dhx, dhxPartner)");

// Calculate exchanged key

let jsCalcSecret = await dhx.jsCalcSecret();

let secret = await eval (" (async (dhx, dhxKeys) => {" + jsCalcSecret +
"}) (dhx, dhxKeys)");

Listing 3. Two-party SmartDHX Truffle migration script.

Two-party SmartDHX Multi-party SmartDHX

Secret keys (3) 1
Transactions n(n—1) Yk
Blocks 3 1+n
PoC runtime, n = 2 75s 165s
PoC runtime, n = 9 1275s 375s
PoC fees, n = 2 2813350 Gas 7184970 Gas
PoC fees,n =9 11443 649 Gas 125366493 Gas

Table 5. Minimum number of secret keys, transactions, and blocks for two-
party SmartDHX compared to multi-party SmartDHX, and the key-exchange
time and Gas costs of our proof-of-concept (PoC) implementation in the
Ethereum Rinkeby Testnet with n participants.

during a Truffle migration and invoked by JavaScript’s runtime eval-
uation command eval (...) as shown in Listing 3. After all parties
executed the script, it returns the exchanged secret key. The main ad-
vantage of storing the key exchange script in a smart contract is that no
third-party is needed, e.g., a web server, that provides the script. This
makes the program code verifiable and has the potential to improve
user experience, because no additional client software is required.

Performance

In the following, we analyze blockchain specific metrics instead of
network metrics like latencies or bandwidths. Accordingly, we do not
compare the execution time of off-chain DHKE with SmartDHX, as
mining can be expected to induce significant delays.

In Table 5, the number of exchanged secret keys, issed transactions,
and blocks are compared between two-party and multi-party Smart-
DHX. In order to exchange bilateral keys between 7 clients, two-party
SmartDHX needs at least (;) secret keys and twice as many transac-
tions, i.e., n (n — 1). Since all key exchanges can run independently
from each other, two-party SmartDHX can be completed in a minimum

69

6.2 PROOF OF CONCEPT

100 ‘ ‘ ‘
2 80 —_— Two—'party SmartDHX
5] - - - Multi-party SmartDHX
5 60 B
© -
2 40| i
s ="
o200 T N
1 il !
1 2 3 4 5 6 7 8 9 10

n clients

Figure 28. Number of transactions for two-party and multi-party SmartDHX.

of three blocks (one block for the deployment and two blocks for the
two-way handshake between clients).

For multi-party SmartDHYX, let us revisit Figure 27. The deployment
of the smart contract and providing P and G requires one block. In the
following blocks, the key exchange will be step-by-step completed by
each client, always adding another public key. For example as shown
in the figure, the public keys A, B, C are exchanged in Block #2. Next,
clients can calculate the public keys AB, AC, BC, and publish them
in Block #3. In each round, another client terminates, because of the
redundancy in the public keys, which eventually leads to a decreasing
number of transactions every block. For example in Block #3, Client C
could calculate AC and BC, but they are also calculated by Client A
and B. As a result, multi-party SmartDHX needs a minimum of n + 1
blocks and Y}, k transactions.

In a best-case scenario, two-party SmartDHX can exchange secret
keys faster than multi-party SmartDHX for more than two clients, if all
transactions are mined in the minimum number of blocks. Multi-party
SmartDHX, however, needs less transactions, but the number of blocks
increases by 1 per participant.

The overall time for a key exchange with SmartDHX depends on
the average block generation rate. That is, for a number of blocks
and the average block rate Az, the execution time ¢t is given by t =
B - Ap. In terms of economic performance, however, the number of
transactions might be more interesting than blocks: With an increasing
number of clients, two-party SmartDHX requires more transactions
than multi-party SmartDHX, which can be seen in Figure 28. In case
of Ethereum, more transactions do not necessarily lead to higher total
costs, because transaction fees depend on the computational complexity.
Even though the number of transactions for two-party SmartDHX
surpasses multi-party SmartDHX, the overall gas price for our PoC
multi-party SmartDHX is higher (cf. Table 5). The reason are the many
on-chain key distributions (i.e., write operations) in the smart contract.
In the end, there are two axis that influence the decision: First, one has
to decide whether parties should exchange separate keys or a single
shared key. Second, we need to tradeoff speed (i.e., number of required
blocks) and costs (i.e., number of required transactions).

70

6.2 PROOF OF CONCEPT

Security

Besides the security of “plain” DHKE, as described in [DH76; Boe88;
Mil85], the blockchain’s security also directly influences the secrecy of
the final exchanged key. We already pointed out that DHKE is safe as
long as no MitM can actively and secretly manipulate the communi-
cation between the participants. But permissionless blockchains with
longest-chain consensus rules can be attacked with the so-called 51%-
attack [KDF13], which allows changes in the blockchain retrospectively.
That way, an attacker could actively change blockchain transactions,
which is the worst-case scenario for DHKE. Fortunately, an attacker
cannot manipulate transactions without also tampering the sender’s
identity or transactions signature. With the identity management of
blockchains, transactions can be authenticated as shown by McCorry
et al. [McC+15]. They analyzed the security of DHKE via Bitcoin, that
can also be applied to Ethereum’s transaction authentication. For that,
they sketched proofs in their security analysis for the private key secu-
rity and session key security, which also applies to our approach. So,
as long as all participants can trust and verify each other’s transaction
signatures a 51%-attack does not threaten the SmartDHX security.

Discussion and Application Areas

The costs to perform DHKE on-chain become an issue. In particular
the costs for multi-party SmartDHX seem high. However, depending
on the use case, the additional costs can be negligible, e.g., exchang-
ing a shared key to enable an encrypted broadcasting. For instance,
in situations where many users receive encrypted data as broadcast
messages, it could be beneficial to have a single shared key. With a
shared key and using the blockchain as a broadcast medium, only a
single transaction is needed for broadcasting an encrypted message to
many recipients. Therefore, transactions fees can be reduced and might
compensate (break even) for the expensive key exchange.

However, we generally observe that SmartDHX is executable in a
reasonable amount of time and offers some very interesting properties,
including asynchronicity as well as message integrity and authenticity.
As a result, SmartDHX can be used to enhance the privacy of DApps
users with communication channels between the DApp users, e.g.,
for exchanging private messages with encryption instead of using a
centralized web forum. In addition, off-chain communication channels
can be used to reduce transaction costs and avoid scalability issues.

Another potential application, which emphasizes a feature of our
approach, might be plausible deniability as in Off-the-Record Mes-
saging [BGB04]. In addition to encrypted on chain communication,
the blockchain can be used to disclose a user’s MAC keys to a wider
audience.

71

6.3 CONCLUSION

Looking outside the box, our protocol is also suitable for other use
cases not related to decision-making. As described in [McC+15], this
can be used to provide end-to-end encrypted communication for post-
payment scenarios.

6.3 CONCLUSION

We have shown that it is possible to fully implement DHKE in an
Ethereum smart contract, allowing participants to establish a secure
communication channel over blockchains. To this end, we implemented
not only the cryptographic logic in Solidity, but also the client-side
logic for interacting with the smart contracts. In our proposed scheme,
clients retrieve their program logic directly from the smart contract and
execute it locally in a Javascript environment. Thus, SmartDHX can
be implemented in decision-making DApps to enhance privacy and
avoid scalability issues. In addition, we provide a building block that
contributes to the vision of storing DApps entirely in smart contracts
without splitting them into blockchain-side and client-side code.

72

ANONYMOUS CREDENTIALS VERIFIER

During the development and operation of BBBlockchain, we identified
the problem of reliable privacy-preserving voting. We can either leave
votings completely open and risk the reliability of the results, or we
can restrict them so that users cannot vote arbitrarily. To ensure reliable
voting and decision-making, DApps typically need to verify identity-
related information of their users. For example, identifying all users
before they can vote to prevent double-voting, or limiting voting to a
pre-defined group of users. However, personal identity-related infor-
mation should be kept private and should not be processed on a public
blockchain. It is therefore common practice to use centralized infrastruc-
tures to verify personal identity-related information off-chain instead
of using a smart contract-based DApp. To this end, we propose using
anonymous credentials for DApps [CLO1] to realize privacy-preserving,
reliable user verification. Unfortunately, anonymous credentials cannot
yet be verified with smart contracts in the EVM. Currently, they are
implemented for Hyperledger Indy [@Hyp18] blockchains and can
be managed with the Hyperledger Ursa cryptography library. In this
chapter, we therefore examine how anonymous credentials work and
how they can be verified with EVM-based smart contracts.

7.1 MOTIVATION

Decision-making DApps benefit from the inherent properties of
blockchains, namely transparency and censorship resistance; In particu-
lar, autonomous organizations [@]en16], decentralized finance [Qin+21]
DApps, and participation apps (as presented in Chapter 5). How-
ever, interacting with many DApps often requires their participants
to demonstrate personal identity-related information. For example, in
decision-making DApps, participants must first prove that they are
eligible to vote by providing personal information confirming that they
meet certain criteria, such as being a certain age or living within a
certain address range.

Unfortunately, in current practices, verification is often realized off-
chain using centralized services and infrastructures. For example, in
the Open Voting Network implementation for Ethereum [MSH17], the
voting initiator approves voters’ eligibility off-chain and publishes an
acceptance list of eligible voters to the smart contract.

This is also a major issue for other DApp use cases, such as Defi
related DApps. For example, DApps for crypto token offerings, where
an initial amount of free tokens is released to attract new community

73

This chapter is based
on joint work
published

in [Mut+22a] by
Robert Muth,
Tarek Galal,
Jonathan Heiss, and
Florian Tschorsch.
“Towards Smart
Contract-based
Verification of
Anonymous
Credentials.” In:
Financial
Cryptography
Workshop on
Trusted Smart
Contracts.

Vol. 13412. Lecture
Notes in Computer
Science. Springer,
2022, pp. 481-498

7.1 MOTIVATION

members, identity-related information is used to prevent malicious
users from exploiting these airdrops through Sybil attacks [Dou02], i.e.,
repeated requests for free tokens using different blockchain accounts.
During the Stellar airdrop [@Dal19], for example, users were required
to prove that they have a valid GitHub account with a past registration
date to prevent attackers from creating multiple GitHub accounts as
their Sybils. The account validity has not been verified on-chain but
through an allegedly trusted off-chain verifier. In both examples, a
dishonest verifier can cheat without being noticed, e.g., by unjustifiably
denying access to the voting or tokens.

To maintain the decentralization and censorship resistance of
decision-making DApps, verification must be performed on-chain.
However, this introduces two new challenges: runtime isolation of
DApps and privacy. Verifying identity-related information typically re-
quires a trusted third party to vouch for the accuracy of the information.
In the airdrop example, it is not enough for the user to claim ownership
of a GitHub account; instead, GitHub itself must certify it. Similarly, in
the voting example, the required identity information could be attested
to by a public institution. However, smart contracts run in an isolated
execution environment, so they can only access information that exists
in the same runtime. To access off-chain information, they require an
oracle, which implies trust in trusted third parties [HET19]. In addi-
tion, verifying identity-related information typically reveals personal
information to the verifier. This is already a problem for off-chain use.
However, when verification happens on-chain, sensitive information
becomes accessible to unauthorized blockchain nodes and immutably
anchored on-chain for an unknown period of time. As a result, iden-
tity information cannot be naively verified on-chain to protect users’
privacy rights and comply with applicable privacy regulations.

One approach towards privacy-preserving verification of identity
information are anonymous credentials. They can be implemented by
using zero-knowledge proofs to enable credential verification with-
out revealing sensitive identity attributes to the verifier. While anony-
mous credentials have been around for a long time [CLO01], they have
increasingly gained attention. For example, they are part of Hyper-
ledger Indy [@Hyp18] a decentralized credential management system
where they are realized based on Camenisch-Lysyanskaya (CL) signa-
tures [CLO1].

Anonymous credentials are a promising solution to overcome the
privacy limitations of the blockchain and enable non-revealing veri-
fication of identity-related information. However, the verification of
anonymous credentials takes place as part of an interactive process
between the identity issuer, the identity holder, and the verifier. This
conflicts with the limited ability of a smart contract to communicate
with off-chain infrastructures. Furthermore, smart contracts are con-
strained by technical properties of the underlying execution environ-

74

7.2 ANONYMOUS CREDENTIALS

ment, e.g., the Ethereum Virtual Machine [Wo022], which must be taken
into account when implementing anonymous credentials verification.
To date, there is no smart contract-based implementation for verifying
CL signature-based anonymous credentials [CLO1].

Therefore, we design and implement a mechanism for smart contract-
based verification of anonymous credentials issued as part of Hyper-
ledger Indy’s credential management routine. First, we propose a pro-
cedure for integrating smart contract-based credential verification into
Hyperledger Indy. The procedure connects two previously discon-
nected worlds, allowing blockchain-enabled DApps to verify anony-
mous credentials issued by Hyperledger Indy-based systems. Second,
we present a technical specification that explains the verification of CL
signature-based anonymous credentials [CLO1] in a developer-friendly
way. The specification is based on both formal descriptions [CG12] and
insights gained from an analysis of the Hyperledger Indy SDK code
repository [@Fou22b]. Finally, we provide a proof-of-concept imple-
mentation for verifying CL signature-based anonymous credentials on
Ethereum in Solidity, and we document the technical challenges we
encountered during implementation.

7.2 ANONYMOUS CREDENTIALS

In the followoing, we first introduce concepts and roles related to
anonymous credentials in Hyperledger Indy. Based on this overview,
we propose a procedure for integrating smart contract-based verifi-
cation of anonymous credentials into Hyperledger Indy’s standard
credential management routine [@Sov21].

Anonymous Credentials in Hyperledger Indy

Credentials can be understood as a set of claims about the holder’s
identity [Miih+18], i.e., statements about specific identity attributes
such as the holder’s name, address, or date of birth. Hyperledger
Indy [@Hyp18] provides a decentralized system for managing such
credentials, based on the principles of the self-sovereign identity (SSI)
paradigm [@Chr16], in which the holder is in control of its identity
claims, rather than allowing third parties to control them. Additional
evidence is required to independently verify a credential. Evidence is
typically attached to the credential by a trusted third-party that can
attest to the credential holder’s attributes, e.g., with a cryptographic
signature. This will make them verifiable credentials [@Wor22].
However, naive verification of signatures constructed on identity
attributes could reveal potentially sensitive identity attributes to the
verifier, potentially violating the holder’s privacy rights. Furthermore,
revealing credentials to a decision-making DApp may violate our re-
quirements for independent processes, e.g., for anonymous voting.
Anonymous credentials [CG12], to that end, address these problems

75

7.2 ANONYMOUS CREDENTIALS

[4
il ‘ Pr,
120 ese
gertiad® ° Holder ™S proos
s
\58u° I

L]
Trusts ﬁ

Is:er l Verifier
[Ledger j

Figure 29. SSI Model adopted from [Miih+18].

by enabling selective disclosure for credential verification, i.e., verify-
ing predicates on sensitive identity attributes without revealing them
to the verifier. Therefore, Hyperledger Indy implements Camenisch-
Lysyanskaya signatures (CL) [CL02], a signature scheme with zero-
knowledge properties.

As shown in Figure 29, credential verification requires three roles:
The identity holder who owns an identity, the issuer, who issues and
attests to identity attributes through verifiable identity claims, and
the verifier who verifies the identity claims. Hyperledger Indy also
uses a public, permissioned blockchain, the ledger, as a public and
decentralized storage system to make public artifacts accessible to
all stakeholders. Private credentials of holders are stored in personal
wallets, protecting them from unauthorized access.

Smart Contract-Based Integration of Anonymous Credentials Verification

We now show how anonymous credentials of Hyperledger Indy can
be used for smart contract-based verification, i.e., Ethereum smart
contracts. In order to establish compatibility between Hyperledger
Indy and the EVM we define the following requirements:

* No infrastructure modifications: Smart contract developers
should be able to build on existing Hyperledger Indy systems for
credential verification. Therefore, on-chain verification should be
integrated without any changes to the native Hyperledger Indy
system.

* No further trust assumptions: In Hyperledger Indy, issuers are
trusted by the verifier to truthfully attest to a holder’s creden-
tials, and no further trust assumptions should be introduced.
More specifically, integration should work without trusted ora-
cles [HET19].

The integration procedure builds on the native Hyperledger Indy cre-
dential verification flow, as described in [@Sov21]. As an extension, we
propose a new verifier role, i.e., the verifier contract, and introduce the

76

7.2 ANONYMOUS CREDENTIALS

: & 3 B
m.m‘@

Issuer Developer Ledger Holder Verifier Contract
(Hyperledger Indy) (Ethereum)

Credential Schema

a) Generate

Credential Definition | &0 4o ntial Definition

Credential Definition

Credential Request

b) Create

Verifiable Credential Verifiable Credential

Pre-requisite

Credential Definition

c) Create

Smart Contract Smart Contract

1. Setup
Proof Request
d) Generate
Anonym. Credentials | Anonymous Credentials
2. Proving
e) Verify
Anonym. Credentials | 3 \erification

Figure 30. Adopted proof verification flow of the Hyperledger Indy proof
verification procedures with a smart contract verifier.

developer, who is responsible for implementing and deploying the smart
contract. As shown in Figure 30, the entire proof verification process
can be divided into three phases: setup, proving, and verification.

Pre-requisite: As a pre-requisite, we assume that a credential schema
exists that defines a set of identity attributes. From that, the issuer has
generated a credential definition and registered it on the Hyperledger
Indy ledger (Step a). The credential definition is a public artifact that is
typically specified by the issuer and accessible on the ledger. Among
others, it contains the set of attributes to be verified, the issuer’s pub-
lic key, and a reference to the signature algorithm which, in our case, is
the CL signature scheme.

We also assume that the holder is already in possession of the verifi-
able credential that is required by the smart contract. In Hyperledger
Indy, this is done in the form of a credential request [@Sov21] submit-
ted from the holder to the issuer. On receiving the request, the issuer
creates the evidence, here the CL signature, and returns the verifiable
credential to the holder where it is stored in her wallet (Step b).

1. Setup: During the initial one-time setup, the developer deter-
mines the set of attributes and predicates to be verified on-chain
and the attesting issuer in the form of a proof request, which in
Hyperledger Indy is typically created by the verifier. Accordingly,
the developer selects a credential definition from the ledger. For

77

7.3 PROOF VERIFICATION

simplicity, we assume that the determined proof request matches
a single credential definition. Based on the issuer’s public key,
attributes, predicates, and a reference to the credential definition,
the developer creates the smart contract (Step c). In Hyperledger
Indy, this information is contained in the credential definition
and the proof request. The developer then deploys the smart
contract to the blockchain.

2. Proving: The holder obtains the proof request from the smart
contract which also includes a reference to the credential defini-
tion on the ledger. Based on the credential definition and schema
obtained from the ledger as public information, and the veri-
fiable credential taken from the wallet as private information,
the holder constructs a zero-knowledge proof based on her CL
signature (Step d) to obtain anonymized credentials. Finally, the
holder submits the resulting anonymous credentials to the smart
contract.

3. Verification: On reception, the smart contract (i.e., DApp) verifies
the proof using the on-chain credential definition (Step e).

Successfully verified credentials can then be used as part of the
DApp’s logic. As shown by the motivating examples, the credential
verification can represent a pre-condition for using specific functional-
ity provided by the DApp, e.g., a voting.

7.3 PROOF VERIFICATION

Given the high level description of integrating smart contract-based
anonymous credential verification into the native Hyperledger Indy
credential management routine, we now focus on the details of proof
verification. Therefore, we first introduce the basics of CL signature
verification, which is used in Hyperledger Indy to construct zero-
knowledge proofs. Based on this, we describe the actual anonymous
credentials proofs, i.e., a primary proof that builds on equality proofs
and inequality predicate proofs.

Signature Proof of Knowledge

Conceptually, ZKPs in anonymous credentials prove knowledge of
some discrete logarithms modulo a composite [CG12], and are referred
to as signature proofs of knowledge. They allow a credential holder to
prove possession of a CL signature over certain attribute values without
revealing other attributes, as well as to prove that an attribute value
lies within a certain range without revealing it. To understand how
this is accomplished in anonymous credentials, we give an overview
of what a CL signature looks like and show how a signature proof of

78

7.3 PROOF VERIFICATION

knowledge is generated for it. We do this by referring to corresponding
steps in the procedure presented in Section 7.2.

As part of the pre-requisites, the credential issuer creates the cre-
dential definition (Step a). Therefore, she generates a CL signature
key pair based on a credential schema which contains a set of prede-
fined attributes (e.g., attributes of a driver’s license). The CL signature
scheme [CLO2] defines the public key in this key pair as the quadruple
(Z,5,{R;}ica.,n) where Ac is the set of indices of attributes in the cre-
dential schema, 7 is a special RSA modulus [CL02], and Z, S, {R;} are
random quadratic residues modulo 7. Then, on receiving a credential
request from the holder, the issuer attests to the attribute values {m;},
and, for creating a verifiable credential (Step b), generates a CL signa-
ture as explained in [CLO02], such that the following holds:

Signature

z:Ae-(HR,»m’)-s” mod (1)

i€Ac

Public Key

While the public key information Z, {R;}, S and n are publicly avail-
able on the ledger, the signature (A, e, v) is proven under the strong
RSA assumption to be computable only by the issuer [CL02], who owns
the private key, in order to keep the whole equation true. Together with
the values of the attributes {m; },c ., the holder is now able to prove
possession of the credential. Therefore, she generates a ZKP (Step d)
which proves the knowledge of the exponents e, {m; }ic 4., v but keeps
them secret when presenting the proof to a verifier. Thus, the verifier
can still verify that the prover knows those exponents, and thereby, is
in possession of a valid signature (Step e).

In addition, a holder can prove that a credential contains an attribute
with a certain value that it reveals. For this we say Ac = A, U Ar
such that A, contains revealed attributes and A7 contains unrevealed
attributes that are kept secret. Since A, and Ay are mutually exclusive,
we can adjust the Equation 1 as follows:

Z=A° (]’[R;”f) <H R;“") S” mod n)

€A, i€EAF

Z _ e m; v d

——— =A | [[R"]S" modn 3)
(HieAr R;'ni) e

This allows us to prove that a credential contains a set of attributes
with the revealed values {m; }ic 4., by proving knowledge of the expo-
nents (e, {m;}ic,,v) in Equation 3. We use these insights as a basis for
the following proof descriptions.

79

7.3 PROOF VERIFICATION

Primary Proof Verification

Anonymous credentials, as explained in [@KL18], are based on the pre-
viously introduced CL signature proofs of knowledge. These proofs are
similar to the Schnorr protocol [Sch91], and are made non-interactive
(i.e., only one round instead of commitment, challenge, and response)
by implementing the Fiat-Shamir heuristic [FS86]. Anonymous creden-
tials structure a proof as a combination of different sub-proofs belong-
ing to a primary proof that is used to verify them as a whole. For this
purpose, a primary proof consists of a set of equality sub-proofs {Prc}
and a set of inequality predicate sub-proofs {Prp}:

* An Equality proof proves that a credential contains expected val-
ues

* An Inequality predicate proof proves that a credential contains a
value that lies within a certain range (e.g., zip code between a
given range)

Additionally, a primary proof also contains a set C with necessary
information for the non-interactive ZKP execution, and a ZKP chal-
lenge c to verify the correct execution. Along that, the verifier requires
the proof generator (i.e., the holder) to include a given nonce 7, so that
the verifier can make sure that the proof corresponds to a particular
proof request. During verification, sub-proofs are processed one after
the other, and their results are appended to a set T which is shared
across all the sub-proofs. At the end, the ZKP responses in each sub-
proof are individually processed and the results are aggregated into 7.
Once 7T is complete, the verifier hashes the final result of 7\‘, C, and the
nonce 7. The proof verification succeeds if ¢ equals H(7 || C ||).

Equality Proof Verification

In the following, we introduce equality proof verification. We therefore
present the cryptographical procedure, as we did for the signature
proof of knowledge introduction in Section 7.3. In fact, equality proof
verification is based on the same technique, but is implemented over a
randomized version of the CL signature [CG12]. However, we do not
intend to recap all proof details, as they are explained in [CG12].

In a nutshell, an equality proof attests the possession of a CL signa-
ture (i.e., credential) over a set of expected attributes, but without re-
vealing any other information. Still, A, contains the indices of revealed
attributes and Az contains the unrevealed attributes. The difference is, a
verifier receives Prc = (,9, {71 }jcr, A') and the revealed attribute val-
ues {1;}ica, from a prover, but the original values A, v (cf. Equation 1)
are not directly used. Instead, A" belongs to a randomized CL Signa-
ture (A’,e,v') [CG12] where ¢, v’ are exponents in that signature and
¢, 0 belong to ZKPs of knowledge of e and v’ respectively. The prover

80

7.3 PROOF VERIFICATION

generates this randomized signature based on the original CL signa-
ture she possesses by following the procedure described in [CG12] to
guarantee unlinkability across different proofs.

For completeness, we present the equality proof equation which
calculates the sub-proof results T. For the sake of simplicity and easy
recognition of relevant components, we highlighted the parts in the
equality proof equation that belong together:

Attributes Signature Public Key Zero-Knowledge Proof
=€
~ 7z >
T « (a)
" 2596
1T . R, ')(A)
(je a)
il o
IT =& (s 7)) (mod n)
j € A

In the end, computing T is a pre-verification step for the given ZKP
parameters, and is completed as part of the primary proof verifica-
tion. At this point, we want to underline that the same c is used for
exponentiation as for the final hash comparison in the primary proof.

Inequality Predicate Proof Verification

An inequality predicate consists of an attribute, one of >, >, <, < asa
comparison operator, and a constant value to compare to. Again, the
credential holder proves that a specified inequality is satisfied without
revealing the actual value of the attribute. In order to do that, the
prover constructs a zero knowledge proof that the inequality predicate
is satisfied. Additionally, the prover attests that the attribute indeed
belongs to her, by constructing another zero knowledge proof. This
zero knowledge proof is in fact just an equality proof that does not
reveal the attribute’s value.

Verifying an inequality proof requires processing the associated
equality proof first where the index of the attribute in the predicate
belongs to A7 (unrevealed attributes). Afterwards, predicate-specific
zero knowledge proofs are processed, each extending T in the primary
proof verification. Since the computations involved in processing an
inequality predicate proof are very similar to those involved in process-
ing an equality proof, we omit them from this section and refer to the
anonymous credentials specification [@KL18].

81

17
18
19

20

7.4 IMPLEMENTATION

7.4 IMPLEMENTATION

In this section, we present our proof-of-concept implementation for
on-chain anonymous credential verification. We therefore introduce
our smart contract implementation and provide an overview of its tech-
nical design. With reference to Section 7.2, we show how the complex
proof verification can be implemented and executed with limited and
isolated EVM resources. Finally, we evaluate the transaction cost of
proof verification using our implementation.

Proof-of-Concept

As part of our implementation for anonymous credentials verification,
we provide a Truffle project with a single smart contract implementa-
tion for the proof verification. In addition to that, we include Mocha
(Node.js) test cases for single proof verifications and full proofs with
combined equality and predicate proofs. We consider our implementa-
tion a proof-of-concept, since we limit it to verification only and focus
on the technical feasibility. We also stress that our implementation
should not be considered production-ready yet. The source codes is
available on GitHub.!”

We use the Hyperledger Ursa cryptography library!® as a reference
implementation and replicate relevant parts of its test cases to ensure
that our implementation produces the same results. We also provide
additional test cases which are used for our evaluation.

For the smart contract development, we face several challenges re-
garding the CL signatures’ key size. Firstly, proof verification requires
arithmetic operations (4, —, -), exponentiation, and multiplicative in-
version modulo a large number. As explained in Section 7.3, 1 is defined
by the public key as the modulus. In our case, anonymous credentials
and the implemented test cases use 7 of size 2 050 bits'?, which exceeds
the size of the EVM’s largest data type for numbers (max. 256 bits for
unsigned integer). To this end, we integrate a big number library?® for
on-chain computations which ports parts of the OpenSSL big num-
ber implementation to Solidity and YAL (inline assembly). The library
takes numeric input as byte arrays and performs computations in EVM
memory. With EIP-198 [@But17a] the EVM offers a precompiled con-
tract for computing a’ mod n where a,b and 7 can be larger than
256-bit unsigned integers. It is noteworthy that the big number library
takes full advantage of this precompiled contract, as it also uses it for
efficient multiplication.

https:/ / github.com/robmuth/eth-ac-verifier

https:/ / github.com/hyperledger/ursa/blob/34ef392 /libursa/src/cl/prover.rs

n is 3074 bits in anonymous credentials [@KL18], but HyperLedger Ursa sets 1 to
2050 bits.

https:/ / github.com/firoorg/solidity-BigNumber

82

https://github.com/robmuth/eth-ac-verifier
https://github.com/hyperledger/ursa/blob/34ef392/libursa/src/cl/prover.rs
https://github.com/firoorg/solidity-BigNumber

7.4 IMPLEMENTATION

Additionally, the big number library and the precompiled contract
do not support computing modular multiplicative inverses. However,
given a,b, n, it is possible to check if a is the inverse of b modulo n
by utilizing the available exponentiation. Our implementation there-
fore computes the required modular multiplicative inverses off-chain
and passes them together with the proof. For this reason, we use an-
other big number library for off-chain computations in JavaScript?!
which pre-computes intermediary results (i.e., modular multiplicative
inverses) for a proof verification. As explained above, our implementa-
tion verifies that the passed values are correct and aborts the execution
otherwise. Thus the values are calculated off-chain, but all passed
values are checked on-chain and rejected if necessary.

Finally, the number of variables required for proof calculations leads
to capacity shortages for the Solidity compiler. The EVM is designed as
a stack machine [Wo0022] with a maximum size of 1024 words (256 bits
each), which is just enough to pass a complete proof in one transac-
tion. Unfortunately, the limit of 16 parameters and local variables per
function call makes all proof computations difficult, since our required
parameters and computations (mainly big integer computations) cause
stack overflow exceptions during compilation. Therefore, and for bet-
ter code readability, we use predefined struct data structures to pack
multiple parameters, and split computations into multiple functions
that allocate and release local variables from the stack for intermediate
computations.

The Truffle project provides basic migration scripts for the verifica-
tion contract and the linked big number library. The test cases provide
unit tests for the verification procedures, as well as, exemplary creden-
tials. Once passed, they return the corresponding transaction costs for
each verification in Gas, which we evaluate in the following.

Evaluation

We evaluate the costs for the deployment of the smart contracts and for
transactions created by test cases with exemplary credentials. Therefore,
we compile the smart contracts with Solidity 0.5.16 (enabled optimizer
with 200 runs), and analyze the transactions with Ganache 2.5.4. Ad-
ditionally, we implement the Hyperledger Ursa cryptography library
unit tests into our proof-of-concept test cases and additionally generate
our own exemplary anonymous credentials, issued with Hyperledger
Indy.

Table 6 shows Gas costs for the deployment of the smart contracts
and function calls of our test cases. While the deployment of a veri-
fication contract only puts the compiled byte code on the blockchain
storage, executing a proof verification requires passing a full proof to
the smart contract and executing the anonymous credentials verifica-

21 https://github.com/indutny/bn.js

83

https://github.com/indutny/bn.js

7.4 IMPLEMENTATION

Transaction Gas
Verifier contract deployment 6711k
Big number library deployment 77k
1. Test credential: Primary proof verification with equality sub-proof 32001k

2. Test credential: Primary proof verification with inequality predicate sub-proof 84826k

3. Test credential: Primary proof verification with combined sub-proofs 84033k

Table 6. Transaction costs in Gas for smart contract deployments and different
proof verification test cases in Ethereum.

tion process as explained in Section 7.3. In our first test, the credential
contains a set of 14 identity-related attributes (e.g., name, date of birth,
address, etc.) and reveals the first name with a primary proof and an
equality sub-proof. Our second test contains the same attributes and an
inequality predicate (i.e., date of birth has to be before a specified date),
which is realized as a combination of an equality sub-proof and an
inequality predicate sub-proof in the primary proof. By looking at the
difference between the Gas cost for the first and second test credentials,
one can see that the Gas costs increase with the number of sub-proofs,
especially with inequality predicate proofs. This explains why the Gas
costs of the third test, which reveals the first name and verifies the date
of birth together, is not significantly different from the second test case.

Since Gas represents the resource consumption per EVM com-
mand [Woo022], proof verification becomes expensive for three reasons:
First, the passed arguments (i.e., the proofs) contain large byte arrays,
e.g., for each attribute and the corresponding zero-knowledge proof
parameters. Second, the complex data structures for handling big num-
bers require allocation of EVM memory space, which consumes extra
Gas [Wo022]. Third, calling the precompiled contract for exponentia-
tion and modulo operations [@But17a] allows cheaper computations
than an on-chain implementation; but due to the involvement of a large
number of these operations in a proof verification, the Gas cost add up
quickly. We also point out, that the number of attributes influences the
proof size and therefore has an impact on the transaction costs, as well.

In the end, our evaluations show that the Gas costs are very high,
so the resulting transaction fees (i.e., Gas multiplied by the demand-
regulated Gas price) render it difficult for most DApp use cases. Con-
sidering a current exemplary Gas price of 100 Gwei, the full proof
verification of our test case would cost approx. 8.4 Ether. However,
we stress that our proof-of-concept implementation is not optimized
for reduced Gas costs and there is certainly great potential for opti-
mization (e.g., more efficient memory allocations). Furthermore, Gas
costs cannot be translated directly to transaction fees in Ethereum,
since a transaction sender specifies how much Ether she is willing to
pay per Gas. This means, the actual transaction costs depend on the
blockchain’s current transaction load.

84

7.5 DISCUSSION

7.5 DISCUSSION

In this section, we discuss remaining open issues that should be
considered for practical usages of our proposed solution. To this
end, we put the evaluated transaction costs into context and present
further options to implement our solution. For completeness, we also
take a look at revocability of credentials and explain how it could
be integrated into our smart contract implementation. At the end,
we briefly discuss our considerations regarding Sybil resistance and
unlinkability.

Transaction Costs

As shown in the evaluation in Section 7.4, our proof-of-concept demon-
strates the general ability to verify anonymous credentials in a smart
contract on Ethereum, and therefore enables compatibility with Hyper-
ledger Indy-based identity platforms. However, the expected transac-
tion costs are too high for current DApp implementations.

Nevertheless, blockchain technologies continue adopting new tech-
niques to address rising transaction costs, scalability limits, and perfor-
mance issues of execution engines, respectively [Pop19; Rou20; BET21];
Especially since hype-driven blockchain applications (e.g., Cryptokit-
ties or ICOs) caused fees to skyrocket [SFG19] multiple times, in the
past. However, since our implementation is EVM-based but not lim-
ited to the Ethereum Mainnet, we envisage other blockchains that are
compatible with our Solidity implementation (e.g., Polygon/Matic??
or Polkadot??).

In the meantime, we consider two possible ways to implement anony-
mous credentials verification on-chain: First, the computationally ex-
pensive big number operations could be implemented as precompiled
contracts into the EVM, i.e., implementing big number data types. Pre-
compiled contracts are natively implemented in the EVM client and can
be addressed as external contracts by other smart contracts, but they
define their Gas costs independently. Doing so, the overall transaction
costs of our implementation could significantly decrease in the same
way, as EIP-198 [@But17a] decreases costs for big integer modulo oper-
ations. Second, in the same manner, the whole verification procedure
could be implemented as a precompiled contract. The latter, we at least
consider reasonable for instantiating new EVM-based blockchains with
anonymous credentials capabilities, since implementing precompiled
contracts is common practice for new private networks. Hence, for
example, anonymous credentials verification can be implemented as
precompiled contract in the official Ethereum client Geth which also
supports instantiating private and permissioned networks.

22 https://polygon.technology
23 https:/ /polkadot.network

https://polygon.technology
https://polkadot.network

7.5 DISCUSSION

Non-Revocation Proof

Our solution works for credentials that are generally valid, that is,
credentials over attributes that neither have an expiry date nor are
revocable by their issuer (e.g., date of birth). In contrast, an issuer can
create revocable credentials for attributes that are subject to change (e.g.,
address). In this case, it is possible that a revocable credential could
have already been revoked by its issuer, by the time a verifier receives
a proof based on it. Therefore, a verifier must be able determine a
credential’s revocation status in order to accordingly decide whether
to accept or reject the given primary proof.

Anonymous credentials in [@KL18] allow a holder to prove that the
credentials used during the primary proof construction have not been
revoked. For this purpose, tracking the revocation status uses CKS
accumulators [CKS09], where a so-called accumulator value is periodi-
cally published by the credential issuer, containing information about
all non-revoked credentials. When a credential is issued, the issuer
also provides the holder with a witness, which allows the holder to
prove the validity of the credential with respect to the accumulator
value. The process of checking the revocation status takes place as
part of the credential verification process. In addition to the primary
proof, a credential holder also sends a non-revocation proof, which is a
zero-knowledge proof constructed over the accumulator parameters.

CKS accumulators make use of weak Boneh and Boyen signa-
tures [BBO8; BBS04], BN-254 curves [BN05] and type-3 pairing which
are all different cryptographic primitives than the ones used by creden-
tial attestation proofs. Therefore, verifying those proofs is a subject for
future work.

Sybil Resistance and Unlinkability

In our system, Sybils are resubmissions of already verified anonymous
credentials by different holders. Since Sybil attacks can be effectively
defeated by a trusted party that guarantees uniqueness [Dou02], we
can instrument the only trusted party for this purpose: the issuer. If
the issuer provides a unique identifier as an identity attribute, it can
be verified on-chain as part of the proof. This establishes a verifiable
one-to-one mapping between proof and holder. The unique identifier
could be represented as a revealed attribute that is part of the proof
construction and verifiable on-chain.

An alternative solution that does not require cooperation from is-
suers is described in [@KL18]. A verifier can require provers to turn off
unlinkability in their proofs. We have shown in Section 7.3 that this is
possible if a holder does not generate a randomized CL signature and
instead, constructs proofs based on her original CL signature. Thus,
the smart contract keeps track of all proof identifiers and, hence, can
identify Sybils.

86

7.6 SELE-SOVEREIGN IDENTITIES

However, while storing unique identifiers of proof-holder mappings
helps to defeat Sybil attacks, it also introduces linkability. Linkability is
a privacy-related characteristic and applies in this context if the linkage
of anonymous credentials allows unauthorized third parties to derive
private information of the holder. In smart contract-based applications,
linkability is critical since the history of blockchain transactions is
available to all blockchain nodes.

While holders can protect against linkability by using different block-
chain accounts each time they interact with the blockchain, this pro-
tection becomes ineffective if unique identifiers of holders are stored
on-chain. They should, consequently, not naively be used for Sybil
resistance but require further considerations to keep holders protected
from linkability.

7.6 SELF-SOVEREIGN IDENTITIES

Hyperledger Indy has become one of the most popular SSI manage-
ment technologies [SNA21] and is adopted in multiple SSI management
projects. IDunion?*, for example, is a German consortium of public and
private organizations that uses Hyperledger Indy to implement a SSI
management system. Similarly, the Verifiable Organizations Network®
is an initiative that leverages Hyperledger Indy to realize SSI and en-
able digitization of identities in a secure, user-centric manner. With our
proposed solution, smart contracts can now verify credentials of any
issuer that is part of these projects.

Beyond Hyperledger Indy, other blockchain-based credential man-
agement systems exist. In the context of SSI, uPort [N]J20] and Jolo-
com [@JOL19] are two approaches that, instead of building upon a
public, permissioned blockchain, leverage Ethereum as a public, per-
missionless blockchain. These approaches, however, currently only
store non-revealing identity information on-chain but do not provide
anonymous credential verification. Given the privacy requirement, this
makes them not applicable for smart contract-based credential verifica-
tion. However, recent improvement proposals (e.g., EIP-725 [@VY20]
and EIP-735 [@Vog19]) show that there is an interest in establishing
Ethereum-based SSI-Systems, which has even yielded the formation of
a self-proclaimed SSI alliance.?

7.7 CONCLUSION

Motivated by the privacy limitations of DApps, we have taken a first
step towards verifying identity information in DApps in a privacy-
preserving and trustless manner. Using the example of Hyperledger
Indy as an established credential management system, we have shown

24 https://idunion.org
25 https://vonx.io
26 https://erc725alliance.org

https://idunion.org
https://vonx.io
https://erc725alliance.org

7.7 CONCLUSION

how CL signature-based anonymous credentials can be verified by
Ethereum-based smart contracts without introducing further trust as-
sumptions.

With our approach, DApps can verify identity-related information
completely on-chain, preserving transparency and censorship resis-
tance as desirable properties of DApps. For decision-making DApps, a
public authority could issue eligibility claims as anonymous creden-
tials that are verifiable on-chain, helping decision-making DApps yield
more reliable results. As our approach builds on concept of SSI, we
envision an environment for decision-making DApps where sufficient
trusted authorities are available.

However, we also revealed aspects that stand between our prototype
and a production-ready system. As seen in our technical evaluation,
Gas costs are currently impractically high due to the high verifica-
tion costs of CL signature-based zero-knowledge proofs. However,
the active research and ongoing developments in the area of verifi-
able credentials and smart contracts lead us to expect technological
advances that can benefit smart contract-based credential verification.
For example, a new anonymous credential design called Anonymous
Credentials 2.0 has been proposed in [@Mic19], which may be adopted
in Hyperledger Indy in the future.

In the end, we have shown that CL signature-based anonymous
credentials can be verified in smart contracts, while paving the way for
the integration of other identity infrastructures and technologies.

88

TORNADO VOTE

The most important instrument for decision-making DApps is voting.
To this end, in Chapter 4, we showed the relevance of blockchain-based
voting for decision-making DApps, i.e., by evaluating funds and inter-
actions. In Chapter 5, we showed the need for anonymous voting for re-
liable decision-making in our urban participation DApp. Following the
participation levels of the IAP2 public participation model [@IAP14],
BBBlockchain implements blockchain-based voting for the consultation
use cases. For consultation, blockchain-based voting is implemented
to ask participants for their opinions and to be consulted on decisions
regarding the construction process. Similar to democratic elections, it
is critical that all participants have confidence in the reliability, fairness,
and security of the voting process and can submit their votes privately.
While blockchain-based voting has been effective in establishing trans-
parency and security, it is difficult to ensure anonymity and privacy, so
that no one can see how others have voted. We therefore design and
implement a novel privacy mechanism for anonymous voting focusing
on decision-making DApps.

8.1 MOTIVATION

Many DApps hold considerable financial assets and are collectively
managed by their stakeholders without delegating decision-making
power to centralized bodies (cf. Chapter 4.1). Instead, a blockchain-
based voting process is used to coordinate, where the smart contract
logic collects votes and ensures that decisions are executed accordingly.
That is, anyone can make a public proposal, which can then be accepted
or rejected by others. Blockchain-based voting has therefore become an
integral part for the governance of DApps.

The inherent transparency of blockchains, however, threatens vot-
ers’ privacy as it can be considered pseudonymous at best [Bér+21].
Anonymous voting is often necessary for democratic decision-making
processes, though. While the issue is known for some time and inherent
to many blockchains, including Ethereum [@But21], existing solutions
struggle with scalability [MSH17], require a central, trusted off-chain
party [SGY20], or cannot directly be used for DApps as they require
their own blockchain [Kil+22].

We therefore present Tornado Vote, a new blockchain-based voting
protocol for Ethereum that yields anonymous, fair, and practical on-
chain voting. To this end, we build upon the mixer protocol Tornado
Cash [@Alel9], which enables an anonymous coin transfer service.

89

This chapter is based
on joint work
published in [MT23]
by Robert Muth and
Florian Tschorsch.
“Tornado Vote:
Anonymous
Blockchain-Based
Voting.” In:
International
Conference on
Blockchain and
Cryptocurrency
(ICBCQ). IEEE, 2023,

pp. 1-9

8.2 BACKGROUND

While Tornado Cash alone can be used for anonymous voting (as we
will argue), we adapt the protocol to realize fair voting [DKR10] by
keeping individual votes secret until all voters have submitted their
votes. Additionally, Tornado Vote features (optional) properties such as
delegation of voting rights and plural voting. In order to maintain secu-
rity and anonymity despite our adaption, we use security analysis tools
for the smart contract implementations [@Muel8; FGG19] and perform
formal code verification, namely VeriSol [Wan+19]. In addition, we
assess the feasibility of Tornado Vote. To this end, we develop different
Gas cost models to quantify theoretical limits and real-world perfor-
mance bottlenecks. Since the introduction of EIP-1559 [@But+19], block
capacities are variable and transaction fees depend on past transac-
tion loads. As we show, this mechanism can lead to unaffordable costs
when populating blocks to the maximum. We therefore model the fee
calculation of EIP-1559 and develop Gas cost models that optimize for
a constant fee level. Our evaluation clearly reveals a feasibility trade-off
between the number of blocks (or time) it takes to cast a number of
votes and the required financial resources. The developed models can
help to adjust this trade-off and find reasonable parameters.

To that end, in the following, we first introduce the basic concepts of
the Tornado Cash protocol, which we later leverage to develop Tornado
Vote. Additionally, we discuss our ethical considerations regarding the
recent U.S. ban on Tornado Cash. Second, we develop Tornado Vote,
which adapts the Tornado Cash protocol for fair and anonymous voting.
Third, we evaluate our approach for scalability and cost. Finally, we
briefly review related work and conclude this chapter with a summary
of our findings on anonymous voting for decision-making DApps.

8.2 BACKGROUND

Tornado Cash

Tornado Cash [@Ale19] is a smart contract-based, non-custodial mixer
for Ethereum’s native cryptocurrency Ether, standardized tokens (e.g.,
ERC-20 compatible [@VB15]), and other blockchain assets. For the sake
of simplicity, we will refer to all of these assets as coins in the following.
In a nutshell, multiple accounts deposit coins of the same amount into
a shared wallet and withdraw them with a new account in a way that
cannot be linked. Anonymity is therefore achieved by hiding in a set of
transactions that are indistinguishable, i.e., the so-called anonymity set.
Tornado Cash provides such a wallet, i.e., a smart contract, and ensures
by using a cryptographic proof that the connection between accounts
is not disclosed. At the same time, the proof also ensures that users can
only withdraw as many coins as deposited. In order to use Tornado
Cash, users do not need to register beforehand and can immediately
deposit coins with the first transaction. Users also determine the point
in time when to withdraw the coins and therefore can wait for an

90

8.3 TORNADO VOTE

individually preferred anonymity set size by monitoring the number
of deposits.

From a technical perspective, Tornado Cash provides a public smart
contract instance, the so-called vault and external relayers. First, a user
deposits a coin from their account to the Tornado Cash vault together
with the hash of a personal secret r and a nullifier k. Additionally, the
user deposits a fee coverage for future transactions to redeem a relayer
in the following steps. Second, the user withdraws the deposited coin
to a new account. However, since a completely new account for the
withdrawal does not have any balance yet, it cannot cover the transac-
tion fees to request the deposit. The user therefore contacts a Tornado
Cash relayer via an anonymized communication channel (e.g., with
Tor [DMS04]) and requests the deposit. For that, the user provides a
zkSNARK zero-knowledge proof [Gro16] to prove the knowledge and
the hash value of k, without revealing r or k in clear-text. The relayer
then submits a new blockchain transaction with the ZKP and the hash
to the vault to transfer the deposit to the new account. The vault re-
members the nullifier and rejects any future request with the same.
The vault also rewards the relayer with the pre-paid fee from the first
step. Eventually, one cannot reliably trace the depositor back to the
withdrawer.

Ethical Considerations

The U.S. Department of the Treasury’s Office of Foreign Assets Con-
trol (OFAC) released a press statement on August 8, 2022, imposing
sanctions on Tornado Cash. OFAC’s motivation is to prevent money
laundering and illegal financing. The sanctions had far-reaching impli-
cations, such as banning the use of Tornado Cash, banning trades with
specific Ethereum wallets, and the temporary removal of all source code
repositories from GitHub. Since Tornado Cash, however, is already de-
ployed on the Ethereum Mainnet, it cannot easily be removed anymore.
Operations will therefore continue, particularly since the deployed
smart contracts have no assigned owner anymore and do not imple-
ment an emergency stop or similar. While our work is technically based
on the same technology, the use is intended for anonymous voting—
and not for any illegal purposes, which we distance ourselves from. In
fact, we consider Tornado Cash to be a neutral technology on whose
usage or exploitation we have neither influence nor take a position;
rather, we consider its protocol only as building block for blockchain-
based voting. However, another suitable mixer or blockchain can be
used if necessary, e.g., CoinShuffle [RMK14] or MicroMix [@WG19].

8.3 TORNADO VOTE

In the following, we present Tornado Vote, a novel privacy mechanism
for anonymous, fair, and feasible voting. It is specifically designed

91

8.3 TORNADO VOTE

for autonomous organizations, the governance of DApps, e.g., The
DAO [@]en16], and decision-making DApps in general. While we uti-
lize blockchain transparency to ensure a secure voting process, we also
require on-chain privacy to break the link between voters and their
vote. We therefore use the Tornado Cash mixing protocol, which has
proven effective in the past [@VK19; @KV19b; @KV 19a].

In a naive approach, Tornado Cash (or another suitable mixer for that
matter) can be used to realize a very simple voting. For instance, voters
can use unowned accounts each representing a proposal’s option and
whose balances represent the votes. Accordingly, voters transfer coins
anonymously to these addresses by using Tornado Cash (as explained
in the previous section) and eventually compare the balances to come
to a decision, e.g., the account/option with the higher balance wins.
As illustrated in Figure 31, this approach has the great advantage that
other (regular) Tornado Cash users enlarge the anonymity set. This
naive approach, however, has some serious, inherent implications: it
clearly allows plural voting, where one entity can vote multiple times.
While this can be considered as weighted voting, there is no mechanism
to easily limit the number of votes per entity. Moreover, the unowned
accounts reveal the progress of the voting process and intermediate
voting results, which violates the concept of fair voting [DKR10]. Lastly,
the approach increases voting costs as it not only requires transaction
fees but also transfers coins to a voting account.

In order to make these implications optional and not inherent to the
voting process, we developed Tornado Vote. In particular, we extend
the voting process with a commit-and-reveal mechanism, which we use
to collect votes without revealing the result until the end of the voting,
i.e., realizing fair voting. Since we additionally issue our own voting
token without inherent monetary value, we can control the number of
votes. Yet, plural or weighted voting can still be realized with a voting
token by issuing the token according to the respective weights. In the
following, we define design requirements, properties, and assumptions
of our approach. Next, we present the protocol of Tornado Vote and its
different voting phases. Finally, we present the technical infrastructure
and security considerations.

Design Requirements and Properties

Tornado Vote inherits properties such as correct protocol execution and
public verifiability from the underlying blockchain. Nevertheless, there
are additional design requirements and properties of Tornado Vote,
which we define and elaborate as follows.

ELIGIBILITY Tornado Vote requires a voting token to prove eligi-
bility. More specifically, Tornado Vote requires its own custom ERC-20
token per voting and an initial voting administrator to create and trans-
fer all tokens to eligible voters. Hence, the number of the number of

92

8.3 TORNADO VOTE

[} T~
o O Yes
@ @® | Tornado —— <N
Combined Voters Cash ‘I\T}
Anonymity Set [
Tl &
o O
e
Others

Figure 31. Utilizing Tornado Cash directly for anonymous voting yields an
enlarged anonymity set comprising voters and other users: a voter deposits
a coin and anonymously transfers it to one of multiple unowned accounts,
whose balances eventually represent the voters’ decision.

votes is limited by tokens and managed as standard blockchain to-
kens. The administrator is responsible for the correct handling at the
beginning. After the distribution, the administrator should not own
any tokens anymore and should be unable to mint new tokens, which
both can be verified on-chain. A voter uses her token to initiate the
voting process by depositing it to Tornado Vote. Please note that the
voting token does not have any inherent monetary value and therefore
does not unnecessarily drive the voting costs as in the naive approach.

TRANSFERABILITY Insome cases, depending on the voting type, it
makes sense to allow the delegation of voting rights, e.g., for represen-
tative or liquid democracy. Using an ERC-20 compatible token [@VB15]
as voting token clearly allows and, to some extent, can even be used
to encourage the transfer of voting rights. In fact, preventing trans-
ferability is a technical challenge because even if a token cannot be
transferred to another account, the whole account could be transferred
to someone else by sharing its private key. To this end, if a voting must
reliably prevent transferability, the right to vote could be tied to the
identity of a voter. For example, by using anonymous credentials to prove
that a voter is personally eligible to vote regardless of the blockchain
account, while keeping all personal information secret [Hei+22]. We
therefore consider transferability an optional feature that Tornado Vote
can enable or restrict.

PLURAL VOTING While democratic voting typically strives for
equal voting weights, shareholders of capital stock, e.g., as in the
DAO [@]Jen16], gain voting weights according to their stake. We can
realize weighted voting by issuing voting tokens to voters according
to their stake, for example. This eventually leads to plural voting, an
instance of weighted voting. As with transferability, we consider plural
voting an optional feature for Tornado Vote.

93

8.3 TORNADO VOTE

FAIRNESS In the context of voting, fairness implies that preliminary
counts do not influence voters while voting is in progress [DKR10].
Therefore, the voting system must be built in such a way that votes
are not published before the final tallying. That obviously presents a
technical challenge for public, permissionless blockchains. Tornado
Vote therefore requires a commit-and-reveal mechanism. With this
mechanism, voters first commit to their vote and only when all voters
have cast their vote, the result will be disclosed as clear-text vote.

ANONYMITY Voter privacy is achieved by the unlinkability of vot-
ers’” accounts and their votes. To this end, Tornado Vote is based on the
Tornado Cash protocol. While the public token balances might reveal
the eligible voter accounts, the mixing protocol ensures that voters
can anonymize their voting choice. In order to achieve a high level of
anonymity, a high number of other participating voters is necessary.
As we will describe later in detail, a relayer service is also necessary
to cast a vote. The interactions with relayers must be carefully timed
to prevent de-anonymization attacks by time correlations, which we
assume are the voters’ responsibility. We also emphasize that, as with
any other public voting process, voter privacy is only guaranteed if the
final result is not unanimous. Additionally, network communications
between the voters and the relayers must not reveal any metadata
that could be correlated. Therefore, voters should use an anonymous
channel to communicate with relayers, e.g., with Tor [DMS04].

TRUST Following the principles of a permissionless blockchain,
trusted third parties and centralized components must be avoided.
While Tornado Cash, and therefore Tornado Vote, require a separate
relayer infrastructure, the relayers do not gain any further permissions
or trust on the protocol side. Their only task is to forward transactions
and cover fees, which will eventually unlink the sender and receiver ac-
counts on chain. Additionally, a relayer cannot manipulate transactions
due to their cryptographic signatures and ZKP verification, so that
a violation would be noticed and rejected. We assume that sufficient
relayers are available to choose from.

FEASIBILITY Blockchain-based voting systems are limited primar-
ily by the blockchain transaction throughput and smart contract capac-
ities. This limits the number of deposits and thus theoretically affects
anonymity. According to our empirical analysis of blockchain-based
voting in Chapter 4, we consider n = 10k votes as a reasonable number
for use cases such as a DAO. Therefore, Tornado Cash must be built to
handle that many votes with respect to external blockchain constraints.

94

8.3 TORNADO VOTE

Setup Phase Commitment Phase Voting Phase
Voting @ |tornado Voter @ 2x ETH'é?Tornado Voter Yes ‘&Tornado
Admin | < € v Vote Hped (sec:|lk) | Vote No I Vote
®

T
I Hgpa (sece|[2)[0..19]

®| & @ | ZKP(Hpeq sect 1K) € V) ®' e

T
!
|
|
|
|
y Hped (k) v

| ZKP(Hpeq(k) = k Ak ¢ IN) @
Voter Relayer Relayer
ETH ETH

Figure 32. Setup: The administrator mints a limited amount of voting to-
kens V and transfers them to eligible voters. Depending on the type of voting,
delegation of voting rights and/or plural voting are possible by transferring
tokens accordingly. Commitment: Voters deposit their voting token, the fees in
Ether (ETH) for the relayers, and a hash. Next, voters send ZKPs for proving
ownership of the token and a commitment including their vote v to the relayer.
The relayer forwards everything and receives a service fee. Voting: The voters
reveal their commitment and vote to the relayer, who transfers the voting
token to the corresponding vote address. The relayer receives a second service
fee.

Protocol

Tornado Vote distinguishes between three roles: an administrator, vot-
ers, and relayers. Each voting is split into three phases: a setup, a
commitment, and a voting phase. In the following, we will take a closer
look at each of these phases. Therefore, Figure 32 shows the three
phases and each interaction.

SETUP PHASE First, the smart contracts are deployed to the
blockchain by the administrator, which comprises the Tornado Vote
anonymity provider, ERC-20 compatible voting token, and the vot-
ing smart contract. Second, the administrator publishes the voting
proposals and sets voting parameters, e.g., the voting period and deci-
sion quotas. Additionally, the administrator mints a limited amount
of voting tokens exclusively for this voting. Each token allows the sub-
mission of exactly one vote and represents a single vote in the final
phase. After this setup, the administrator owns all voting tokens V
(Step 1). The administrator transfers these voting tokens irrevocably
to the accounts of eligible voters (Step 2). Once the administrator has
transferred all voting tokens, the voting process continues with the
commitment phase.

COMMITMENT PHASE At the beginning of the commitment phase,
voters generate their own individual random token secret sec; and a
random nullifier k locally. Each voter then transfers the voting token
to the Tornado Vote vault (Step 3), similar to a deposit in Tornado
Cash. This includes two times the transaction fee (required for the

95

8.3 TORNADO VOTE

“ Authorize Tornado Vote

; Q0
Admin <o < Smart Contrale Blockchain
o <
. Commit
::j Tor H Relayer ‘
Voter Vote

Figure 33. Tornado Vote’s architecture and interactions between its compo-
nents.

Ethereum

Frontend

relayer) and the Pederson hash value Hpeq(sec;||k) [@Ide19]. We use
the Pedersen hash, as in the Tornado Cash protocol, for efficient ZKP
computations. Otherwise, we use SHA-3 where possible to save Gas.
After an appropriate waiting time, the voters generate another com-
mitment secret sec. to commit to their vote v before revealing it. The
voters therefore send the first 20 bytes of the hash value Hspa (secc||v),
the hash of the nullifier Hpeq(k), and a ZKP for sec; to a relayer (Step 4).
The relayer then forwards everything on-chain (Step 5) to Tornado Vote.
Tornado Vote accepts the commitment if the ZKP contains a valid sec;
(without revealing it) and verifies if k was not used before. Therefore,
Tornado Vote does not yet experience the voting choice but remembers
the corresponding computed hash value and the hash of k in IN. Lastly,
Tornado Vote rewards the relayer with Ether to compensate for the
transaction costs. Once all voters have committed to their vote, we
transition from the commitment to the voting phase.

VOTING PHASE In the last phase, all voters reveal their individual
voting choices via a relayer (Step 6). To this end, the voters reveal their
vote in clear-text and the commitment secret sec.. This way, Tornado
Vote can cross-check that the vote is eligible (Step 7). If so, Tornado
Vote transfers one of the ERC-20-tokens to an unowned account, which
represents the corresponding voting choice (Step 8). The final balances
of these addresses eventually represent the final voting results. After
each eligible vote is processed, Tornado Vote again rewards the relayer
to compensate for the transaction costs (Step 9).

Implementation

Tornado Vote’s smart contracts are implemented in Solidity for
Ethereum and EVM-compatible blockchains. While Tornado Vote’s
source code is primarily based on Tornado Cash, it runs independently
of it and is deployed entirely on its own. By default, Tornado Vote
consists of four components: smart contracts, frontend, relayers, and
anonymous communication channel (i.e., Tor [DMS04]). As shown in
Figure 33, all interactions are managed by a central Tornado Vote in-
stance. For the commitment and vote submission, voters use a Tornado

96

8.3 TORNADO VOTE

Vote relayer to prevent third parties from linking the two interactions.
Furthermore, to protect connection metadata from the relayers, the
voter communicates via Tor with the relayers. Internally, Tornado Vote
is divided into several smart contracts: the vault (also called anonymity
provider), Merkle Tree management, ERC-20 token, ZKP verifier, and an
additional voting contract. The latter takes care of following the voting
phases and counting the votes.

The voters’ frontend cannot be used without further ado, as voters
require software libraries to generate ZKPs and may download a web-
based graphical user interface to interact with Tornado Vote. These
software components must first be downloaded, although access to
central infrastructures is not a problem here, because file signatures
and on-chain proof verification can ensure correctness. Please note that
we did not develop a graphical user interface but provide automated
test cases which simulate user interactions. The tests cover a sample
voting process and edge cases. To this end, they can be executed in a
Truffle project environment on the local machine or an existing EVM
network. Furthermore, since the Tornado Cash relayer infrastructure
is not compatible with Tornado Vote, we provide a proof-of-concept
relayer implementation for test purposes. All implementations are
available on GitHub.?”

Security

The security of Tornado Vote relies on various components. First of all,
the Tornado Vote smart contracts are based on the original Tornado
Cash smart contracts. Commissioned audits confirm the security of Tor-
nado Cash’s smart contracts, cryptography, and circuit system [@VK19;
@KV19b; @KV19a]. For the security of Tornado Vote, we refer to these
audits and therefore focus on our customizations for the voting pro-
cess. To this end, we use security analysis tools and well-established
security libraries. Additionally, we verify our voting process with a
formal verification proof framework. In the following, we analyze and
improve Tornado Vote’s security and explain the technical measures in
more detail.

Vulnerability Analysis Tools

To ensure that our smart contract customizations do not introduce secu-
rity vulnerabilities, we use tools for automated code security analysis.
Durieux, Ferreira, Abreu, and Cruz [Dur+20] analyzed different tools
and concluded that Mythril [@Muel8] and Slither [FGG19] offer the
best vulnerability detection abilities. We use both tools to detect known
vulnerabilities; however, we point out that there may still be yet un-
known and undetectable vulnerabilities. Additionally, smart contracts

27 https:/ /github.com/robmuth/tornado-vote

97

https://github.com/robmuth/tornado-vote

8.3 TORNADO VOTE

are often so highly complex that the analysis of conditional branches
and potentially many possible states cannot be performed in sufficient
time. We therefore consider these tools as very useful and to some
extent essential for secure smart contract programming. As a result,
both tools confirm that our changes do not introduce new security
vulnerabilities.

Formal Verification

Formal verification is a technique to prove that given rules and
conditions are true for a given program, i.e., a smart contract in our
case. For example, a condition that proves that a token smart contract
cannot issue more tokens than specified at initialization. Thus, if the
condition can be fulfilled, it is formally proven that no vulnerability
exists to add new tokens arbitrarily. To do so, a formal verification tool
must inspect every possible branch in the program logic and verify its
states. However, such an excessive state inspection and verification can
take a very long time, but if so, it eventually guarantees the condition.

For Tornado Vote, for example, we define conditions that there must
be the correct number of votes after each submission. That is, by requir-
ing that a voting counter always increases by one after submitting a
vote, we prevent a vote from being ignored, counted twice, or leading
to an integer overflow that would reset the counter to zero. To this end,
we use formal verification similar to our unit-test cases but universal
and without requiring implementation details.

Several formal verification tools and frameworks for smart contracts
exist. We use Microsoft Research’s VeriSol [Wan+19] since it is open-
source, compatible with Solidity, and can be executed locally. VeriSol
provides a library with additional assertion functions, and verifies all
possible outcomes. In Listing 4, the first formal verification rule ensures
that the number of possible votes always equals the number of minted
voting tokens. To this end, this rule sums up all token balances and
compares the sum with the total voting token supply. Additionally, we

// #Votes == #Tokens
VeriSol.ContractInvariant (VeriSol.SumMapping (_balances) ==
totalSupply) ;

// Optional: Voters can only deposit tokens to Tornado Vote
// in function _beforeTokenTransfer (_from, _to, _id)
if (currentBlock >= commitPhaseBlock && currentBlock <=

votingPhaseBlock) {
assert (balanceOf (admin) == 0);
assert (_to == tornadoVoteAddress) ;

}

Listing 4. Formal verification rule for VeriSol to verify that the number of
submitted votes equals the total number of tokens, and an optional check to
prevent token transfers to other accounts.

98

8.4 EVALUATION

Gas Costs

Transaction Paidby Min Max Mean Stddev

Deployments ~ Admin 8192k - - -

Token transfer ~ Admin 43k 58k 58k 15k
Approve Voter 44k 44k 44k 0
Deposit Voter 979k 1000k 997k 21k
Commit Voter 337k 337k 337k 0
Vote Voter 35k 66k 50k 15k

Table 7. Gas costs for deployments and voting transactions.

developed several other assertions for all voting phases directly into
Tornado Vote’s smart contracts. While most rules can be successfully
verified right away, others require constraining parameters or minor
smart contract modifications due to code complexity. In summary, we
developed and tested 13 conditions with 45 assumptions to verify, from
which 11 conditions can be fully verified and 2 require minor smart
contract changes. All rules and their verification results are available in
our GitHub repository.

8.4 EVALUATION

Performance and costs are essential factors for voting systems, which in
the case of blockchain-based voting lead to a feasibility trade-off. In the
following, we analyze the feasibility of Tornado Vote for ideal best-case
scenarios with our Gas costs model and then compare it with real-world
conditions using our residual capacities model. To this end, we assume
that all available block capacities are available for voting transactions
and use Ethereum Mainnet data to evaluate realistic capacities. Since
our residual capacities model disregards transaction costs, we develop
an economic model to find a feasible trade-off between maximum perfor-
mance and minimum costs, which does not cause the transaction costs
to skyrocket but still keeps the overall duration reasonable. Importantly,
all models are optimistic and should be considered a lower bound for
performance and costs.

For clarification, we use the term Gas costs to refer to the technical
transaction costs in Gas, i.e., the fixed costs due to the transaction’s
computations and storage usage, and transaction costs to refer to the
final costs that the transaction sender must pay in Ether or U.S. Dol-
lars (USD), respectively.

Gas Costs Model

We evaluate the Gas costs of each Tornado Vote transaction for multiple
votes. We, therefore, deploy the smart contracts locally on Ganache and

99

8.4 EVALUATION

Setup Commitment Voting
/—/% /_/R
Token Transfers Approvements & Deposits Commitments Votes

10 11 12 13 14 15 16 17 18 19

Figure 34. For n = 180 votes, Tornado Vote requires under idealistic conditions
(Gas costs model) 20 blocks in Ethereum for all phases.

run exemplary voting test cases with up to n = 250 votes, as a greater n
has no significant effect on the local Gas costs. As shown in Table 7,
Gas costs for the one-time deployment remain constant for different ,
while the transactions for registering eligible voters and submitting
votes fluctuate during the following phases (cf. minimums, maximumes,
means, and the corresponding standard deviation). The Gas costs at the
deposit are the most expensive voting transactions, because Tornado
Cash internally updates a Merkle tree data structure, and, therefore,
causes complex calculations and storage operations. Storage operations
are also the main reason for fluctuating Gas costs because, for example,
initial write operations to storage variables require more Gas than
subsequent operations [Woo22].

Using the measured Gas costs, we can estimate the minimum num-
ber of blocks for submitting n votes with a static block size limit
(measured in Gas) as follows: minBlocks(n, B) =

[n-gsﬂ N V'(441;+ 1M)" N [n-%?ﬂk" N {n.goﬂ

The function basically adds the number of blocks in the various
phases, or more precisely, the individual steps. To this end, we multiply
the number of votes with the Gas costs from Table 7 and divide them
by a static block size limit. We do this for each step in a voting process,
i.e., transfer, approve, deposit, commitment, and vote. The approve
and deposit steps can be combined and do not require to be finished
in separate blocks. Since all other steps must be completed in separate
blocks, we yield a total of four terms, which we have to round up to
the next integer.

For example, a voting with n = 180 votes and a typical block size
limit of B = 15M Gas requires at least 20 blocks. In Figure 34, we also
enumerate the number of required blocks for each of the phases and
steps, respectively.

Residual Capacities Model

In this thesis, we specifically focus on the Ethereum blockchain due to
its popularity and its usage of the Ethereum Virtual Machine (EVM),
which is also compatible with many other blockchains, though. Since

100

8.4 EVALUATION

each transaction requires computational resources and storage, trans-
action fees are required. The computational complexity to execute a
transaction and the involved storage consumption is measured in the
pseudo-unit Gas [Woo022]. In the past, transaction fees used an auction
to determine Gas prices, which led to competition for available block
capacity and therefore high fees. Recently, Ethereum introduced a new
pricing mechanism to calculate Gas prices dynamically, namely EIP-
1559 [@But+19]. It uses a congestion control mechanism that regulates
a base fee based on available block capacities, which will be burned.
Specifically, transaction fees for future blocks increase if the latest block
contains “too many” transactions and decrease, respectively, if there is
“enough” space up. As a reference for “too many” and “enough”, EIP-
1559 uses a target value of 15M Gas (as before), but now also supports
temporary breaches up to 30M Gas to detect congestion.

Tornado Vote’s practical feasibility is not only bound to the block-
chain’s maximum capacities but also to the blockchain’s current work-
load. That is, third-party transactions lead to a fluctuating load, which
changes from block to block. Accordingly, the amount of Gas available
for the number of votes fluctuates as well. In order to capture this
effect, we use a residual capacities model for the Ethereum Mainnet as
in Chapter 4 to estimate the minimum number of blocks for 1 votes.
Residual capacities are block capacities in Gas that remain unused after
a block has been mined. That is, the transactions included in a block
did not consume as much Gas as the actual block size limit allowed. We
use residual capacities to quantify the number of voting transactions
that we could add to blocks without exceeding Ethereum’s capacities.
Our model therefore sums up all residual capacities from a given point
in time towards the past, and calculates how many transactions from
Tornado Vote could have been processed despite existing background
load.

Economic Model

As explained in Chapter 2, with the London Fork on the Ethereum
Mainnet on the 5th of August, 2021, the EIP-1559 specification doubled
the block size limit from ~ 15M up to 30M Gas. The EIP-1559 protocol
also introduced the so-called base fee per Gas to calculate how much
Ether per Gas a transaction sender must pay as a minimum for each
block. Basically, this base fee increases if the last block’s size exceeded
15M Gas or decreases if it was less. However, EIP-1559 specifies that
the base fee can only change by a maximum of 12.5 %, even if the last
block size has doubled or halved. This cap provides some confidence to
transaction senders that their transactions will not be dropped from the
mempool for the next few blocks as long as they provide sufficient Gas.
If we, however, would fill up the residual Gas to the max (8§ = 30M
Gas) with voting transactions as in our previous models, the base fee

101

8.4 EVALUATION

)

§ 102 ' | —— Economic model E
= I | ===-Median (Mainnet) i
% | | —— Ethereum Mainnet)
8 101 - E
5 g]
a r - T :
[0}

8 i |
o 100} |
@ |

s

| | |
0 50k 100k 150k 200k

Block Number + 12 965k

Figure 35. Base fee per Gas (y-axis) for blocks on the Ethereum Mainnet since
EIP-1559 (x-axis) plotting historic Mainnet data and estimations according to
the economic model.

would increase by 12.5 % each block. As a result, the base fee quickly
reaches financially unfeasible amounts. Moreover, even if we utilize
the residual Gas only up to B = 15M, the fees would never go down,
but would increase every time third-party transactions exceed the
threshold. This also leads to financially infeasible transaction fees, as a
matter of course.

We therefore propose an economic model that only considers a block’s
residual capacities for voting transactions if the resulting base fee of the
next block does not exceed a given threshold. To this end, we extend
our analysis of the Ethereum Mainnet and analyze the past base fees
since the introduction of EIP-1559. We show the base fee’s development
and median value in Figure 35. In the economic model, we consider
residual capacities of a block only if its successor block’s base fee does
not exceed 35 GG";? Otherwise, the block is omitted. By following our
economic model, the base fee will not increase exponentially, but rather
settles at the median.

Discussion

Our models allow us to estimate the number of blocks that Tornado
Vote requires for n votes under different assumptions. To this end,
we analyze Tornado Vote’s performance with n = 1 to 10k votes,
which we consider a reasonable number of votes for a voting DApp (cf.
Chapter 4). Since the block Gas limit was doubled to 30M with EIP-1559,
we evaluate our models with f = 15M and 30M Gas separately.
Figure 36 shows the expected trend that an increasing number of
votes n (on the x-axis) leads to an increasing number of required blocks
(on the y-axis). The Gas costs model constitutes a fundamental lower
bound for Tornado Vote since it assumes that all capacities are exclu-
sively available. It quantifies the limit of Tornado Vote in Ethereum,
which is limited by Ethereum’s transaction throughput. For instance,
for n = 10k votes, an optimal coordinated voting with multiple votes
per block requires at least 497 blocks with a block size limit of 30M Gas.

102

8.4 EVALUATION

I T T T T 11777 T T T T 1777 T T T T UL
6 —— Economic model

10° 1| Residual capacities model (15M) |
o « e o ¢ Residual capacities model (30M)
g —— Gas cost model (15M)
§> 10| Gas costmodel (30M) | (e N
2
3 102 8

1007 | L] ! Lol Lol Lol _

100 10' 102 10° 10*
Votes (Log scale)

Figure 36. Minimum number of blocks (y-axis) for an increasing number of
votes (x-axis) modelling different block Gas limits (historic data from the
Ethereum Mainnet: 2022-11-16 to the past).

Multiplied by an average block generation time A = 15s per block,
such a voting would require at least ~ 2 hours. Accordingly, half the
block size limit of 15M doubles the number of minimum blocks.

Since our Gas costs model ignores the blockchain’s current workload,
i.e., third-party transactions, we estimate the corresponding number
of blocks with our residual capacities model, as well. For that, we
measured the residual capacities of the Mainnet from 2022-11-16 until
enough residual capacities for 10k votes accumulated. As shown in
Figure 36, utilizing residual capacities therefore requires more blocks,
as the blockchain capacities of the Ethereum Mainnet are no longer
exclusively available. Interestingly, the residual capacities with 30M
Gas (cf. bold dots) converge to the Gas costs model with 15M Gas. The
reason for this is that EIP-1559 theoretically allows a block size limit
of up to 30M Gas, but the protocol always aims for a block size of
15M through monetary incentives and penalties; hence, on average,
there are always ~ 15M Gas residual capacities that were unused. In
the end, the residual capacities model requires at least ~ 6k blocks
for n = 10k votes with B = 15M and =~ 1k blocks with B = 30M. In
practice, however, these residual capacities cannot be used entirely
because the base fee would skyrocket.

Considering the impact of third-party transactions on the base fee
per Gas of EIP-1559, our economic model aims to keep the base fee at a
financially reasonable threshold. As shown in Figure 35, we therefore
analyzed the base fee for past transactions on the Ethereum Mainnet.
Using the median base fee as threshold in our economic model, we will
approximately maintain this base fee despite our voting transactions.
Due to third-party transactions, however, the base fee can temporar-
ily also exceed the median. Following the economic model further
increases the number of minimum blocks, which can be seen in Fig-
ure 36 (cf. solid bold line). For instance, n = 10k votes require at least

103

8.5 CONCLUSION

189k blocks, which equals approximately 33 days with the same block
generation rate A as before.

In order to get a sense of the final costs, we estimate the correspond-
ing transaction costs in USD. Therefore, we take the median exchange
rate of 2022, as before, which was 1 679 é{ﬁg [@Eth23]. Calculating the
minimum Gas for a single vote with the Gas costs model, one vote
costs approximately 2.43 USD. Taking the median base fee of 35 GGV;’SI
into account as well, the costs for one vote increases to approximately
85.17 USD. This rather high price is, of course, only the case if the
voting is completed in optimal time, but in any case, we can see that
the costs are not increasing infinitely, as with the Gas costs model or
residual capacities model.

Finally, we compare Tornado Vote’s costs with the naive Tornado
Cash approach (as explained in Section 8.3). To this end, we analyzed
all past deposit and withdrawal transactions to Tornado Cash on the
Ethereum Mainnet since EIP-1559 for the smallest denomination, i.e.,
0.1 Ether. Considering the median of Gas costs for a deposit plus with-
drawal transaction, a vote using Tornado Cash directly would cost
approximately 1.26M Gas or 74.42 USD with the same Gas price and
exchange rate as before. If we also consider the additional 0.1 Ether,
which has to be sent to vote, the price per vote increases to approxi-
mately 242.32 USD. While the coin deposit covers the service fee for
the relayer, we assume that for Tornado Vote the relayer service is pro-
vided for free, e.g., because the voting administrators have an intrinsic
motivation for this.

Concluding, our model analyses revealed best-case capabilities of
Tornado Vote. In practice, filling blocks with voting transactions en
masse would have a significant and unpredictable impact on the whole
blockchain, though. So, on the one hand, our models cannot predict
accurate durations because unpredictable third-party transactions in-
fluence or would be influenced by such a large amount of voting
transactions. On the other hand, however, we can use our models to
assess lower-bound durations and costs.

8.5 CONCLUSION

We designed and implemented Tornado Vote as a novel privacy mech-
anism for blockchain-based voting to improve decision-making pro-
cesses of DApps. Tornado Vote offers anonymous, fair, and practical
voting with optional properties such as transferability and plural vot-
ing. As a building block, we adapted the well-established mixing pro-
tocol Tornado Cash to decouple voters” wallets from their votes. We
used smart contract analyzing tools and formal verification to improve
the reliability and security of our adaptations. In order to quantify the
feasibility trade-off, we developed different evaluation models that
yield Tornado Vote’s limits and can help to adjust the trade-off for
practical usages.

104

Part IV

CONCLUSIONS

DISCUSSION AND CONCLUSION

In this thesis, we explored the current technical state of decision-making
DApps and showed that they manage significant financial funds. With
BBBlockchain, we specifically explored the potential of blockchain use
cases for urban participation. During the development and operation
of BBBlockchain in two real-world building projects, we gained in-
sights into reliable decision-making DApps with a special focus on
the lack of privacy and transparency. We therefore investigated new
privacy mechanisms specifically for decision-making DApps and con-
tributed SmartDHX for establishing secure communication channels,
an EVM-compatible CL-based anonymous credentials verifier, and Tor-
nado Vote for anonymous voting. We see each of our contributions as a
distinct component in advancing privacy for DApps. Taken as a whole,
our contributions serve to provide answers to our initial research ques-
tions. In the following, we discuss the role of our contributions for
decision-making DApps and recap our initial research questions in the
conclusion of this thesis.

9.1 DISCUSSION

We have shown that decision-making has become a relevant block-
chain use case for many popular applications, such as finance, DAO,
and governance DApps. However, important privacy issues remain
unaddressed or unresolved in real-world decision-making implemen-
tations. We therefore discuss our contributions to blockchain-based
decision-making along with our privacy-related research focus.

PRIVACY As beneficial as transparency is for DApps, it potentially
compromises user privacy or leads to dependencies on centralized,
external infrastructures for hiding personal data from the blockchain.
Today, many DApps rely on the personal data of their users, e.g., for
KYC to prevent illegal financial transactions. To this end, at the be-
ginning of this thesis, we asked how to implement appropriate pri-
vacy protection into decision-making DApps. Furthermore, along with
our first research question, we are particularly interested in privacy-
enhancing techniques and mechanisms to protect personal data that
can be verified on-chain without exposing it to the public. Therefore,
a DApp currently needs to externalize authentication processes, e.g.,
with verifiable off-chain computations using ZKPs, so that private data
is not publicly exposed on the blockchain. Ultimately, it is important to
find the right trade-offs between transparency, privacy, and reliability.

106

9.1 DISCUSSION

RELIABILITY Reliable decision-making requires trusted processes.
This emphasizes the importance of reliable user authentication, for ex-
ample, to prevent double voting or fraud. In particular, the pseudony-
mous identities of blockchains complicate the distinction between
honest and fraudulent participants. While we provide a solution for
privacy-preserving authentication with anonymous credentials, we
cannot take the availability of a trusted identity provider for granted.
We therefore envision our anonymous credentials verifier as a building
block of a broader SSI paradigm. However, specific to blockchains,
many dependencies still need to be resolved, such as technical depen-
dencies on central infrastructures, e.g., for credential revocation.

BLOCKCHAIN-BASED VOTING Blockchains are particularly po-
larizing when it comes to voting. On the one hand, blockchains offer
censorship resistance, transparency, and automated execution of the
final result; on the other hand, blockchains require many compromises.
We ruled out real elections for our decision-making use cases from the
beginning, primarily because of severe scalability and security issues.
Even for small-scale voting for decision-making, anonymity and reli-
able authentication cannot be implemented as easily as in centralized
applications. In particular, privacy, transaction costs, and throughput
render it technically difficult to implement. In the end, once again, it
comes down to what trade-offs one is willing to make between trans-
parency, privacy, and reliability.

DEMOCRATIC DECISION-MAKING Today’s established DAOs
do not suffer substantially from not fully identifying their users, and
therefore do not face major privacy issues. Instead, they implement
staking mechanisms, meaning that the more someone pays in, the
more weight their vote has. However, there are decision-making use
cases that need to be more democratic, for example, in urban building
participation. This requires that such decision-making DApps reliably
identify their users while protecting their privacy, e.g., during voting.
Ultimately, we envision novel democratic use cases that could emerge
in the future with a reliable solution for private user identification, e.g.,
democratically controlled DAOs.

CcOsTs Transaction costs are undeniably high when the blockchain
is heavily loaded, or the transaction is more complex than a basic
cryptocurrency transfer. The practicality of our contributions, especially
on-chain anonymous credentials verification and voting with Tornado
Vote, suffer from significantly high transaction costs. Specifically for
decision-making DApps like BBBlockchain, we cannot assume that
all users are willing to accept such high costs. While we have shown
that blockchain developers are countering the intentional exploitation
of high fees, better solutions are needed for real-world use. On the

107

9.2 CONCLUSION

one hand, one can expect that technological progress will eventually
solve the problem as well, or consider alternative options such as
SmartDHX for secure communication channels outside the blockchain.
On the other hand, in the case of anonymous credentials, it should be
considered whether the concept of CL-signatures verification is the
way to follow, or whether other concepts are more appropriate. For
example, Heiss et al. propose the concept of non-disclosing credentials
on-chaining with ZoKrates [Hei+22], which also turns out to be more
flexible for different authentication requirements.

9.2 CONCLUSION

In the following, we recap our initial research questions from the begin-
ning of this thesis and discuss how our contributions have addressed
them.

First, we asked how to implement decision-making DApps with on-
chain privacy protection techniques. While transparency and trust are
key properties of DApps that centralized solutions cannot achieve in
the same way, the transparency also has its drawbacks, as it potentially
compromises users’ privacy. In fact, there are DApp use cases where
user identification simply cannot be avoided, for example, to prevent
double voting or money laundering with KYC procedures. Therefore,
we contributed several solutions to address privacy-preserving au-
thentication and anonymous voting for DApps. To this end, verifiable
off-chain computation techniques emerged as a promising technique to
achieve on-chain privacy. Thus, while private data remains off-chain, its
correctness and validity can be verified using ZKP techniques and other
privacy protection techniques. This allows decision-making DApps
to keep their users private and deploy reliable processes. Overall, our
contributions preserve the principles of a blockchain and its inherent
transparency and trust.

The second research question of this thesis focused on how to keep
as much cryptographic verification on-chain as possible while keeping
private data off-chain. To this end, we argue that privacy can only be
achieved by keeping private data off the blockchain and using verifi-
able off-chain computation to verify and process personal data. Indeed,
there are several approaches to realize privacy in smart contracts, e.g.,
with homomorphic encryption [Ste+19; Ste+22] or trusted execution
environments [Kar+21]. However, for our decision-making use case,
which is primarily focused on privacy, transparency, and trust, we
believe it is most important to eliminate TTPs and oracles to enable
genuine DApps. Therefore, implementing a blockchain-based voting
that is private for all participants except the administrator was not a
suitable option to answer our research questions. Fortunately, Smart-
DHX and Tornado Vote offer privacy solutions that can include TTPs,
but without compromising privacy or trust.

108

9.2 CONCLUSION

Additionally, we have shown with our BBBlockchain DApp that
decision-making DApps face more than just technical challenges. While
blockchain technologies promise more trust and transparency, they also
increase complexity. Blockchains are based on complicated algorithms
and mechanisms that are not yet understood by a broad audience, so
we had to find solutions to make BBBlockchain as accessible as possi-
ble. We therefore had to find the right trade-offs between transparency,
decentralization, and scalability. Thus, we had to find appropriate solu-
tions for anonymous and reliable voting. Additionally, we had to keep
scalability constraints in mind and minimize costs for the users. With
SmartDHX, we hence contributed a solution for secure communication
channels which can be established off-chain and therefore addresses
common blockchain scalability issues, i.e., expensive transaction fees
and limited throughput. In addition, with a novel anonymous creden-
tials verifier for the EVM, we contributed a building block to reliably
authenticate users without compromising their private, personal data.
Finally, with Tornado Vote, we contributed an anonymous voting sys-
tem with an established mixer service that anonymizes votes instead
of cryptocurrency.

Overall, our contributions focused on minimizing dependencies on
trusted third parties and implementing as much cryptography and
verification routines in the smart contracts as possible. By processing
private data only locally on users” devices with verifiable off-chain
computation techniques, our contributions achieved on-chain privacy
that does not depend on oracles. Ultimately, our contributions can also
be used to improve privacy for all kinds of decision-making DApps
and other permissionless blockchain applications as well.

109

PUBLICATIONS BY THE AUTHOR

[Bra+18]

[Bra+19]

[GMF22]

[Hei+22]

[let+22]

[Tet+23]

[Mut+19]

[Mut+22a]

Samuel Brack, Robert Muth, Stefan Dietzel, and Bjorn
Scheuermann. “Anonymous Datagrams over DNS
Records.” In: Local Computer Networks Conference (LCN).
IEEE, 2018, pp. 536-544.

Samuel Brack, Robert Muth, Stefan Dietzel, and Bjorn
Scheuermann. “Recommender Systems on Homomor-
phically Encrypted Databases for Enhanced User Pri-
vacy.” In: Local Computer Networks Conference (LCN) Sym-
posium. IEEE, 2019, pp. 74-82.

Marcel Gregoriadis, Robert Muth, and Martin Florian.
“Analysis of Arbitrary Content on Blockchain-Based Sys-
tems using BigQuery.” In: Companion of The Web Confer-
ence. WWW "22. ACM, 2022, pp. 478-487.

Jonathan Heiss, Robert Muth, Frank Pallas, and Ste-
fan Tai. “Non-disclosing Credential On-chaining for
Blockchain-Based Decentralized Applications.” In: In-
ternational Conference on Service-Oriented Computing (IC-
SOC). Vol. 13740. Lecture Notes in Computer Science.
Springer, 2022, pp. 351-368.

Beatrice Ietto, Kerstin Eisenhut, Robert Muth, Jochen
Rabe, and Florian Tschorsch. “Transparency in Digital-
Citizens Interfaces Through Blockchain Technology: BB-
Blockchain for Participation Processes in Urban Plan-
ning.” In: European Technology and Engineering Manage-
ment Summit (E-TEMS). IEEE, 2022, pp. 65-71.

Beatrice Ietto, Jochen Rabe, Robert Muth, and Federica
Pascucci. “Blockchain for citizens” participation in urban
planning: the case of the city of Berlin. A value sensitive
design approach.” In: Elsevier Cities Journal 140 (2023),
p. 104382.

Robert Muth, Kerstin Eisenhut, Jochen Rabe, and Florian
Tschorsch. “BBBlockchain: Blockchain-Based Participa-
tion in Urban Development.” In: International Conference
on eScience. IEEE, 2019, pp. 321-330.

Robert Muth, Tarek Galal, Jonathan Heiss, and Florian
Tschorsch. “Towards Smart Contract-based Verification
of Anonymous Credentials.” In: Financial Cryptography
Workshop on Trusted Smart Contracts. Vol. 13412. Lecture
Notes in Computer Science. Springer, 2022, pp. 481-498.

110

[Mut+22b]

[MT20]

[MT21]

[MT23]

[Rab+21]

BIBLIOGRAPHY

Robert Muth, Beatrice Ietto, Kerstin Eisenhut, Jochen
Rabe, and Florian Tschorsch. “Lessons Learned: Trans-
parency in Urban Participation Utilizing Blockchains.”
In: Eurasian Studies in Business and Economics. In publica-
tion. Springer, 2022.

Robert Muth and Florian Tschorsch. “SmartDHX: Diffie-
Hellman Key Exchange with Smart Contracts.” In: In-
ternational Conference on Decentralized Applications and
Infrastructures (DAPPS). IEEE, 2020, pp. 164-168.

Robert Muth and Florian Tschorsch. “Empirical Anal-
ysis of On-chain Voting with Smart Contracts.” In: Fi-
nancial Cryptography Workshop on Trusted Smart Contracts.
Vol. 12676. Lecture Notes in Computer Science. Springer,
2021, pp. 397-412.

Robert Muth and Florian Tschorsch. “Tornado Vote:
Anonymous Blockchain-Based Voting.” In: International
Conference on Blockchain and Cryptocurrency (ICBC). IEEE,
2023, pp. 1-9.

Jochen Rabe, Beatrice letto, Robert Muth, Kerstin Eisen-
hut, and Federica Pascucci. “Citizens” Engagement in
Urban Development through Blockchain: a Human-
centered Design Approach.” In: International Conference
on Technology Management, Operations and Decisions (ICT-
MOD). IEEE, 2021, pp. 1-6.

111

BIBLIOGRAPHY

[AKW20]

[AM17]

[AH12]

[Amn06]

[Arm+15]

[Arn69]

[ABC17]

[BC11]

[Bar03]

[BNO5]

Yousif Abuidris, Rajesh Kumar, and Wang Wenyong.
“A Survey of Blockchain Based on E-Voting Systems.”
In: Proceedings of the 2019 2nd International Conference
on Blockchain Technology and Applications. ICBTA "19.
Xi’an, China: Association for Computing Machinery,
2020, pp. 99-104.

Maher Alharby and Aad van Moorsel. “Blockchain-
based Smart Contracts: A Systematic Mapping Study.”
In: CoRR abs/1710.06372 (2017).

Phil Allmendinger and Graham Haughton. “Post-
political spatial planning in England: a crisis of consen-
sus?” In: Transactions of the Institute of British Geographers
(2012).

Erik Amn. “Playing with fire? Swedish mobilization for
participatory democracy.” In: Journal of European Public
Policy (2006).

Frederik Armknecht, Colin Boyd, Christopher Carr,
Kristian Gjosteen, Angela Jaschke, Christian A. Reuter,
and Martin Strand. “A Guide to Fully Homomorphic En-
cryption.” In: IACR Cryptol. ePrint Arch. (2015), p. 1192.

Sherry R Arnstein. “A ladder of citizen participation.”
In: Journal of the American Institute of planners (1969).

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. “A
Survey of Attacks on Ethereum Smart Contracts (SoK).”
In: POST. Vol. 10204. Lecture Notes in Computer Science.
Springer, 2017, pp. 164-186.

Frank Bannister and Regina Connolly. “The trouble

with transparency: a critical review of openness in e-
government.” In: Policy & Internet (2011).

Benjamin Barber. Strong democracy: Participatory politics
for a new age. Univ of California Press, 2003.

Paulo S. L. M. Barreto and Michael Naehrig. “Pairing-
Friendly Elliptic Curves of Prime Order.” In: Selected
Areas in Cryptography. Vol. 3897. Lecture Notes in Com-
puter Science. Springer, 2005, pp. 319-331.

112

[BCL21]

[Bér+21]

[Bis+17]

[Boe88]

[BV16]

[BBOS]

[BBS04]

[BGBO4]

[Bun17]

[BET21]

[Cabl7]

[CE21]

[CG12]

BIBLIOGRAPHY

Massimo Bartoletti, James Hsin-yu Chiang, and Al-
berto Lluch-Lafuente. “SoK: Lending Pools in Decen-
tralized Finance.” In: Financial Cryptography Workshops.
Vol. 12676. Lecture Notes in Computer Science. Springer,
2021, pp. 553-578.

Ferenc Béres, Istvan Andras Seres, Andras A. Benczir,
and Mikerah Quintyne-Collins. “Blockchain is Watching
You: Profiling and Deanonymizing Ethereum Users.” In:
DAPPS. IEEE, 2021, pp. 69-78.

Stefano Bistarelli, Marco Mantilacci, Paolo Santancini,
and Francesco Santini. “An end-to-end voting-system
based on bitcoin.” In: SAC. ACM, 2017, pp. 1836-1841.

Bert den Boer. “Diffie-Hellman is as Strong as Discrete
Log for Certain Primes.” In: CRYPTO. Vol. 403. Lecture
Notes in Computer Science. Springer, 1988, pp. 530-539.

Wouter Bokslag and Manon de Vries. “Evaluating e-
voting: theory and practice.” In: CoRR abs/1602.02509
(2016).

Dan Boneh and Xavier Boyen. “Short Signatures With-
out Random Oracles and the SDH Assumption in Bilin-
ear Groups.” In: J. Cryptol. 21.2 (2008), pp. 149-177.

Dan Boneh, Xavier Boyen, and Hovav Shacham. “Short
Group Signatures.” In: CRYPTO. Vol. 3152. Lecture
Notes in Computer Science. Springer, 2004, pp. 41-55.

Nikita Borisov, Ian Goldberg, and Eric A. Brewer. “Off-
the-record communication, or, why not to use PGP.” In:
WPES. ACM, 2004, pp. 77-84.

Bundesministerium der Justiz und fir verbaucher-
schutz. § 3 BauGB - Beteiligung der Offentlichkeit. 2017.

Anselm Busse, Jacob Eberhardt, and Stefan Tai. “EVM-
Perf: High-Precision EVM Performance Analysis.” In:
IEEE ICBC. IEEE, 2021, pp. 1-8.

Yves Cabannes. “Participatory budgeting in Paris: Act,
reflect, grow.” In: Another city is possible with participatory
budgeting 179 (2017), p. 203.

Giulio Caldarelli and Joshua Ellul. “The Blockchain Or-
acle Problem in Decentralized Finance—A Multivocal
Approach.” In: Applied Sciences 11.16 (2021).

Jan Camenisch and Thomas Grofs. “Efficient Attributes
for Anonymous Credentials.” In: ACM Trans. Inf. Syst.
Secur. 15.1 (2012), 4:1-4:30.

113

[CKS09]

[CLO1]

[CLO2]

[Cen+21]

[Cor+23]

[Cro+16]

[Dam98]

[DT22]

[DMJ18]

BIBLIOGRAPHY

Jan Camenisch, Markulf Kohlweiss, and Claudio Sori-
ente. “An Accumulator Based on Bilinear Maps and Effi-
cient Revocation for Anonymous Credentials.” In: Public
Key Cryptography. Vol. 5443. Lecture Notes in Computer
Science. Springer, 2009, pp. 481-500.

Jan Camenisch and Anna Lysyanskaya. “An Efficient
System for Non-transferable Anonymous Credentials
with Optional Anonymity Revocation.” In: EURO-
CRYPT. Vol. 2045. Lecture Notes in Computer Science.
Springer, 2001, pp. 93-118.

Jan Camenisch and Anna Lysyanskaya. “A Signature
Scheme with Efficient Protocols.” In: SCN. Vol. 2576. Lec-
ture Notes in Computer Science. Springer, 2002, pp. 268
289.

Piera Centobelli, Roberto Cerchione, Emilio Esposito,
and Eugenio Oropallo. “Surfing blockchain wave, or
drowning? Shaping the future of distributed ledgers and
decentralized technologies.” In: Technological Forecasting
and Social Change (2021).

Mikel Cortes-Goicoechea, Tarun Mohandas-Daryanani,
Jose Luis Mufioz-Tapia, and Leonardo Bautista-Gomez.
“Autopsy of Ethereum’s Post-Merge Reward System.”
In: CoRR abs/2303.09850 (2023).

Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe
Gencer, Ari Juels, Ahmed E. Kosba, Andrew Miller,
Prateek Saxena, Elaine Shi, Emin Gun Sirer, Dawn
Song, and Roger Wattenhofer. “On Scaling Decentral-
ized Blockchains - (A Position Paper).” In: Financial Cryp-
tography Workshops. Vol. 9604. Lecture Notes in Com-
puter Science. Springer, 2016, pp. 106-125.

Ivan Damgrd. “Commitment Schemes and Zero-
Knowledge Protocols.” In: Lectures on Data Security.
Vol. 1561. Lecture Notes in Computer Science. Springer,
1998, pp. 63-86.

Erik Daniel and Florian Tschorsch. “IPFS and Friends:
A Qualitative Comparison of Next Generation Peer-to-
Peer Data Networks.” In: IEEE Commun. Surv. Tutorials
24.1 (2022), pp. 31-52.

Nina David, John G McNutt, and Jonathan B Justice.
“Smart cities, transparency, civic technology and rein-
venting government.” In: Smart Technologies for Smart
Governments. Springer, 2018, pp. 19-34.

114

[DKR10]

[DH76]

[DMS04]

[Dou02]

[Dry02]

[Dur+20]

[EH18]

[ET18]

[EAA22]

[ECW21]

[EFS21]

[Erw+20]

BIBLIOGRAPHY

Stéphanie Delaune, Steve Kremer, and Mark Ryan.
“Verifying Privacy-Type Properties of Electronic Voting
Protocols: A Taster.” In: Towards Trustworthy Elections.
Vol. 6000. Lecture Notes in Computer Science. Springer,
2010, pp. 289-309.

Whitfield Diffie and Martin E. Hellman. “New directions
in cryptography.” In: IEEE Trans. Inf. Theory 22.6 (1976),
pp. 644-654.

Roger Dingledine, Nick Mathewson, and Paul F. Syver-
son. “Tor: The Second-Generation Onion Router.” In:
USENIX Security Symposium. USENIX, 2004, pp. 303—
320.

John R Douceur. “The sybil attack.” In: International work-
shop on peer-to-peer systems. Springer. 2002, pp. 251-260.

John S Dryzek. Deliberative democracy and beyond: Liberals,
critics, contestations. Oxford University Press on Demand,
2002.

Thomas Durieux, Joao E. Ferreira, Rui Abreu, and Pedro
Cruz. “Empirical review of automated analysis tools on
47,587 Ethereum smart contracts.” In: ICSE. ACM, 2020,
pp- 530-541.

Jacob Eberhardt and Jonathan Heiss. “Off-chaining Mod-
els and Approaches to Off-chain Computations.” In: SE-
RIAL. ACM, 2018, pp. 7-12.

Jacob Eberhardt and Stefan Tai. “ZoKrates - Scal-
able Privacy-Preserving Off-Chain Computations.”
In: iThings/GreenCom/CPSCom/SmartData. 1IEEE, 2018,
pp- 1084-1091.

Mounir El Khatib, Asma Al Mulla, and Wadha Al Ketbi.
“The Role of Blockchain in E-Governance and Decision-
Making in Project and Program Management.” In: Ad-
vances in Internet of Things 12.3 (2022), pp. 88-109.

Shawn M Emery, C Edward Chow, and Richard White.
“Penetration Testing a US Election Blockchain Proto-
type.” In: E-Vote-ID 2021 (2021), p. 82.

Erik Eriksson, Amira Fredriksson, and Josefina Syssner.
“Opening the black box of participatory planning: a
study of how planners handle citizens” input.” In: Euro-
pean Planning Studies (2021).

Andreas Erwig, Sebastian Faust, Siavash Riahi, and
Tobias Stockert. “CommiTEE: An Efficient and Secure
Commit-Chain Protocol using TEEs.” In: IACR Cryptol.
ePrint Arch. (2020), p. 1486.

115

[EMC20]

[FGG19]

[FS86]

[FFB19]

[GAC19]

[GY19]

[Gar+19]

[GM13]

[GW12]

[Grol6]

[HS91]

BIBLIOGRAPHY

Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. “Sok: Transparent dishonesty: front-running at-
tacks on blockchain.” In: Financial Cryptography and Data
Security: FC 2019 International Workshops, VOTING and
WTSC. Springer. 2020, pp. 170-189.

Josselin Feist, Gustavo Grieco, and Alex Groce. “Slither:
a static analysis framework for smart contracts.” In:
WETSEB ICSE. IEEE, 2019, pp. 8-15.

Amos Fiat and Adi Shamir. “How to Prove Yourself:
Practical Solutions to Identification and Signature Prob-
lems.” In: CRYPTO. Vol. 263. Lecture Notes in Computer
Science. Springer, 1986, pp. 186-194.

Michael Frowis, Andreas Fuchs, and Rainer Bchme. “De-
tecting Token Systems on Ethereum.” In: Financial Cryp-
tography. Vol. 11598. Lecture Notes in Computer Science.
Springer, 2019, pp. 93-112.

David Gabay, Kemal Akkaya, and Mumin Cebe. “A
Privacy Framework for Charging Connected Electric
Vehicles Using Blockchain and Zero Knowledge Proofs.”
In: LCN Symposium. IEEE, 2019, pp. 66-73.

Hisham S. Galal and Amr M. Youssef. “Trustee: Full Pri-
vacy Preserving Vickrey Auction on Top of Ethereum.”
In: Financial Cryptography Workshops. Vol. 11599. Lecture
Notes in Computer Science. Springer, 2019, pp. 190-207.

Kanika Garg, Pavi Saraswat, Sachin Bisht, Sahil Kr Ag-
garwal, Sai Krishna Kothuri, and Sahil Gupta. “A com-
paritive analysis on e-voting system using blockchain.”
In: 4th International Conference on Internet of Things: Smart
Innovation and Usages (IoT-SIU). IEEE. 2019, pp. 1-4.

John Gaventa and Rosemary McGee. “The impact of
transparency and accountability initiatives.” In: Develop-
ment Policy Review (2013).

Stephan G Grimmelikhuijsen and Eric W Welch. “Devel-
oping and testing a theoretical framework for computer-
mediated transparency of local governments.” In: Public
administration review (2012).

Jens Groth. “On the Size of Pairing-Based Non-
interactive Arguments.” In: EUROCRYPT (2). Vol. 9666.
Lecture Notes in Computer Science. Springer, 2016,
pp- 305-326.

Stuart Haber and W Scott Stornetta. How to time-stamp a
digital document. Springer, 1991.

116

[Hab15]

[Har+18]

[Hei+18]

[HET19]

[HHK18]

[Hja+18]

[Kar+21]

[Kil+22]

[KL14]

[KDF13]

[KV18]

BIBLIOGRAPHY

UN Habitat. “International guidelines on urban and ter-
ritorial planning.” In: United Nations Human Settlements
Programme (2015).

Freya Sheer Hardwick, Apostolos Gioulis, Raja Naeem
Akram, and Konstantinos Markantonakis. “E-Voting
With Blockchain: An E-Voting Protocol with Decentral-
isation and Voter Privacy.” In: iThings/GreenCom/CP-
SCom/SmartData. IEEE, 2018, pp. 1561-1567.

Sven Heiberg, Ivo Kubjas, Janno Siim, and Jan Willem-
son. “On Trade-offs of Applying Block Chains for Elec-
tronic Voting Bulletin Boards.” In: E-Vote-ID (2018),
p- 259.

Jonathan Heiss, Jacob Eberhardt, and Stefan Tai. “From
Oracles to Trustworthy Data On-Chaining Systems.” In:
Blockchain. IEEE, 2019, pp. 496-503.

Ryan Henry, Amir Herzberg, and Aniket Kate. “Block-
chain Access Privacy: Challenges and Directions.” In:
IEEE Secur. Priv. 16.4 (2018), pp. 38—45.

Friorik P. Hjalmarsson, Gunnlaugur K. Hreioarsson, Mo-
hammad Hamdaqa, and Gisli Hjdlmtysson. “Blockchain-
Based E-Voting System.” In: IEEE CLOUD. IEEE Com-
puter Society, 2018, pp. 983-986.

Rabimba Karanjai, Weidong Shi, Lei Xu, Lin Chen,
Fengwei Zhang, and Zhimin Gao. “Lessons Learned
from Blockchain Applications of Trusted Execution En-

vironments and Implications for Future Research.” In:
HASP@MICRO. ACM, 2021, 5:1-5:8.

Christian Killer, Moritz Eck, Bruno Rodrigues, Jan von
der Assen, Roger Staubli, and Burkhard Stiller. “Provo-
tuMN: Decentralized, Mix-Net-based, and Receipt-free
Voting System.” In: ICBC. IEEE, 2022, pp. 1-9.

Natalia Kogan and Kyoung Jun Lee. “Exploratory re-
search on the success factors and challenges of Smart
City projects.” In: Asia pacific journal of information sys-
tems (2014).

Joshua A Kroll, Ian C Davey, and Edward W Felten.
“The economics of Bitcoin mining, or Bitcoin in the pres-
ence of adversaries.” In: Proceedings of WEIS. 11. Wash-
ington, DC. 2013.

Nir Kshetri and Jeffrey M. Voas. “Blockchain-Enabled
E-Voting.” In: IEEE Softw. 35.4 (2018), pp. 95-99.

117

[Len+22]

[MSS22]

[Mat+18]

[McC+15]

[MSH17]

[MS19]

[Met20]

[Mil19]

[Mil85]

[MM18]

[MK12]

BIBLIOGRAPHY

Jiewu Leng, Man Zhou, J. Leon Zhao, Yongfeng Huang,
and Yiyang Bian. “Blockchain Security: A Survey of
Techniques and Research Directions.” In: IEEE Trans.
Serv. Comput. 15.4 (2022), pp. 2490-2510.

Diksha Malhotra, Poonam Saini, and Awadhesh Ku-
mar Singh. “How Blockchain Can Automate KYC: Sys-
tematic Review.” In: Wirel. Pers. Commun. 122.2 (2022),
pp- 1987-2021.

Roman Matzutt, Jens Hiller, Martin Henze, Jan Hen-
rik Ziegeldorf, Dirk Miillmann, Oliver Hohlfeld, and
Klaus Wehrle. “A Quantitative Analysis of the Impact of
Arbitrary Blockchain Content on Bitcoin.” In: Financial
Cryptography. Vol. 10957. Lecture Notes in Computer
Science. Springer, 2018, pp. 420-438.

Patrick McCorry, Siamak F Shahandashti, Dylan Clarke,
and Feng Hao. “Authenticated key exchange over bit-
coin.” In: International Conference on Research in Security
Standardisation. Springer. 2015, pp. 3-20.

Patrick McCorry, Siamak F. Shahandashti, and Feng
Hao. “A Smart Contract for Boardroom Voting with
Maximum Voter Privacy.” In: Financial Cryptography.
Vol. 10322. Lecture Notes in Computer Science. Springer,
2017, pp. 357-375.

Julia Meier and Benedikt Schuppli. “The DAO Hack
and the Living Law of Blockchain.” In: Digitalisierung—
Gesellschaft—Recht: Analysen und Perspektiven von As-
sistierenden des Rechtswissenschaftlichen Instituts der Uni-
versitit Ziirich (2019), pp. 27-43.

William Metcalfe. “Ethereum, Smart Contracts, DApps.”
In: Blockchain and Crypt Currency 77 (2020).

Andrew Miller. “Permissioned and permissionless
blockchains.” In: Blockchain for distributed systems security
(2019), pp. 193-204.

Victor S. Miller. “Use of Elliptic Curves in Cryptogra-
phy.” In: CRYPTO. Vol. 218. Lecture Notes in Computer
Science. Springer, 1985, pp. 417-426.

Debajani Mohanty and Debajani Mohanty. “Ethereum
use cases.” In: Ethereum for Architects and Developers: With
Case Studies and Code Samples in Solidity (2018), pp. 203-
243.

Valeria Monno and Abdul Khakee. “Tokenism or po-
litical activism? Some reflections on participatory plan-
ning.” In: International Planning Studies (2012).

118

[M6s+18]

[Miih+20]

[Miih+18]

[NJ20]

[Nak08]

[Nat18]

[Par+21]

[PA19]

[Pin+19]

[Pop19]

[Qin+21]

BIBLIOGRAPHY

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee,
Henry Heffan, Shashvat Srivastava, Kyle Hogan, Ja-
son Hennessey, Andrew Miller, Arvind Narayanan, and
Nicolas Christin. “An Empirical Analysis of Traceabil-
ity in the Monero Blockchain.” In: Proc. Priv. Enhancing
Technol. 2018.3 (2018), pp. 143-163.

Roman Miihlberger, Stefan Bachhofner, Eduardo
Castell6 Ferrer, Claudio Di Ciccio, Ingo Weber, Maximil-
ian Wohrer, and Uwe Zdun. “Foundational Oracle Pat-
terns: Connecting Blockchain to the Off-Chain World.”
In: BPM (Blockchain and RPA Forum). Vol. 393. Lecture
Notes in Business Information Processing. Springer,
2020, pp- 35-51.

Alexander Miihle, Andreas Griiner, Tatiana Gayvoron-
skaya, and Christoph Meinel. “A survey on essential
components of a self-sovereign identity.” In: Comput. Sci.
Rev. 30 (2018), pp. 80-86.

Nitin Naik and Paul Jenkins. “uPort Open-Source
Identity Management System: An Assessment of Self-
Sovereign Identity and User-Centric Data Platform Built
on Blockchain.” In: ISSE. IEEE, 2020, pp. 1-7.

Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash
System. 2008.

National Academies of Sciences, Engineering, and
Medicine and others. “Securing the Vote: Protecting
American Democracy.” In: (2018), pp. 103-105.

Sunoo Park, Michael A. Specter, Neha Narula, and
Ronald L. Rivest. “Going from bad to worse: from In-

ternet voting to blockchain voting.” In: J. Cybersecur. 7.1
(2021).

Gabriel Pifia and Claudia Avellaneda. “Central govern-
ment strategies to promote local governments’ trans-
parency: Guidance or enforcement?” In: Public Perfor-
mance & Management Review (2019).

Andrea Pinna, Simona Ibba, Gavina Baralla, Roberto
Tonelli, and Michele Marchesi. “A Massive Analysis of
Ethereum Smart Contracts Empirical Study and Code
Metrics.” In: IEEE Access 7 (2019), pp. 78194-78213.

Serguei Popov. “IOTA: Feeless and Free.” In: Blockchain
Technical Briefs (2019).

Kaihua Qin, Liyi Zhou, Yaroslav Afonin, Ludovico Laz-
zaretti, and Arthur Gervais. “CeFi vs. DeFi - Compar-
ing Centralized to Decentralized Finance.” In: CoRR
abs/2106.08157 (2021).

119

[Ran+19]

[RYM19]

[RH11]

[Rou20]

[RMK14]

[Rum15]

[Ryd11]

[Sal+19]

[Sch21]

[Scho1]

[SGY20]

[SSH21]

BIBLIOGRAPHY

Nripendra P Rana, Sunil Luthra, Sachin Kumar Mangla,
Rubina Islam, Sian Roderick, and Yogesh K Dwivedi.
“Barriers to the development of smart cities in Indian
context.” In: Information Systems Frontiers (2019).

Pierre Reibel, Haaroon Yousaf, and Sarah Meiklejohn.
“Short Paper: An Exploration of Code Diversity in the
Cryptocurrency Landscape.” In: Financial Cryptography.
Vol. 11598. Lecture Notes in Computer Science. Springer,
2019, pp. 73-83.

Fergal Reid and Martin Harrigan. “An Analysis of
Anonymity in the Bitcoin System.” In: SocialCom/PAS-
SAT. IEEE Computer Society, 2011, pp. 1318-1326.

Tim Roughgarden. “Transaction Fee Mechanism Design
for the Ethereum Blockchain: An Economic Analysis of
EIP-1559.” In: CoRR abs/2012.00854 (2020).

Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate.
“CoinShulffle: Practical Decentralized Coin Mixing for
Bitcoin.” In: ESORICS. LNCS. Springer, 2014.

Rebecca Rumbul. “Who benefits from civic technology.”
In: Demographic and public attitudes research into the users
of civic technologies 7 (2015), p. 2018.

Yvonne Rydin. The purpose of planning: Creating sustain-
able towns and cities. Policy Press, 2011.

Jorge Saldivar, Cristhian Parra, Marcelo Alcaraz, Rebeca
Arteta, and Luca Cernuzzi. “Civic Technology for Social
Innovation.” In: Computer Supported Cooperative Work
(CSCW) (2019).

Fabian Schir. “Decentralized Finance: On Blockchain-
and Smart Contract-based Financial Markets.” In: FRB
of St. Louis Review (2021).

Claus Schnorr. “Efficient signature generation by smart
cards.” In: Journal of Cryptology 4 (Jan. 1991), pp. 161-174.

Mohamed Seifelnasr, Hisham S. Galal, and Amr M.
Youssef. “Scalable Open-Vote Network on Ethereum.”
In: Financial Cryptography Workshops. Vol. 12063. Lecture
Notes in Computer Science. Springer, 2020, pp. 436—450.

Alesja Serada, Tanja Sihvonen, and]. Tuomas Harvi-
ainen. “CryptoKitties and the New Ludic Economy: How
Blockchain Introduces Value, Ownership, and Scarcity
in Digital Gaming.” In: Games Cult. 16.4 (2021), pp. 457—
480.

120

[SHS20]

[Sim04]

[SNA21]

[SFG19]

[SKW20]

[Ste+22]

[Ste+19]

[Swal8]

[Sza97]

[Ten+22]

[TFH17]

BIBLIOGRAPHY

Bhavye Sharma, Raju Halder, and Jawar Singh.
“Blockchain-based Interoperable Healthcare using Zero-
Knowledge Proofs and Proxy Re-Encryption.” In: COM-
SNETS. IEEE, 2020, pp. 1-6.

Barbara B. Simons. “Electronic voting systems: the good,
the bad, and the stupid.” In: ACM Queue 2.7 (2004),
pp- 20-26.

Reza Soltani, Uyen Trang Nguyen, and Aijun An. “A
Survey of Self-Sovereign Identity Ecosystem.” In: Secur.
Commun. Networks 2021 (2021), 8873429:1-8873429:26.

Michael Spain, Sean Foley, and Vincent Gramoli. “The
Impact of Ethereum Throughput and Fees on Trans-
action Latency During ICOs.” In: Tokenomics. OASIcs.
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
2019.

Michael A Specter, James Koppel, and Daniel Weitzner.
“The Ballot is Busted Before the Blockchain: A Security
Analysis of Voatz, the First Internet Voting Application
Used in US. Federal Elections.” In: 29th USENIX Security
Symposium (USENIX Security 20). 2020, pp. 1535-1553.

Samuel Steffen, Benjamin Bichsel, Roger Baumgartner,
and Martin T. Vechev. “ZeeStar: Private Smart Contracts
by Homomorphic Encryption and Zero-knowledge
Proofs.” In: IEEE Symposium on Security and Privacy.
IEEE, 2022, pp. 179-197.

Samuel Steffen, Benjamin Bichsel, Mario Gersbach, Noa
Melchior, Petar Tsankov, and Martin T. Vechev. “zkay:
Specitying and Enforcing Data Privacy in Smart Con-
tracts.” In: CCS. ACM, 2019, pp. 1759-1776.

Melanie Swan. “Blockchain for business: Next-
generation enterprise artificial intelligence systems.” In:
(2018).

Nick Szabo. “Formalizing and Securing Relationships
on Public Networks.” In: First Monday 2.9 (1997).

Huang Teng, Wayneyuan Tian, Haocheng Wang, and
Zhiyuan Yang. “Applications of the Decentralized Fi-
nance (DeFi) on the Ethereum.” In: 2022 IEEE Asia-Pacific
Conference on Image Processing, Electronics and Computers
(IPEC). 2022, pp. 573-578.

Haibo Tian, Liqing Fu, and Jiejie He. “A Simpler Bitcoin
Voting Protocol.” In: Inscrypt. Vol. 10726. Lecture Notes
in Computer Science. Springer, 2017, pp. 81-98.

121

[TS16]

[Vic20]

[VL19]

[Wan+19]

[WD13]

[WMP22]

[Whi96]

[WTC19]

[Wo022]

[Wul9]

[Xia+21]

BIBLIOGRAPHY

Florian Tschorsch and Bjorn Scheuermann. “Bitcoin and
Beyond: A Technical Survey on Decentralized Digital
Currencies.” In: IEEE Commun. Surv. Tutorials 18.3 (2016),
pp. 2084-2123.

Friedhelm Victor. “Address Clustering Heuristics for
Ethereum.” In: Financial Cryptography. Vol. 12059. Lec-
ture Notes in Computer Science. Springer, 2020, pp. 617-
633.

Friedhelm Victor and Bianca Katharina Liiders. “Mea-
suring Ethereum-Based ERC20 Token Networks.” In:
Financial Cryptography. Vol. 11598. Lecture Notes in Com-
puter Science. Springer, 2019, pp. 113-129.

Yuepeng Wang, Shuvendu K. Lahiri, Shuo Chen, Rong
Pan, Isil Dillig, Cody Born, Immad Naseer, and Kostas
Ferles. “Formal Verification of Workflow Policies for
Smart Contracts in Azure Blockchain.” In: VSTTE.
Vol. 12031. Lecture Notes in Computer Science. Springer,
2019, pp. 87-106.

Joachim Wehner and Paolo De Renzio. “Citizens, leg-
islators, and executive disclosure: The political deter-
minants of fiscal transparency.” In: World Development
(2013).

Bryan White, Aniket Mahanti, and Kalpdrum Passi.
“Characterizing the OpenSea NFT Marketplace.” In:
WWW (Companion Volume). ACM, 2022, pp. 488—496.

Sarah C White. “Depoliticising development: the uses
and abuses of participation.” In: Development in practice
(1996).

Alexander Wilson, Mark Tewdwr-Jones, and Rob
Comber. “Urban planning, public participation and dig-
ital technology: App development as a method of gener-
ating citizen involvement in local planning processes.”
In: Environment and Planning B: Urban Analytics and City
Science 46.2 (2019), pp. 286-302.

Gavin Wood. Ethereum: A Secure Decentralised Generalised
Transaction Ledger, Berlin Revision BEACFBD. 2022.

Kaidong Wu. “An Empirical Study of Blockchain-based
Decentralized Applications.” In: CoRR abs/1902.04969
(2019).

Pengcheng Xia, Haoyu Wang, Zhou Yu, Xinyu Liu, Xi-
apu Luo, and Guoai Xu. “Ethereum Name Service: the
Good, the Bad, and the Ugly.” In: CoRR abs/2104.05185
(2021).

122

[Yan+19]

[Yu+18]

[ZC15]

[Zhe+18]

[Zio+19]

WEB RESOURCES

Jinhong Yang, Md Mehedi Hassan Onik, Nam-Yong
Lee, Mohiuddin Ahmed, and Chul-Soo Kim. “Proof-
of-familiarity: a privacy-preserved blockchain scheme
for collaborative medical decision-making.” In: Applied
Sciences 9.7 (2019), p. 1370.

Bin Yu, Joseph K. Liu, Amin Sakzad, Surya Nepal, Ron
Steinfeld, Paul Rimba, and Man Ho Au. “Platform-
Independent Secure Blockchain-Based Voting System.”
In: ISC. Vol. 11060. Lecture Notes in Computer Science.
Springer, 2018, pp. 369-386.

Zhichao Zhao and T.-H. Hubert Chan. “How to Vote
Privately Using Bitcoin.” In: ICICS. Vol. 9543. Lecture
Notes in Computer Science. Springer, 2015, pp. 82-96.

Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Xiangping
Chen, and Huaimin Wang. “Blockchain challenges and
opportunities: a survey.” In: Int. J. Web Grid Serv. 14.4
(2018), pp. 352-375.

Rafael Ziolkowski, Geetha Parangi, Gianluca Miscione,
and Gerhard Schwabe. “Examining Gentle Rivalry:
Decision-Making in Blockchain Systems.” In: HICSS.
ScholarSpace, 2019, pp. 1-10.

123

WEB RESOURCES

[@AKh+19]

[@Ale19]

[@But+19]

[@But16]

[@But17a]

[@But17b]

[@But20]

[@But21]

[@But23a]

[@But23b]

Alexey Akhunov, Eli Ben Sasson, Tom Brand, Louis
Guthmann, and Avihu Levy. Transaction data gas cost re-
duction. Accessed: 2023-05-14. 2019. URL: https:/ /github.
com / ethereum / EIPs / blob / master / EIPS / eip-2028.
md.

Roman Storm Alexey Pertsev Roman Semenov. Tornado
Cash Privacy Solution Version 1.4. Accessed: 2023-01-17.
2019. URL: https:/ / berkeley-defi.github.io / assets /
material / Tornado%20Cash%20Whitepaper.pdf.

EIP-1559: Vitalik Buterin, Eric Conner, Rick Dudley,
Matthew Slipper, Ian Norden, and Abdelhamid Bakhta.
Fee market change for ETH 1.0 chain. Accessed: 2023-01-17.
2019. URL: https:/ /github.com/ethereum /EIPs /blob/
master/EIPS/eip-1559.md.

Vitalik Buterin. Gas cost changes for IO-heavy operations.
Accessed: 2023-05-14. 2016. URL: https:/ /github.com/
ethereum /EIPs/blob/master/EIPS/eip-150.md.

Vitalik Buterin. EIP-198: Big integer modular exponentia-
tion. Accessed: 2023-01-17. 2017. URL: https:/ /github.
com/ethereum/EIPs/blob/master /EIPS/eip-198.md.

Vitalik Buterin. Proof of Stake FAQ. Accessed: 2023-05-22.
2017. URL: https:/ /vitalik.ca / general /2017 /12/31/
pos_fag.html.

Vitalik Buterin. Why Proof of Stake. Accessed: 2023-05-22.
2020. URL: https:/ /vitalik.ca / general /2020 /11 /06 /
p0s2020.html.

Vitalik Buterin. Blockchain voting is overrated among un-
informed people but underrated among informed people. Ac-
cessed: 2023-01-17. 2021. URL: https: / / vitalik . ca /
general/2021/05/25/voting2.html.

Vitalik Buterin. An incomplete guide to stealth addresses.
Accessed: 2023-05-12. 2023. URL: https:/ /vitalik.ca /
general /2023/01/20/stealth.html.

Vitalik Buterin. Ethereum whitepaper: A next generation
smart contract and decentralized application platform. Ac-
cessed: 2023-01-17. 2023. URL: https:/ /ethereum.org/
en/whitepaper/.

124

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2028.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2028.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2028.md
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://berkeley-defi.github.io/assets/material/Tornado%20Cash%20Whitepaper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1559.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-150.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-198.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-198.md
https://vitalik.ca/general/2017/12/31/pos_faq.html
https://vitalik.ca/general/2017/12/31/pos_faq.html
https://vitalik.ca/general/2020/11/06/pos2020.html
https://vitalik.ca/general/2020/11/06/pos2020.html
https://vitalik.ca/general/2021/05/25/voting2.html
https://vitalik.ca/general/2021/05/25/voting2.html
https://vitalik.ca/general/2023/01/20/stealth.html
https://vitalik.ca/general/2023/01/20/stealth.html
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/

[@BS20]

[@Chr16]

[@Co0i23]

[@Con18]

[@Dal19]

[@Deg+17]

[@DD18]

[@Est21]

[@Eth23]

[@Fou22a]

[@Fou22b]

WEB RESOURCES

Vitalik Buterin and Martin Swende. Gas cost increases
for state access opcodes. Accessed: 2023-05-14. 2020. URL:
https:/ / github.com / ethereum / EIPs / blob / master /
EIPS/eip-2929.md.

Christopher Allen. The path to self-sovereign identity.
Accessed: 2023-01-17. 2016. URL: http : / / www .
lifewithalacrity.com / 2016 / 04 / the - path - to - self -
soverereign-identity.html.

CoinMarketCap.com. Ethereum Market Cap. Accessed:
2023-05-13. 2023. URL: https:/ /coinmarketcap.com /
currencies/ethereum/.

ConsenSys. Quorum Whitepaper v0.2. Accessed: 2023-
01-16. 2018. URL: https:/ / github.com / ConsenSys /
quorum / blob / master / docs / Quorum %
20Whitepaper%?20v0.2.pdf.

Brady Dale. Stellar Tried to Give Away 2B XLM Tokens
on Keybase. Then the Spammers Came. Accessed: 2023-
05-10. 2019. URL: https:/ / web.archive.org / web /
20220118130355 / https : / / www . coindesk . com /
business /2019 /12 /13 /stellar-tried-to-give-away-2b-
xIm-tokens-on-keybase-then-the-spammers-came/.

Degewo, Howoge, Gesobau, Gewobag, Stadt&Land,
and WBM. Leitlinien fiir Partizipation im Wohnungs-
bau. Accessed: 2023-01-16. 2017. URL: http:/ / web .
archive.org / web /20220207050753 / https: / / www.
degewo . de / fileadmin / user_upload / degewo /
Wachstum / Partizipation_Unterseiten / Broschuere_
Evaluation_Leitlinien_.-Wohnungsbau.pdf.

Evan Duffield and Daniel Diaz. Dash: A Payments-
Focused Cryptocurrency. Accessed: 2023-01-13. 2018. URL:
https : / / github . com / dashpay / dash / wiki /
Whitepaper.

Brainbot Labs Est. Raiden Network 3.0.1 Documentation.
Accessed: 2023-05-12. 2021. URL: https: / / raiden -
network.readthedocs.io/en/v3.0.1/.

Etherscan.io. Ether Daily Price (USD) Chart. Accessed:
2023-04-18. 2023. URL: https:/ / etherscan.io / chart /
etherprice.

Democracy Earth Foundation. The Social Smart Contract.
Accessed: 2023-01-16. 2022. URL: https:/ /github.com/
DemocracyEarth/paper.

Hyperledger Foundation. Hyperledger Indy SDK. Ac-
cessed: 2023-05-17. 2022. URL: https:/ / github.com /
hyperledger/indy-sdk.

125

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2929.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2929.md
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
http://www.lifewithalacrity.com/2016/04/the-path-to-self-soverereign-identity.html
https://coinmarketcap.com/currencies/ethereum/
https://coinmarketcap.com/currencies/ethereum/
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://github.com/ConsenSys/quorum/blob/master/docs/Quorum%20Whitepaper%20v0.2.pdf
https://web.archive.org/web/20220118130355/https://www.coindesk.com/business/2019/12/13/stellar-tried-to-give-away-2b-xlm-tokens-on-keybase-then-the-spammers-came/
https://web.archive.org/web/20220118130355/https://www.coindesk.com/business/2019/12/13/stellar-tried-to-give-away-2b-xlm-tokens-on-keybase-then-the-spammers-came/
https://web.archive.org/web/20220118130355/https://www.coindesk.com/business/2019/12/13/stellar-tried-to-give-away-2b-xlm-tokens-on-keybase-then-the-spammers-came/
https://web.archive.org/web/20220118130355/https://www.coindesk.com/business/2019/12/13/stellar-tried-to-give-away-2b-xlm-tokens-on-keybase-then-the-spammers-came/
http://web.archive.org/web/20220207050753/https://www.degewo.de/fileadmin/user_upload/degewo/Wachstum/Partizipation_Unterseiten/Broschuere_Evaluation_Leitlinien_Wohnungsbau.pdf
http://web.archive.org/web/20220207050753/https://www.degewo.de/fileadmin/user_upload/degewo/Wachstum/Partizipation_Unterseiten/Broschuere_Evaluation_Leitlinien_Wohnungsbau.pdf
http://web.archive.org/web/20220207050753/https://www.degewo.de/fileadmin/user_upload/degewo/Wachstum/Partizipation_Unterseiten/Broschuere_Evaluation_Leitlinien_Wohnungsbau.pdf
http://web.archive.org/web/20220207050753/https://www.degewo.de/fileadmin/user_upload/degewo/Wachstum/Partizipation_Unterseiten/Broschuere_Evaluation_Leitlinien_Wohnungsbau.pdf
http://web.archive.org/web/20220207050753/https://www.degewo.de/fileadmin/user_upload/degewo/Wachstum/Partizipation_Unterseiten/Broschuere_Evaluation_Leitlinien_Wohnungsbau.pdf
https://github.com/dashpay/dash/wiki/Whitepaper
https://github.com/dashpay/dash/wiki/Whitepaper
https://raiden-network.readthedocs.io/en/v3.0.1/
https://raiden-network.readthedocs.io/en/v3.0.1/
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/etherprice
https://github.com/DemocracyEarth/paper
https://github.com/DemocracyEarth/paper
https://github.com/hyperledger/indy-sdk
https://github.com/hyperledger/indy-sdk

[@Hen+16]

[@Hop+16]

[@Hyp18]

[@IAP14]

[@Idel9]

[@]en16]

[@OL19]

[@KL18]

[@KV19a]

WEB RESOURCES

] Hendler, O Sosnik, G Prudner, D Chernicoff,] Mc-
Carthy, O Ree, and C Keefe. Engines of Change: What
Civic Tech Can Learn from Social Movements. Accessed:
2023-01-16. 2016. URL: http:/ /web.archive.org /web /
20170113162056mp_/http:/ /enginesofchange.omidyar.
com/docs/OmidyarEnginesOfChange.pdf.

Daira Hopwood, Sean Bowe, Taylor Hornby, and
Nathan Wilcox. Zcash protocol specification. Accessed:
2023-05-12. 2016. URL: https:/ / github.com / zcash /
zips/blob/main/protocol/ protocol.pdf.

Hyperledger White Paper Working Group. An Intro-
duction to Hyperledger. Accessed: 2023-01-17. 2018. URL:
https:/ /www.hyperledger.org/wp-content/uploads/
2018/07 /HL_Whitepaper_IntroductiontoHyperledger.
pdf.

IAP2 International Federation. IAP2’s Public Participa-
tion Spectrum. Accessed: 2023-01-16. 2014. URL: http:
/ / web.archive.org /web /20190319061606 / iap2.org.
au / Tenant / C0000004 /00000001 / files / IAP2 Public_
Participation_Spectrum.pdf.

Iden3. Pedersen Hash. Accessed: 2023-01-17. 2019. URL:
https:/ /iden3-docs.readthedocs.io/en/latest /iden3_
repos / research / publications / zkproof - standards -
workshop-2/pedersen-hash/pedersen.html.

Christoph Jentzsch. Decentralized Autonomous Organiza-
tion to Automate Governance. Accessed: 2023-01-13. 2016.
URL: http:/ /web.archive.org/web /20190709152857 /
https:/ /download.slock.it/public/DAO/WhitePaper.
pdf.

JOLOCOM. A Decentralized, Open Source Solution for
Digital Identity and Access Management (Whitepaper). Ac-
cessed: 2023-01-17. 2019. URL: https:/ /jolocom.io/wp-
content/uploads/2019/12/Jolocom-Whitepaper-v2.1-
A-Decentralized - Open-Source-Solution- for- Digital -
Identity-and-%20Access-Management.pdf.

Dmitry Khovratovich and Michael Lodder. Anonymous
credentials with type-3 revocation. Accessed: 2023-01-17.
2018. URL: https:/ / github.com / hyperledger / ursa-
docs / blob / 62bc87b / specs / anoncreds] / anoncreds.
tex.

Dmitry Khovratovich and Mikhail Vladimirov. Tornado
Circuit Audit. Accessed: 2023-01-17. 2019. URL: http:
/ / web . archive . org / web / 20220409180142 / https :

126

http://web.archive.org/web/20170113162056mp_/http://enginesofchange.omidyar.com/docs/OmidyarEnginesOfChange.pdf
http://web.archive.org/web/20170113162056mp_/http://enginesofchange.omidyar.com/docs/OmidyarEnginesOfChange.pdf
http://web.archive.org/web/20170113162056mp_/http://enginesofchange.omidyar.com/docs/OmidyarEnginesOfChange.pdf
https://github.com/zcash/zips/blob/main/protocol/protocol.pdf
https://github.com/zcash/zips/blob/main/protocol/protocol.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
https://www.hyperledger.org/wp-content/uploads/2018/07/HL_Whitepaper_IntroductiontoHyperledger.pdf
http://web.archive.org/web/20190319061606/iap2.org.au/Tenant/C0000004/00000001/files/IAP2_Public_Participation_Spectrum.pdf
http://web.archive.org/web/20190319061606/iap2.org.au/Tenant/C0000004/00000001/files/IAP2_Public_Participation_Spectrum.pdf
http://web.archive.org/web/20190319061606/iap2.org.au/Tenant/C0000004/00000001/files/IAP2_Public_Participation_Spectrum.pdf
http://web.archive.org/web/20190319061606/iap2.org.au/Tenant/C0000004/00000001/files/IAP2_Public_Participation_Spectrum.pdf
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
http://web.archive.org/web/20190709152857/https://download.slock.it/public/DAO/WhitePaper.pdf
http://web.archive.org/web/20190709152857/https://download.slock.it/public/DAO/WhitePaper.pdf
http://web.archive.org/web/20190709152857/https://download.slock.it/public/DAO/WhitePaper.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-%20Access-Management.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-%20Access-Management.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-%20Access-Management.pdf
https://jolocom.io/wp-content/uploads/2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-Solution-for-Digital-Identity-and-%20Access-Management.pdf
https://github.com/hyperledger/ursa-docs/blob/62bc87b/specs/anoncreds1/anoncreds.tex
https://github.com/hyperledger/ursa-docs/blob/62bc87b/specs/anoncreds1/anoncreds.tex
https://github.com/hyperledger/ursa-docs/blob/62bc87b/specs/anoncreds1/anoncreds.tex
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf

[@KV19b]

[@Liq23]

[@LLW15]

[@Mic19]

[@MiV18]

[@Muel8]

[@Nol+19]

[@Pan17]

[@PD16]

[@RB20]

WEB RESOURCES

/ / tornado.cash / audits / TornadoCash_circuit_audit_
ABDK pdf.

Dmitry Khovratovich and Mikhail Vladimirov. Tornado
Privacy Solution Cryptographic Review. Accessed: 2023-
01-17. 2019. URL: http:/ / web . archive . org / web /
20220409180132 / https : / / tornado . cash / audits /
TornadoCash_cryptographic_review_ABDK.pdf.

Liquid Democracy. Adhocracy4. Accessed: 2023-04-15.
2023. URL: https:/ /github.com/liqd /adhocracy4.

Eric Lombrozo, Johnson Lau, and Pieter Wuille. Seg-
regated Witness (Consensus layer). Accessed: 2023-05-29.
2015. URL: https:/ / github.com /bitcoin /bips /blob /
master /bip-0141.mediawiki.

Dmitry Khovratovich Michael Lodder. Anonymous cre-
dentials 2.0. Accessed: 2023-01-17. 2019. URL: https:
/ / wiki.hyperledger.org / download / attachments /
6426712/ Anoncreds2.1.pdf.

MiVote. Democracy ~ Warrior ~ Handbook. — Ac-
cessed: 2023-01-16. 2018. URL: https : / / web .
archive . org / web / 20190518215049 / https : / /
d3n8a8pro7vhmx . cloudfront . net / mivote / pages /
349 / attachments / original / 1534738464 / MIV_001_
A5_DemocracyWarriorHandbook FA2_digital . pdf ?
1534738464.

Bernhard Mueller. Smashing Ethereum Smart Contracts
for Fun and Real Profit. Accessed: 2023-01-17. 2018. URL:
https:/ /github.com/muellerberndt/smashing-smart-
contracts / blob / master / smashing- smart- contracts-
lofl.pdf.

Tobias Nolte, Andrew Witt, Olivia Heung, and James
Yamada. BBBlockchain. Accessed: 2023-05-18. 2019. URL:
https:/ /web.archive.org/web/20221209101940/https:
/ /certainmeasures.com/BBBLOCKCHAIN.

Sancho Panza. Generalized version bits voting. Accessed:
2023-05-24. 2017. URL: https:/ / github.com /bitcoin /
bips/blob/master/bip-0135.mediawiki.

Joseph Poon and Thaddeus Dryja. The Bitcoin lightning
network: Scalable off-chain instant payments. Accessed:
2023-05-12. 2016. URL: https:/ /lightning . network /
lightning-network-paper.pdf.

Danny Ryan and Vitalik Buterin. Serenity Phase 0. Ac-
cessed: 2023-05-23. 2020. URL: https:/ / github.com /
ethereum /EIPs/blob/master /EIPS/eip-2982.md.

127

http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180142/https://tornado.cash/audits/TornadoCash_circuit_audit_ABDK.pdf
http://web.archive.org/web/20220409180132/https://tornado.cash/audits/TornadoCash_cryptographic_review_ABDK.pdf
http://web.archive.org/web/20220409180132/https://tornado.cash/audits/TornadoCash_cryptographic_review_ABDK.pdf
http://web.archive.org/web/20220409180132/https://tornado.cash/audits/TornadoCash_cryptographic_review_ABDK.pdf
https://github.com/liqd/adhocracy4
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://wiki.hyperledger.org/download/attachments/6426712/Anoncreds2.1.pdf
https://wiki.hyperledger.org/download/attachments/6426712/Anoncreds2.1.pdf
https://wiki.hyperledger.org/download/attachments/6426712/Anoncreds2.1.pdf
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://web.archive.org/web/20190518215049/https://d3n8a8pro7vhmx.cloudfront.net/mivote/pages/349/attachments/original/1534738464/MIV_001_A5_DemocracyWarriorHandbook_FA2_digital.pdf?1534738464
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://github.com/muellerberndt/smashing-smart-contracts/blob/master/smashing-smart-contracts-1of1.pdf
https://web.archive.org/web/20221209101940/https://certainmeasures.com/BBBLOCKCHAIN
https://web.archive.org/web/20221209101940/https://certainmeasures.com/BBBLOCKCHAIN
https://github.com/bitcoin/bips/blob/master/bip-0135.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0135.mediawiki
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2982.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-2982.md

[@Sov21]

[@Thel7]

[@The20]

[@Van13]

[@VK19]

[@V1a23]

[@Vog19]

[@VB15]

[@VY20]

[@WG19]

[@Wil16]

[@Wor22]

WEB RESOURCES

Sovrin Foundation. Indy Walkthrough - A Developer Guide
for Building Indy Clients Using Libindy. Accessed: 2023-
01-17. 2021. URL: https:/ / github.com /hyperledger /
indy-sdk /blob /master /docs / getting-started /indy-
walkthrough.md.

The Maker Team. The Daj Stablecoin System. Accessed:
2023-04-21. 2017. URL: https:/ /web.archive.org/web/
20221219131150/https:/ /makerdao.com/whitepaper/
Dai-Whitepaper-Dec17-en.pdf.

The Social Coin. Social Coin. Accessed: 2023-04-25. 2020.
URL: https:/ /web.archive.org/web/20200903211207 /
https:/ /thesocialcoin.com/?lang=en.

Nicolas Van Saberhagen. CryptoNote v 2.0. Accessed:
2023-05-12. 2013. URL: https:/ / github.com /monero-
project / research - lab / blob / master / whitepaper /
whitepaper.pdf.

Mikhail Vladimirov and Dmitry Khovratovich. Tornado
Cash Smart Contracts Audit. Accessed: 2023-01-17. 2019.
URL: http:/ /web.archive.org/web /20220409180200 /
https:/ /tornado.cash/audits / TornadoCash_contract_
audit ABDK.pdf.

Aleksandr Vlasov. web3swift. Accessed: 2023-05-18. 2023.
URL: https:/ /github.com /web3swift-team /web3swift.

Fabian Vogelsteller. ERC-735: Claim Holder. Accessed:
2023-01-17. 2019. URL: https:/ /github.com /ethereum/
EIPs/issues/735.

Fabian Vogelsteller and Vitalik Buterin. EIP-20: Token
Standard. Accessed: 2023-01-16. 2015. URL: https: / /
github.com /ethereum /EIPs/blob /master /EIPS/ eip-
20.md.

Fabian Vogelsteller and Tyler Yasaka. ERC-725: Smart
Contract Based Account. Accessed: 2023-01-17. 2020. URL:
https://github.com/ethereum/EIPs/issues/725.

Barry WhiteHat and Kobi Gurkan. MicroMix. Ac-
cessed: 2023-05-31. 2019. URL: https:/ /hackmd .io /
qIKORn5MSQOes1WtsEznu._g.

Jeffrey Wilcke. To fork or not to fork. Accessed: 2023-04-21.
2016. URL: https:/ /blog.ethereum.org/2016/07/15/to-
fork-or-not-to-fork.

World Wide Web Consortium (W3C). Verifiable Creden-
tials Data Model v1.1 - Expressing verifiable information on
the Web. Accessed: 2023-01-17. 2022. URL: https://www.
w3.org/TR/vc-data-model/.

128

https://github.com/hyperledger/indy-sdk/blob/master/docs/getting-started/indy-walkthrough.md
https://github.com/hyperledger/indy-sdk/blob/master/docs/getting-started/indy-walkthrough.md
https://github.com/hyperledger/indy-sdk/blob/master/docs/getting-started/indy-walkthrough.md
https://web.archive.org/web/20221219131150/https://makerdao.com/whitepaper/Dai-Whitepaper-Dec17-en.pdf
https://web.archive.org/web/20221219131150/https://makerdao.com/whitepaper/Dai-Whitepaper-Dec17-en.pdf
https://web.archive.org/web/20221219131150/https://makerdao.com/whitepaper/Dai-Whitepaper-Dec17-en.pdf
https://web.archive.org/web/20200903211207/https://thesocialcoin.com/?lang=en
https://web.archive.org/web/20200903211207/https://thesocialcoin.com/?lang=en
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
https://github.com/monero-project/research-lab/blob/master/whitepaper/whitepaper.pdf
http://web.archive.org/web/20220409180200/https://tornado.cash/audits/TornadoCash_contract_audit_ABDK.pdf
http://web.archive.org/web/20220409180200/https://tornado.cash/audits/TornadoCash_contract_audit_ABDK.pdf
http://web.archive.org/web/20220409180200/https://tornado.cash/audits/TornadoCash_contract_audit_ABDK.pdf
https://github.com/web3swift-team/web3swift
https://github.com/ethereum/EIPs/issues/735
https://github.com/ethereum/EIPs/issues/735
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-20.md
https://github.com/ethereum/EIPs/issues/725
https://hackmd.io/qlKORn5MSOes1WtsEznu_g
https://hackmd.io/qlKORn5MSOes1WtsEznu_g
https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork
https://blog.ethereum.org/2016/07/15/to-fork-or-not-to-fork
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/

[@Wui+21]

[@ZEX18]

WEB RESOURCES

Pieter Wuille, Peter Todd, Greg Maxwell, and Rusty Rus-
sell. Version bits with timeout and delay. Accessed: 2023-
01-17. 2021. URL: https:/ / github.com /bitcoin /bips /
blob/master /bip-0009.mediawiki.

Zainan Victor Zhou, Evan, and Yin Xu. Voting Interface.
Accessed: 2023-05-15. 2018. URL: https:/ /github.com/
ethereum /EIPs/blob/master/EIPS/eip-1202.md.

129

https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0009.mediawiki
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-1202.md

	Title Page
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Outline
	1.4 Contributions

	 Decentralized Applications
	2 Background and Related Work
	2.1 Technical Background
	2.2 Decision-Making DApps
	2.3 Related Work

	3 DApp Analysis
	3.1 Key Metrics of Ethereum
	3.2 Relevance and Trends of Blockchain-Based DApps

	4 Decision-Making DApps
	4.1 Empirical Analysis
	4.2 Feasibility Analysis
	4.3 Voting Beyond Ethereum
	4.4 Relevance of Decision-Making DApps

	 Decision-Making for Urban Participation
	5 BBBlockchain
	5.1 Citizen Participation Processes
	5.2 BBBlockchain Use Cases for Urban Participation
	5.3 BBBlockchain Architecture
	5.4 Pilot Deployment

	 Privacy Mechanisms
	6 SmartDHX
	6.1 Motivation
	6.2 Proof of Concept
	6.3 Conclusion

	7 Anonymous Credentials Verifier
	7.1 Motivation
	7.2 Anonymous Credentials
	7.3 Proof Verification
	7.4 Implementation
	7.5 Discussion
	7.6 Self-Sovereign Identities
	7.7 Conclusion

	8 Tornado Vote
	8.1 Motivation
	8.2 Background
	8.3 Tornado Vote
	8.4 Evaluation
	8.5 Conclusion

	 Conclusions
	9 Discussion and Conclusion
	9.1 Discussion
	9.2 Conclusion

	 Publications by the Author
	 Bibliography
	 Web Resources

